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Abstract

Dataset condensation, a concept within data-centric learning, aims to efficiently
transfer critical attributes from an original dataset to a synthetic version, meanwhile
maintaining both diversity and realism of syntheses. This approach can significantly
improve model training efficiency and is also adaptable for multiple application
areas. Previous methods in dataset condensation have faced several challenges:
some incur high computational costs which limit scalability to larger datasets (e.g.,
MTT, DREAM, and TESLA), while others are restricted to less optimal design
spaces, which could hinder potential improvements, especially in smaller datasets
(e.g., SRe2L, G-VBSM, and RDED). To address these limitations, we propose
a comprehensive designing-centric framework that includes specific, effective
strategies like implementing soft category-aware matching, adjusting the learning
rate schedule and applying small batch-size. These strategies are grounded in both
empirical evidence and theoretical backing. Our resulting approach, Elucidate
Dataset Condensation (EDC), establishes a benchmark for both small and large-
scale dataset condensation. In our testing, EDC achieves state-of-the-art accuracy,
reaching 48.6% on ImageNet-1k with a ResNet-18 model at an IPC of 10, which
corresponds to a compression ratio of 0.78%. This performance surpasses those of
SRe2L, G-VBSM, and RDED by margins of 27.3%, 17.2%, and 6.6%, respectively.

1 Introduction

Dataset condensation, also known as dataset distillation, has emerged in response to the ever-
increasing training demands of advanced deep learning models (He et al., 2016a,b; Brown et al.,
2020). This task addresses the challenge of requiring massive amount of data to train high-precision
models while also being bounded by resource constraints (Dosovitskiy et al., 2020; Shao et al., 2024).
In the conventional setup of this problem, the original dataset acts as a “teacher”, distilling and
preserving essential information into a smaller, surrogate “student” dataset. The ultimate goal of this
technique is to achieve comparable performance of models trained on the original and condensed
datasets from scratch. This task has become popular in various downstream applications, including
continual learning (Masarczyk and Tautkute, 2020; Sangermano et al., 2022; Zhao and Bilen, 2021),
neural architecture search (Such et al., 2020; Zhao and Bilen, 2023; Zhao et al., 2021), and training-
free network slimming (Liu et al., 2017).

However, the common solution in traditional dataset distillation methods of bi-level optimiza-
tion requires prohibitively expensive computation, which limits the practical usage, as in prior
works (Cazenavette et al., 2022; Sajedi et al., 2023; Liu et al., 2023a). This has become more severe
particularly when being applied to large-scale datasets like ImageNet-1k (Russakovsky et al., 2015).
In response, the uni-level optimization paradigm has gained significant attention as an alternative
solution, with recent contributions from the research community (Yin et al., 2023; Yin and Shen,
2024; Shao et al., 2023) highlighting its applicability. These methods primarily leverage the rich
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and extensive information from static, pre-trained observer models, to facilitate a more streamlined
optimization process for synthesizing a condensed dataset without the need to adjust other parameters
(e.g., those within the observer models). While uni-level optimization has demonstrated remarkable
performance on large datasets, it has yet to achieve the competitive accuracy levels seen with classical
methods on small-scale datasets like CIFAR-10/100 (Krizhevsky et al., 2009). Moreover, the recently
proposed training-free method RDED (Sun et al., 2024) outperforms training-based methods in
efficiency and maintains effectiveness, yet it overlooks the potential information incompleteness due
to the lack of optimization on syntheses. Also, some simple but promising skills (e.g., smoothing
learning rate schedule) that could enhance performance have not been well-explored in the exist-
ing literature. We observe that a performance improvement of 16.2% in RDED comes from these
techniques in this paper rather than the proposed data synthesis approach.

These drawbacks show the constraints of previous methods in several respects, highlighting the need
for a thorough investigation and assessment of potential limitations in prior frameworks. In contrast
to earlier strategies that targeted one or a few specific improvements, our approach systematically
examines all possible facets and integrates them into our comprehensive framework. To establish
a strong framework, we carefully analyze all potential deficiencies in different stages of the data
synthesis, soft label generation, and post-evaluation stages during dataset condensation, resulting in an
extensive exploration of the design space on both large-scale and small-scale datasets. As a result, we
introduce Elucidate Dataset Condensation (EDC), which includes a range of concrete and effective
enhancement skills for dataset condensation (refer to Fig. 1). For instance, soft category-aware
matching ( ) ensures consistent category representation between the original and condensed data
batches for more precise matching. Overall, EDC not only achieves state-of-the-art performance
on CIFAR-10, CIFAR-100, Tiny-ImageNet, ImageNet-10, and ImageNet-1k, using only half of the
computational cost compared to the baseline G-VBSM, but it also provides in-depth both empirical
and theoretical insights and explanations that affirm the soundness of our design decisions. Our code
is available at: https://github.com/shaoshitong/EDC.

2 Dataset Condensation

Preliminary. Dataset condensation involves generating a synthetic dataset DS := {xS
i ,y

S
i }

|DS |
i=1

consisting of images XS and labels YS , designed to be as informative as the original dataset
DT := {xT

i ,y
T
i }

|DT |
i=1 , which includes images X T and labels YT . The synthetic dataset DS is

substantially smaller in size than DT (|DS | ≪ |DT |). The goal of this process is to maintain the
critical attributes of DT to ensure robust or comparable performance during evaluations on real test
protocol PD.

argminE(x,y)∼PD [ℓeval(x,y, ϕ
∗)], where ϕ∗ = argminϕ E(xS

i ,yS
i )∼DS [ℓ(ϕ(xS

i ),y
S
i )]. (1)

Here, ℓeval(·, ·, ϕ∗) represents the evaluation loss function, such as cross-entropy loss, which is
parameterized by the neural network ϕ∗ that has been optimized from the distilled dataset DS .
The data synthesis process primarily determines the quality of the distilled datasets, which transfers
desirable knowledge from DT to DS through various matching mechanisms, such as trajectory match-
ing (Cazenavette et al., 2022), gradient matching (Zhao et al., 2021), distribution matching (Zhao and
Bilen, 2023) and generalized matching (Shao et al., 2023).

Small-scale vs. Large-scale Dataset Condensation/Distillation. Traditional dataset condensation
algorithms, as referenced in studies such as (Wang et al., 2018; Cazenavette et al., 2022; Cui et al.,
2023; Wang et al., 2022; Nguyen et al., 2020), encounter computational challenges and are generally
confined to small-scale datasets like CIFAR-10/100 (Krizhevsky et al., 2009), or larger datasets with
limited class diversity, such as ImageNette (Cazenavette et al., 2022) and ImageNet-10 (Kim et al.,
2022). The primary inefficiency of these methods stems from their reliance on a bi-level optimization
framework, which involves alternating updates between the synthetic dataset and the observer model
utilized for distillation. This approach not only heavily depends on the model’s intrinsic ability but
also limits the versatility of the distilled datasets in generalizing across different architectures. In
contrast, the uni-level optimization strategy, noted for its efficiency and enhanced performance on
the regular 224×224 scale of ImageNet-1k in recent research (Yin et al., 2023; Shao et al., 2023;
Yin and Shen, 2024), shows reduced effectiveness in smaller-scale datasets due to the massive
optimization-based iterations required in the data synthesis process without a direct connection to
actual data. Recent new methods in training-free distillation paradigms, such as in (Sun et al., 2024;
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Figure 1: Illustration of Elucidating Dataset Condensation (EDC). Left: The overall of our better design
choices in dataset condensation on ImageNet-1k. Right: The evaluation performance and data synthesis required
time of different configurations on ResNet-18 with IPC 10. Our integral EDC refers to CONFIG G.

Zhou et al., 2023), offer advancements in efficiency. However, these methods compromise data
privacy by sharing original data and do not leverage statistical information from observer models to
enhance the capability of synthetic data, thereby restraining their potential in a real environment.

Generalized Data Synthesis Paradigm. We consistently describe algorithms (Yin et al., 2023;
Yin and Shen, 2024; Shao et al., 2023; Sun et al., 2024) that efficiently conduct data synthesis on
ImageNet-1k as “generalized data synthesis” as these methods are applicable for both small and
large-scale datasets. This direction usually avoids the inefficient bi-level optimization and includes
both image and label synthesis phases. Note that several recent works (Zhang et al., 2024a,b; Deng
et al., 2024), particularly DANCE (Zhang et al., 2024a), can also effectively be applied to ImageNet-
1k, but these methods lack enhancements in soft label generation and post-evaluation. Specifically,
generalized data synthesis involves first generating highly condensed images followed by acquiring
soft labels through predictions from a pre-trained model. The evaluation process resembles knowledge
distillation (Hinton et al., 2015), aiming to transfer knowledge from a teacher to a student model (Gou
et al., 2021; Hinton et al., 2015). The primary distinction between the training-dependent (Yin et al.,
2023; Yin and Shen, 2024; Shao et al., 2023) and training-free paradigm (Sun et al., 2024) centers
on their approach to data synthesis. In detail, the training-dependent paradigm employs Statistical
Matching (SM) to extract pertinent information from the entire dataset.

Lsyn = ||p(µ|XS)− p(µ|X T )||2 + ||p(σ2|XS)− p(σ2|X T )||2, s.t. Lsyn ∼ Smatch,

XS∗ = argmin
XS

ELsyn∼Smatch [Lsyn(XS ,X T )],
(2)

where Smatch represents the extensive collection of statistical matching operators, which operate across
a variety of network architectures and layers as described by (Shao et al., 2023). Here, µ and σ2

are defined as the mean and variance, respectively. For more detailed theoretical insights, please
refer to Definition 3.1. The training-free approach, as discussed in (Sun et al., 2024; Zhou et al.,
2023), employs a direct reconstruction method for the original dataset, aiming to generate simplified
representations of images.

XS =
C⋃
i=1

XS
i , XS

i = {xi
j = concat({x̃k}Nk=1 ⊂ X T

i )}IPCj=1, (3)

where C denotes the number of classes, concat(·) represents the concatenation operator, XS
i signifies

the set of condensed images belonging to the i-th class, and X T
i corresponds to the set of original

images of the i-th class. It is important to note that the default settings for N are 1 and 4, as specified
in the works (Zhou et al., 2023) and (Sun et al., 2024), respectively. Using one or more observer
models, denoted as {ϕi}Ni=1, we then derive the soft labels YS from the condensed image set XS .

YS =
⋃

xS
i ⊂XS

1

N

N∑
i=1

ϕi(x
S
i ). (4)

This plug-and-play component, as outlined in SRe2L (Yin et al., 2023) and IDC (Kim et al., 2022),
plays a crucial role for enhancing the generalization ability of the distilled dataset DS .
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Figure 2: (a): Illustration of soft category-aware matching ( ) using a Gaussian distribution in R2. (b): The
effect of employing smoothing LR schedule ( ) on loss landscape sharpness reduction. (c) top: The role
of flatness regularization ( ) in reducing the Frobenius norm of the Hessian matrix driven by data synthesis
iteration. (c) bottom: Cosine similarity comparison between local gradients (obtained from original and distilled
datasets via random batch selection) and the global gradient (obtained from gradient accumulation).

3 Improved Design Choices

Design choices in data synthesis, soft label generation, and post-evaluation significantly influence
the generalization capabilities of condensed datasets. Effective strategies for small-scale datasets are
well-explored, yet these approaches are less examined for large-scale datasets. We first delineate
the limitations of existing algorithms’ design choices on ImageNet-1k. We then propose solutions,
providing experimental results as shown in Fig. 1. For most design choices, we offer both theoretical
analysis and empirical insights to facilitate a thorough understanding, as detailed in Sec. 3.2.

3.1 Limitations of Prior Methods

Lacking Realism (solved by ). Training-dependent condensation algorithms for datasets, par-
ticularly those employed for large-scale datasets, typically initiate the optimization process using
Gaussian noise inputs (Yin et al., 2023; Yin and Shen, 2024; Shao et al., 2023). This initial choice
complicates the optimization process and often results in the generation of synthetic images that do
not exhibit high levels of realism. The limitations in visualization associated with previous approaches
are detailed in Appendix F.

Coarse-grained Matching Mechanism (solved by ). The Statistical Matching (SM)-based
pipeline (Yin et al., 2023; Yin and Shen, 2024; Shao et al., 2023) computes the global mean and vari-
ance by aggregating samples across all categories and uses these statistical parameters for matching
purposes. However, this strategy exhibits two critical drawbacks: it does not account for the domain
discrepancies among different categories, and it fails to preserve the integrity of category-specific
information across the original and condensed samples within each batch. These limitations result in
a coarse-grained matching approach that diminishes the accuracy of the matching process.

Overly Sharp of Loss Landscape (solved by and ). The optimization objective L(θ) can be
expanded through a second-order Taylor expansion as L(θ∗)+(θ−θ∗)T∇θL(θ∗)+(θ−θ∗)TH(θ−
θ∗), with an upper bound of L(θ∗)+ ||H||FE[||θ−θ∗||22] upon model convergence (Chen et al., 2024).
However, earlier training-dependent condensation algorithms neglect to minimize the Frobenius norm
of the Hessian matrix H to obtain a flat loss landscape for enhancing its generalization capability
through sharpness-aware minimization theory (Foret et al., 2020; Chen et al., 2022). Please see
Appendix C for more formal information.

Irrational Hyperparameter Settings (solved by , , , and ). RDED (Sun et al., 2024)
adopts a smoothing LR schedule ( ) and (Liu et al., 2023b; Yin and Shen, 2024; Sun et al., 2024)
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use a reduced batch size ( ) for post-evaluation on the full 224×224 ImageNet-1k. These
changes, although critical, lack detailed explanations and impact assessments in the existing literature.
Our empirical analysis highlights a remarkable impact on performance: absent these modifications,
RDED achieves only 25.8% accuracy on ResNet18 with IPC 10. With these modifications, however,
accuracy jumps to 42.0%. In contrast, SRe2L and G-VBSM do not incorporate such strategies in
their experimental frameworks. This work aims to fill the gap by providing the first comprehensive
empirical analysis and ablation study on the effects of these and similar improvements in the field.

3.2 Our Solutions

To address these limitations described above, we explore the design space and elaborately present a
range of optimal solutions at both empirical and theoretical levels, as illustrated in Fig. 1.

Iter 1 Iter 20 Iter 1000

R
eal Im

age
Initialization

G
aussian

Initialization

Figure 3: Comparison between real image
initialization and random initialization.

Real Image Initialization ( ). Intuitively, using real im-
ages instead of Gaussian noise for data initialization during
the data synthesis phase is a practical and effective strat-
egy. As shown in Fig. 3, this method significantly improves
the realism of the condensed dataset and simplifies the op-
timization process, thus enhancing the synthesized dataset’s
ability to generalize in post-evaluation tests. Additionally,
we incorporate considerations of information density and
efficiency by employing a training-free condensed dataset
(e.g., RDED) for initialization at the start of the synthesis
process. According to Theorem 3.1, based on optimal trans-
port theory, the cost of transporting from a Gaussian distribution to the original data distribution is
higher than using the training-free condensed distribution as the initial reference. This advantage also
allows us to reduce the number of iterations needed to achieve results to half of those required by our
baseline G-VBSM model, significantly boosting synthesis efficiency.

Theorem 3.1. (proof in Appendix B.1) Considering samples XS
real, XS

free, and XS
random from the original

data, training-free condensed (e.g., RDED), and Gaussian distributions, respectively, let us assume a
cost function defined in optimal transport theory that satisfies E[c(a− b)] ∝ 1/I(Law(a),Law(b)).
Under this assumption, it follows that E[c(XS

real −XS
free)] ≤ E[c(XS

real −XS
random)].

Soft Category-Aware Matching ( ). Previous dataset condensation methods (Yin et al., 2023;
Yin and Shen, 2024; Shao et al., 2023) based on the Statistical Matching (SM) framework have
shown satisfactory results predominantly when the data follows a unimodal distribution (e.g., a single
Gaussian). This limitation is illustrated with a simple example in Fig. 2 (a). Typically, datasets consist
of multiple classes with significant variations among their class distributions. Traditional SM-based
methods compress data by collectively processing all samples, thus neglecting the differences between
classes. As shown in the top part of Fig. 2 (a), this method enhances information density but also
creates a big mismatch between the condensed source distribution XS and the target distribution
X T . To tackle this problem, we propose the use of a Gaussian Mixture Model (GMM) to effectively
approximate any complex distribution. This solution is theoretically justifiable by the Tauberian
Theorem under certain conditions (detailed proof is provided in Appendix B.2). In light of this, we
define two specific approaches to Statistical Matching:

Sketch Definition 3.1. (formal definition in Appendix B.2) Given N random samples {xi}Ni=1 with
an unknown distribution pmix(x), we define two forms to statistical matching. Form (1): involves
synthesizing M distilled samples {yi}Mi=1, where M ≪ N , ensuring that the variances and means of
both {xi}Ni=1 and {yi}Mi=1 are consistent. Form (2): treats pmix(x) as a GMM with C components. For
random samples {xj

i}
Nj

i=1 (
∑

j Nj = N ) within each component cj , we synthesize Mj (
∑

j Mj = M )

distilled samples {yji }
Mj

i=1, where Mj ≪ Nj , to maintain the consistency of variances and means
between {xj

i}
Nj

i=1 and {yji }
Mj

i=1.

In general, SRe2L, CDA, and G-VBSM are all categorized under Form (1), as shown in Fig. 2
(a) at the top, which leads to coarse-grained matching. According to Fig. 2 (a) at the bottom,
transitioning to Form (2) is identified as a practical and appropriate alternative. However, our
empirical result indicates that exclusive reliance on Form (2) yields a synthesized dataset that lacks
sufficient information density. Consequently, we propose a hybrid method that effectively integrates
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Form (1) and Form (2) using a weighted average, which we term soft category-aware matching.

L′
syn = α||p(µ|XS)− p(µ|XT )||2 + ||p(σ2|XS)− p(σ2|XT )||2 #Form (1)

+ (1− α)

C∑
i

p(ci)
[
||p(µ|XS , ci)− p(µ|XT , ci)||2 + ||p(σ2|XS , ci)− p(σ2|XT , ci)||2

]
, #Form (2)

(5)

where C represents the total number of components, ci indicates the i-th component within a GMM,
and α is a coefficient for adjusting the balance. The modified loss function L′

syn is designed to
effectively regulate the information density of XS and to align the distribution of XS with that of
X T . Operationally, each category in the original dataset is mapped to a distinct component in the
GMM framework. Particularly, when α = 1, the sophisticated category-aware matching described by
L′

syn in Eq. 5 simplifies to the basic statistical matching defined by Lsyn in Eq. 2.
Theorem 3.2. (proofs in Theorems B.5, B.7, B.8 and Corollary B.6) Given the original data
distribution pmix(x), and define condensed samples as x and y in Form (1) and Form (2) with
their distributions characterized by P and Q. Subsequently, it follows that (i) E[x] ≡ E[y], (ii)
D[x] ≡ D[y], (iii) H(P ) − 1

2

[
log(E[D[yj ]] + D[E[yj ]])− E[log(D[yj ])]

]
≤ H(Q) ≤ H(P ) +

1
4E(i,j)∼

∏
[C,C]

[
(E[yi]−E[yj ])2(D[yi]+D[yj ])

D[yi]D[yj ]

]
and (iv) DKL[pmix||P ] ≤ Ei∼U [1,...,C]Ej∼U [1,...,C]

E[yj ]2

D[yi]

and DKL[pmix||Q] = 0.

We further analyze the properties of distributions P and Q as in Form (1) and Form (2). According
to parts (i) and (ii) of Theorem 3.2, Q retains the same variance and mean as P . Regarding diversity,
part (iii) of Theorem 3.2 states that the entropy H(·) of P and Q is equivalent, H(P ) ≡ H(Q),
provided the mean and variance of all components in the GMM are uniform, suggesting a single
Gaussian profile. Absent this condition, there is no guarantee that H(P ) and H(Q) will consistently
increase or decrease. These findings underscore the advantages of using GMM, especially when the
initial data conforms to an unimodal distribution, thus aligning the mean, variance, and entropy of
distributions P and Q in the reduced dataset. Moreover, even in diverse scenarios, the mean, variance,
and entropy of Q tend to remain stable. Furthermore, when the original dataset exhibits a more
complex bimodal distribution and the parameters of the Gaussian components are precisely estimated,
utilizing GMM can effectively reduce the Kullback-Leibler divergence between the mixed original
distribution pmix and Q to near zero. In contrast, the divergence DKL[pmix||P ] always maintains a
non-zero upper bound, as noted in part (iv) of Theorem 3.2. Therefore, by modulating the weight
α in Eq. 5, we can derive an optimally balanced solution that minimizes loss in data characteristics
while maximizing fidelity between the synthesized and original distributions.

Flatness Regularization ( ) and EMA-based Evaluation ( ). Choices and are utilized to
ensure flat loss landscapes during the stages of data synthesis and post-evaluation, respectively.

During the data synthesis phase, the use of sharpness-aware minimization (SAM) algorithms is
beneficial for reducing the sharpness of the loss landscape, as presented in prior research (Foret et al.,
2020; Du et al., 2022; Bahri et al., 2021). Nonetheless, traditional SAM approaches, as detailed in
Eq. 29 in the Appendix, generally double the computational load due to their two-stage parameter
update process. This increase in computational demand is often impractical during data synthesis.
Inspired by MESA (Du et al., 2022), which achieves sharpness-aware training without additional
computational overhead through self-distillation, we introduce a lightweight flatness regularization
approach for implementing SAM during data synthesis. This method utilizes a teacher dataset, XS

EMA,
maintained via exponential moving average (EMA). The newly formulated optimization goal aims to
obtain a flat loss landscape in the following manner:

LFR = ELsyn∼Smatch [Lsyn(XS ,XS
EMA)], XS

EMA = βXS
EMA + (1− β)XS , (6)

where β is the weighting coefficient, which is empirically set to 0.99 in our experiments. The detailed
derivation of Eq. 7 is in Appendix E. And the critical theoretical result is articulated as follows:
Theorem 3.3. (proof in Appendix E) The optimization objective LFR can ensure sharpness-aware
minimization within a ρ-ball for each point along a straight path between XS and XS

EMA.

This indicates that the primary optimization goal of LFR deviates somewhat from that of traditional
SAM-based algorithms, which are designed to achieve a flat loss landscape around XS . The constraint
on flatness needs to ensure that the first-order term of the Taylor expansion equals zero, indicating
normal model convergence. However, our exploratory experiments found that despite the good
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Dataset IPC ResNet-18 ResNet-50 ResNet-101 MobileNet-V2

SRe2L G-VBSM RDED EDC (Ours) G-VBSM EDC (Ours) RDED EDC (Ours) EDC (Ours)

1 - - 22.9 ± 0.4 32.6 ± 0.1 - 30.6 ± 0.4 - 26.1 ± 0.2 20.2 ± 0.4
CIFAR-10 10 27.2 ± 0.4 53.5 ± 0.6 37.1 ± 0.3 79.1 ± 0.3 - 76.0 ± 0.3 - 67.1 ± 0.5 42.0 ± 0.4

50 47.5 ± 0.5 59.2 ± 0.4 62.1 ± 0.1 87.0 ± 0.1 - 86.9 ± 0.0 - 85.8 ± 0.1 70.8 ± 0.2

1 2.0 ± 0.2 25.9 ± 0.5 11.0 ± 0.3 39.7 ± 0.1 - 36.1 ± 0.5 - 32.3 ± 0.3 10.6 ± 0.3
CIFAR-100 10 31.6 ± 0.5 59.5 ± 0.4 42.6 ± 0.2 63.7 ± 0.3 - 62.1 ± 0.1 - 61.7 ± 0.1 44.3 ± 0.4

50 49.5 ± 0.3 65.0 ± 0.5 62.6 ± 0.1 68.6 ± 0.2 - 69.4 ± 0.3 - 68.5 ± 0.1 59.5 ± 0.1

1 - - 9.7 ± 0.4 39.2 ± 0.4 - 35.9 ± 0.2 3.8 ± 0.1 40.6 ± 0.3 18.8 ± 0.1
Tiny-ImageNet 10 - - 41.9 ± 0.2 51.2 ± 0.5 - 50.2 ± 0.3 22.9 ± 3.3 51.6 ± 0.2 40.6 ± 0.6

50 41.1 ± 0.4 47.6 ± 0.3 58.2 ± 0.1 57.2 ± 0.2 48.7 ± 0.2 58.8 ± 0.4 41.2 ± 0.4 58.6 ± 0.1 50.7 ± 0.1

1 - - 24.9 ± 0.5 45.2 ± 0.2 - 38.2 ± 0.1 21.7 ± 1.3 36.4 ± 0.1 36.4 ± 0.3
ImageNet-10 10 - - 53.3 ± 0.1 63.4 ± 0.2 - 62.4 ± 0.1 45.5 ± 1.7 59.8 ± 0.1 54.2 ± 0.1

50 - - 75.5 ± 0.5 82.2 ± 0.1 - 80.8 ± 0.2 71.4 ± 0.2 80.8 ± 0.0 80.2 ± 0.2

1 - - 6.6 ± 0.2 12.8 ± 0.1 - 13.3 ± 0.3 5.9 ± 0.4 12.2 ± 0.2 8.4 ± 0.3
ImageNet-1k 10 21.3 ± 0.6 31.4 ± 0.5 42.0 ± 0.1 48.6 ± 0.3 35.4 ± 0.8 54.1 ± 0.2 48.3 ± 1.0 51.7 ± 0.3 45.0 ± 0.2

50 46.8 ± 0.2 51.8 ± 0.4 56.5 ± 0.1 58.0 ± 0.2 58.7 ± 0.3 64.3 ± 0.2 61.2 ± 0.4 64.9 ± 0.2 57.8 ± 0.1

Table 1: Comparison with the SOTA baseline dataset condensation methods. SRe2L and RDED utilize
ResNet-18 for data synthesis, whereas G-VBSM and EDC leverage various backbones for this purpose.

IPC Method ResNet-18 ResNet-50 ResNet-101 MobileNet-V2 EfficientNet-B0 DeiT-Tiny Swin-Tiny ConvNext-Tiny ShuffleNet-V2

10
RDED 42.0 46.0 48.3 34.4 42.8 14.0 29.2 48.3 19.4

EDC (Ours) 48.6 54.1 51.7 45.0 51.1 18.4 38.3 54.4 29.8
+∆ 6.6 8.1 3.4 10.6 8.3 4.4 9.1 6.1 10.4

20
RDED 45.6 57.6 58.0 41.3 48.1 22.1 44.6 54.0 20.7

EDC (Ours) 52.0 58.2 60.0 48.6 55.6 24.0 49.6 61.4 33.0
+∆ 6.4 0.6 2.0 7.3 7.5 1.9 5.0 7.4 12.3

30
RDED 49.9 59.4 58.1 44.9 54.1 30.5 47.7 62.1 23.5

EDC (Ours) 55.0 61.5 60.3 53.8 58.4 46.5 59.1 63.9 41.1
+∆ 5.1 2.1 2.2 8.9 4.3 16.0 11.4 1.8 17.6

40
RDED 53.9 61.8 60.1 50.3 56.3 43.7 58.1 63.7 27.7

EDC (Ours) 56.4 62.2 62.3 54.7 59.7 51.9 61.1 65.2 44.7
+∆ 2.5 0.4 2.2 4.4 3.4 8.2 3.0 1.5 17.0

50
RDED 56.5 63.7 61.2 53.9 57.6 44.5 56.9 65.4 30.9

EDC (Ours) 58.0 64.3 64.9 57.8 60.9 55.0 63.3 66.6 45.7
+∆ 1.5 0.6 3.7 3.9 3.3 10.5 6.4 1.2 14.8

Table 2: Cross-architecture generalization comparison with different IPCs on ImageNet-1k. RDED refers
to the latest SOTA method on ImageNet-1k and +∆ stands for the improvement for each architecture.

performance of EDC, the loss of statistical matching at the end of data synthesis still fluctuated
significantly and did not reach zero. As a result, we choose to apply flatness regularization exclusively
to the logits of the observer model, since the cross-entropy loss for these can more straightforwardly
reach zero.

L′
FR = DKL(softmax(ϕ(XS)/τ)||softmax(ϕ(XS

EMA)/τ)), XS
EMA = βXS

EMA + (1− β)XS , (7)

where softmax(·), τ and ϕ represent the softmax operator, the temperature coefficient and the pre-
trained observer model, respectively. As illustrated in Fig. 2 (c) top, it is evident that L′

FR significantly
lowers the Frobenius norm of the Hessian matrix relative to standard training, thus confirming its
efficacy in pushing a flatter loss landscape.

In post-evaluation, we observe that a method analogous to L′
FR employing SAM does not lead

to appreciable performance improvements. This result is likely due to the limited sample size of
the condensed dataset, which hinders the model’s ability to fully converge post-training, thereby
undermining the advantages of flatness regularization. Conversely, the integration of an EMA-updated
model as the validated model noticeably stabilizes performance variations during evaluations. We
term this strategy EMA-based evaluation and apply it across all benchmark experiments.

Smoothing Learning Rate (LR) Schedule ( ) and Smaller Batch Size ( ). Here, we introduce
two effective strategies for post-evaluation training. Firstly, it is crucial to clarify and distinguish
between standard or conventional deep model training and post-evaluation in the context of dataset
condensation. Specifically, (1) in dataset condensation, the limited number of samples in XS results
in fewer training iterations per epoch, typically leading to underfitting; and (2) the gradient of a
random batch from XS aligns more closely with the global gradient than that from a random batch
in X T . To support the latter observation, we utilize a ResNet-18 model with randomly initialized
parameters to calculate the gradient of a random batch and assess the cosine similarity with the
global gradient of X T . After conducting over 100 iterations of this procedure, the average cosine
similarity is consistently higher between XS and the global gradient than with X T , indicating a
greater similarity and reduced sensitivity to batch size fluctuations. Our findings further illustrate that
the gradient from a random batch in XS effectively approximates the global gradient, as shown in
Fig. 2 (c) bottom. Given this, the inaccurate gradient direction problem introduced by the small batch
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Design Choices ζ ResNet-18 ResNet-50 ResNet-101 Design Choices ResNet-18 ResNet-50 ResNet-101

CONFIG C 1.0 34.4 36.8 42.0 RDED 25.8 32.7 34.8
CONFIG C 1.5 38.7 42.0 46.3 RDED+( ) 42.3 48.4 47.0
CONFIG C 2.0 38.8 45.8 47.9 G-VBSM+( ) 34.4 36.8 42.0
CONFIG C 2.5 39.0 44.6 46.0 G-VBSM+( ) 38.8 45.8 47.9
CONFIG C 3.0 38.8 45.6 46.2 G-VBSM+( ) 45.0 51.6 48.1

Table 3: Ablation studies on ImageNet-1k with IPC 10. Left: Explore the influence of the slowdown
coefficient ζ with CONFIG C. Right: Evaluate the effectiveness of real image initialization ( ), smoothing
LR schedule ( ) and smaller batch size ( ) with ζ = 2.

Design Choices Loss Type Loss Weight ζ β τ ResNet-18 ResNet-50 DenseNet-121
CONFIG C - - 1.5 - - 38.7 42.0 40.6
CONFIG D LFR 0.025 1.5 0.999 4 38.8 43.2 40.3
CONFIG D LFR 0.25 1.5 0.999 4 37.9 43.5 40.3
CONFIG D LFR 2.5 1.5 0.999 4 31.7 37.0 32.9
CONFIG D LFR 0.25 1.5 0.99 4 39.0 43.3 40.2
CONFIG D L′

FR 0.25 1.5 0.99 4 39.5 44.1 41.9
CONFIG D L′

FR 0.25 1.5 0.99 1 38.9 43.5 40.7
CONFIG D vanilla SAM 0.25 1.5 - - 38.8 44.0 41.2

Table 4: Ablation studies on ImageNet-1k with IPC 10. Investigate the potential effects of several factors,
including loss type, loss weight, β, and τ , amid flatness regularization ( ).

size becomes less problematic. Instead, using a small batch size effectively increases the number of
iterations, thereby helping prevent model under-convergence.

To optimize the training with condensed samples, we implement a smoothed LR schedule that
moderates the learning rate reduction throughout the training duration. This approach helps avoid
early convergence to suboptimal minima, thereby enhancing the model’s generalization capabilities.
The mathematical formulation of this schedule is given by µ(i) = 1+cos(iπ/ζN)

2 , where i represents
the current epoch, N is the total number of epochs, µ(i) is the learning rate for the i-th epoch, and
ζ is the deceleration factor. Notably, a ζ value of 1 corresponds to a typical cosine learning rate
schedule, whereas setting ζ to 2 improves performance metrics from 34.4% to 38.7% and effectively
moderates loss landscape sharpness during post-evaluation.

Weak Augmentation ( ) and Better Backbone Choice ( ). The principal role of these two
design decisions is to address the flawed settings in the baseline G-VBSM. The key finding reveals
that the minimum area threshold for cropping during data synthesis was overly restrictive, thereby
diminishing the quality of the condensed dataset. To rectify this, we implement mild augmentations
to increase this minimum cropping threshold, thereby improving the dataset condensation’s ability to
generalize. Additionally, we substitute the computationally demanding EfficientNet-B0 with more
streamlined AlexNet for generating soft labels on ImageNet-1k, a change we refer to as an improved
backbone selection. This modification maintains the performance without degradation. More details
on the ablation studies for mild augmentation and improved backbone selection are in Appendix G.

4 Experiments

To validate the effectiveness of our proposed EDC, we conduct comparative experiments across
various datasets, including ImageNet-1k (Russakovsky et al., 2015), ImageNet-10 (Kim et al., 2022),
Tiny-ImageNet (Tavanaei, 2020), CIFAR-100 (Krizhevsky et al., 2009), and CIFAR-10 (Krizhevsky
et al., 2009). Additionally, we explore cross-architecture generalization and ablation studies on
ImageNet-1k. All experiments are conducted using 4× RTX 4090 GPUs. Due to space constraints,
detailed descriptions of the hyperparameter settings, additional ablation studies, and visualizations of
synthesized images are provided in the Appendix A.1, G, and H, respectively.

Network Architectures. Following prior dataset condensation work (Yin et al., 2023; Yin and Shen,
2024; Shao et al., 2023; Sun et al., 2024), our comparison uses ResNet-{18, 50, 101} (He et al.,
2016a) as our verified models. We also extend our evaluation to include MobileNet-V2 (Sandler
et al., 2018) in Table 1 and explore cross-architecture generalization further with recently advanced
backbones such as DeiT-Tiny (Touvron et al., 2021) and Swin-Tiny (Liu et al., 2021) (detailed in
Table 2).

Baselines. We compare our work with several recent state-of-the-art methods, including SRe2L (Yin
et al., 2023), G-VBSM (Shao et al., 2023), and RDED (Sun et al., 2024) to assess broader practical
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Design Choices α ζ
Weak Augmentation

Scale=(0.5,1.0)
EMA-based Evaluation

EMA Rate=0.99 ResNet-18 ResNet-50 ResNet-101

CONFIG F 0.00 2.0 ✗ ✗ 46.2 53.2 49.5
CONFIG F 0.00 2.0 ✓ ✗ 46.7 53.7 49.4
CONFIG F 0.00 2.0 ✓ ✓ 46.9 53.8 48.5
CONFIG F 0.25 2.0 ✗ ✗ 46.7 53.4 50.6
CONFIG F 0.25 2.0 ✓ ✗ 46.8 53.6 50.8
CONFIG F 0.25 2.0 ✓ ✓ 47.1 53.7 48.2
CONFIG F 0.50 2.0 ✗ ✗ 48.1 53.9 50.4
CONFIG F 0.50 2.0 ✓ ✗ 48.4 53.9 52.7
CONFIG F 0.50 2.0 ✓ ✓ 48.6 54.1 51.7
CONFIG F 0.75 2.0 ✗ ✗ 46.1 52.7 51.0
CONFIG F 0.75 2.0 ✓ ✗ 46.9 52.8 51.6
CONFIG F 0.75 2.0 ✓ ✓ 47.0 53.2 49.3

Table 5: Ablation studies on ImageNet-1k with IPC 10. Evaluate the effectiveness of several design choices,
including soft category-aware matching ( ), weak augmentation ( ) and EMA-based evaluation ( ).

impacts. It is important to note that we have omitted several traditional methods (Cazenavette et al.,
2022; Liu et al., 2023a; Cui et al., 2023) from our analysis. This exclusion is due to their inadequate
performance on the large-scale ImageNet-1k and their lesser effectiveness when applied to practical
networks such as ResNet, MobileNet-V2, and Swin-Tiny (Liu et al., 2021). For instance, the MTT
method (Cazenavette et al., 2022) encounters an out-of-memory issue on ImageNet-1k, and ResNet-
18 achieves only a 46.4% accuracy on CIFAR-10 with IPC 10, which is significantly lower than the
79.1% accuracy reported for our EDC in Table 1.

4.1 Main Results

Experimental Comparison. Our integral EDC, represented as CONFIG G in Fig. 1, provides a
versatile solution that outperforms other approaches across various dataset sizes. The results in Table 1
affirm its ability to consistently deliver substantial performance gains across different IPCs, datasets,
and model architectures. Particularly notable is the performance leap in the highly compressed IPC
1 scenario using ResNet-18, where EDC markedly outperforms the latest state-of-the-art method,
RDED. Performance rises from 22.9%, 11.0%, 7.0%, 24.9%, and 6.6% to 32.6%, 39.7%, 39.2%,
45.2%, and 12.8% for CIFAR-10, CIFAR-100, Tiny-ImageNet, ImageNet-10, and ImageNet-1k,
respectively. These improvements clearly highlight EDC’s superior information encapsulation and
enhanced generalization capability, attributed to the efficiently synthesized condensed dataset.

Cross-Architecture Generalization. To verify the generalization ability of our condensed datasets, it
is essential to assess their performance across various architectures such as ResNet-{18, 50, 101} (He
et al., 2016a), MobileNet-V2 (Sandler et al., 2018), EfficientNet-B0 (Tan and Le, 2019), DeiT-
Tiny (Touvron et al., 2021), Swin-Tiny (Liu et al., 2021), ConvNext-Tiny (Liu et al., 2022) and
ShuffleNet-V2 (Zhang et al., 2018). The results of these evaluations are presented in Table 2. During
cross-validation that includes all IPCs and the mentioned architectures, our EDC consistently achieves
higher accuracy than RDED, demonstrating its strong generalization capabilities. Specifically, EDC
surpasses RDED by significant margins of 8.2% and 14.42% on DeiT-Tiny and ShuffleNet-V2,
respectively.
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Figure 4: Application on ImageNet-1k. We evaluate the
effectiveness of data-free network slimming and continual
learning using VGG11-BN and ResNet-18, respectively.

Application. Our condensed dataset not
only serves as a versatile training resource
but also enhances the adaptability of mod-
els across various downstream tasks. We
demonstrate its effectiveness by employing
it in scenarios such as data-free network
slimming (Liu et al., 2017) (w.r.t., param-
eter pruning (Srinivas and Babu, 2015)) and
class-incremental continual learning (Prabhu
et al., 2020) outlined in DM (Zhao and Bilen,
2023). Fig. 4 shows the wide applicability
of our condensed dataset in both data-free
network slimming and class-incremental continual learning. It substantially outperforms SRe2L and
G-VBSM, achieving significantly better results.

9

99169 https://doi.org/10.52202/079017-3146



4.2 Ablation Studies

Real Image Initialization ( ), Smoothing LR Schedule ( ) and Smaller Batch Size ( ).
As shown in Table 3 (left), these design choices, with zero additional computational cost, sufficiently
enhance the performance of both G-VBSM and RDED. Furthermore, we investigate the influence of
ζ within smoothing LR schedule in Table 3 (right), concluding that a smoothing learning rate decay is
worthwhile for the condensed dataset’s generalization ability and the optimal ζ is model-dependent.

Flatness Regularization ( ). The results in Table 4 demonstrate the effectiveness of flatness regular-
ization, while requiring a well-designed setup. Specifically, attempting to minimize sharpness across
all statistics (i.e., LFR) proves ineffective, instead, it is more effective to apply this regularization
exclusively to the logit (i.e., L′

FR). Setting the loss weights β and τ at 0.25, 0.99, and 4, respectively,
yields the best accuracy of 39.5%, 44.1%, and 45.9% for ResNet-18, ResNet-50, and DenseNet-121.
Moreover, our design of L′

FR surpasses the performance of the vanilla SAM, while requiring only
half the computational resources.

Soft Category-Aware Matching ( ), Weak Augmentation ( ) and EMA-based Evaluation
( ). Table 5 illustrates the effectiveness of weak augmentation and EMA-based evaluation, with
EMA evaluation also playing a crucial role in minimizing performance fluctuations during assessment.
The evaluation of soft category-aware matching primarily involves exploring the effect of parameter
α across the range [0, 1]. The results in Table 5 suggest that setting α to 0.5 yields the best results
based on our empirical analysis. This finding not only confirms the utility of soft category-aware
matching but also emphasizes the importance of ensuring that the condensed dataset maintains a high
level of information density and bears a distributional resemblance to the original dataset.

5 Conclusion

In this paper, we have conducted an extensive exploration and analysis of the design possibilities
for scalable dataset condensation techniques. This comprehensive investigation helped us pinpoint
a variety of effective and flexible design options, ultimately leading to the construction of a novel
framework, which we call EDC. We have extensively examined EDC across five different datasets,
which vary in size and number of classes, effectively proving EDC’s robustness and scalability. Our
results suggest that previous dataset distillation methods have not yet reached their full potential,
largely due to suboptimal design decisions. We aim for our findings to motivate further research into
developing algorithms capable of efficiently managing datasets of diverse sizes, thus advancing the
field of dataset condensation task.
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Appendix

A Implementation Details

Here, we complement both the hyperparameter settings and the backbone choices utilized for the
comparison and ablation experiments in the main paper.

A.1 Hyperparameter Settings

(a) Data Synthesis

Config Value Explanation
Iteration 2000 NA
Optimizer Adam β1, β2 = (0.5, 0.9)
Learning Rate 0.05 NA
Batch Size 80 NA

Initialization RDED Initialized using images
synthesized from RDED

α, β, τ 0.5, 0.99, 4
Control

category-aware matching
and flatness regularization

(b) Soft Label Generation and Post-Evaluation
Config Value Explanation
Epochs 300 NA
Optimizer AdamW NA

Learning Rate 0.001 Only use 1e-4
for Swin-Tiny

Batch Size 100 NA

EMA Rate 0.99 Control EMA-based
Evaluation

Scheduler Smoothing LR Schedule ζ = 2

Augmentation RandomResizedCrop
RandomHorizontalFlip NA

Table 6: Hyperparameter setting on ImageNet-1k.

(a) Data Synthesis

Config Value Explanation
Iteration 2000 NA
Optimizer Adam β1, β2 = (0.5, 0.9)
Learning Rate 0.05 NA
Batch Size 100 NA

Initialization RDED Initialized using images
synthesized from RDED

α, β, τ 0.5, 0.99, 4
Control

category-aware matching
and flatness regularization

(b) Soft Label Generation and Post-Evaluation
Config Value Explanation
Epochs 1000 NA
Optimizer AdamW NA
Learning Rate 0.001 NA
Batch Size 50 NA

EMA Rate 0.99 Control EMA-based
Evaluation

Scheduler Smoothing LR Schedule ζ = 2

Augmentation
RandAugment

RandomResizedCrop
RandomHorizontalFlip

NA

Table 7: Hyperparameter setting on ImageNet-10.

(a) Data Synthesis

Config Value Explanation
Iteration 2000 NA
Optimizer Adam β1, β2 = (0.5, 0.9)
Learning Rate 0.05 NA
Batch Size 100 NA

Initialization Original Image Initialized using images
from training dataset

α, β, τ 0.5, 0.99, 4
Control

category-aware matching
and flatness regularization

(b) Soft Label Generation and Post-Evaluation
Config Value Explanation

Epochs 300 Only use 1000 for IPC 1
Optimizer AdamW NA
Learning Rate 0.001 NA
Batch Size 100 NA

EMA Rate 0.99 Control EMA-based
Evaluation

Scheduler Smoothing LR Schedule ζ = 2

Augmentation
RandAugment

RandomResizedCrop
RandomHorizontalFlip

NA

Table 8: Hyperparameter setting on Tiny-ImageNet.

We detail the hyperparameter settings of EDC for various datasets, including ImageNet-1k, ImageNet-
10, Tiny-ImageNet, CIFAR-100, and CIFAR-10, in Tables 6, 7, 8, 9, and 10, respectively. For epochs,
a critical factor affecting computational cost, we utilize strategies from SRe2L, G-VBSM, and RDED
for ImageNet-1k and follow RDED for the other datasets. In the data synthesis phase, we reduce the
iteration count of hyperparameters by half compared to those used in SRe2L and G-VBSM.

A.2 Network Architectures on Different Datasets

This section outlines the specific configurations of the backbones employed in the data synthesis and
soft label generation phases, details of which are omitted from the main paper.
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(a) Data Synthesis

Config Value Explanation
Iteration 2000 NA
Optimizer Adam β1, β2 = (0.5, 0.9)
Learning Rate 0.05 NA
Batch Size 100 NA

Initialization Original Image Initialized using images
from training dataset

α, β, τ 0.5, 0.99, 4
Control

category-aware matching
and flatness regularization

(b) Soft Label Generation and Post-Evaluation
Config Value Explanation
Epochs 1000 NA
Optimizer AdamW NA
Learning Rate 0.001 NA
Batch Size 50 NA

EMA Rate 0.99 Control EMA-based
Evaluation

Scheduler Smoothing LR Schedule ζ = 2

Augmentation
RandAugment

RandomResizedCrop
RandomHorizontalFlip

NA

Table 9: Hyperparameter setting on CIFAR-100.

(a) Data Synthesis

Config Value Explanation
Iteration 75 NA
Optimizer Adam β1, β2 = (0.5, 0.9)
Learning Rate 0.05 NA

Batch Size All The number of
synthesized images

Initialization Original Image Initialized using images
from training dataset

α, β, τ 0.5, 0.99, 4
Control

category-aware matching
and flatness regularization

(b) Soft Label Generation and Post-Evaluation
Config Value Explanation
Epochs 1000 NA
Optimizer AdamW NA
Learning Rate 0.001 NA
Batch Size 25 NA

EMA Rate 0.99 Control EMA-based
Evaluation

Scheduler MultiStepLR γ = 0.5
milestones=[800,900,950]

Augmentation
RandAugment

RandomResizedCrop
RandomHorizontalFlip

NA

Table 10: Hyperparameter setting on CIFAR-10.

ImageNet-1k. We utilize pre-trained models {ResNet-18, MobileNet-V2, ShuffleNet-V2,
EfficientNet-V2, AlexNet} from torchvision (Paszke et al., 2019) as observer models in data synthesis.
To reduce computational load, we exclude EfficientNet-V2 from the soft label generation process, a
decision in line with our strategy of selecting more efficient backbones, a concept referred to as better
backbone choice in the main paper. An extensive ablation analysis is available in Appendix G.

ImageNet-10. Prior to data synthesis, we train {ResNet-18, MobileNet-V2, ShuffleNet-V2,
EfficientNet-V2} from scratch for 20 epochs and save their respective checkpoints. Subsequently,
these pre-trained models are consistently employed for both data synthesis and soft label generation.

Tiny-ImageNet. We adopt the same backbone configurations as G-VBSM, specifically utilizing
{ResNet-18, MobileNet-V2, ShuffleNet-V2, EfficientNet-V2} for both data synthesis and soft label
generation. Each of these models has been trained on the original dataset with 50 epochs.

CIFAR-10&CIFAR-100. For small-scale datasets, we enhance the baseline G-VBSM model by
incorporating three additional lightweight backbones. Consequently, the backbones utilized for data
synthesis and soft label generation comprise {ResNet-18, ConvNet-W128, MobileNet-V2, WRN-16-
2, ShuffleNet-V2, ConvNet-D1, ConvNet-D2, ConvNet-W32}. To demonstrate the effectiveness of
our approach, we conduct comparative experiments and present results in Table 11, which illustrates
that G-VBSM achieves improved performance with this enhanced backbone configuration.

CIFAR-10
(IPC 10)

Verified Model ResNet-18 AlexNet VGG11-BN
100 backbones (MTT) 46.4 34.2 50.3
5 backbones (original setting of G-VBSM) 53.5 31.7 55.2
8 backbones (new setting of G-VBSM) 58.9 36.2 58.0

Table 11: Ablation studies on CIFAR-10 with IPC 10. With the remaining settings are the same as those of
G-VBSM, our new backbone setting achieves better performance.

B Theoretical Derivations

Here, we give a detailed statement of the definitions, assumptions, theorems, and corollaries relevant
to this paper.
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B.1 Random Initialization vs. Real Image Initialization

In the data synthesis phase, random initialization involves using Gaussian noise, while real im-
age initialization uses condensed images derived from training-free algorithms, such as RDED.
Specifically, we denote the datasets initialized via random and real image methods as XS

random
and XS

real, respectively. For coupling (XS
random, XS

real), where XS
random ∼ πrandom, XS

real ∼ πreal
and satisfies p(πrandom, πreal) = p(πrandom)p(πreal), we have the mutual information (MI) between
πrandom and πreal is 0, a.k.a., I(πrandom, πreal) = 0. By contrast, training-free algorithms (Sun
et al., 2024; Zhou et al., 2023) synthesize the compressed data XS

free := ϕ(XS
real) via XS

real, satis-
fying p(XS

free|XS
real) > 0. When the cost function E[c(a − b)] ∝ 1/I(Law(a),Law(b)), we have

E[c(XS
real −XS

free)] ≤ E[c(XS
real −XS

random)].

Proof.
E[c(XS

real −XS
free)] = k/I(Law(XS

real),Law(XS
free))

= k/DKL(p(πreal, πfree)||p(πreal)p(πfree))

= k/[H(πreal)−H(πreal|πfree)]

≤ k/[H(πreal)]

= k/[H(πreal)−H(πreal|πrandom)]

= k/I(Law(XS
real),Law(XS

random))

= E[c(XS
real −XS

random)],

(8)

where k ∈ R+ denotes a constant. And DKL(·||·) and H(·) stand for Kullback-Leibler divergence
and entropy, respectively.

From the theoretical perspective described, it becomes evident that initializing with real images
enhances MI more significantly than random initialization between the distilled and the original
datasets at the start of the data synthesis phase. This improvement substantially alleviates the
challenges inherent in data synthesis. Furthermore, our exploratory experiments demonstrate that the
generalized matching loss (Shao et al., 2023) for real image initialization remains consistently lower
compared to that of random initialization throughout the data synthesis phase.

B.2 Theoretical Derivations of Soft Category-Aware Matching

Definition B.1. (Statistical Matching) Assume that we have N D-dimensional random samples
{xi ∈ RD}Ni=1 with an unknown distribution pmix(x), we define two forms of statistical matching for
dataset distillation:

Form (1): Estimate the mean E[x] and variance D[x] of samples {xi ∈ RD}Ni=1. Then, synthesize M
(M ≪ N ) distilled samples {yi ∈ RD}Mi=1 such that the absolute differences between the variances
(|D[x]− D[y]|) and means (|E[x]− E[y]|) of the original and distilled samples are ≤ ϵ.

Form (2): Consider pmix(x) to be a linear combination of multiple subdistributions, expressed as
pmix(x) =

∫
C
p(x|ci)p(ci)dci, where ci denotes a component of the original distribution. Given

Assumption B.4, we can treat pmix(x) as a GMM, with each component p(x|ci) following a Gaussian
distribution. For each component, estimate the mean E[xj ] and variance D[xj ] using Nj samples
{xj

i}
Nj

i=1, ensuring that
∑C

j=1 Nj = N . Subsequently, synthesize M (M ≪ N ) distilled samples

across all components
⋃C

j=1{y
j
i }

Mj

i=1, where
∑C

j=1 Mj = M . This process aims to ensure that
for each component, the absolute differences between the variances (|D[xj ] − D[yj ]|) and means
(|E[xj ]− E[yj ]|) of the original and distilled samples ≤ ϵ.

Based on Definition B.1, here we provide several relevant theoretical conclusion.

Lemma B.2. Consider a sample set S, where each sample X within S belongs to RD. Assume any
two variables xi and xj in S satisfies p(xi, xj) = p(xi)p(xj). This set S comprises C disjoint subsets
{S1,S2, . . . ,SC}, ensuring that for any 1 ≤ i < j ≤ C, the intersection Si ∩ Sj = ∅ and the union⋃C

k=1 Sk = S. Consequently, the expected value over the variance within the subsets, denoted as
ESsub∼{S1,...,SC}DX∼Ssub [X ], is smaller than or equal to the variance within the entire set, DX∼S[X ].
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Proof.
ESsub∼{S1,...,SC}DX∼Ssub [X ]
= ESsub∼{S1,...,SC}(EX∼Ssub [X ◦ X ]− EX∼Ssub [X ] ◦ EX∼Ssub [X ])
= EX∼S[X ◦ X ]− EX∼S[X ] ◦ EX∼S[X ] + EX∼S[X ] ◦ EX∼S[X ]
− ESsub∼{S1,...,SC}EX∼Ssub [X ] ◦ EX∼Ssub [X ]

= DX∼S[X ]− ESsub∼{S1,...,SC}EX∼Ssub [X ] ◦ EX∼Ssub [X ]
+ EX∼S[X ] ◦ EX∼S[X ]

= DX∼S[X ]− ESsub∼{S1,...,SC}EX∼Ssub [X ] ◦ EX∼Ssub [X ]
+ ESsub∼{S1,...,SC}EX∼Ssub [X ] ◦ ESsub∼{S1,...,SC}EX∼Ssub [X ]

= DX∼S[X ]− DSsub∼{S1,...,SC}EX∼Ssub [X ]
≤ DX∼S[X ].

(9)

Lemma B.3. Consider a Gaussian Mixture Model (GMM) pmix(x) comprising C components (i.e.,
sub-Gaussian distributions). These components are characterized by their means, variances, and
weights, denoted as {µi}Ci=1, {σ2

i }Ci=1, and {ωi}Ci=1, respectively. The mean E[x] and variance D[x]
of the distribution are given by

∑C
i=1 ωiµi and

∑C
i=1 ωi(µ

2
i+σ2

i )−(
∑C

i=1 ωiµi)
2, respectively (Ostle

et al., 1963).

Proof.

E[x] =
∫
Θ

x

C∑
i=1

ωi
1√
2πσi

e
− (x−µi)

2

2σ2
i

=

C∑
i=1

ωi

[∫
Θ

x
1√
2πσi

e
− (x−µi)

2

2σ2
i

]

=

C∑
i=1

ωiµi,

D[x] = E[x2]− E[x]2

=

∫
Θ

x2
C∑
i=1

ωi
1√
2πσi

e
− (x−µi)

2

2σ2
i − E[x]2

=

C∑
i=1

ωi

[∫
Θ

x2 1√
2πσi

e
− (x−µi)

2

2σ2
i

]
− E[x]2

=

C∑
i=1

ωi[µ
2
i + σ2

i ]− (

C∑
i=1

ωiµi)
2.

(10)

Assumption B.4. For any distribution Q, there exists a constant C enabling the approximation of
Q by a Gaussian Mixture Model P with C components. More generally, this is expressed as the
existence of a C such that the distance between P and Q, denoted by the distance metric function
ℓ(P,Q), is bounded above by an infinitesimal ϵ.
Sketch Proof. The Fourier transform of a Gaussian function does not possess true zeros, indicating that
such a function, f(x), along with its shifted variant, f(x+ a), densely populates the function space
through the Tauberian Theorem. In the context of L2, the space of all square-integrable functions,
where Gaussian functions form a subspace denoted as G, any linear functional defined on G—such
as convolution operators—can be extended to all of L2 through the application of the Hahn-Banach
Theorem. This extension underscores the completeness of Gaussian Mixture Models (GMM) within
L2 spaces.

Remarks. The proof presents two primary limitations: firstly, it relies solely on shift, which allows
the argument to remain valid even when the variances of all components within GMM are identical
(a relatively loose condition). Secondly, it imposes an additional constraint by requiring that the
coefficients ωi > 0 and

∑
i ωi = 1 in GMM. Accordingly, this study proposes, rather than empirically

demonstrates, that GMM can approximate any specified distribution.
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Theorem B.5. Given Assumption B.4 and Definition B.1, the variances and means of x and y,
estimated through maximum likelihood, remain consistent across scenarios Form (1) and Form (2).

Proof. The maximum likelihood estimation mean E[x] and variance D[x] of samples {xi}Ni=1 within

a Gaussian distribution are calculated as
∑N

i=1 xi

N and
∑N

i=1(xi−E[x])2
N , respectively. These estimations

enable us to characterize the distribution’s behavior across different scenarios as follows:

Form (1): P (x) ∼ N

∑N
i=1 xi

N ,

∑N
i=1

(
xi−

∑N
i=1 xi
N

)2

N

.

Form (2): Q(y) ∼
∑

i
Ni∑C

j=1 Nj
N

∑Ni
k=1 xi

k

Ni
,

∑Ni
k=1

(
xi
k−

∑Ni
k=1

xi
k

Ni

)2

Ni

.

Intuitively, the distilled samples {yi}Mi=1 will obey distributions P (x) and Q(y) in scenarios Form
(1) and Form (2), respectively. Then, the difference of the means between Form (1) and Form (2)
can be derived as

∫
Θ

[xP (x)dx− xQ(x)dx] =

∑N
i=1 xi

N
−
∑
i

Ni∑C
j=1 Nj

∑Ni
k=1 x

i
k

Ni

= 0.

(11)

To further enhance the explanation on proving the consistency of the variance, the setup introduces
two sample sets, {xi}Ni=1 and

⋃C
j=1{y

j
i }

Nj

i=1, each drawn from their respective distributions, P (x)

and Q(y). After that, we can acquire:

D[x]− D[y] = D[x]−
C∑
i=1

Ni∑
j Nj

(E[yj ]2 + D[yj ]) +

(
C∑
i=1

Ni∑
j Nj

E[yj ]

)2

# Lemma B.3

= D[x]− E[E[yj ]2]− E[D[yj ]] + E[E[yj ]]2

= (D[x]− E[D[yj ]])− E[E[yj ]2] + E[E[yj ]]2

= D[E[yj ]]− E[E[yj ]2] + E[E[yj ]]2 # Lemma B.2

= 0.

(12)

Corollary B.6. The mean and variance obtained from maximum likelihood for any split form
{c1, c2, . . . , cC} in Form (2) remain consistent.

Sketch Proof. According to Theorem B.5 the mean and variance obtained from maximum likeli-
hood for each split form in Form (2) remain consistent within Form (1), so that any split form
{c1, c2, . . . , cC} in Form (2) remain consistent.

Theorem B.7. Based on Definition B.1, the entropy—pertaining to diversity—of
the distributions characterized as H(P ) from Form (1) and H(Q) from Form (2),
which are estimated through maximum likelihood, exhibits the subsequent relation-
ship: H(P ) − 1

2

[
log(E[D[yj ]] + D[E[yj ]])− E[log(D[yj ])]

]
≤ H(Q) ≤ H(P ) +

1
4E(i,j)∼

∏
[C,C]

[
(E[yi]−E[yj ])2(D[yi]+D[yj ])

D[yi]D[yj ]

]
. The two-sided equality (i.e., H(P ) ≡ H(Q))

holds if and only if both the variance and the mean of each component are consistent.
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Proof.

#Lower bound:
E[− log(P (x))]− E[− log(Q(y))]

=

∫
Θ

− log(P (x))P (x)dx+

∫
Θ

log(P (y))P (y)dy

=
1

2
log(2πD[x]) + 1

2
+

∫
Θ

log(

∫
j

p(yj)
1√

2πD[yj ]
e

(y−E[yj ])2

−2D[yj ] dj)(

∫
j

p(yj)
1√

2πD[yj ]
e

(y−E[yj ])2

−2D[yj ] dj)dy

=
1

2
log(2πD[x]) + 1

2
+

∫
Θ

log(E[ 1√
2πD[yj ]

e
(y−E[yj ])2

−2D[yj ] ])E[ 1√
2πD[yj ]

e
(y−E[yj ])2

−2D[yj ] ]dy

≥ 1

2
log(2πD[x]) + 1

2
+

∫
Θ

E[log( 1√
2πD[yj ]

e
(y−E[yj ])2

−2D[yj ] )]E[ 1√
2πD[yj ]

e
(y−E[yj ])2

−2D[yj ] ]dy

=
1

2
log(2πD[x]) + 1

2
+ E(i,j)∼

∏
[C,C]

[∫
Θ

log(
1√

2πD[yi]
e

(y−E[yi])2

−2D[yi] )(
1√

2πD[yj ]
e

(y−E[yj ])2

−2D[yj ] )dy

]

=
1

2
log(2πD[x]) + 1

2
− E(i,j)∼

∏
[C,C]

[
1

2
log(2πD[yj ]) +

D[yi] + (E[yi]− E[yj ])2

2D[yj ]

]
≥ 1

2
log(2πD[x])− 1

2
log(E[2πD[yj ]]) +

1

2
− E(i,j)∼

∏
[C,C]

[
D[yi] + (E[yi]− E[yj ])2

2D[yj ]

]
≥ −1

4
E(i,j)∼

∏
[C,C]

[
(E[yi]− E[yj ])2(D[yi] + D[yj ])

D[yi]D[yj ]

]

#Upper bound:
E[− log(P (x))]− E[− log(Q(y))]

=

∫
Θ

− log(P (x))P (x)dx+

∫
Θ

log(P (y))P (y)dy

=

∫
Θ

− log(P (x))P (x)dx+

∫
Θ

log(E[ 1√
2πD[yj ]

e
(y−E[yj ])2

−2D[yj ] ])E[ 1√
2πD[yj ]

e
(y−E[yj ])2

−2D[yj ] ]dy

≤
∫
Θ

− log(P (x))P (x)dx+ E[
∫
Θ

log(
1√

2πD[yj ]
e

(y−E[yj ])2

−2D[yj ] )
1√

2πD[yj ]
e

(y−E[yj ])2

−2D[yj ] dy]

=
1

2
log(2πD[x])− E[ 1

2
log(2πD[yj ])]

=
1

2

[
log(E[D[yj ]] + D[E[yj ]])− E[log(D[yj ])]

]
(13)

Theorem B.8. Based on Definition B.1, if the original distribution is pmix, the Kullback-Leibler
divergence DKL[pmix||Q] has a upper bound Ei∼U [1,...,C]Ej∼U [1,...,C]

E[yj ]2

D[yi] and DKL[pmix||P ] = 0.

Proof.

DKL[Q||P ]

= DKL

∑
i

Ni∑C
j=1 Nj

N


∑Ni

k=1 x
i
k

Ni
,

∑Ni
k=1

(
xi
k −

∑Ni
k=1

xi
k

Ni

)2

Ni


∥∥∥∥N

∑N
i=1 xi

N
,

∑N
i=1

(
xi −

∑N
i=1 xi

N

)2
N




≤
∑
i

Ni∑C
j=1 Nj

DKL

N

∑Ni

k=1 x
i
k

Ni
,

∑Ni
k=1

(
xi
k −

∑Ni
k=1

xi
k

Ni

)2

Ni


∥∥∥∥N

∑N
i=1 xi

N
,

∑N
i=1

(
xi −

∑N
i=1 xi

N

)2
N


 .

(14)
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By applying the notations from Lemma B.3 for convenience, we obtain:

DKL[Q||P ]

≤
∑
i

ωi

[
1

2
log

(∑C
j=1 ωj [µ

2
j + σ2

j ]− (
∑C

j=1 ωjµj)
2

σ2
i

)
+

∑C
j=1 ωj [µ

2
j + σ2

j ]− (
∑C

j=1 ωjµj)
2

2σ2
i

]
− 1

2

≤ 1

2
log

(∑
i

ωi

∑C
j=1 ωj [µ

2
j + σ2

j ]− (
∑C

j=1 ωjµj)
2

σ2
i

)
+

1

2

∑
i

ωi

∑C
j=1 ωj [µ

2
j + σ2

j ]− (
∑C

j=1 ωjµj)
2

σ2
i

− 1

2

≤ 1

2
log

(
1 +

∑
i

ωi

∑C
j=1 ωjµ

2
j − (

∑C
j=1 ωjµj)

2

σ2
i

)
+

1

2

∑
i

ωi

∑C
j=1 ωjµ

2
j − (

∑C
j=1 ωjµj)

2

σ2
i

≤ 1

2
log

(
1 +

∑
i

∑
j

ωiωj
µ2
j

σ2
i

)
+

1

2

∑
i

∑
j

ωiωj
µ2
j

σ2
i

≤ Ei∼U[1,...,C]Ej∼U[1,...,C]
E[yj ]2

D[yi]
.

(15)

When the sample size is sufficiently large, the original distribution aligns with Q. Consequently, we
obtain DKL[pmix||P ] ≤ Ei∼U [1,...,C]Ej∼U [1,...,C]

E[yj ]2

D[yi] and establish that DKL[pmix||Q] = 0.

C Decoupled Optimization Objective of Dataset Condensation

In this section, we demonstrate that the training objective, as defined in Eq. 2, can be decoupled
into two components—flatness and closeness—using a second-order Taylor expansion, under the
assumption that Lsyn ∈ C2(I,R). We define the closest optimization point oi for XS in relation
to the i-th matching operator Li

syn(·, ·). This framework can accommodate all matchings related
to f i(·), including gradient matching(Zhao et al., 2021), trajectory matching (Cazenavette et al.,
2022), distribution matching (Zhao and Bilen, 2023), and statistical matching (Shao et al., 2023).
Consequently, we derive the dual decoupling of flatness and closeness as follows:

LDD = ELsyn(·,·)∼Smatch [Lsyn(XS ,X T )] =
1

|Smatch|

|Smatch|∑
i=1

[Li
syn(XS ,X T )]

=
1

|Smatch|

|Smatch|∑
i=1

[Li
syn(oi,X T ) + (XS − oi)∇XSLi

syn(oi,X T ) + (XS − oi)
THi(XS − oi)] +O((XS − oi)

3)

=
1

|Smatch|

|Smatch|∑
i=1

[Li
syn(oi,X T ) + (XS − oi)

THi(XS − oi)],

(16)
where Hi refers to the Hessian matrix of Li

syn(·,X T ) at the closest optimization point oi. Note that
as the optimization method for deep learning typically involves gradient descent-like approaches (e.g.,
SGD and AdamW), the first-order derivative ∇XSLi

syn(oi,X T ) can be directly discarded. After that,
scanning the two terms in Eq. 16, the first one necessarily reaches an optimal solution, while the
second one allows us to obtain an upper definitive bound on the Hessian matrix and Jacobi matrix
through Theorem 3.1 outlined in Chen et al. (2024). Here, we give a special case under the ℓ2-norm
to discard the assumption that Hi and (XS − oi) are independent:

Theorem C.1. (improved from Theorem 3.1 in (Chen et al., 2024)) 1
|Smatch|

∑|Smatch|
i=1 (XS −

oi)
THi(XS − oi) ≤ |Smatch| · E[||Hi||F]E[||XS − oi||22], where E[||Hi||F] and E[||XS − oi||22]

denote flatness and closeness, respectively.
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Proof.

1

|Smatch|

|Smatch|∑
i=1

(XS − oi)
THi(XS − oi) ≤

1

|Smatch|

|Smatch|∑
i=1

[||(XS − oi)||2||Hi(XS − oi)||2] # Hölder’s inequality

=
1

|Smatch|

|Smatch|∑
i=1

[||(XS − oi)||2||Hi||2,2||(XS − oi)||2] # Definition of matrix norm

≤ |Smatch| · E[||Hi||2,2]E[||XS − oi||22] ≤ |Smatch| · E[||Hi||F]E[||XS − oi||22]
(17)

Actually, flatness can be ensured by convergence in a flat region through sharpness-aware mini-
mization (SAM) theory (Foret et al., 2020; Bahri et al., 2021; Du et al., 2022; Chen et al., 2022).
Specifically, a body of work on SAM has established a connection between the Hessian matrix
and the flatness of the loss landscape (i.e., the curvature of the loss trajectory), with a series of
empirical studies demonstrating the theory’s reliability. Meanwhile, the specific implementation
of flatness is elaborated upon in Sec. E. By contrast, the concept of closeness was first introduced
in Chen et al. (2024), where it is observed that utilizing more backbones for ensemble can result
in a smaller generalization error during the evaluation phase. In fact, closeness has been implicitly
implemented since our baseline G-VBSM uses a sequence optimization mechanism akin to the
official implementation in Chen et al. (2024). Therefore, this paper will not elucidate on closeness
and its specific implementation.

D Traditional Sharpness-Aware Minimization Optimization Approach

For the comprehensive of our paper, let us give a brief yet formal description of sharpness-aware
minimization (SAM). The applicable SAM algorithm was first proposed in Foret et al. (2020), which
aims to solve the following maximum minimization problem:

min
θ

max
ϵ:||ϵ||≤ρ

LS(fθ+ϵ), (18)

where LS(fθ), ϵ, ρ, and θ refer to the loss 1
|S|

∑
xi,yi∼S ℓ(fθ(xi), yi), the perturbation, the pre-defined

flattened region, and the model parameter, respectively. Let us define the final optimized model
parameters as θ∗, then the optimization objective can be rewritten as

θ∗ = argmin
θ

RS(fθ) + LS(fθ), where RS(fθ) = max
ϵ:||ϵ||≤ρ

LS(fθ+ϵ)− LS(fθ). (19)

By expanding LS(fθ+ϵ) at θ and by solving the classical dual norm problem, the first maximization
objective can be solved as (In the special case of the ℓ2-norm)

ϵ∗ = argmax
ϵ:||ϵ||≤ρ

LS(fθ+ϵ) ≈ ρ
∇θLS(fθ)

||∇θLS(fθ)||2
. (20)

The specific derivation is as follows:

Proof. Subjecting LS(fθ+ϵ) to a Taylor expansion and retaining only the first-order derivatives:

RS(fθ) = LS(fθ+ϵ)− LS(fθ) ≈ LS(fθ) + ϵT∇θLS(fθ)− LS(fθ) = ϵT∇θLS(fθ). (21)

Then, we can get

ϵ∗ = argmax
ϵ:||ϵ||≤ρ

LS(fθ+ϵ)− LS(fθ) = argmax
ϵ:||ϵ||≤ρ

[
ϵT∇θLS(fθ)

]
. (22)

Next, we base our solution on the solution of the classical dual norm problem, where the above
equation can be written as ||∇θLS(fθ)||∗. Firstly, Hölder’s inequality gives

ϵT∇θLS(fθ) =

n∑
i=1

ϵTi ∇θLS(fθ)i ≤
n∑

i=1

|ϵTi ∇θLS(fθ)i|

≤ ||ϵT∇θLS(fθ)||1 ≤ ||ϵT ||p||∇θLS(fθ)||q ≤ ρ||∇θLS(fθ)||q.

(23)
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So, we just need to find a ϵ that makes all the above inequality signs equal. Define m as
sign(∇θLS(fθ))|∇θLS(fθ)|q−1, then we can rewritten Eq. 23 as

ϵT∇θLS(fθ) =

n∑
i=1

sign(∇θLS(fθ)i)|∇θLS(fθ)i|q−1∇θLS(fθ)i

=

n∑
i=1

|∇θLS(fθ)i||∇θLS(fθ)i|q−1

= ||∇θLS(fθ)||qq.

(24)

And we also get

||ϵ||pp =

n∑
i=1

|ϵ|p =

n∑
i=1

|sign(∇θLS(fθ))|∇θLS(fθ)|q−1|p = ||∇θLS(fθ)||qq, (25)

where 1/p + 1/q = 1. We choose a new ϵ, defined as y = ρ ϵ
||ϵ||p , which satisfies: ||y||p = ρ, and

substitute into ϵT∇θLS(fθ):

yT∇θLS(fθ) =

n∑
i=1

yi∇θLS(fθ)i =

n∑
i=1

ρ∇θLS(fθ)i
||∇θLS(fθ)||p

∇θLS(fθ)i =
ρ

||ϵ||p

n∑
i=1

ϵi∇θLS(fθ)i. (26)

Due to ||ϵ||p = ||∇θLS(fθ)i||q/pq and ϵT∇θLS(fθ) = ||∇θLS(fθ)||qq, we can further derive and
obtain that

ρ

||ϵ||p

n∑
i=1

ϵi∇θLS(fθ)i =
ρ

||∇θLS(fθ)||q/pq

n∑
i=1

ϵi∇θLS(fθ)i = ρ||∇θLS(fθ)||q. (27)

Therefore, y can be rewritten as:

y = ρ
sign(∇θLS(fθ))|∇θLS(fθ)|q−1

||sign(∇θLS(fθ))|∇θLS(fθ)|q−1||p
= ρ

sign(∇θLS(fθ))|∇θLS(fθ)|q−1

||∇θLS(fθ)||q−1
q

. (28)

If q = 2, y = ρ ∇θLS(fθ)
||∇θLS(fθ)||2 .

The above derivation is partly derived from Foret et al. (2020), to which we have added another
part. To solve the SAM problem in deep learning (Foret et al., 2020), had to require two iterations
to complete a single SAM-based gradient update. Another pivotal aspect to note is that within the
context of dataset condensation, θ transitions from representing the model parameter fθ to denoting
the synthesized dataset XS .

E Implementation of Flatness Regularization

As proved in Sec. D, the optimal solution ϵ∗ is denoted as ρ ∇θLS(fθ)
||∇θLS(fθ)||2 . Analogously, in the dataset

condensation scenario, the joint optimization objective is given by
∑|Smatch|

i=1 [Li
syn(XS ,X T )]. There

exists an optimal ϵ∗, which can be written as ρ
∇XS

∑|Smatch|
i=1 [Li

syn(X
S ,XT )]

||∇XS
∑|Smatch|

i=1 [Li
syn(XS ,XT )]||2

. Thus, a dual-stage

approach of flatness regularization is shown below:

XS
new ← XS +

ρ

||∇XS
∑|Smatch|

i=1 [Li
syn(XS ,X T )]||2

∇XS

|Smatch|∑
i=1

[Li
syn(XS ,X T )]


XS

next ← XS
new − η

∇XS
new

|Smatch|∑
i=1

[Li
syn(XS

new,X T )]

 ,

(29)

where η and XS
next denote the learning rate and the synthesized dataset in the next iteration, re-

spectively. However, this optimization approach significantly increases the computational burden,
thus reducing its scalability. Enlightened by Du et al. (2022), we consider a single-stage opti-
mization strategy implemented via exponential moving average (EMA). Given an EMA-updated
synthesized dataset XS

EMA = βXS
EMA + (1 − β)XS , where β is typically set to 0.99 in our exper-

iments. The trajectories of the synthesized datasets updated via gradient descent (GD) and EMA
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can be represented as {θ0GD, θ
1
GD, · · · , θNGD} and {θ0EMA, θ

1
EMA, · · · , θNEMA}, respectively. Assume that

gj = ∇XS
∑|Smatch|

i=1 [Li
syn(XS ,X T )] at the j-th iteration, then θjEMA = θjGD +

∑j−1
i=1 βj−igi with the

condition 1 ≤ j ≤ N 1, as outlined in Du et al. (2022). Consequently, we can provide the EMA-based
SAM algorithm and applied to backbone sequential optimization in dataset condensation as follows:

LFR =

|Smatch|∑
i=1

[Li
syn(XS ,XS

EMA)] =

|Smatch|∑
i=1

[Li
syn(θ

j
GD, θ

j
EMA)], at the j-th iteration. (30)

In the vast majority of dataset distillation algorithms (Yin and Shen, 2024; Shao et al., 2023; Zhou
et al., 2024), the metric function used in matching is set to mean squared error (MSE) loss. Based on
this phenomenon, we can rewrite Eq. 30 to Eq. 31, which guarantees flatness.

∇
θ
j
GD

|Smatch|∑
i=1

[Li
syn(θ

j
GD, θ

j
EMA)], at the j-th iteration

= ∇
θ
j
GD

|Smatch|∑
i=1

[Li
syn(θ

j
GD,X

T )− Li
syn(θ

j
EMA,X

T )]

= ∇
θ
j
GD

|Smatch|∑
i=1

[Li
syn(θ

j
GD,X

T )− Li
syn(θ

j
GD +

j−1∑
k=1

βj−kgk,X T )]

= ∇
θ
j
GD

|Smatch|∑
i=1

[Li
syn(θ

j
GD,X

T )− Li
syn(θ

j
GD + βj−1g1,X T ) + · · ·

+ Li
syn(θ

j
GD +

j−2∑
k=1

βj−kgk,X T )− Li
syn(θ

j
GD +

j−1∑
k=1

βj−kgk,X T )]

≈ ∇
θ
j
GD

|Smatch|∑
i=1

[(βj−1ρ)||∇
θ
j
GD
Li

syn(θ
j
GD,X

T )||2 + · · ·

+ (β1ρ)||∇
θ
j
GD+

∑j−2
k=1

βj−kgk
Li

syn(θ
j
GD +

j−2∑
k=1

βj−kgk,X T )||2] # The solution of dual norm problem

≈ ∇
θ
j
GD

|Smatch|∑
i=1

[
√

E
(θ1,θ2)∼Unif(θjGD,θ

j
GD+βj−1g1,··· ,θ

j
GD+

∑j−1
k=1

βj−kgk)
||∇θ1Li

syn(θ1,X T )||2||∇θ2Li
syn(θ2,X T )||2].

(31)
Thus, we can further obtain a SAM-like presentation.

min
XS

|Smatch|∑
i=1

[Li
syn(θ

j
GD, θ

j
EMA)], at the j-th iteration

= min
XS

|Smatch|∑
i=1

[E
(θ1,θ2)∼Unif(θjGD,θ

j
GD+βj−1g1,··· ,θ

j
GD+

∑j−1
k=1

βj−kgk)
||∇θ1L

i
syn(θ1,X T )||2||∇θ2L

i
syn(θ2,X T )||2]

= min
XS

|Smatch|∑
i=1

[ max
ϵ:||ϵ||≤ρ

E
(θ∼βθ

j
GD+(1−β)θ

j
EMA,β∼U[0,1])

Li
syn(θ + ϵ,X T )].

(32)
Consequently, optimizing Eq. 30 effectively addresses the SAM problem during the data synthesis
phase, which results in a flat loss landscape. Additionally, Eq. 32 presents a variant of the SAM
algorithm that slightly differs from the traditional form. This variant is specifically designed to ensure
sharpness-aware minimization within a ρ-ball for each point along a straight path between θjGD and
θjEMA.

1Neglecting the learning rate for simplicity does not affect the derivation.
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F Visualization of Prior Dataset Condensation Methods

In Fig. 5, we present the visualization results of previous training-dependent dataset condensation
methods. These approaches, which optimize starting from Gaussian noise, tend to produce synthetic
images that lack realism and fail to convey clear semantics to the naked eye.

SRe2L CDA G-VBSM

Figure 5: Visualization of the synthetic images of prior training-dependent dataset condensation methods.

G More Ablation Experiments

In this section, we present a series of ablation studies to further validate the design choices outlined
in the main paper.

G.1 Backbone Choices of Data Synthesis on ImageNet-1k

Observer Model Verified Model
ResNet-18 MobileNet-V2 EfficientNet-B0 ShuffleNet-V2 WRN-40-2 AlexNet ConvNext-Tiny DenseNet-121 ResNet-18 ResNet-50

✓ ✓ ✓ ✓ 38.7 42.0
✓ ✓ ✓ ✓ ✓ 36.7 43.3
✓ ✓ ✓ ✓ ✓ 39.0 43.8
✓ ✓ ✓ ✓ ✓ ✓ 37.4 43.1
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 34.8 40.6

Table 12: Ablation studies on ImageNet-1k with IPC 10. Verify the influence of backbone choices on data
synthesis with CONFIG C (ζ = 1.5).

The results in Table 12 demonstrate the significant impact of backbone architecture selection on the
performance of dataset distillation. This study employs the optimal configuration, which includes
ResNet-18, MobileNet-V2, EfficientNet-B0, ShuffleNet-V2, and AlexNet.

G.2 Backbone Choices of Soft Label Generation on ImageNet-1k

Observer Model Cost Time (s) Verified Model
ResNet-18 MobileNet-V2 EfficientNet-B0 ShuffleNet-V2 AlexNet ResNet-18 ResNet-50 ResNet-101

✓ ✓ ✓ ✓ 598 9.1 9.5 6.2
✓ ✓ ✓ 519 9.4 8.4 6.5
✓ ✓ ✓ ✓ 542 12.8 13.3 8.4

Table 13: Ablation studies on ImageNet-1k with IPC 1. Verify the influence of backbone choice on soft label
generation with CONFIG G (ζ = 2).

Our strategy better backbone choice, which focuses on utilizing lighter backbone combinations for
soft label generation, significantly enhances the generalization capabilities of the condensed dataset.
Empirical studies conducted with IPC 1, and the results detailed in Table 13, show that optimal
performance is achieved by using ResNet-18, MobileNet-V2, EfficientNet-B0, ShuffleNet-V2, and
AlexNet for data synthesis. For soft label generation, the combination of ResNet-18, MobileNet-V2,
ShuffleNet-V2, and AlexNet demonstrates most effective.
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Figure 6: The visualization of SSRS and smoothing LR schedule.

G.3 Smoothing LR Schedule Analysis

Config Slowdown Coefficient ζ
1.0 1.5 2.0 2.5 3.0

CONFIG C 24.5 28.2 30.6 32.4 31.8

Table 14: Ablation studies on ImageNet-1k with IPC 10. Additional experimental result of the slowdown
coefficient ζ on the verified model MobileNet-V2.

Config γ
Verified Model

ResNet-18 ResNet-50 ResNet-101

CONFIG F 0.997 47.6 53.5 52.0
CONFIG F 0.9975 47.4 54.0 50.9
CONFIG F 0.99775 47.3 53.7 50.3
CONFIG F 0.997875 47.8 53.8 50.7

Table 15: Ablation studies on ImageNet-1k with IPC 10. Verify the effectiveness of ALRS in post-evaluation.

Due to space limitations in the main paper, the experimental results for MobileNet-V2, which are
not included in Table 3 Left, are presented in Table 14. Additionally, we investigate Adaptive
Learning Rate Scheduler (ALRS), an algorithm that adjusts the learning rate based on training loss.
Although ALRS did not produce effective results, it provides valuable insights for future research.
This scheduler was first introduced in (Chen et al., 2022) and is described as follows:

µ(i) = µ(i− 1)γ
1

[ |Li−Li−1|
|Li|

≤h1 and |Li−Li−1|≤h2

]
,

Here, γ represents the decay rate, Li is the training loss at the i-th iteration, and h1 and h2 are the
first and second thresholds, respectively, both set by default to 0.02. We list several values of γ that
demonstrate the best empirical performance in Table 15. These results allow us to conclude that our
proposed smoothing LR schedule outperforms ALRS in the dataset condensation task.

Ultimately, we introduce a learning rate scheduler superior to the traditional smoothing LR schedule
in scenarios with high IPC. This enhanced strategy, named early Smoothing-later Steep Learning
Rate Schedule (SSRS), integrates the smoothing LR schedule with MultiStepLR. It intentionally
implements a significant reduction in the learning rate during the final epochs of training to accelerate
model convergence. The formal definition of SSRS is as follows:

µ(i) =

{
1+cos(iπ/ζN)

2 , i ≤ 5N
6 ,

1+cos(5π/ζ6)
2

(6N−6i)
6N , i > 5N

6 .
(33)
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Config Scheduler Type Verified Model
ResNet-18 ResNet-50 ResNet-101 MobileNet-V2

CONFIG G smoothing LR schedule 56.4 62.2 62.3 54.7
CONFIG G SSRS 57.4 63.0 63.6 56.5

Table 16: Ablation studies on ImageNet-1k with IPC 40. Verify the effectiveness of SSRS in post-evaluation.

Note that the visualization of SSRS can be found in Fig. 6. Meanwhile, the comparative experimental
results of SSRS and the smoothing LR schedule are detailed in Table 16. Notably, SSRS enhances
the verified model’s performance without incurring additional overhead.

G.4 Understanding of EMA-based Evaluation

CONFIG F EMA Rate 0.99 0.999 0.9999 0.999945

Accuracy 48.2 48.1 22.1 0.45

Table 17: Ablation studies on ImageNet-1k with IPC 10. Verify the effect of EMA Rate in EMA-based
Evaluation.

The EMA Rate, a crucial hyperparameter governing the EMA update rate during post-evaluation,
significantly influences the final results. Additional experimental outcomes, presented in Table 17,
reveal that the EMA Rate 0.99 we adopt in the main paper yields optimal performance.

G.5 Ablation Studies on CIFAR-10

This section details the process of deriving hyperparameter configurations for CIFAR-10 through
exploratory studies. The demonstrated superiority of our EDC method over traditional approaches,
as detailed in our main paper, suggests that conventional dataset condensation techniques like
MTT (Cazenavette et al., 2022) and KIP (Nguyen et al., 2020) are not the sole options for achieving
superior performance on small-scale datasets.

Iteration 25 50 75 100 125 1000
Accuracy 42.1 42.4 42.7 42.5 42.3 41.8

Table 18: Ablation studies on CIFAR-10 with IPC 10. We employ ResNet-18 exclusively for data synthesis
and soft label generation, examining the impact of iteration count during post-evaluation and adhering to RDED’s
consistent hyperparameter settings.

Data Synthesis Soft Label Generation Verified Model
w/ pre-train w/o pre-train w/ pre-train w/o pre-train ResNet-18 ResNet-50 ResNet-101 MobileNet-V2

✗ ✓ ✗ ✓ 77.7 73.0 68.2 38.2
✗ ✓ ✓ ✗ 60.5 56.3 52.2 39.9
✓ ✗ ✓ ✗ 60.0 56.1 50.7 39.0
✓ ✗ ✗ ✓ 74.9 70.9 61.4 38.2

Table 19: Ablation studies on CIFAR-10 with IPC 10. Hyperparameter settings follow those in Table 10,
excluding the scheduler and batch size, which are set to smoothing LR schedule (ζ = 2) and 50, respectively.

EMA Rate Batch Size Verified Model
ResNet-18 ResNet-50 ResNet-101 MobileNet-V2

0.99 50 77.7 73.0 68.2 38.2
0.999 50 13.1 11.8 11.6 11.2
0.9999 50 10.0 10.0 10.0 10.0
0.99 25 78.1 76.0 71.8 42.1
0.99 10 76.0 70.0 57.7 42.9

Table 20: Ablation studies on CIFAR-10 with IPC 10. Explore the influence of EMA Rate and batch size in
post-evaluation. Hyperparameter settings follow those in Table 10, excluding the scheduler, which are set to
smoothing LR schedule (ζ = 2).

Our quantitative experiments, detailed in Table 18, pinpoint 75 iterations as the empirically optimal
count. This finding highlights that, for smaller datasets with limited samples and fewer categories,
fewer iterations are required to achieve superior results.
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Scheduler Option Verified Model
ResNet-18 ResNet-50 ResNet-101 MobileNet-V2

Smoothing LR Schedule ζ = 2 78.1 76.0 71.8 42.4
Smoothing LR Schedule ζ = 3 77.3 75.0 68.5 41.1
MultiStepLR γ = 0.5, milestones=[800,900,950] 79.1 76.0 67.1 42.0
MultiStepLR γ = 0.25, milestones=[800,900,950] 77.7 75.8 67.0 40.3

Table 21: Ablation studies on CIFAR-10 with IPC 10. Explore the influence of various scheduler in post-
evaluation. Hyperparameter settings follow those in Table 10.

Subsequently, we evaluate the effectiveness of using a pre-trained model on ImageNet-1k for dataset
condensation on CIFAR-10. Our study differentiates two training pipelines: the first involves 100
epochs of pre-training followed by 10 epochs of fine-tuning (denoted as ‘w/ pre-train’), and the second
comprises training from scratch for 10 epochs (denoted as ‘w/o pre-train’). The results, presented in
Table 19, indicate that pre-training on ImageNet-1k does not significantly enhance dataset distillation
performance.

We further explore how batch size and EMA Rate affect the generalization abilities of the condensed
dataset. Results in Table 20 show that a reduced batch size of 25 enhances performance on CIFAR-10.

In our final set of experiments, we compare MultiStepLR and smoothing LR schedules. As detailed
in Table 21, MultiStepLR is superior for ResNet-18 and ResNet-50, whereas the smoothing LR
schedule is more effective for ResNet-101 and MobileNet-V2.

H Synthesized Image Visualization

The visualization of the condensed dataset is showcased across Figs. 7 to 11. Specifically, Figs. 7,
9, 10, and 11 present the datasets synthesized from ImageNet-1k, Tiny-ImageNet, CIFAR-100, and
CIFAR-10, respectively.

I Ethics Statement

Our research utilizes synthetic data to avoid the use of actual personal information, thereby addressing
privacy and consent issues inherent in datasets with identifiable data. We generate synthetic data using
a methodology that distills from real-world data but maintains no direct connection to individual
identities. This method aligns with data protection laws and minimizes ethical risks related to
confidentiality and data misuse. However, it is important to note that models trained on synthetic data
may not achieve the same accuracy levels as those trained on the full original dataset.

J Limitations

The paper offers an extensive examination of the design space for dataset condensation, but it might
still miss some potentially valuable strategies due to the broad scope. Additionally, as the IPC count
grows, the performance of the described approach converges with that of the baseline RDED.
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Figure 7: Synthetic data visualization on ImageNet-1k randomly selected from EDC.

28

99188https://doi.org/10.52202/079017-3146



Figure 8: Synthetic data visualization on ImageNet-10 randomly selected from EDC.
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Figure 9: Synthetic data visualization on Tiny-ImageNet randomly selected from EDC.
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Figure 10: Synthetic data visualization on CIFAR-100 randomly selected from EDC.
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Figure 11: Synthetic data visualization on CIFAR-10 randomly selected from EDC.
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K Additional Experiments, Theories and Descriptions (Rebuttal Stage
Supplement)

Here we add some experiments, theories and explanations that we think it is necessary to add.

K.1 Scalability on ImageNet-21k

SRe2L CDA RDED EDC Original Dataset

18.5 22.6 25.6 26.8 38.5

Table 22: Comparison of Different Methods on ImageNet-21k.

We conduct experiments on a larger scale dataset ImageNet-21k-P with IPC 10. The results in
Table 22 indicate that our method outperforms the state-of-the-art method CDA (Yin and Shen, 2024)
on this dataset, demonstrating that EDC can scale to larger datasets.

K.2 Complexity of Implementation

Configuration GPU Memory (G/per GPU) Time Spent (hours) Top-1 Accuracy (%)

CONFIG A 4.616 9.77 31.4
CONFIG B 4.616 4.89 34.4
CONFIG C 4.616 4.89 38.7
CONFIG D 4.616 4.91 39.5
CONFIG E 4.697 4.91 46.2
CONFIG F 4.923 5.11 48.0
CONFIG G 4.923 5.11 48.6

Table 23: Comparison of computational resources on 4 RTX 4090.

Here we present Table 23 to complement the computational overhead in Fig. 1 in the main paper.
EDC is an efficient algorithm as it reduces the number of iterations by half, compared to the baseline
G-VBSM. As illustrated in the table above, although transitioning from CONFIG A to CONFIG G
adds small GPU memory overhead, it is minor compared to the reduction in time spent. Additionally,
introducing EDC to other tasks often requires significant effort for tuning hyper-parameters or even
redesigning statistical matching, which is a challenge EDC should address.

K.3 Robustness Evaluation

Attack Methods MTT SRe2L EDC (Ours)

Clean Accuracy 26.16 43.24 57.21
FGSM 1.82 5.73 12.39
PGD 0.41 2.70 10.71
CW 0.36 2.94 5.27
VMI 0.42 2.60 10.73
Jitter 0.40 2.72 10.64
AutoAttack 0.26 1.73 7.94

Table 24: Comparison on DD-RobustBench.

We follow the pipeline in Wu et al. (2024) to evaluate the robustness of models trained on condensed
datasets, utilizing the well-known adversarial attack library available at Kim (2020). As illustrared
in Table 24. Our experiments are conducted on Tiny-ImageNet with IPC 50, with the test accuracy
presented in the table above. Evidently, EDC demonstrates significantly higher robustness compared
to other methods. We attribute this to improvements in post-evaluation techniques, such as EMA-
based evaluation and smoothing LR schedule, which help reduce the sharpness of the loss landscape.

K.4 Theoretical Explanation of Irrational Hyperparameter Setting (Sketch!!)

The smoothing LR schedule is designed to address suboptimal solutions that arise due to the scarcity
of sample sizes in condensed datasets. Additionally, the use of small batch size is implemented
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because the gradient of the condensed dataset more closely resembles the global gradient of the
original dataset, as illustrated at the bottom of Fig. 2. Against the latter, we can propose a complete
chain of theoretical derivation:

Lsyn = Eci∼C∥pθ(µ|XS , ci)− p(µ|XT , ci)||2
+ ∥pθ(σ2|XS , ci)− p(θ2|XT , ci)∥2 # (Our statistical matching)

∂Lsyn/∂θ =

∫
ci

(∂Lsyn/∂pθ(·|XS , ci))(∂pθ(·|XS , ci)/∂θ)dci

≈
∫
ci

([pθ(µ|XS , ci)− p(µ|XT , ci)] + [pθ(σ
2|XS , ci)− p(σ2|XT , ci)])(∂pθ(·|XS , ci)/∂θ)dci

(34)

where pθ(|XS , ci) and p(|XT , ci) refer to a Gaussian component in the Gaussian Mixture Model.
Consider post-evaluation, We can derive the gradient of the MSE loss as:

∂Exi∼XS∥fθ(xi)− yi∥22/∂θ = 2Exi∼XS [(fθ(xi)− yi)(∂fθ(xi)/∂θ)]

= 2Exi∼XS [(fθ(xi)− yi)

∫
ci

(∂fθ(xi)/∂pθ(·|XS , ci))(∂pθ(·|XS , ci)/∂θ)dci ]

≈ 2E(xj ,xi)∼(XS ,XT )[(fθ(xj)− yj)

∫
ci

(∂fθ(xi)/∂pθ(·|XT , ci))(∂pθ(·|XT , ci)/∂θ)dci ]

≈ ∂Exi∼XT ||fθ(xi)− yi||22/∂θ,

(35)

where θ stands for the model parameter. The right part of the penultimate row results from the
loss Lsyn, which ensures the consistency of p(·|XT , ci) and p(·|XS , ci). If the model initialization
during training is the same, the left part of the penultimate row is a scalar and has little influence on
the direction of the gradient. Since XT is the complete original dataset with a global gradient, the
gradient of XS approximates the global gradient of XT , thus enabling the use of small batch size.

K.5 Additional Related Work

We additionally discuss the differences between published related papers (Sajedi et al., 2023; Zhang
et al., 2024b; Deng et al., 2024) and our work.

DataDAM (Sajedi et al., 2023) vs. EDC. Both DataDAM and EDC do not require model parameter
updates during training. However, DataDAM struggles to generalize effectively to ImageNet-1k
because it relies on randomly initialized models for distribution matching. As noted in SRe2L, models
trained for fewer than 50 epochs can experience significant performance degradation. DataDAM
does not explore the soft label generation and post-evaluation phases as EDC does, limiting its
competitiveness.

DANCE (Zhang et al., 2024a) vs. EDC. DANCE is a DM-based algorithm that, unlike traditional
distribution matching, does not require model updates during data synthesis. Instead, it interpolates
between pre-trained and randomly initialized models, using this interpolated model for distribution
matching. Similarly, EDC also does not need to update the model parameters, but it uses a pre-trained
model with a different architecture and does not incorporate random interpolation. The “random
interpolation” technique was not adopted because it did not yield performance gains on ImageNet-1k.
Although DANCE considers both intra-class and inter-class perspectives, it limits inter-class analysis
to the logit level and intra-class analysis to the feature map level. In contrast, EDC performs both
intra-class and inter-class matching at the feature map level, where inter-class matching is crucial.
To support this, last year, SRe2L focused solely on inter-class matching at the feature map level
and still achieved state-of-the-art performance on ImageNet-1k. EDC is the first dataset distillation
algorithm to simultaneously improve data synthesis, soft label generation, and post-evaluation stages.
In contrast, DANCE only addresses the data synthesis stage. While DANCE can be effectively
applied to ImageNet-1k, the introduction of soft label generation and post-evaluation improvements
is essential for DANCE to achieve more competitive results.
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M3D (Zhang et al., 2024b) vs. EDC. M3D is a DM-based algorithm, but its data synthesis
paradigm aligns with DataDAM by relying solely on randomly initialized models, which limits its
generalization to ImageNet-1k. M3D, similar to SRe2L, G-VBSM, and EDC, takes into account
second-order information (variance), but this is not a unique contribution of EDC. The key con-
tributions of EDC in data synthesis are real image initialization, flatness regularization, and the
consideration of both intra-class and inter-class matching.

Deng et al. (Deng et al., 2024) vs. EDC. Deng et al. (Deng et al., 2024) is a DM-based algorithm,
but its data synthesis paradigm is consistent with M3D and DataDAM, as it considers only randomly
initialized models, which cannot be generalized to ImageNet-1k. Deng et al. (Deng et al., 2024)
considers both interclass and intraclass information, similar to EDC. However, while EDC obtains
interclass information by traversing the entire training set, Deng et al. (Deng et al., 2024) derives
interclass information from only one batch, making its information richness inferior to that of EDC.
Deng et al. (Deng et al., 2024) only explores data synthesis and does not explore soft label generation
or post-evaluation. Additionally, Deng et al. (Deng et al., 2024) only shares some similarity with Soft
Category-Aware Matching among the 10 design choices in EDC.

K.6 Implementation of Cropping

The implementation of this crop operation refers to torchvision.transforms.RandomResizedCrop,
where the minimum area threshold is controlled by the parameter scale[0]. The default value is 0.08,
meaning that the cropped image can be as small as 8% of the original image. Since 0.08 is too small
for the model to extract complete semantic information during data synthesis, increasing the value to
0.5 resulted in a significant performance gain.

K.7 Comprehensive Comparison Experiment

Dataset IPC MTT TESLA SRe2L G-VBSM CDA WMDD RDED EDC (Ours)

CIFAR-10
1 - - - - - - 22.9 ± 0.4 32.6 ± 0.1

10 46.1 ± 1.4 48.9 ± 2.2 27.2 ± 0.4 53.5 ± 0.6 - - 37.1 ± 0.3 79.1 ± 0.3
50 - - 47.5 ± 0.5 59.2 ± 0.4 - - 62.1 ± 0.1 87.0 ± 0.1

CIFAR-100
1 - - 2.0 ± 0.2 25.9 ± 0.5 - - 11.0 ± 0.3 39.7 ± 0.1

10 26.8 ± 0.6 27.1 ± 0.7 31.6 ± 0.5 59.5 ± 0.4 - - 42.6 ± 0.2 63.7 ± 0.3
50 - - 49.5 ± 0.3 65.0 ± 0.5 - - 62.6 ± 0.1 68.6 ± 0.2

Tiny-ImageNet
1 - - - - - 7.6 ± 0.2 9.7 ± 0.4 39.2 ± 0.4

10 - - - - - 41.8 ± 0.1 41.9 ± 0.2 51.2 ± 0.5
50 28.0 ± 0.3 - 41.1 ± 0.4 47.6 ± 0.3 48.7 59.4 ± 0.5 58.2 ± 0.1 57.2 ± 0.2

ImageNet-10
1 - - - - - - 24.9 ± 0.5 45.2 ± 0.2

10 - - - - - - 53.3 ± 0.1 63.4 ± 0.2
50 - - - - - - 75.5 ± 0.5 82.2 ± 0.1

ImageNet-1k
1 - - - - - 3.2 ± 0.3 6.6 ± 0.2 12.8 ± 0.1

10 - 17.8 ± 1.3 21.3 ± 0.6 31.4 ± 0.5 - 38.2 ± 0.2 42.0 ± 0.1 48.6 ± 0.3
50 - 27.9 ± 1.2 46.8 ± 0.2 51.8 ± 0.4 53.5 57.6 ± 0.5 56.5 ± 0.1 58.0 ± 0.2

Table 25: Comparison with the SOTA baseline dataset condensation methods. MTT, TESLA, SRe2L,
CDA, WMDD and RDED utilize ResNet-18 for data synthesis, whereas G-VBSM and EDC leverage various
backbones for this purpose.

Due to space constraints in the main paper and for aesthetic reasons, we have not fully presented
the experimental results of other methods. However, since the benchmark for dataset distillation is
uniform and well-recognized, the performance of other algorithms can be found in their respective
papers. We present the related experimental results of the popular convolutional architecture ResNet-
18 in Table 25.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the introduction and abstract, we state a comprehensive design framework for
dataset condensation, incorporating specific and effective strategies supported by empirical
evidence and theoretical foundations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Sec. J.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Please see Sec. B in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our supplemental materials contain the reproducible code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code has been provided in supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details have been presented in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments are conducted using 4× RTX 4090 GPUs, as detailed in the
experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Please see Sec. I.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Sec. I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no risk factors present here.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In our paper and accompanying code, we have carefully cited and credited the
works of G-VBSM and RDED, which form the foundation of our implementation.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have attached our code and user instructions in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not have any experiments or research relevant to human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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