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Abstract

Recent approaches to vision-language tasks are built on the remarkable capabilities
of large vision-language models (VLMs). These models excel in zero-shot and
few-shot learning, enabling them to learn new tasks without parameter updates.
However, their primary challenge lies in their design, which primarily accommo-
dates 2D input, thus limiting their effectiveness for medical images, particularly
radiological images like MRI and CT, which are typically 3D. To bridge the gap
between state-of-the-art 2D VLMs and 3D medical image data, we developed an
innovative, one-pass, unsupervised representative slice selection method called
Vote-MI, which selects representative 2D slices from 3D medical imaging. To
evaluate the effectiveness of Vote-MI when implemented with VLMs, we intro-
duce BrainMD, a robust, multimodal dataset comprising 2,453 annotated 3D MRI
brain scans with corresponding textual radiology reports and electronic health
records. Based on BrainMD, we further develop two benchmarks, BrainMD-select
(including the most representative 2D slice of a 3D image) and BrainBench (in-
cluding various vision-language downstream tasks). Extensive experiments on
the BrainMD dataset and its two corresponding benchmarks demonstrate that our
representative selection method significantly improves performance in zero-shot
and few-shot learning tasks. On average, Vote-MI achieves a 14.6% and 16.6% ab-
solute gain for zero-shot and few-shot learning, respectively, compared to randomly
selecting examples. Our studies represent a significant step toward integrating Al
in medical imaging to enhance patient care and facilitate medical research. We
hope this work will serve as a foundation for data selection as vision-language
models are increasingly applied to new tasks. Code and data examples are available
at Github: https://github.com/YuliWanghust/BrainMD,
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1 Introduction

Generalist foundation models, or large vision-language models (VLMs), such as GPT-4V [1]], have
revolutionized artificial intelligence by leveraging diverse large-scale datasets during pre-training.
These models excel across multiple domains, including natural language processing and computer
vision [33} 148,155,158 [18} 154], positioning them at the forefront of medical imaging advancements.
However, a significant limitation of these state-of-the-art (SOTA) models is their restriction to 2D
image input. This results in obstacles for their application to medical imaging, particularly with
radiological images that are often 3D. To address these challenges, we propose a representative 2D
slices selection approach called Vote-MI. This one-pass, unsupervised method selects representative
2D slices from 3D images, bridging the gap between SOTA VLMs and medical imaging. By
employing Vote-MI, we aim to enhance diagnostic accuracy and automate medical reporting through
the application of SOTA VLMs to 3D medical image analysis.

To thoroughly assess the effectiveness of our proposed Vote-MI method, a large, multimodal medical
image dataset with paired textual data is essential. Therefore, we introduce BrainMD, a compre-
hensive dataset encompassing seven different types of brain tumors (details in Table[3). BrainMD
includes 2,453 annotated 3D MRI brain scans, paired with textual data such as radiology reports,
medical records, and demographic information. Based on BrainMD, we developed two benchmarks:
BrainMD-select and BrainBench. BrainMD-select comprises the most representative 2D slices
from the axial, sagittal, and coronal directions of 3D images, annotated by board-certified radiologists.
BrainBench is derived from textual data and encompasses various tasks such as disease diagnosis and
visual question answering. The dataset and its two benchmarks enable the evaluation of VLMs, en-
suring robust model testing and accelerating advancements in Al-driven medical imaging diagnostics.
Additionally, BrainMD and its associated benchmarks hold significant potential to benefit the broader
research community by facilitating the future development of other 2D/3D VLMs.

Given that VLMs can perform downstream tasks with zero or few task demonstrations [31} 150],
thereby eliminating the need for parameter updates, we evaluate the effectiveness of Vote-MI in VLMs
through downstream task evaluations, including zero-shot and few-shot learning. Zero-shot testing
[57] gauges the model’s ability to tackle tasks without prior examples, utilizing its generalization
capabilities from training data to novel tasks. Few-shot testing [S1], or in-context learning, provides
an alternative to traditional supervised tuning. In this study, we explore these capabilities in VLMs
using the BrainMD dataset and Vote-MI method, thoroughly comparing model performance across
random, Vote-MI, and radiologist-selected slices in zero-shot and few-shot scenarios.

Our experiments, over BrainMD and its two Benchmarks, demonstrate that our representative selective
method substantially improves the VLM zero-shot and few-shot testing performance by balancing
the diversity and representativeness of selected samples. For instance, Vote-MI achieves an average
of 14.6% and 16.6% absolute gain for zero-shot and few-shot learning, respectively, compared to
randomly selecting examples. Moreover, the improvement is consistent across different VLMs.
Vote-MI representative selection also makes zero-shot learning and few-shot learning learning more
stable and reduces the variance. Detailed results are shown in Section[6l

The code of Vote-MI and a few BrainMD examples are open-sourced. Our contributions are summa-
rized as follows:

2 Related Works

2.1 Zero-shot and Few-shot Learning

Zero-shot learning (ZSL) [57] enables models to predict classes they haven’t been explicitly trained
on by leveraging auxiliary information. This approach addresses the challenge of acquiring labeled
data for every class, especially in domains like rare medical diseases. Various ZSL methodologies
include attribute-based [24]], embedding-based [39], and generative approaches [30]. The versatility
of ZSL has significant implications in vision and language processing, enhancing models’ ability to
generalize across diverse and unseen categories.

Few-shot learning [51]] requires only a few annotated examples per test instance, avoiding the need
for extensive fine-tuning. Recent research has proposed strategies to enhance few-shot learning, such
as meta-training (34, 42, task instructions [26]], and task formulation [22]]. The selection of few-shot
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Figure 1: Schematics of BrainMD Dataset and two benchmarks: BrainMD-select and BrainBench.
The BrainMD dataset comprises MRI scans, paired with their radiology reports and medical records.
BrainMD-select contains Radiologists selected representative slices. We curated diagnostic and
prognostic labels based on the radiology reports and medical records to construct BrainBench.

examples is crucial, with studies questioning the necessity of correct labels. Our work introduces
representative slice selection within a few-shot learning framework, emphasizing the importance of
representative examples on the performance of VLMs.

2.2 Multi-modal Dataset

Publicly available medical datasets continue to drive significant advances in medical Al research
(28 14,141,114, 53]]. However, very few currently available datasets are large-scale, multi-modal, and
extensively labeled, particularly in medical domains that leverage both 2D and 3D medical images
(Table[T). The limitations in data availability primarily stem from the inherent challenges associated
with the release of medical data. Public sharing of medical data requires rigorous review processes
to safeguard sensitive patient information from exposure [27]. Furthermore, the labeling process is
often labor-intensive and costly [[17,161}160].

Among previous contributions, the BRATS dataset [25] stands out as a large-scale work incorporating
3D MRI brain tumor images. However, BRATS lacks paired textual data and selected representative
2D slices. The BMs [38] and TCIA [52]] datasets contain 3D MRI images with longitudinal medical
record data. However, both have small dataset scales and do not include prognostic task labels or
selected representative slices. Our BrainMD dataset addresses these gaps by introducing a large-scale
dataset extracted from 2,453 brain tumor cases. It offers multiple modalities and labels, promising to
enrich future research in this space.

2.3 Medical Multi-modal Vision Language Model

Recent research [33}162] highlights the effectiveness of multimodal vision-language models (VLMs)
in integrating image and text data for a variety of tasks. These models combine the perceptual
capabilities of vision models [40, 47] with the generative power of large language models (LLMs)
[43L 111, 13]], gaining significant traction, particularly in medical image analysis. Existing medical
VLMs [32} 149, 2 37] often fine-tune publicly available 2D VLMs on medical image and text data to
perform tasks such as image-text retrieval, report generation, and visual question answering. Models
like LLaVA-Med [32], Med-PaLM-2 [49], and MedFlamingo [37] are derived from LLaVA [35]],
PalLM-E [12], and Flamingo [2]], respectively.
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Table 1: BrainMD vs. existing multimodal brain tumor medical image datasets

Dataset Modalities Counts Task Labels
Image Slice Report EHR Patients Studies Diagnosis Prognosis

BRATS [25] 3D MRI X X X 228 many X X
Figshare [10] 2D MRI X X X 3,064 3,064 X X
SARTAJ [7] 2D MRI X X X 3,260 3,260 X X
BMs [138]] 3D MRI X X v 75 637 2 X
TCIA [52] 3D MRI X X v 47 156 2 X
BrainMD 3D MRI Ve v v 561 2,453 2 1

However, these methods face challenges when applied to 3D medical images, such as CT and MRI
scans, which contain rich spatial information. The common approach of slice-by-slice analysis
is computationally expensive and often inadequate. While models like RadFM [55] support both
2D and 3D images, they primarily focus on text generation tasks like visual question answering
(VQA) and generally underperform. More specialized VLMs, such as M3D-LaMed [5]], Ct2rep [19],
and Merlin [8]], are designed specifically for 3D medical image analysis, tackling tasks like report
generation and VQA, and pioneering vision question-answering tasks. Despite these advancements,
3D VLMs continue to struggle due to the lack of large, paired 3D image-report datasets and the high
computational demands of model training.

3 Vote-MI: Representative slice selection method

In addressing the methodological challenges of transitioning from 2D to 3D medical images, particu-
larly when employing SOTA VLMs, we propose the efficient, unsupervised Vote-MI method. This
approach aims to efficiently identify highly diverse and representative 2D slices from 3D medical
images in just one pass. Our method includes two main parts: 1) An unsupervised feature extraction
process that operates directly on raw, unannotated images, and 2) A new criterion for assessing image
diversity and representativeness during the selection process.

As shown in Figure 2] the representative selection pipeline consists of three major components: a) A
patch-wise Variational Autoencoder (VAE) [39,[36]] that serves as the unsupervised feature extraction
network, effectively transposing each image sample into a low-dimensional feature descriptor; b) The
Vote-MI algorithm, which identifies and selects a diverse and representative subset of images from the
pool of unannotated data; and c) The VLMs, which are used downstream in various diagnostic and
prognostic tasks. More details about the representative selection pipeline, including feature extraction
network, Vote-MI representative slices selection, and other representative selection methods, are
described in Appendix D!

4 Cohort Definition and Dataset Composition

Our study, approved by the Johns Hopkins University (Appendix [A), identified 2,453 cases involving
MRI brain tumor scans from 2010 to 2020. The cohort of MRI brain tumors was identified through a
protocol involving random sampling, data cleaning, and inclusion criteria, resulting in a final cohort
of 2,453 cases from 561 distinct patients (see Appendix [C.I|for more details). Each of these images is
de-identified. Summary statistics of the demographic characteristics of our final cohort are available
in Table @ Based on this cohort, we release the following as the BrainMD dataset:

* MRI images: The imaging slices for the BrainMD cohort in DICOM format.

* Radiology Report: The "Findings" and "Impression" section of the corresponding radiologist
reports for all cases in the BrainMD cohort.

* Data From Medical Records: De-identified structured data from longitudinal records for
each patient in our cohort, including diagnoses, procedures, lab results, and demographics.

A detailed description of the formatting and licensing details of BrainMD is in the Appendix [C.2.
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Figure 2: The workflow of our one-pass representative selection framework on brain MRI; (a) 2D
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downstream task evaluation using VLMs with zero-shot and few-shot scenarios.

Table 2: Demographic statistics of the proposed BrainMD dataset.

5 Benchmark

Demographics Statistics

Attributes All
Cases 2,453
Patients 561
Female 245 (43.6%)
Gender Male 237 (42.2%)
Unknown 79 (14.2%)
0-18 38 (6.8%)
Age 18-55 123 (21.9%)
g >55 387 (69.0%)
Unknown 13 (2.3%)
White 393 (70.0%)
Race Asian 24 (4.2%)
Black 29 (5.2%)
Unknown 115 (20.6%)

L

To evaluate our proposed Vote-MI method and further demonstrate its effectiveness when applied to
VLM downstream tasks, we developed two benchmarks: BrainMD-select and BrainBench. BrainMD-
select, illustrated in Figure[] is a 2D dataset created to evaluate the selection efficacy of Vote-MI. This
dataset comprises the most representative 2D slices annotated by radiologists from the 3D BrainMD
dataset. Furthermore, we introduce BrainBench, a benchmark designed to assess the performance
of our representative slice selection method within SOTA VLMes, particularly under zero-shot and
few-shot scenarios. BrainBench encompasses various tasks such as disease diagnosis, visual question
answering, and even report generation.

These benchmarks, detailed in Appendix [C.2] involve varied task formulations to allow comprehensive
evaluations across different scenarios. Our experiments, as outlined in section @ and@ test the
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efficacy of the Vote-MI selection method and its adaptability within VLMs under zero- or few-shot
scenarios.

5.1 The effectiveness studies on the Vote-MI

To evaluate the Vote-MI method’s effectiveness, we compare its output against four baselines:
Uncertainty [23], Core-set [16], K-center [21], and Random sampling. Uncertainty selects instances
where its confidence is lowest, indicating high uncertainty; Core set chooses data points furthest from
the major data cluster, thus adding the most informative instances; K-center selects k data points
as centers such that the maximum distance from any data point to its nearest center is minimized.
We assess the performance of Vote-MI and these baselines using our BrainMD-select dataset, where
radiologist selection is the gold standard. To ensure statistical validity, each method is run three times.
An ablation study is also conducted to determine the contribution of each component in the Vote-MI
method, which is shown in Appendix

5.2 Zero-shot and Few-shot Learning Tasks

We compare the performance of the VLMs, specifically Flamingo [2], Med-Flamingo [37], and Med-
PalLM-2 [44] (due to our computation limitation) in a zero-shot setting using our custom benchmark,
BrainBench (Figure[I)). The models are evaluated on the following 2 diagnosis tasks:

* "Presence of cancer in the image (yes/no)? (W/o cancer)"

» "Name brain cancer types? (Cancer types)"

We adopt a bifurcated approach for few-shot learning (Figure [3). Initially, a representative subset is
curated, selecting a finite collection of samples for labeling ahead of evaluation. Subsequently, for
each test sample, pertinent examples are collated from this curated set, a step termed random prompt
retrieval. The total labeling effort is demarcated by the number of samples curated and annotated
in the preliminary phase. The second phase is constrained by the VLM’s input capacity. Within
these bounds, Vote-MI is recommended for its strategic selection of varied and indicative samples for
selection. The model’s performance is then assessed utilizing the BrainBench benchmark over two
tasks as delineated in zero-shot learning and a new prognostic task as follows:

¢ "Describe the cancer status? (Cancer status)"

(a) ® @ Random selection Test | ~—
o ° JYaf — fos Test
e o |
Large data :
— —— ¢ v S
o © £ Radiologist selection { Test . | ytA VB Yc
. yop == fop ! tot
L ’ T aromance
Targe data 1 Evaluation . |
1 Machine Rating
Q One-Pass Vote-Mi selection [ ——=3 Test ) ]
. o {,Yc}—'fecu Yo Vb ¥
o o Ours .
Large data Small selected Zero-shot
data testing
—
(b) Step1 Step2
Selective Annotation before test time { Va Prompt Retrieval during test time
In-context labeled
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Large
labeled data

Retrieve

Radiologist
annotate

Large Selected Selected
unlabeled data unlabeled data labeled data

Figure 3: Schematic framework of downstream tasks for (a) zero-shot learning and (b) few-shot
learning. In (a), we compare the one-pass Vote-MI representative 2D slice selection from 3D imaging
with random and radiologist selections. For (b), the framework for few-shot learning utilizes Vote-MI,
with alternatives being random or radiologist selections for the downstream task.
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The statistical distribution of task labels for ground-truth of each sub-category ("W/o cancer", "Cancer
types", and "Cancer status") is summarized in Table 3]

Table 3: Statistical analysis of three diagnostic and prognostic task labels in the BrainMD dataset,
encompassing 2,453 cases and 561 patients. LGG: Low-Grade Gliomas; GBM: Glioblastoma
Multiforme; CPTs: Choroid plexus tumors

Task Labels Statistics
Types Question Answers All

Cases 2,453
Patients 561
Yes 1714 (69.9%)
Diagnosis W/o cancer No 381 (15.5%)
Uncertain 357 (14.6%)
GBM 1326 (54.0%)
Glioma 715 (29.1%)

Diagnosis  Cancer type LGG 242 (9.8%)

Pineal tumors 26 (1.1%)

Medulloblastoma 72 (2.9%)

CPTs 51 (2.0%)

Gangliocytoma 20 (0.81%)

Improving 38 (6.8%)
Prognosis Cancer status Progressing 123 (21.9%)
No change 387 (69.0%)

5.3 Measuring Accuracy and Stability

Accuracy: These three tasks have predefined answer choices. Thus, we utilize accuracy (denoted
as "ACC"), measuring the proportion of correctly identified cases to evaluate the VLM downstream
tasks’ performance.

Stability: Given a set of raw data, our Vote-MI representative slice selection method is not determinis-
tic, with certain randomness. To assess the stability of Vote-MI and its impact on VLM performance,
we conduct each experiment three times and average the results. Despite its non-deterministic nature,
Vote-MI consistently enhances stability compared to other selection methods for both prognostic and
diagnostic tasks.

6 Results and Analysis

6.1 Effectiveness studies of Vote-MI

Table d summarizes the slice selection accuracy of different methods on the BrainMD dataset and
BrainMD-select benchmark. The accuracies are calculated with a slice number error tolerance of
=+ 5, given the nature of brain tumor images where multiple representative slices can capture the
characteristics of the tumors. The Vote-MI method achieved the highest accuracy at 59.4% and the
lowest variance + 4.2%, which is statistically significantly better than the other baseline methods.

Table 4: Performance comparison of different selection methods on BrainMD dataset.

Uncertainty Core-set K-center Random Vote-MI
Accuracy 52.2(£4.9) 535(£7.0) 47.6(x54) 282(+8.6) 59.4(+£4.2)
99953 https://doi.org/10.52202/079017-3171



6.2 Zero-shot Learning Results

As shown in Figure [ are our results from zero-shot learning over the BrainMD dataset with two
downstream tasks including: 1) with or without cancer (binary classification) and 2) identifying
cancer type (vision question answering). Over all datasets, the Vote-MI representative selective
method outperforms the random baseline by a large margin (23.5% absolute gain on average in w/o

cancer and 14.4% absolute gain on average in cancer type) under the zero-shot scenario.

W/o cancer
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Figure 4: Performance comparisons of various VLMs under two disease diagnostics downstream task
settings. Compared to random selection, the Vote-MI representative selection method consistently
improves the performance with a large margin of zero-shot learning with pre-trained VLMs.

6.3 Few-shot Learning Results

Table 5: Few-shot learning results with random, radiologist, and Vote-MI selection methods on the
BrainMD dataset, with a selection budget of 2, 4, or 8. Across the board, representative selection
with Vote-MI substantially outperforms the random selection baseline for few-shot learning. Further,
Vote-MI largely reduces the variance over three trials (see the results in Appendix [D.3), making
few-shot learning more stable. A means absolute gain between Random and Vote-MI.

Size Method Tasks

|L] Selection W/o cancer  Cancer types Cancer status
2 Random 21.3(£5.6) 183(£7.1) 19.6(x£4.0)
2 Vote-MI 435(x£23) 353(£45) 37.7(£3.8)
2 Radiologist 64.5(£3.1) 553(+£42) 484(x3.9)
2 A Absolute gain +22.2 +17.0 +18.1
4 Random 28.1(£5.1) 245(£6.2) 26.7(x5.8)
4 Vote-MI 50.7 (£2.8) 43.0(£3.9) 42.7(x4.0)
4 Radiologist 68.2(+£3.4) 602(+4.5) 52.7(x£4.3)
4 A Absolute gain +22.6 +19.5 +16.0
8 Random 30.1 (£ 6.1) 28.7(£6.5) 304 (£6.3)
8 Vote-MI 553(£3.1) 46.0(+£42) 46.7(x4.1)
8 Radiologist 70.1 (£3.5) 623(£43) 569(£44)
8 A Absolute gain +15.2 +18.3 +16.3

In this study, we perform an extensive analysis of few-shot learning to provide further guidance,
examining representative slice selection from multiple dimensions: varying VLMs, different down-
stream tasks, and selection sizes. Our findings from the BrainMD dataset, detailed in Table E], show
results for selection budgets ranging from 2, 4 to 8. This range accommodates the input limits of
VLMs, allowing full integration of examples into prompts without additional sampling. Across all
tasks and VLMs, the Vote-MI method for selecting representative slices significantly outperforms a
random baseline for all selection sizes, with a standout 16.6% average absolute gain when the set
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size is 8 (see Figure[5)). Notably, using just two Vote-MI selected examples achieves better outcomes
than eight randomly chosen ones across all tasks, highlighting the effectiveness of strategic example
selection in few-shot learning.

Flamingo Med-Flamingo Med-PalLM-2
W/o cancer Cancer type Cancer status
60
50 50
55
45
45
40
> 50 % %
£ g £
g 5 =35
3 3 53
<% < <
35 30
40 30 25
20
35 25
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Few-shot size Few-shot size Few-shot size

Figure 5: Few-shot testing comparison among three different downstream tasks. Vote-MI representa-
tive slice selection improves the performance of zero-shot learning with pre-trained VLMs.

6.4 Impact of Vote-MI on Stability

As shown above, our extensive experiments demonstrated that representative selection yields higher
accuracy across all downstream tasks and is crucial for the VLMSs’ success in both zero-shot and
few-shot learning. However, Vote-MI is not a deterministic representative selection method and
includes certain randomness, conditioned on a set of unlabeled image samples and a selection budget.
Thus, we explored the stability of the method. From our experiments, we observed a reduction in
variance for both zero-shot and few-shot learning across all downstream tasks. Therefore, the variance
of Vote-MI arises solely from how the unlabeled samples are collected, significantly improving the
robustness of zero-shot and few-shot learning. We, therefore, recommend that researchers and
practitioners use representative slice selection methods (e.g., our Vote-MI method) to better benefit
from the zero-shot and few-shot learning capabilities of VLMs with increased stability.

7 Limitation and Conclusion

7.1 Limitations

First, BrainMD contains data from only a single site, and the Vote-MI representative selection
model or other future models trained on BrainMD may not generalize to other patient populations.
Second, although labels are assigned based on large language model output and manually reviewed
by radiologists, there still might be inaccuracies in some cases. Finally, although the effectiveness
of Vote-MI improved significantly compared to random and other slice selection methods, the
downstream task performance is still statistically significantly worse than the radiologist’s selection.
We hope our paper can serve as a baseline and inspire further research on methods for representative
selection, bridging the gap between 2D vision language models and 3D medical image data.

Future efforts will focus on optimizing the representative selection framework to further improve
accuracy. This includes researching potentially better feature extraction networks. Given the rela-
tively high homogeneity within tumor lesions, generative-based (e.g., diffusion probabilistic models
[45L 156]) or contrastive-based unsupervised learning methods [9, 20] may be more effective and
accurate in doing the feature extraction. Additionally, new criteria for assessing image diversity and
representativeness are needed. Beyond the mutual information metrics used in our paper, graph-based
metrics [46 6] and confidence-based scoring [29] could potentially enhance selection accuracy and,
consequently, the VLM’s downstream task performance.
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7.2 Conclusion

There are three main contributions to this work. First, we present BrainMD, a large-scale medical
dataset with multiple modalities, comprising health records of 2,453 high-quality MRIs from 561
patients, complete with radiology reports, and structured data from medical records. Second, we
propose a novel one-pass unsupervised representative slice selection method, Vote-MI, to select
representative 2D slices from 3D volumetric data, bridging the gap between current vision-language
models and their application to medical images. Third, we use this dataset to create two benchmarks,
BrainMD-select and BrainBench. Using these benchmarks, we conducted in-depth studies on our
proposed Vote-MI method. In terms of task performance, Vote-MI significantly improves performance
across three diverse tasks. In conclusion, this work has laid the foundation for future research into
representative slice selection methods for analyzing 3D medical imaging data with VLMs that only
take 2D input. By openly sharing BrainMD, we hope to spark new advances in this critical area of
healthcare.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In abstract e claim that we developed Vote-MI, an innovative, unsupervised
method for selecting representative 2D slices from 3D medical imaging, and introduced
BrainMD, a multimodal dataset to evaluate its effectiveness with VLMs. Using BrainMD,
we also developed two benchmarks: BrainMD-select and BrainBench. All these three items
accurately reflect the paper’s contributions and scope.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A section discussing the work’s limitations from both methodological and
clinical perspectives is included in the paper.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:

Justification: This paper focuses on the application, where we deliver a multimodal dataset
and a method for representative slice selection; therefore, there are no theoretical assump-
tions or proofs.

Guidelines:
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The reproduction details are summarized in the main paper, appendix, and
open-source code.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the code in this paper is open-source, and the data is accessible upon
request to the senior authors.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and testing details are specified in the main paper, appendix,
and open-source code.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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11.

12.

13.

14.

15.

Justification: All results are accompanied by error bars, confidence intervals, or statistical
significance tests.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate required experiments compute resources and information in the
paper.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Code of Ethics is confirmed.
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The positive societal impacts are discussed in the paper, and at the current
stage, the authors do not believe there are any negative societal impacts.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The dataset and benchmark developed in this paper have been manually
de-identified, with all patient-related information removed.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All data, code, and models are properly cited or explicitly mentioned.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets in the paper are well documented and are the documentation
provided.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: Required information is included in the supplementary materials.
Guidelines:

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Both IRB approval and Data Use agreement are obtained for the data we used
in this paper.
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