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Abstract

Semi-supervised multi-label learning (SSMLL) refers to inducing classifiers using
a small number of samples with multiple labels and many unlabeled samples.
The prevalent solution of SSMLL involves forming pseudo-labels for unlabeled
samples and inducing classifiers using both labeled and pseudo-labeled samples
in a self-training manner. Unfortunately, with the commonly used binary type of
loss and negative sampling, we have empirically found that learning with labeled
and pseudo-labeled samples can result in the variance bias problem between the
feature distributions of positive and negative samples for each label. To alleviate this
problem, we aim to balance the variance bias between positive and negative samples
from the perspective of the feature angle distribution for each label. Specifically,
we extend the traditional binary angular margin loss to a balanced extension with
feature angle distribution transformations under the Gaussian assumption, where
the distributions are iteratively updated during classifier training. We also suggest
an efficient prototype-based negative sampling method to maintain high-quality
negative samples for each label. With this insight, we propose a novel SSMLL
method, namely Semi-Supervised Multi-Label Learning with Balanced Binary
Angular Margin loss (S2ML2-BBAM). To evaluate the effectiveness of S2ML2-
BBAM, we compare it with existing competitors on benchmark datasets. The
experimental results validate that S2ML2-BBAM can achieve very competitive
performance.

1 Introduction

Multi-label learning (MLL) refers to the classification problem where each training sample can
be associated with multiple labels [1]. For example, in text categorization, a text can involve a
certain number of topics simultaneously [2, 3]; and in image annotation, an image can contain
multiple objects of interest in one scene [4, 5]. Compared with single-label learning, MLL is a more
prevalent paradigm in real-world scenarios, and it has been widely used in many applications such as
information retrieval [6, 7] and recommendation systems [8, 9].
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Figure 1: The variance difference between feature distributions (VDFD) of positive and negative sam-
ples computed in semi-supervised and supervised manners across labels {6, 7, 14, 17} of VOC2012.

Despite the successful application of MLL, the competitive performance of most MLL methods
heavily depends on the large volume of training samples with precise supervision [4, 10, 11]. Unfor-
tunately, it is expensive to manually annotate each sample, so it is naturally time-consuming to collect
loads of labeled training samples. Accordingly, the community has turned to alternative candidates to
MLL, and raised the question of whether one can induce robust MLL classifiers with a small number
of labeled samples and a large number of unlabeled samples, which are cheaper to collect. This
concept gives birth to the emerging research topic of semi-supervised multi-label learning (SSMLL),
and many attempts have been recently proposed [12, 13, 14, 15, 16, 17].

Generally, the topic of SSMLL, as its name suggests, is in parallel inherited from semi-supervised
learning (SSL) and MLL. The current prevalent ideas are estimating pseudo-labels of unlabeled
samples with SSL techniques and inducing MLL classifiers with both labeled and pseudo-labeled
samples in a self-training manner. Following the prior arts [18, 19], the binary kind of losses, e.g.
binary cross-entropy loss and asymmetric loss [20], are commonly used to optimize MLL classifiers,
where those are equivalent to optimizing the binary loss between the positive and negative samples
for each label. To alleviate the imbalanced issue between positive and negative samples, especially
for the scenarios with massive labels, the negative sampling tricks are often employed [21, 22, 23].
Unfortunately, in our preliminary experiments, we found such training paradigms suffer from the
variance bias problem by using the labeled and pseudo-labeled samples in the context of SSMLL,
since it is difficult to guarantee estimating accurate pseudo-labels. To be specific, the problem implies
that for each label, in SSMLL the variance difference between feature distributions of positive and
negative samples is often larger than the ones in fully supervised learning, as illustrated in Fig.1.
In this situation, each trained binary boundary tends to keep away from the Bayesian optimal one,
resulting in performance degradation.

To tackle this problem, we propose a novel SSMLL method, namely Semi-Supervised Multi-Label
Learning with Balanced Binary Angular Margin loss (S2ML2-BBAM). The basic insight of S2ML2-
BBAM is to balance the variance bias between positive and negative samples from the perspective
of the feature angle distribution for each label. To be specific, we extend the binary angular margin
(BAM) loss, which measures the prediction loss by using the angle between the feature and binary
boundary for each label. We suppose that for each label these feature angles of positive and negative
samples are drawn from label-specific “positive” and “negative” Gaussian distributions, which are
estimated by employing both labeled and pseudo-labeled samples during classifier training. Therefore,
we can apply some linear Gaussian transformations over these feature angle distributions, so as to
balance the variance bias between positive and negative samples for each label. Upon this idea, we
design a new balanced binary angular margin (BBAM) loss and construct a novel S2ML2-BBAM
method based on the designed BBAM loss and self-training manner. We also suggest an efficient
prototype-based negative sampling method to maintain high-quality negative samples for each label.
We evaluate the proposed S2ML2-BBAM by comparing the most recent competitors on benchmark
datasets. Experimental results indicate the superior performance of S2ML2-BBAM.

In summary, the main contributions of this paper are listed as follows:

• We develop a novel SSMLL method, namely S2ML2-BBAM, by balancing the variance bias
between positive and negative samples from the perspective of the feature angle distribution
for each label.
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• We design a new BBAM loss by extending the traditional binary angular margin loss with
feature angle distribution transformations under the Gaussian assumption, and suggest
an efficient prototype-based negative sampling method to maintain high-quality negative
samples for each label.

• We construct extensive experiments to evaluate S2ML2-BBAM, and experimental results
demonstrate the effectiveness of S2ML2-BBAM.

2 Formulation and Analysis

2.1 Problem Formulation

By convention, we use x to denote the sample feature vector and y ∈ {0, 1}K the label indicator
vector of K pre-defined classes, where 0/1 implies a sample is irrelevant/relevant to the category. In
the task of SSMLL, we are formally given a collection of training samples D = {Dl,Du}, where
Dl = {(xl

i,y
l
i)}

i=Nl
i=1 and Du = {xu

j }
j=Nu
j=1 are the collections of Nl labeled and Nu unlabeled

samples, respectively. The goal of SSMLL is to induce a classifier fW(x), parameterized by W,
from D and use the classifier fW(x) to predict the label indicator vectors for future samples.

Broadly speaking, the classifier fW(x) typically consists of a backbone encoder and a classification
layer, parameterized by We and Wc, respectively (i.e. W = {We,Wc}). Specifically, the backbone
encoder transforms any original feature vector x into a more discriminative latent feature z = fWe(x);
the classification layer applies z to generate its corrsponding predictive logits p = fWc(z). Given an
SSMLL training dataset D, the classifier fW(x) is commonly optimized by minimizing the following
generic self-training objective concerning W on Bl-sized labeled and Bu-sized unlabeled batches:

L(W) =
1

BlK

Bl∑
i=1

K∑
k=1

ℓ(plik, y
l
ik) +

λ

BuK

Bu∑
i=1

K∑
k=1

ℓ(puik, y
u
ik), (1)

where ℓ(·, ·) is a binary loss function; λ is the coefficient parameter; pl
i = fW(xl

i) and pu
i = fW(xu

i )
are the predictive logits of labeled and unlabeled samples, respectively; yu

i is the pseudo-label of
unlabeled samples induced from its current classifier prediction pu

i .

2.2 How Variance Bias Affects the Performance

As shown in Fig.1, we have observed that the generic self-training objective of SSMLL may suffer
from the variance bias problem. Here, we discuss how it will affect the classification performance.
We treat SSMLL as K independent semi-supervised binary classification (SSBC) tasks. For each
SSBC task, let {(xi, y

∗
i )} ∪ {xi} be the training data, where x ∈ Rd and y∗ ∈ {−1,+1} is the

ground-truth label. Besides, let ŷ ∈ {−1,+1} be the pseudo-label. For clarity and conciseness, we
study the SSBC training data drawn from a mixture Gaussian distribution P∗, which can be defined
by the following distribution over (x, y) ∈ Rd × {±1}:

y =

{
+1, p = α,

−1, p = 1− α,
x ∼

{
N (µ,Σ2

+) if y = +1;

N (−µ,Σ2
−) if y = −1,

(2)

where α is the prior probability of class “+1”, µ = {µ1, . . . , µd}⊤, Σ+ = diag({σ(1)
+ , . . . , σ

(d)
+ }),

Σ− = diag({σ(1)
− , . . . , σ

(d)
− }), µi, σ

(i)
− , σ

(i)
+ > 0 ∀i ∈ [d], and

∑d
i=1(σ

(i)
+ )2 :

∑d
i=1(σ

(i)
− )2 = 1 :

M2 with M > 0,M ̸= 1. We concentrate on analyzing the effect of the variance proportion M of
the distribution D∗ on the performance of the linear model fssl(x) = sign(⟨w,x⟩+ b), where the
parameters w ∈ Rd, b ∈ R, and sign(t) evaluates to +1 if scalar t ≥ 0 and to −1 otherwise. For
simplicity, we denote

R(f,+1) = E(x,y)∼P∗ [1(f(x) = −1)|y = +1], R(f,−1) = E(x,y)∼P∗ [1(f(x) = +1)|y = −1],

where 1(t) is the indicator function that takes 1 where t is true and 0 otherwise. We have the following
theorems, whose proof can be found in the Appendix A.
Theorem 2.1. Given an SSBC dataset with pseudo-labels S = {(xi, yi)} = {(xi, y

∗
i )} ∪ {(xi, ŷi)},

the optimal linear classifier fssl minimizing the average standard classification error is given by:
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fssl = argmin
f

E(x,y)∼S [1(f(x) ̸= y)]. (3)

When M > 1, it has the intra-class standard classification errors for the two classes :

R(fssl,+1) = Φ
(
A−M

√
A2 + q(M,α, ϵ−, ϵ+)

)
,

R(fssl,−1) = Φ
(
−M ·A+

√
A2 + q(M,α, ϵ−, ϵ+)

)
,

and when M < 1, they are given by:

R(fssl,+1) = Φ
(
A+M

√
A2 + q(M,α, ϵ−, ϵ+)

)
,

R(fssl,−1) = Φ
(
−M ·A−

√
A2 + q(M,α, ϵ−, ϵ+)

)
,

where Φ(·) is the cumulative distribution function (c.d.f.) of standard Gaussian distribution N (0, 1),
A = 2µ

(M2−1)Σ , q(M,α, ϵ−, ϵ+) = 2 logM+2C
M2−1 , C = log

( α(2−ϵ−−2ϵ+)
(1−α)(2−2ϵ−−ϵ+)

)
, µ =

∑i=d
i=1 µi,

Σ =

√∑i=d
i=1(σ

(i)
+ )2, and {ϵ−, ϵ+} are the proportions of negative instances being treated as

positive ones and positive instances being treated as negative ones within pseudo-labels, respectively.
If
∑d

i=1(σ
(i)
+ )2 =

∑d
i=1(σ

(i)
− )2, i.e. M = 1, the intra-class standard classification errors for the two

classes can be expressed as follows:

R(fssl,+1) = Φ
(−2µ2 − CΣ2

2µΣ

)
, R(fssl,−1) = Φ

(−2µ2 + CΣ2

2µΣ

)
.

Following [24, 25, 26], We employ variance of class-wise accuracy (VCA) to quantitatively measure
the model fairness and present the definition of VCA below.
Definition 2.2. (VCA) Given a classifier f : X → Y where Y = {1, 2, 3, · · · ,K}, the variance
of class-wise accuracy of f is defined as V CA(f) = 1

K

∑K
i=1(p(i)− p̄), where p(i) = P[f(x) =

i|y = i] = 1− P[f(x) ̸= i|y = i] and p̄ = 1
K

∑K
i=1 p(i).

Theorem 2.3. Given an trained linear SSBC model fssl in Eq.(3), the variance of class-wise
accuracy V CA(fssl) is increasing when M → ∞ for M > 1 and M → 0 for M < 1. Suppose
log

( α(2−ϵ−−2ϵ+)
(1−α)(2−2ϵ−−ϵ+)

)
= 0, then when M = 1, R(fssl,+1) = R(fssl,−1) and V CA(fssl) = 0.

Remark 2.4. According to Theorem 2.3, the bigger or smaller value ofM will result in the increase of
the variance of class-wise accuracy V CA(fssl), which implies that the SSBC classifier fssl induced
by Eq.(3) is unfair. Note that M is the variance proportion of feature distributions of positive and
negative samples as defined in (2). Therefore, to improve the fairness of the induced classifier, we
propose to balance the variance bias of positive and negative samples for each label from the feature
angle distribution perspective, leading to our S2ML2-BBAM.

3 Proposed S2ML2-BBAM Method

In this section, we introduce the proposed SSMLL method named S2ML2-BBAM.

3.1 Overview

Generally, our S2ML2-BBAM is built on the generic self-training objective of SSMLL formulated by
Eq.1. Specifically, we propose a novel Balanced Binary Angular Margin (BBAM) loss ℓBBAM(·, ·),
aiming to balance the variance bias of positive and negative samples for each label from the feature
angle distribution perspective with the Gaussian assumption. By applying our proposed BBAM
loss to the generic SSMLL self-training objective in Eq.1, the objective of S2ML2-BBAM can be
formulated as follows:

L(W) =
1

BlK

Bl∑
i=1

K∑
k=1

βikℓBBAM(plik, y
l
ik) +

λ

BuK

Bu∑
i=1

K∑
k=1

βikℓBBAM(puik, y
u
ik), (4)

where

βik =


1 if (xi,yi) ∈ Ωk;

1 if yik = 1;

0 otherwise,
∀k ∈ [K], ∀i ∈ [Nl] or [Nu],
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and {Ωk}k=K
k=1 denotes high-quality negative sample sets constructed by negative sampling.

Here, pseudo-labels of unlabeled data {yu
i }

i=Nu
i=1 are produced by employing the Class-Aware Pseudo-

labeling (CAP) trick [16], which drives their label distribution towards the prior one that is estimated
with the labeled samples. Specifically, given the current classifier predictions {pu

i }
i=Nu
i=1 of unlabeled

samples, {yu
i }

i=Nu
i=1 are given by:

yuik =


1 if puik >= δk;

0 if puik <= γk;

−1 otherwise,
∀k ∈ [K], ∀i ∈ [Nu], (5)

where the class-aware thresholds {δk}k=K
k=1 and {γk}k=K

k=1 are calculated by solving the equations:
∑Nu
i=1 1(p

u
ik>=δk)

Nu
=

∑Nl
i=1 1(y

l
ik=1)

Nl
,

∑Nu
i=1 1(p

u
ik<=γk)

Nu
=

∑Nl
i=1 1(y

l
ik=0)

Nl
,

∀k ∈ [K], ∀i ∈ [Nu],

and yuik = −1 means that it will not be used for the classifier training.

3.2 BBAM loss

In this section, we introduce the proposed BBAM loss. As its name suggests, our BBAM loss is
extended from the Binary Angular Margin (BAM) loss, which measures the label-specific prediction
risk by using the angle between the latent feature and boundary. Formally, for a training sample
(xi,yi), the BAM loss can be formulated as:

ℓBAM(pik, yik) =


− log( 1

1+e−s∗(pik−m) ) if yik = 1;

− log(1− 1
1+e−s∗(pik−m) ) if yik = 0,

(6)

where pik = cos(θik) =
z⊤
i Wc

k

∥zi∥2∥Wc
k∥2

, ∥·∥2 is the ℓ2-norm of vectors; zi and Wc
k denote the latent

feature of sample i and the weight vector of the classification layer for category k, respectively; θik
is the angle between zi and Wc

k; s and m are the parameters used to control the rescaled norm and
magnitude of cosine margin, respectively.

Reviewing the BAM loss in Eq.6, one can observe that it calculates the loss by employing the
label angles of samples for each category. We consider that its trained binary boundary tends to
deviate from the Bayesian optimal one for each category in SSMLL, where for most categories, the
differences between feature distribution variances of corresponding positive and negative samples are
much larger than ones in fully supervised learning. To address this issue, for each category k, we
suppose that label angles of its positive samples and ones of its negative samples are drawn from a
label-specific “positive” Gaussian distribution N (µ

(p)
k , (σ2

k)
(p)) and a label-specific “negative” one

N (µ
(n)
k , (σ2

k)
(n)), respectively. According to the properties of Gaussian distribution, we can easily

transfer them into ones N (µ
(p)
k , σ̂2

k) and N (µ
(n)
k , σ̂2

k) with balanced variance σ̂2
k =

(σ2
k)

(p)+(σ2
k)

(n)

2 ,
by performing the following Gaussian linear transformations on those label angles:

ψ
(p)
k (θik) = a

(p)
k θik + b

(p)
k , ψ

(n)
k (θik) = a

(n)
k θik + b

(n)
k ,

a
(p)
k =

σ̂k

σ
(p)
k

, b
(p)
k = (1− a

(p)
k )µ

(p)
k , a

(n)
k =

σ̂k

σ
(n)
k

, b
(n)
k = (1− a

(n)
k )µ

(n)
k , ∀k ∈ [K]. (7)

With these linear transformation pairs {(ψ(p)
k (·), ψ(n)

k (·))}, for each category, label angles of both
positive and negative samples can be refined into ones drawn from balanced angular distributions
with one same variance, e.g.

ψ
(p)
k (θik) ∼ N (µ

(p)
k , σ̂2

k) if yik = 1; ψ
(n)
k (θik) ∼ N (µ

(n)
k , σ̂2

k) if yik = 0.

5
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Accordingly, the BAM loss in Eq.6 can be rewritten as the following BBAM loss:

ℓBBAM(pik, yik) =


− log( 1

1+e−s∗(cos(ψ
(p)
k

(θik))−m)
) if yik = 1;

− log(1− 1

1+e−s∗(cos(ψ
(n)
k

(θik))−m)
) if yik = 0.

(8)

Estimating label angle variances. As mentioned above, we concentrate on estimating
label-specific “positive” and “negative” angular distributions, i.e. {N (µ

(p)
k , (σ2

k)
(p))}k=K

k=1 and
{N (µ

(n)
k , (σ2

k)
(n))}k=K

k=1 , for each category whose draws are the angles between its label proto-
type ck and latent features of its corresponding positive and negative samples, respectively. Here, we
approximate {(µ(p)

k , (σ2
k)

(p))}k=K
k=1 , {(µ(n)

k , (σ2
k)

(n))}k=K
k=1 , and {ck}k=K

k=1 with labeled and pseudo-
labeled samples per-epoch.

For convenience, we denote D = {(zi,yi)}i=Nl+Nu
i=1 = {(zli,yl

i)}
i=Nl
i=1 ∪ {(zui ,yu

i )}
i=Nu
i=1 as the

couple set of latent features and labels or pseudo-labels of training samples D in the current epoch.
We calculate label prototypes {ck}k=K

k=1 by averaging latent features of positive samples in D as:

ck =

∑Nl+Nu
i=1 1(yik = 1)zi∑Nl+Nu
i=1 1(yik = 1)

, ∀k ∈ [K]. (9)

Consequently, the label angles between label prototypes and latent features of samples are given by:

ϕik = arccos(
zi

⊤ck
∥zi∥2∥ck∥2

), ∀k ∈ [K], ∀i ∈ [Nl +Nu],

Accordingly, the estimations of {(µ(p)
k , (σ2

k)
(p))}k=K

k=1 and {(µ(n)
k , (σ2

k)
(n))}k=K

k=1 based on the current
negative sample sets {Ωk}k=K

k=1 can be formulated as:

µ
(p)
k =

∑Nl+Nu
i=1 1(yik = 1)ϕik∑Nl+Nu
i=1 1(yik = 1)

, (σ2
k)

(p) =

∑Nl+Nu
i=1 1(yik = 1)(ϕik − µ

(p)
k )2∑Nl+Nu

i=1 1(yik = 1)− 1
,

µ
(n)
k =

∑Nl+Nu
i=1 βik1(yik = 0)ϕik∑Nl+Nu
i=1 βik1(yik = 0)

, (σ2
k)

(n) =

∑Nl+Nu
i=1 βik1(yik = 0)(ϕik − µ

(n)
k )2∑Nl+Nu

i=1 βik1(yik = 0)− 1
. (10)

Besides, to avoid the misleading effect of false positive or negative samples, we also employ moving
average with a learning rate ρ over {(µ(p)

k , (σ2
k)

(p))}k=K
k=1 , {(µ(n)

k , (σ2
k)

(n))}k=K
k=1 , and {ck}k=K

k=1 .

3.3 Negative Sampling

For efficiency, we suggest a prototype-based negative sampling method. Specifically, for each label,
we tend to select those negative samples that are more similar to its positive samples, because they
are more difficult to discriminate and would be more informative for the classifier training [21, 22].
To achieve this, for each category, we measure similarity scores of negative samples based on label
prototypes {ck}k=K

k=1 , and construct the nearest neighbor negative sample sets {Ω̃k}k=K
k=1 as:

Ω̃k = {(xi,yi)|d(zi, ck) ∈ Rank({d(zi, ck)}(xi,yi)∈Ω̂k
), (xi,yi) ∈ Ω̂k} ∀k ∈ [K],

where d(·) is the vector distance (e.g. cosine distance), Rank(·) outputs a set of samples with the
top-M minmum distance values; and {Ω̂k}k=K

k=1 is the negative sample set of category k defined as:

Ω̂k = {(xl
i,y

l
i)|(xl

i,y
l
i) ∈ Dl, y

l
ik = 0} ∪ {(xu

i ,y
u
i )|xu

i ∈ Du, y
u
ik = 0}.

Accordingly, the final negative sample sets {Ωk}k=K
k=1 are generated by:

Ωk = {(xi,yi)|(xi,yi) ∼ Uniform(Ω̃k)} ∀k ∈ [K], (11)

with size {|Ωk| = ηNk}k=K
k=1 , where Nk =

∑Nl
i=1 1(y

l
ik = 1) +

∑Nu
i=1 1(y

u
ik = 1), η controls the

proportion of positive and negative samples of each category. And we update those negative sample
sets {Ωk}k=K

k=1 per-epoch for efficiency.
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Table 1: Summary of the dataset statistics
Dataset #Training #Testing #Classes #Avg. Positive Classes
VOC 5,717 5,823 20 1.46

COCO 82,081 40,137 80 2.94
AWA 30,337 6,985 85 30.78

Ohsumed 22,054 10,300 23 1.65
AAPD 53,840 1,000 54 2.41

3.4 Model Training Summary

We describe the full training process of S2ML2-BBAM. To avoid inaccurate pseudo-labels in the
early training stage, following [16], we warm up the classifier fW(·) with the BAM loss of Eq.6
over labeled samples Dl by T0 epochs. Given the initialized fW(·), we continue to train it with the
BBAM loss of Eq.8 over labeled samples Dl and unlabeled samples Du by Tt epochs. At each epoch,
we update pseudo labels {yu

i }
i=Nu
i=1 by using Eq.5, label prototypes {ck}k=K

k=1 , {(µ(p)
k , (σ2

k)
(p))}k=K

k=1

and {(µ(n)
k , (σ2

k)
(n))}k=K

k=1 by using Eqs.9 and 10, and perform the negative sampling by using Eq.11.
For clarity, the full training process is outlined in Appendix B.

4 Experiments

4.1 Experimental Settings

Datasets. We employ 5 widely used MLL datasets, including image datasets Pascal VOC-2012
(VOC) [27], MS-COCO2014 (COCO) [28] and Animals with Attributes2 (AWA) [29], text datasets
Ohsumed [30] and AAPD [31]. For clarity, the detailed characteristics of these datasets are displayed
in Table 1. Following [16], we transform these datasets into SSL versions. For each dataset, we
randomly select π training samples as labeled ones, and the remaining as unlabeled ones. We
set π ∈ {5%, 10%, 15%, 20%}, to explore the performance of our method under different data
proportions. The image size is resized to 224 for all datasets.

Baselines. We employ 5 baseline methods for comparisons, including SoftMatch [32], FlatMatch
[33], MIME [34], DRML [15], and CAP [16]. DRML and CAP are SSMLL methods; SoftMatch and
FlatMatch are SSL methods; MIME is a single-positive multi-label learning (SPMLL) method. For
SSL and SPMLL methods, we follow CAP to apply them to SSMLL tasks.

Evaluation metrics. We employ 5 evaluation metrics, including Micro-F1, Macro-F1, mean average
precision (mAP), Hamming Loss and One Loss [1], and compute them with the Scikit-Learn tool.2

Implementation details. We use the pre-trained ResNet-50 [35] as the backbone for image datasets
and BERT-base-uncased model [36] for text datasets. We set the decay of EMA as 0.9997. The batch
size is 32 for VOC, 128 for AWA and 64 for COCO, Ohsumed and AAPD. The warm-up epoch T0 is
12. The s and m are 20 and 0.4 in VOC, 20 and 0.3 in COCO, 10 and 0.2 in AWA, Ohsumed and
AAPD. The parameters for negative sampling η are set to 5.

4.2 Results

The experimental results are presented in Table 2 and Table 3. Overall, our method achieves good
performance on all metrics. Our model ranks 1st on average on five datasets and has a significant
advantage over baselines. The detailed analyses are presented as follows.

Comparing with SSMLL methods: We can observe that S2ML2-BBAM has advantages over recent
SSMLL methods. Especially in the Micro-F1 and Macro-F1, our method has significant improvement.
On both VOC and COCO, our F1 and mAP values increase by an average of 0.1 and 0.01. Furthermore,
on Ohsumed and AAPD, we surprised to discover from the results that our method also has good
results. In all data proportions, the average improvement on the mAP is 0.11, 0.14 on Macro-F1
and 0.19 on Micro-F1. This result is foreseeable because our method balanced angle variance using

2https://scikit-learn.org/stable/
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Table 2: Experimental results on images datasets. The best results are highlighted in boldface.

Method

VOC

Micro-F1↑ Macro-F1↑ mAP↑ Hamming Loss↓ One Loss↓

π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20%

SoftMatch 0.6542 0.7187 0.7461 0.7484 0.5868 0.6630 0.6931 0.6876 0.6295 0.7235 0.7721 0.7867 0.0594 0.0368 0.0319 0.0294 0.4398 0.1655 0.1308 0.1148

FlatMatch 0.6493 0.7038 0.7420 0.7465 0.5344 0.6313 0.6666 0.6597 0.6468 0.7430 0.7923 0.8022 0.0386 0.0322 0.0313 0.0290 0.1983 0.1366 0.1238 0.1097

MIME 0.3650 0.6607 0.7013 0.7021 0.2439 0.5442 0.6425 0.5898 0.6653 0.7553 0.8090 0.8137 0.0546 0.0407 0.0336 0.0333 0.2099 0.1218 0.0835 0.0949

DRML 0.6450 0.6525 0.7274 0.7525 0.5660 0.5339 0.6864 0.7495 0.6058 0.6852 0.7131 0.7272 0.0564 0.0518 0.0377 0.0381 0.3542 0.2888 0.1720 0.1512

CAP 0.6162 0.6573 0.6798 0.7073 0.5822 0.6308 0.6536 0.6636 0.7616 0.8216 0.8348 0.8460 0.0801 0.0675 0.0622 0.0591 0.1303 0.0918 0.0827 0.0755

S2ML2-BBAM 0.7897 0.8401 0.8443 0.8458 0.7306 0.8015 0.8124 0.8141 0.7866 0.8345 0.8454 0.8458 0.0310 0.0259 0.0243 0.0233 0.1087 0.0867 0.0817 0.0795

Method

COCO

Micro-F1↑ Macro-F1↑ mAP↑ Hamming Loss↓ One Loss↓

π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20%

SoftMatch 0.5763 0.6273 0.6487 0.6676 0.4283 0.5265 0.5493 0.5830 0.5624 0.6194 0.6395 0.6622 0.0235 0.0218 0.0211 0.0205 0.1293 0.0948 0.0844 0.0879

FlatMatch 0.5960 0.6389 0.6590 0.6720 0.4794 0.5341 0.5710 0.5870 0.5827 0.6335 0.6542 0.6654 0.0227 0.0213 0.0208 0.0203 0.1215 0.1002 0.0933 0.0878

MIME 0.2982 0.4378 0.4906 0.5323 0.2557 0.3731 0.4096 0.4545 0.5372 0.5991 0.6379 0.6633 0.0302 0.0265 0.0250 0.0236 0.1495 0.1110 0.0883 0.0799

DRML 0.6071 0.6226 0.6492 0.6486 0.5345 0.5604 0.5779 0.5867 0.5118 0.5461 0.6026 0.6177 0.0242 0.0240 0.0230 0.0223 0.1438 0.1288 0.1243 0.1039

CAP 0.5629 0.5657 0.5724 0.5696 0.5230 0.5306 0.5402 0.5416 0.6243 0.6736 0.6911 0.7041 0.0523 0.0512 0.0499 0.0558 0.1004 0.0841 0.0788 0.0726

S2ML2-BBAM 0.6830 0.7074 0.7150 0.7246 0.6144 0.6480 0.6594 0.6726 0.6354 0.6741 0.6886 0.7023 0.0230 0.0212 0.0206 0.0201 0.1000 0.0878 0.0824 0.0799

Method

AWA

Micro-F1↑ Macro-F1↑ mAP↑ Hamming Loss↓ One Loss↓

π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20%

SoftMatch 0.6992 0.6973 0.7024 0.7024 0.5476 0.5284 0.5524 0.5457 0.6368 0.6524 0.6494 0.6518 0.2160 0.2155 0.2132 0.2126 0.1580 0.08876 0.1494 0.1549

FlatMatch 0.6918 0.6977 0.6989 0.7013 0.5221 0.5487 0.5507 0.5636 0.6393 0.6459 0.6565 0.6577 0.2190 0.2167 0.2165 0.2164 0.1029 0.0936 0.1116 0.1162

MIME 0.1470 0.3889 0.4893 0.4090 0.0705 0.1830 0.2659 0.2327 0.3992 0.3803 0.4762 0.5265 0.3570 0.3290 0.3064 0.3012 0.1850 0.2091 0.1664 0.2004

DRML 0.6827 0.6856 0.6942 0.6893 0.5399 0.5541 0.5727 0.5618 0.6160 0.6246 0.6377 0.6338 0.2285 0.2270 0.2226 0.2258 0.1360 0.1801 0.2609 0.1839

CAP 0.6868 0.7065 0.7091 0.7099 0.5742 0.5864 0.5905 0.5914 0.6390 0.6415 0.6440 0.6451 0.3120 0.2727 0.2589 0.2617 0.1146 0.0933 0.1045 0.1199

S2ML2-BBAM 0.7213 0.7255 0.7215 0.7279 0.5853 0.5914 0.5905 0.5944 0.6419 0.6463 0.6416 0.6476 0.2091 0.2060 0.2109 0.2042 0.1206 0.1103 0.1149 0.1188

Table 3: Experimental results on text datasets. The best results are highlighted in boldface.

Method

Ohsumed

Micro-F1↑ Macro-F1↑ mAP↑ Hamming Loss↓ One Loss↓

π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20%

SoftMatch 0.4769 0.4478 0.4462 0.4449 0.3056 0.2366 0.2348 0.2229 0.4664 0.5106 0.5218 0.5392 0.0756 0.0798 0.0801 0.0803 0.4213 0.5036 0.5274 0.5140

FlatMatch 0.5161 0.4836 0.4254 0.4472 0.3073 0.2262 0.1904 0.1775 0.4187 0.4751 0.4993 0.5139 0.0699 0.0747 0.0831 0.0799 0.3943 0.4416 0.5824 0.5008

DRML 0.3975 0.4015 0.4185 0.4055 0.1903 0.1972 0.1996 0.2070 0.1833 0.1931 0.2083 0.2140 0.0939 0.0868 0.0873 0.0851 0.6020 0.5677 0.5760 0.5496

CAP 0.5562 0.5776 0.5819 0.5455 0.4743 0.5144 0.5285 0.5214 0.4722 0.5370 0.5740 0.5995 0.0678 0.0840 0.0752 0.0967 0.3237 0.2746 0.2541 0.2493

S2ML2-BBAM 0.6671 0.7100 0.7196 0.7550 0.6058 0.6515 0.6719 0.7120 0.5537 0.6345 0.6604 0.6884 0.0467 0.0409 0.0243 0.0346 0.2417 0.2186 0.2068 0.1710

Method

AAPD

Micro-F1↑ Macro-F1↑ mAP↑ Hamming Loss↓ One Loss↓

π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20% π = 5% π = 10% π = 15% π = 20%

SoftMatch 0.3345 0.3325 0.3325 0.3279 0.0612 0.0514 0.0520 0.0481 0.3753 0.3949 0.4084 0.3990 0.0596 0.0598 0.0598 0.0602 0.6630 0.6630 0.6630 0.6627

FlatMatch 0.3221 0.3147 0.3155 0.3155 0.0519 0.0439 0.0437 0.0437 0.3571 0.3706 0.3570 0.3621 0.0607 0.0614 0.0613 0.0613 0.6629 0.6631 0.6635 0.6634

DRML 0.4160 0.4101 0.4027 0.4130 0.1024 0.1005 0.0998 0.1052 0.1465 0.1538 0.1579 0.1591 0.0545 0.0578 0.0521 0.0542 0.5450 0.5910 0.5280 0.5430

CAP 0.5722 0.5726 0.5504 0.5026 0.3917 0.4310 0.4257 0.4051 0.4095 0.4696 0.4899 0.4932 0.0432 0.0498 0.0571 0.0742 0.3010 0.2461 0.2523 0.2384

S2ML2-BBAM 0.7057 0.7279 0.7312 0.7316 0.5091 0.5825 0.5706 0.5823 0.5153 0.5903 0.5804 0.5930 0.0262 0.0241 0.0238 0.0238 0.1821 0.1500 0.1550 0.1590

Gaussian transformation, making the prediction of pseudo labels more accurate. Since Ohsumed and
AAPD are text datasets, this result also demonstrates the good universality of our method.

Comparing with SSL methods: Our S2ML2-BBAM improves in both F1 and mAP metrics. For
example, at π = 5%, the mAP of S2ML2-BBAM is 0.07-0.16 higher than SoftMatch and 0.05-0.14
higher than FlatMatch across all datasets. We believe that this is because both methods are applied
to multi classification tasks. So during the training process, it is more inclined to make single label
classification decisions. Therefore, it doesn’t perform as well as the SSMLL method. It can be
inferred that it is important to set a dedicated method for SSMLL tasks.

Comparing with SPMLL methods: We observe that the performance of S2ML2-BBAM is better than
MIME in all aspects. When π = 5%, the average improvement on the mAP is 0.11, 0.42 on Macro-F1
and 0.41 on Micro-F1. We believe that this is because SPMLL is primarily designed to address
the issue of incomplete labels. However, there is a large amount of unlabeled data in the setting of
SSMLL tasks. This leads to the MIME method being unable to obtain single positive observation
labels for these data, resulting in a significant loss of information. Therefore, the performance of
MIME has declined.
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Figure 2: Comparison of VDFD on VOC2012.

Table 4: Results of the ablative study on VOC2012 and COCO.

Metric
VOC

π = 5% π = 10% π = 15% π = 20%

S2ML2-BBAM w/o BBAM S2ML2-BBAM w/o BBAM S2ML2-BBAM w/o BBAM S2ML2-BBAM w/o BBAM
Micro-F1 0.7897 0.7845 0.8401 0.8206 0.8443 0.8301 0.8458 0.8318
Macro-F1 0.7306 0.7247 0.8015 0.7789 0.8124 0.7988 0.8141 0.7967

mAP 0.7866 0.7881 0.8345 0.8204 0.8454 0.8274 0.8458 0.8282

Metric
COCO

π = 5% π = 10% π = 15% π = 20%

S2ML2-BBAM w/o BBAM S2ML2-BBAM w/o BBAM S2ML2-BBAM w/o BBAM S2ML2-BBAM w/o BBAM
Micro-F1 0.6830 0.6691 0.7074 0.6952 0.7150 0.7052 0.7246 0.7143
Macro-F1 0.6144 0.5885 0.6480 0.6264 0.6594 0.6424 0.6726 0.6530

mAP 0.6354 0.5894 0.6741 0.6316 0.6886 0.6520 0.7023 0.6628

4.3 Ablation Study

To evaluate the effectiveness of the proposed BBAM loss, we perform several ablative studies by
replacing it with the BAM loss (denoted by “w/o BBAM”) on VOC2012 and COCO. The results of
the classification performance and VDFD are present in Table 4 and Fig.2, respectively. It clearly
demonstrates that the proposed BBAM loss can significantly improve the classification performance
and reduce variance differences between feature distributions. These results are expected because the
BBAM loss can balance the variance bias between positive and negative samples from the perspective
of the feature angle distribution for each label, leading to a fairer MLL classifier. Besides, we can
observe that the VDFD of our S2ML2-BBAM is much lower than those SSMLL baselines during the
training procedure, further proving the effectiveness of the BBAM loss in balancing the variance bias.

4.4 Parameter Evaluation

Figure 3: The sensitivity analysis of the
rescaled norm and magnitude {s,m} of
cosine margin on VOC2012 with π = 5%.

We conduct experiments on our method under different
parameter settings. The experimental results are shown
in Fig.3. We fix the m value to 0.4 and set the s values
to {1, 10, 20, 30, 40, 50} respectively. When s is set
between 1 and 10, the performance increases with the
s. And when s is set between 10 and 50, there is no
significant change in the performance. One possible
reason for this situation is that when the is small, the
convergence speed of the model is too slow. So by the
end of training, the model is not yet at its optimal state.
We also explore the best accuracy by setting different
cosine margins. We fix the value of s to 20 and set the
values of m to {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} respectively.
We find that the performance is at its optimum at m = 0.4.

5 Related Works

SSMLL methods. Recently, SSMLL has received a lot of attention. In the latest methods, most focus
on how to use the connections between labels to guild the training on unlabeled data. For instance,
SMILE [37] calculates the relationships between labels by constructing adjacency graphs, while
COIN [14] applies the well-known co-training method and learns under inductive settings. DRML
[15] constructs the relationship network between labels by designing two classifiers and adopting
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domain adaptation strategies. At the same time, how to effectively align pseudo labels with real labels
is also an important issue. CAP [16] developed a class-distribution-aware thresholding strategy to
control the assignment of positive and negative pseudo-labels. However, the current SSMLL methods
have not paid attention to the variance bias problem, which affects the performance of the methods.

MLL methods. MLL has multiple research directions. Some methods focus on the model structure.
For instance, [38] proposed a graph convolutional networks model to improve the performance of
multi-label image recognition. [4] proposes a unified framework that combines CNNs and RNNs.
Some others focus on exploiting label correlations to improve performance. LSF-CI[39] calculates
instance correlation in the feature space and label correlation in the label space through a probabilistic
neighborhood graph model and cosine similarity. Due to the complete label information of the
training samples, the MLL method can theoretically achieve Bayesian optimal classifier boundaries.
However, in semi supervised learning, incorrect pseudo labels may provide incorrect guidance for
classification boundaries.

SSL methods. Pseudo Label [40] is one of the earliest semi-supervised learning methods for neural
networks. It generates pseudo labels for unlabeled data and continuously improves the accuracy
of pseudo labels as the model is optimized. As data augmentation technology has advanced, an
increasing number of SSL methods are incorporating this technology [41, 42, 43, 44, 45, 46]. Further
research has been conducted on the threshold issue of pseudo labels in [47, 48, 49]. By developing
dynamic threshold strategies, they have been able to obtain more accurate pseudo labels, effectively
enhancing the performance of the SSL methods. In order to utilize pseudo labels with low confidence
but correct classification, [32] proposes an effective method that fits the confidence distribution
of truncated Gaussian functions. Moreover, [33] discovered that the generalization ability of SSL
models is impacted by disconnection between labeled data and unlabeled data, and proposed the
FlatMatch method to address this issue. However, it’s important to note that these SSL methods are
designed to handle multi-class single-label tasks [50, 51] and cannot be directly applied to multi-label
learning scenarios.

6 Conclusion

In this paper, we proposed a novel SSMLL method, namely S2ML2-BBAM. Our S2ML2-BBAM
balances the variance bias between positive and negative samples from the perspective of the feature
angle distribution for each label. To achieve this, we design a novel balanced binary angular
margin loss by extending the traditional binary angular margin loss with feature angle distribution
transformations under the Gaussian assumption, where the distributions are iteratively updated during
classifier training. We also suggest an efficient prototype-based negative sampling method to maintain
high-quality negative samples for each label. Empirical results demonstrate that our S2ML2-BBAM
outperforms current SSMLL baseline methods.

Limitations

From the empirical results, we found that S2ML2-BBAM suffers from slightly lower mAP scores on
the benchmarks VOC and COOC when increasing the proportion of labeled training samples. This
may restrict the range of applications and scenarios in which S2ML2-BBAM can be effectively used.
And we will further exploit it in our future works.

Broader Impacts

The paper focuses solely on the technical aspects of SSMLL algorithms. Therefore, this work can
benefit a wide range of machine learning researchers. Also, we do not expect our efforts to have any
negative consequences.
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A Proof of Theoretical Results

Proof. Proof of Theorem 2.1. For any linear classifier f(x) = sign(⟨w,x⟩+ b), we first calculate its
risk:

Rssl(f)

= E(x,y)∼D[1(f(x) ̸= y)]

∝ E(x,y)∼D∗ [1(f(x) ̸= y)] + (1− ϵ− − ϵ+)E(x,y)∼D∗ [1(f(x) ̸= y)]+

ϵ−E(x,−1)∼D∗ [1(f(x) ̸= +1)] + ϵ+E(x,+1)∼D∗ [1(f(x) ̸= −1)]

= (2− ϵ− − ϵ+)P(x,y)∼D∗ [f(x) ̸= y] + ϵ−P(x,−1)∼D∗ [f(x) ̸= +1] + ϵ+P(x,+1)∼D∗ [f(x) ̸= −1]

= (2− ϵ− − ϵ+) ·
(
P[y = +1] · P[f(x) = −1|y = +1] + P[y = −1] · P[f(x) = +1|y = −1]

)
+

ϵ−P[y = −1] · P[f(x) = −1|y = −1] + ϵ+P[y = +1] · P[f(x) = +1|y = +1]

= (2− ϵ− − ϵ+) · α · R(f,+1) + (2− ϵ− − ϵ+) · (1− α) · R(f,−1)+

ϵ− · (1− α) · P[f(x) = −1|y = −1] + ϵ+ · α · P[f(x) = +1|y = +1]

where α = P[y = +1], ϵ+ = P[ŷ = −1|y = +1] and ϵ− = P[ŷ = +1|y = −1].

Denote x = [x1, · · · , xd]⊤ and w = [w1, · · · , wd]
⊤, we can explicitly calculate R(f,+1) and

P[f(x) = +1|y = +1] as:

R(f,+1) = P[f(x) = −1|y = +1] = P[⟨w,x⟩+ b < 0|y = +1] = P[
d∑

i=1

wixi + b < 0]

P[f(x) = +1|y = +1] = P[⟨w,x⟩+ b > 0|y = +1] = P[
d∑

i=1

wixi + b > 0]

where x1, · · · , xd are i.i.d. drawn from Gaussian distributions {N (µi, (σ
i
+)

2)}di=1 according to the
definition of P∗ in Eq.(2).

Similar to R(f,+1), we have

R(f,−1) = P[
d∑

i=1

wixi + b > 0], P[f(x) = −1|y = −1] = P[
d∑

i=1

wixi + b < 0],

where x1, · · · , xd are i.i.d. drawn from Gaussian distributions {N (−µi, (σ
i
−)

2)}di=1. Denote
fssl(x) = ⟨w∗,x⟩+ b∗. According to the method of [52], we can prove w∗

1 = · · · = w∗
d = 1 by con-

tradiction. Based on the properties of Gaussian distribution, R(fssl,+1), P[fssl(x) = +1|y = +1],
R(fssl,−1) and P[fssl(x) = −1|y = −1] can be expressed as follows:

R(fssl,+1) = P[
d∑

i=1

xi + b∗ < 0] = P
[∑d

i=1(xi − µi)√∑i=d
i=1(σ

(i)
+ )2

<
−b∗ −

∑d
i=1 µi√∑i=d

i=1(σ
(i)
+ )2

]

= Φ

(
−b

∗ + µ

Σ

)

P[fssl(x) = +1|y = +1] = P[
d∑

i=1

xi + b∗ > 0] = P
[∑d

i=1(xi − µi)√∑i=d
i=1(σ

(i)
+ )2

>
−b∗ −

∑d
i=1 µi√∑i=d

i=1(σ
(i)
+ )2

]

= 1− Φ

(
−b

∗ + µ

Σ

)

R(fssl,−1) = P[
d∑

i=1

xi + b∗ > 0] = P
[∑d

i=1(xi − (−µi))√∑i=d
i=1(σ

(i)
− )2

>
−b∗ +

∑d
i=1 µi√∑i=d

i=1(σ
(i)
− )2

]

= 1− Φ

(
−b∗ + µ

MΣ

)
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P[fssl(x) = −1|y = −1] = P[
d∑

i=1

xi + b∗ < 0] = P
[∑d

i=1(xi − (−µi))√∑i=d
i=1(σ

(i)
− )2

<
−b∗ +

∑d
i=1 µi√∑i=d

i=1(σ
(i)
− )2

]

= Φ

(
−b∗ + µ

MΣ

)
where Φ is c.d.f. of normal Gaussian distribution N (0, 1). Then, we get

Rssl(fssl) =α(2− ϵ− − ϵ+)Φ

(
−b

∗ + µ

Σ

)
+ (1− α)(2− ϵ− − ϵ+)Φ

(
b∗ − µ

MΣ

)
+

(1− α)ϵ−Φ

(
−b∗ + µ

MΣ

)
+ αϵ+Φ

(
b∗ + µ

Σ

)
We will find the optimal b∗ which minimizes the overall standard classification error Rssl(fssl) by
taking dRssl(fssl)

db∗ = 0. In detail, it is:

dRssl(fssl)

db∗
=α(2− ϵ− − ϵ+)

1√
2π

exp(−1

2
(
b∗ + µ

Σ
)2)

−1

Σ
+

(1− α)(2− ϵ− − ϵ+)
1√
2π

exp(−1

2
(
b∗ − µ

MΣ
)2)

1

MΣ
+

(1− α)ϵ−
1√
2π

exp(−1

2
(
b∗ − µ

MΣ
)2)

−1

MΣ
+ αϵ+

1√
2π

exp(−1

2
(
b∗ + µ

Σ
)2)

1

Σ
= 0

which can be reformulated as:

(
b∗ + µ

Σ
)2 − (

b∗ − µ

MΣ
)2 = 2 log

(
Mα(2− ϵ− − 2ϵ+)

(1− α)(2− 2ϵ− − ϵ+)

)
Denote B = log

(
Mα(2−ϵ−−2ϵ+)

(1−α)(2−2ϵ−−ϵ+)

)
. Without loss of generality, we assume B > 0 and obtain:

(M2 − 1)Σ2(b∗)2 + 2(M2 + 1)µΣ2b∗ + (M2 − 1)Σ2µ2 = 2BM2Σ4. (12)

Consequently, b∗ can be given by selecting the smaller absolute value:

b∗ =


−(M2+1)µ+2Mµ

√
1+B

(M2−1)Σ2

2µ2

M2−1 if M > 1,

−(M2+1)µ−2Mµ

√
1+B

(M2−1)Σ2

2µ2

M2−1 if M < 1,

Then when M > 1, the class-wise standard classification errors are:

R(fssl,+1) = Φ
(
A−M

√
A2 + q(M,α, ϵ−, ϵ+)

)
,

R(fssl,−1) = Φ
(
−M ·A+

√
A2 + q(M,α, ϵ−, ϵ+)

)
,

when M < 1, they are given by:

R(fssl,+1) = Φ
(
A+M

√
A2 + q(M,α, ϵ−, ϵ+)

)
,

R(fssl,−1) = Φ
(
−M ·A−

√
A2 + q(M,α, ϵ−, ϵ+)

)
,

where

A =
2µ

(M2 − 1)Σ
, q(M,α, ϵ−, ϵ+) =

2 log Mα(2−ϵ−−2ϵ+)
(1−α)(2−2ϵ−−ϵ+)

M2 − 1
.

When
∑d

i=1(σ
(i)
+ )2 =

∑d
i=1(σ

(i)
− )2 = Σ2, i.e. M = 1, Eq.(12) can be rewritten as:

4µb∗ = 2 log

(
α(2− ϵ− − 2ϵ+)

(1− α)(2− 2ϵ− − ϵ+)

)
Σ2.
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In this case, b∗ can be expressed as follows:

b∗ =
log

( α(2−ϵ−−2ϵ+)
(1−α)(2−2ϵ−−ϵ+)

)
Σ2

2µ
,

and corresponding class-wise standard classification errors are given by:

R(fssl,+1) = Φ

(−2µ2 − log
( α(2−ϵ−−2ϵ+)
(1−α)(2−2ϵ−−ϵ+)

)
Σ2

2µΣ

)
,

R(fssl,−1) = Φ

(−2µ2 + log
( α(2−ϵ−−2ϵ+)
(1−α)(2−2ϵ−−ϵ+)

)
Σ2

2µΣ

)
.

Proof. Proof of Theorem 2.3. According to the results of Theorem 2.1, we can formulate the
class-wise accuracy as:

p(+1) = 1−R(fssl,+1), p(−1) = 1−R(fssl,−1).

Accordingly, the variance of class-wise accuracy can be expressed as:

V CA(fssl) = Var(p(+1), p(−1)) = Var(1−R(fssl,+1), 1−R(fssl,−1))

= Var(R(fssl,+1),R(fssl,−1))

=
(R(fssl,+1)−R(fssl,−1))2

2
.

For convenience, we assume log
( α(2−ϵ−−2ϵ+)
(1−α)(2−2ϵ−−ϵ+)

)
= 0, and the conclusion will also hold when

M > max( α(2−ϵ−−2ϵ+)
(1−α)(2−2ϵ−−ϵ+) , 1) and M < min( α(2−ϵ−−2ϵ+)

(1−α)(2−2ϵ−−ϵ+) , 1). When M > 1, it has
R(fssl,−1) > R(fssl,+1) because q(M,α, ϵ−, ϵ+) > 0 and A > 0. Then according to Lagrange’s
Mean Value Theorem, there exists some ξ such that

R(fssl,−1)−R(fssl,+1)

= Φ
(
−M ·A+

√
A2 + q(M,α, ϵ−, ϵ+)

)
− Φ

(
A−M

√
A2 + q(M,α, ϵ−, ϵ+)

)
= Φ′(ξ)

(
−M ·A+

√
A2 + q(M,α, ϵ−, ϵ+)−A+M

√
A2 + q(M,α, ϵ−, ϵ+)

)
=

1√
2π

exp(−ξ
2

2
)(M + 1)

(√
A2 + q(M,α, ϵ−, ϵ+)−A

)
.

By analyzing the variation of q(M,α, ϵ−, ϵ+), we can easily verify that R(fssl,−1)−R(fssl,+1)
is increasing when M → ∞. Similarly, we can prove that R(fssl,+1) > R(fssl,−1) when M < 1
and R(fssl,+1)−R(fssl,−1) is increasing when M → 0.
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B The training procedure of the model

The Algorithm 1 provides a detailed description of the training process of the model.

Algorithm 1 Training Procedure of S2ML2-BBAM

Input:
1: Dl: the labeled training dataset
2: Du: the unlabeled training dataset
3: T0, Tt: the number of warm-up epochs, the number of SSMLL training epochs
4: Bu: the number of unlabeled batch size ;
Output: the classifier fW(·).
5: Initialize the classifier parameter W;
6: Warm-up fW(·) on Dl with BAM loss Eq.(6) by T0 epochs;
7: for t = 1 to Tt do
8: Calculate pseudo-labels {yu

i }
i=Nu
i=1 of Du with Eq.(5);

9: Estimate {ck}k=K
k=1 , {(µ(p)

k , (σ2
k)

(p))}k=K
k=1 and {(µ(n)

k , (σ2
k)

(n))}k=K
k=1 with Eqs.(9) and (10);

10: Construct {Ωk}k=K
k=1 with Eq.(11);

11: for i = 1 to |Du| /Bu do
12: Optimize fW(·) by minimizing the objective Eq.(4) with Dl, Du, {yu

i }
i=Nu
i=1 and {Ωk}k=K

k=1 ;
13: end for
14: end for

C Time cost comparison

To examine the efficiency of S2ML2-BBAM, we perform efficiency comparisons over our S2ML2-
BBAM, SSL baselines (SoftMatch and FlatMatch) and SSMLL baselines (DRML and CAP) on VOC
and COCO. Table 5 shows the running time averaged 100 epochs. From Table 5, it can be seen that
our method is competitive with the current SSMLL methods in the time efficiency and costs less time
than the SSL baselines in practice.

Table 5: Time cost (second, s) of each training epoch on VOC and COCO.
Method VOC COCO

SoftMatch 79.3 726.2
FlatMatch 119.8 1658.1

DRML 4.9 30.4
CAP 28.4 312.5

S2ML2-BBAM 33.1 276.3
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Please refer to 3
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be submitted later.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars were too small to have any visual impact.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have used a single NVIDIA GeForce RTX 3090 GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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