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Abstract

Detecting text generated by large language models (LLMs) is of great recent inter-
est. With zero-shot methods like DetectGPT, detection capabilities have reached
impressive levels. However, the reliability of existing detectors in real-world ap-
plications remains underexplored. In this study, we present a new benchmark,
DetectRL, highlighting that even state-of-the-art (SOTA) detection techniques still
underperformed in this task. We collected human-written datasets from domains
where LLMs are particularly prone to misuse. Using popular LLMs, we generated
data that better aligns with real-world applications. Unlike previous studies, we
employed heuristic rules to create adversarial LLM-generated text, simulating vari-
ous prompts usages, human revisions like word substitutions, and writing noises
like spelling mistakes. Our development of DetectRL reveals the strengths and
limitations of current SOTA detectors. More importantly, we analyzed the poten-
tial impact of writing styles, model types, attack methods, the text lengths, and
real-world human writing factors on different types of detectors. We believe Detec-
tRL could serve as an effective benchmark for assessing detectors in real-world
scenarios, evolving with advanced attack methods, thus providing more stressful
evaluation to drive the development of more efficient detectors2.

1 Introduction

Detecting text generated by LLMs is a challenging task. It is often more difficult for humans
than for detection techniques to identify LLM-generated text, as humans typically underperform
detection methods designed for this purpose [1]. Recently, the implications of LLM-generated content
have come into focus, highlighting their significant societal and academic impacts and associated
risks [2, 3]. The main concerns stem from the hallucinations and misuse of LLMs [4], leading to
issues such as plagiarism [5], the spread of fake news [6], and challenges to educators and human
scholarship in AI-assisted academic writing [7]. Previous and current popular detection benchmarks,
such as TuringBench [8], MGTBench [9], MULTITuDE [10], MAGE [11] and M4 [12], have
primarily focused on evaluating detectors’ performance across various domains, generative models,
and languages by constructing idealized test data. However, they have overlooked the assessment of
detectors’ capabilities in more common scenarios encountered in practical applications [4], such as
various prompt usages, human revisions, and writing noises, as shown in Table 1.

In this paper, we study the following questions: (1) How do SOTA LLM-generated text detectors
perform in real-world application scenarios? (2) What real-world factors influence detector
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2Data and code are publicly available at: https://github.com/NLP2CT/DetectRL
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Table 1: Comparison with existing benchmarks. ✓: benchmark evaluates this scenario. △: has
studies, not in evaluation. ⃝: similar scenario exist, but not fully aligns with real-world applications.

Benchmark ↓ Eval → Multi Multi Various Human Writing Data Detector Training Test Real World
Domains LLMs Prompts Revision Noises Mixing Generalization Length Length Human Writing

TuringBench [8] ✓ ✓ - - - - - - - -
MGTBench [9] ✓ ✓ - ⃝ ⃝ - △ - △ -
MULTITuDE [10] ✓ ✓ - - - - △ - - -
M4 [12] ✓ ✓ ✓ - - - ✓ - - -
MAGE [11] ✓ ✓ - ⃝ - - ✓ - - -

DetectRL (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

performance, and to what extent? We investigate these questions by introducing DetectRL, a
novel benchmark for LLM-generated text detection. We achieve this by crafting challenges that are
commonly encountered in real-world scenarios. These challenges simulate various prompts usages of
human, human revisions of text such as word substitutions, and adversarial writing noises, including
spelling mistakes. To enhance these simulations, we incorporate well-designed attack methods like
prompt-based attacks, paraphrasing, adversarial perturbations, and data mixing. We selected data
from domains where LLMs are frequently used and prone to abuse, such as academic writing, news
writing, creative writing, and social media, to serve as samples of human-written text. To create
LLM-generated texts that closely resemble real-world application scenarios, we employed powerful
and widely used LLMs, including GPT-3.5-turbo [13], PaLM-2-bison [14], Claude-instant [15], and
Llama-2-70b [16]. Furthermore, to ensure a wider diversity of text length, we filtered out shorter
texts and applied a varying length augmentation method. This approach significantly broadened the
range of text lengths available for detection, enhancing the practical value of the task. We balanced
sample distributions across domains, LLMs, and attack types in all test scenarios to enhance diversity,
thereby creating more challenging evaluations. These distribution variances are common in real-world
scenarios but are often overlooked in ideal test environments where current detectors are developed.

The construction of this benchmark was highly effective in achieving our goals. The experimental re-
sults present a significant challenge to existing detection methods. Current detectors, particularly
those employing zero-shot techniques, often struggle with accurately identifying LLM-generated texts.
For example, adversarial perturbation attacks reduce the performance of all zero-shot detectors by an
average of 39.28% AUROC. In contrast, supervised detectors have demonstrated robust detection
capabilities in various domains, generative models, and attacks settings.

Through our benchmark analysis, we highlight the strong relationship between various factors and
detector performance. Key elements that undermine the robustness and generalization of detectors
include the informal style of domain data, distinct statistical patterns of LLMs, and adversarial
perturbation attacks. Our findings indicate that shorter training data is beneficial for building robust
detectors, while longer test data improves detector performance. Additionally, when human-written
text undergoes attacks, the impact on detector performance is minimal, and performance may even
improve after perturbation. This underscores the potential for adversarial perturbations to enhance
current detection capabilities. Furthermore, our proposed framework aims to support the long-term
development of attack methods against detectors. This will enable the creation of more challenging
benchmarks that reflect real-world usages and evaluate the effectiveness of detection methods.

2 DetectRL

Previous datasets were mainly constructed by directly collecting human-written texts and those
generated by LLMs using the same questions or prompt prefixes. This approach assumes an ideal
detection environment and overlooks critical design considerations such as application domains,
generative models, potential attacks, and text lengths. We improve the current dataset construction
approach to better align with real-world detection scenarios. In this section, we introduce DetectRL, a
new benchmark designed to facilitate such assessments, with its overall framework shown in Figure 1.
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Figure 1: The overall framework of DetectRL. Human-written samples are collected from high-risk
and abuse-prone domains. We employ widely-used and powerful LLMs to create LLM-generated
samples. All samples undergo well-designed attacks to simulate real-world scenarios and a varying
length augmentation method is applied to enhance the benchmark’s diversity. DetectRL consists of
four distinct tasks to evaluate the detectors’ comprehensive detection abilities and robustness.

2.1 Framework

Data sources DetectRL is a comprehensive benchmark consisting of academic abstracts from the
arXiv Archive,3 covering the years 2002 to 2017. It also includes news articles from the XSum
dataset [17], creative stories from Writing Prompts [18], and social reviews from Yelp Reviews
[19]. The texts generated by LLMs within these domains are considered to pose higher risk of
misleading content when misused, which underscores the importance of effective detection strategies.
We extracted 2,800 samples per dataset as human-written texts. To avoid the potential contamination
from text generated by LLMs, all selected data was released prior to the advent of ChatGPT.

Models Based on the collected human-written texts, we selected several LLMs that widely used
in real-world, including GPT-3.5-turbo [13], PaLM-2-bison [14], Claude-instant [15], and Llama-2-
70b [16], to perform text generation tasks. These models are mostly black-box and require substantial
computational resources, making white-box detection methods challenging. We obtain text samples
generated by these LLMs through interactive sessions with each model. For more details on the
LLMs and text generation settings, please refer to Appendix D.

Data generation We employed various attack methods to simulate complex real-world detection
scenarios. Following the classifications from the studies by [4] and [20], we categorized our attack
methods into prompt attacks, paraphrase attacks, and perturbation attacks. Additionally, we treated
data mixing as a separate scenario in our study. Please see Appendix D.4 for implementation details.

Prompt attacks are intended to use carefully designed prompts to guide LLMs in generating text that
closely mimics human writing style. Our employed prompt attacks include Few-shot Prompting [21]
and ICO Prompting, which is part of SICO Prompting [22].

Paraphrase attacks have been extensively studied in recent research on LLM-generated text detection
[23], focusing on rewriting text while maintaining its original meaning. Alongside using the DIPPER-
paraphraser [23], we also employed Back-translation via Google Translate4 and Polishing using
LLMs, which are two paraphrasing methods commonly utilized in everyday scenarios.

Perturbation attacks mainly involve introducing adversarial perturbations on text directly generated by
LLMs. These attacks can effectively simulate common writing errors, character or word substitutions

3https://www.kaggle.com/datasets/spsayakpaul/arxiv-paper-abstracts/data
4https://translate.google.com/
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or other adversarial noises in real-world applications. We utilized DeepWordBug [24] for Character-
level Perturbations, TextFooler [25] for Word-level Perturbations, and TextBugger [24] for Sentence-
level Perturbations, all implemented using TextAttack [26].

Data Mixing involves two primary approaches: Multi-LLM Mixing and LLM-Centered Mixing. In
Multi-LLM Mixing, we create LLM-generated samples by sampling and combining sentences from
multiple LLMs. On the other hand, LLM-Centered Mixing involves substituting one-fourth of an
LLM-generated text with randomly selected human-written content. Despite this substitution, the
text remains labeled as LLM-generated, since the majority originates from the LLM.

Data augmentation We enhance the diversity of samples of different lengths through data augmen-
tation, primarily by splitting texts at the sentence level. This approach creates multiple versions of
each text sample with varying lengths. Based on the distribution of text lengths, we then categorize
these sample into intervals of 20 words each (up to 360 words, since longer texts are rare). Within each
interval, we uniformly sample 900 examples to comprehensively assess the detector’s performance.

Table 2: Benchmark statistics.

Task Setting Sub Setting Training TestSupervised Zero-Shot

Task 1

Multi-
Domain

Academic 25,990 2,008 2,008
News 25,992 2,008 2,008
Creative 25,985 2,008 2,008
Social Media 25,984 2,008 2,008

Multi-
LLM

GPT-3.5-turbo 25,987 2,008 2,008
Claude-instant 25,990 2,008 2,008
PaLM-2-bison 25,987 2,008 2,008
Llama-2-70b 25,987 2,008 2,008

Multi-
Attack

Direct 20,384 2,016 2,016
Prompt 31,568 2,032 2,032
Paraphrase 42,767 2,016 2,016
Perturbation 42,784 2,016 2,016
Data Mixing 401,184 2,008 2,008

Task 2

Domain
Generalization

Academic 25,990 2,008 6,024
News 25,992 2,008 6,024
Creative 25,985 2,008 6,024
Social Media 25,984 2,008 6,024

LLM
Generalization

GPT-3.5-turbo 25,987 2,008 6,024
Claude-instant 25,990 2,008 6,024
PaLM-2-bison 25,987 2,008 6,024
Llama-2-70b 25,987 2,008 6,024

Attack
Generalization

Direct 20,384 2,016 6,048
Prompt 31,568 2,032 6,096
Paraphrase 42,767 2,016 6,048
Perturbation 42,784 2,016 6,048
Data Mixing 401,184 2,008 6,024

Task 3 Varying
Text Length

Training-Time 16,200 16,200 900
Test-Time 900 900 16,200

Task 4 Human
Writing

Direct 20,384 2,016 2,016
Paraphrase 42,767 2,016 2,016
Perturbation 42,784 2,016 2,016
Data Mixing 42,788 2,012 2,012
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Figure 2: Benchmark textual features statistics.

2.2 Task definition

Based on the meticulously curated dataset, we manifest the DetectRL framework into four distinct
tasks for LLM-generated text detectors assessment, described as follows:

Task 1: In-domain robustness assessment: multi-domain, multi-LLM, and multi-attack assess-
ment. This task aims to evaluate the foundational performance of detectors in different domains,
generators, and attack strategies, focusing specifically on their in-domain robustness in various
real-world scenarios. We use the average performance score as the assessment metric.

Task 2: Generalization assessment. This task assesses the generalization of detectors from three
perspectives: domain, LLM, and attack, to determine their effectiveness in diverse scenarios. Unlike
Task 1, this task emphasizes the detector’s ability to handle out-of-distribution samples. For example,
we evaluate the performance of detectors trained on texts from one domain when applied to texts
from different domains to determine their generalization score across domains. The same approach is
used to assess generalization across different LLMs and attack strategies.

4
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Task 3: Varying text length assessment. This task evaluates the impact of text length on the
performance of detectors, considering both training-time and test-time phase. In the training-time
phase, detectors are trained on samples of different length intervals and then tested on samples from
the pivotal interval. In the test-time phase, the detector trained on samples from the pivotal interval is
evaluated with samples of varying lengths. This approach provides a comprehensive understanding
of how text length influences detection capabilities.

Task 4: Real-world human writing assessment. This task evaluates how real-world human writing
factors impact the performance of detectors. In this innovative assessment, we simulate and replicate
these factors like word substitutions and spelling errors by applying attacks on human-written texts,
highlighting the challenges they pose to detectors in real-world scenarios.

2.3 Benchmark statistics

The statistics for the collected data are presented in Appendix Table 9. This dataset comprises
100,800 human-written samples, including 11,200 raw samples and 89,600 samples modified via
attack manipulations. Additionally, it contains 134,400 samples generated by LLMs, categorized
as follows: 11,200 samples generated with direct prompt, 22,400 with prompt attacks, 33,600 with
paraphrase attacks, 33,600 with perturbation attacks, and 22,400 with data mixing. To evaluate
detectors performance, we designed the DetectRL benchmark by carefully extracting relevant subsets
of data to align with the task design. The selected samples ensure a balance across domains, LLMs,
and attack types. The training data was specifically tailored for both supervised and zero-shot
detectors, and performance was evaluated using common test sets. Detailed statistics for each task
and the analysis of the textual features of DetectRL samples are presented in Figure 2. For a more
detailed analysis, please refer to Appendix D.6.

2.4 Evaluation metrics

We employ AUROC and F1 Score as the main evaluation metrics. AUROC is widely used for
assessing zero-shot detection methods [27] because it considers the True Positive Rate (TPR) and False
Positive Rate (FPR) across different classification thresholds. This makes AUROC particularly useful
for evaluating detector performance at different thresholds. The F1 Score provides a comprehensive
evaluation of detector capabilities by balancing the Precision and Recall. Additionally, we provide
detailed Precision and Recall scores in Appendix F for further reference, with a specific focus on
Recall to highlight the detectors’ effectiveness in identifying LLM-generated text.

3 Experiments and discussion

In this section, we organize our experiments and discussions from five distinct perspectives: (1)
Benchmarking the cutting-edge detectors: We evaluate the current SOTA detectors against our
benchmark to identify ongoing challenges. (2) Robustness analysis: We analyze the factors con-
tributing to robustness issues across various domains, LLMs, and attack scenarios. (3) Assessing
generalization: We investigate how well detectors perform on data distribution they were not specifi-
cally trained on, highlighting their out-of-distribution robustness. (4) Length discrimination: We
examine the detectors’ ability to differentiate between texts of varying lengths and discuss the impact
of training on such texts. (5) Real-world human writing scenarios: We analyze the effects of
real-world post-processing and mistake in human-written texts, discussing their implications to
provide more nuanced and valuable insights.

3.1 Benchmarking detectors

Detectors We employed a variety of SOTA detectors to assess the difficulty of DetectRL. Given that
LLMs in real-world scenarios are often black-box and inaccessible, we exclude watermarking methods
from our evaluation. Our evaluation encompasses prominent zero-shot techniques and supervised
fine-tuned classifiers, including Log-Likelihood [28], Entropy [29], Rank [30], Log-Rank [30],
LRR [31], NPR [31], DetectGPT [27], Fast-DetectGPT [32], Revise-Detect. [33], DNA-GPT [34],
Binoculars [35], RoBERTa Classifier (RoB [36]), and XLM-RoBERTa Classifier5 (X-RoB [37]).

5Please refer to Appendix E.2 for comprehensive detectors specifications.
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For the white-box zero-shot detection method, we employ the GPT-Neo-2.7B [38] as the scoring
model, in line with the methodology proposed in Fast-DetectGPT [32], to detect the text generated
by black-box LLMs. For the black-box zero-shot detection method like Revise-Detect. [33] and
DNA-GPT [34], we use GPT-4o-Mini [39] to perform operations such as text revision and text
continuation. For supervised detectors, all classifiers are trained using the same parameters. For
detailed training parameters settings, please refer to Table 12 and AppendixE.2.

Table 3: The overall leaderboard for LLM-generated text detectors in real-world scenarios ranks
detectors based on their robustness and generalization across various domains, LLMs, and attack
scenarios. It also considers the impact of text length in training-time and test-time phase, as well as
performance against real-world human writing factors.

Leaderboard: LLM-Generated Text Detector in Real-World Scenarios
Tasks Settings → Multi- Multi- Multi- Generalization Time Human

Avg.Domain LLM Attack Domain LLM Attack Train Test Writing
Detectors ↓ AUROC F1 AUROC F1 AUROC F1 F1 F1 F1 F1 F1 AUROC F1

Rob-Base 99.98 99.75 99.93 99.58 99.56 97.66 83.00 91.81 92.37 79.99 74.00 97.34 94.31 93.02
Rob-Large 99.78 98.87 95.16 90.03 99.87 99.03 77.20 82.85 83.96 86.08 85.23 96.68 94.63 91.49
X-Rob-Base 99.92 99.34 99.14 98.17 98.49 96.07 75.97 92.73 90.58 84.25 73.83 93.43 90.29 91.71
X-Rob-Large 99.01 97.44 97.40 93.47 99.31 97.75 76.14 85.89 73.42 86.35 79.83 97.21 94.43 90.59
Binoculars 83.95 78.25 83.30 74.83 85.05 78.53 77.47 74.10 74.70 73.82 74.34 90.68 85.98 79.61
Revise-Detect. 67.24 60.82 66.36 53.72 70.89 57.24 54.50 53.28 50.63 65.71 67.96 83.29 82.16 64.13
Log-Rank 64.43 57.53 63.75 54.18 68.52 55.15 55.10 52.78 51.28 57.44 59.74 88.46 83.85 62.48
LRR 65.47 55.45 64.93 53.01 68.53 57.99 54.61 52.73 57.41 57.09 58.15 85.99 80.56 62.46
Log-Likelihood 63.71 56.36 62.97 53.13 67.97 54.38 53.37 51.77 50.73 57.92 59.28 88.48 83.75 61.83
DNA-GPT 64.92 55.83 64.36 51.09 68.36 53.36 51.51 47.09 41.98 57.63 62.43 87.80 82.77 60.70
Fast-DetectGPT 58.52 48.07 59.58 46.55 60.70 50.63 48.35 36.56 49.47 61.31 55.08 76.03 68.47 55.33
Rank 51.34 44.97 50.33 42.06 57.08 48.83 42.61 41.49 38.84 41.67 46.65 83.86 80.00 51.52
NPR 48.37 41.41 47.27 40.04 53.49 45.22 38.58 38.83 36.10 37.60 42.17 80.03 75.98 48.08
DetectGPT 34.43 21.52 34.93 14.80 36.19 19.15 11.54 13.11 11.84 35.78 34.69 60.86 48.76 29.05
Entropy 46.02 27.40 46.97 34.25 43.75 24.69 25.06 31.07 16.53 13.38 15.99 22.39 16.60 28.01

Main results We assessed the performance of existing detectors on DetectRL, as shown in Table 3.
Higher average scores indicate greater utility of the detector. These results highlight the challenges
posed by our benchmark and explain why current SOTA detectors have not been widely adopted. The
leaderboard results demonstrate that supervised detectors consistently outperform zero-shot detectors,
demonstrating greater effectiveness and robustness. Among the zero-shot methods, Binoculars ranked
highest but scored only 79.61%. The second-best is Revise-Detect., scoring 64.13%, followed by Log-
Rank, LRR, Log-Likelihood, DNA-GPT, and Fast-DetectGPT. Additionally, our analysis highlights
the unreliability of advanced detectors such as DetectGPT and NPR in real-world applications.

Significant Challenges Our benchmarks reveal significant challenges in the current LLM-generated
text detection research. We found that incorporating a mix distribution of domains, LLMs, and attack
types increases the testing pressure of zero-shot methods. For example, in the multi-LLM setting, the
average AUROC of all zero-shot detectors is only 58.61%. This is because data from each LLM spans
various domains and attack methods, leading to substantial distribution differences even within data
from the same LLM. These variations are often overlooked in ideal testing environments, making it
difficult for zero-shot detectors developed based on them to work effectively. Specifically, zero-shot
detectors struggle against powerful LLMs, achieving an average AUROC of only 77.67% on texts
generated via direct prompting, with only Binoculars surpassing a 90% AUROC. The performance of
these detectors declines markedly under well-designed attacks that simulate real-world scenarios, with
average decreases of 1.97% in prompt attacks, 15.67% in paraphrase attacks, 38.43% in perturbation
attacks, and 18.17% in data mixing scenarios. In contrast, supervised methods demonstrate impressive
effectiveness, achieving an average AUROC of 99.40% on data generated through direct prompting
and maintaining robustness against well-designed attacks.

Unexpectedly, recent advancements in LLM-generated text detection, such as DetectGPT [27],
NPR [31], Fast-DetectGPT [32], and DNA-GPT [34], did not perform as expected on our benchmark.
Their performance was even weaker than some traditional zero-shot baselines. Analysis across
various domains and LLMs revealed a general lack of robustness as a potential underlying issue. For
instance, DetectGPT’s performance was notably low, with only 22.15% AUROC in academic writing
(ArXiv) and 12.21% AUROC in news writing (Xsum), though it achieved 58.95% AUROC in creative
writing and 44.43% AUROC in social media (Yelp Review). A similar trend was observed with the

6
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Table 4: The performance of detectors in multi-domain, multi-LLM, and multi-attack assessment.
The shades of blue and red illustrate the performance differences between the zero-shot and the
supervised detectors, respectively. The underlined values represent the best performance.

Metrics → AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Multi-Domain

Domain Settings → - ArXiv XSum Writing Review Avg.

Log-Likelihood - 65.35 57.55 45.68 41.32 68.00 59.38 75.84 67.22 63.7122 56.367
Entropy - 48.39 29.71 67.84 57.23 39.06 20.55 28.82 02.14 46.0253 27.4066
Rank - 57.17 54.62 36.87 22.47 56.26 50.90 55.08 51.90 51.3409 44.97
Log-Rank - 67.01 60.09 46.74 42.60 67.58 57.57 76.40 69.88 64.43 57.5378
LRR - 70.54 61.34 50.09 38.38 64.65 53.09 76.61 68.99 65.47 55.4570
NPR - 53.85 49.65 34.59 18.31 54.96 52.30 50.09 45.39 48.387 41.416
DetectGPT - 22.15 00.00 12.21 00.00 58.95 50.83 44.43 35.25 34.434 21.502
DNA-GPT - 67.41 58.30 64.22 45.09 69.04 58.25 78.17 69.28 69.71 57.723
Revise-Detect. - 70.40 37.51 50.34 46.07 73.24 64.29 75.01 68.71 67.2475 54.1465
Binoculars - 84.03 76.77 77.39 72.18 94.38 79.73 90.00 84.32 86.95 78.75
Fast-DetectGPT - 43.69 24.46 39.19 28.39 74.21 67.84 77.02 71.62 58.03 48.08
Avg. - 59.09 46.36 47.374 37.45 65.48 55.88 66.13 57.70 59.68 49.39

Rob-Base - 100.0 100.0 99.99 99.85 99.99 99.65 99.97 99.50 99.99 99.75
Rob-Large - 99.99 99.90 99.85 98.95 99.54 97.73 99.76 98.90 99.54 98.87
X-Rob-Base - 100.0 100.0 99.97 99.55 99.84 98.76 99.88 99.05 99.92 99.59
X-Rob-Large - 99.98 99.85 99.84 98.95 99.85 98.31 96.40 92.66 99.23 97.19
Avg. - 99.99 99.93 99.91 99.32 99.80 98.61 99.00 97.52 99.67 98.85

Multi-LLM

LLM Settings → - GPT-3.5 Claude PaLM-2 Llama-2 Avg.

Log-Likelihood - 62.89 57.80 43.32 28.10 70.03 60.73 75.65 65.90 62.97 53.13
Entropy - 46.84 23.29 52.25 30.42 45.34 16.56 43.48 66.75 46.97 34.25
Rank - 52.19 49.32 41.68 22.78 50.40 41.74 57.05 54.40 50.33 42.06
Log-Rank - 62.84 56.87 43.32 30.12 70.89 63.09 77.97 66.66 63.75 54.18
LRR - 61.61 52.12 43.30 18.91 71.17 65.51 83.65 75.51 64.93 53.01
NPR - 50.29 43.81 41.64 32.91 44.64 34.77 52.53 48.68 47.27 40.04
DetectGPT - 43.46 26.27 32.86 12.56 26.72 00.00 36.71 20.40 34.93 14.80
DNA-GPT - 61.87 55.04 48.88 25.67 71.48 60.77 75.22 62.89 64.36 51.09
Revise-Detect. - 70.10 62.72 49.87 27.28 69.84 59.03 75.65 65.87 66.36 53.72
Binoculars - 88.14 82.50 55.15 39.35 93.30 88.20 96.64 92.30 83.30 75.58
Fast-DetectGPT - 65.56 59.55 30.01 00.00 65.99 57.58 76.79 69.08 59.58 46.55
Avg. - 60.52 51.75 43.84 24.37 61.80 49.81 68.30 62.58 58.61 47.12

Rob-Base - 99.97 99.70 99.98 99.80 99.94 99.40 99.84 99.45 99.93 99.59
Rob-Large - 99.77 98.86 96.23 92.48 97.93 92.64 86.72 76.17 95.66 90.54
X-Rob-Base - 99.88 99.45 98.26 97.48 98.77 97.19 99.69 98.57 99.15 98.17
X-Rob-Large - 99.55 97.56 91.67 84.24 98.73 94.43 99.66 97.67 97.65 93.73
Avg. - 99.79 98.89 96.53 93.50 98.84 95.91 96.47 92.96 98.09 95.50

Multi Attack

Attack Settings → Direct Prompt Paraph. Perturb Mixing Avg.

Log-Likelihood 89.25 82.09 86.87 78.16 64.55 57.59 35.51 00.78 63.70 53.31 67.97 54.38
Entropy 26.47 00.00 26.18 00.00 48.12 26.01 68.62 68.95 49.37 28.52 43.75 24.69
Rank 83.50 76.27 81.21 72.86 60.60 52.60 08.04 00.00 52.05 42.46 57.08 48.83
Log-Rank 89.25 81.45 86.35 77.51 64.69 59.17 37.71 00.78 64.63 56.86 68.52 55.15
LRR 85.83 77.40 80.80 74.30 63.99 55.20 45.91 29.27 66.12 53.81 68.53 57.99
NPR 77.98 71.61 77.15 70.63 56.94 46.25 06.78 00.00 48.63 37.65 53.49 45.22
DetectGPT 52.84 40.90 51.83 37.98 31.79 16.89 18.21 00.00 26.28 00.00 36.19 19.15
DNA-GPT 88.01 80.78 85.62 77.47 65.61 54.94 40.45 02.73 62.14 50.89 68.77 53.76
Revise-Detect. 86.88 79.61 84.89 76.21 67.26 62.03 43.98 07.56 65.27 54.39 69.26 56.76
Binoculars 94.87 89.73 93.45 88.12 88.34 81.56 76.89 69.34 89.12 83.67 88.53 82.48
Fast-DetectGPT 79.56 72.45 78.43 70.34 70.12 62.89 49.56 41.23 67.23 59.78 68.58 61.34
Avg. 77.67 68.39 75.70 65.78 62.00 52.28 39.24 20.05 59.50 47.39 62.78 50.88

Rob-Base 99.87 99.60 99.78 99.47 99.67 99.12 98.32 97.45 99.12 98.76 99.35 98.88
Rob-Large 98.73 97.83 98.45 97.56 97.89 96.78 96.12 94.67 97.56 96.34 97.75 96.64
X-Rob-Base 99.56 99.12 99.23 99.01 98.89 98.34 98.56 97.89 99.01 98.56 98.85 98.58
X-Rob-Large 99.45 98.67 98.89 97.98 98.23 97.67 97.89 96.34 98.67 97.89 98.63 97.71
Avg. 99.40 98.80 99.09 98.50 98.67 97.98 97.22 96.09 98.34 97.89 98.54 97.85

best zero-shot detector, Binoculars, which performed more than 10% lower in academic writing and
news writing compared to other domains. Additionally, Binoculars showed significantly reduced
effectiveness on text generated by Claude, achieving only 55.15% AUROC, while presenting 88.14%,
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93.30%, and 96.64% AUROC on text generated by GPT-3.5, PaLM-2, and Llama-2, respectively.
These findings suggest that the performance differences of detectors across different domains and
LLMs become significantly more pronounced when subjected to well-designed attacks.

3.2 In-domain Robustness

Effectiveness of zero-shot detectors varies with the stylistic nature of domain data. As shown
in Table 4, our results indicate that texts with a more formal style present greater challenges for
detection. Detectors generally perform better with informal data, such as that from social media, but
their effectiveness decreases markedly in more formal settings like news writing. Interestingly, this
decrease in performance is even more pronounced in advanced detectors like Fast-DetectGPT [32].
Despite this variability, supervised classifiers demonstrate consistent reliability in detection across
various domains. This finding aligns with insights from [40], emphasizing the robustness of supervised
classifiers in diverse textual environments.

Differences in statistical patterns of LLMs pose significant challenges to detectors. As illus-
trated in Table 4, our experiments reveal a notable phenomenon: nearly all zero-shot LLM-generated
text detectors exhibit a significant decline in performance when processing texts generated by Claude.
This suggests that the effectiveness of detectors is influenced by the type of generative model used
to generate the text to be detected, and their performance can deteriorate with varying statistical
patterns. We hypothesize that these differences arise from variations in data, architecture, and training
methods of the models, though verifying this is difficult due to the opaque nature of black-box models.
Moreover, supervised detectors are more affected by the type of generative model than by the domain,
particularly in models with larger sizes. For example, Rob-Large achieved an AUROC of only 86.72%
and an F1 Score of only 76.17% on texts generated by Llama-2, while X-Rob-Large achieved an
AUROC of only 91.67% and an F1 Score of only 82.24% on texts generated by Claude.

Adversarial perturbation attacks represent a significant threat to zero-shot detectors. As
shown in Table 4, our findings indicate that the adversarial perturbation attacks drastically reduce the
effectiveness of zero-shot detectors, reducing their performance to an average AUROC of 38.43%,
which is less than half compared to their performance under paraphrase attacks. Additionally, data
mixing presents a new challenging scenario, resulting in performance levels similar to paraphrase
attacks, with detectors achieving an average AUROC of 59.50%. While prompt attacks, such as
few-shot prompting, can generate higher-quality text more aligned with human preferences, their
impact on zero-shot detectors is minimal. However, enhancing LLM-generated texts through human-
written prompts, such as those used for polishing, continues to pose challenges for detectors (see
Appendix F.1), decreasing their effectiveness by an average of 8.97% AUROC. This finding suggests
that prompt-based methods remain a viable means of compromising detector performance. In
contrast, supervised detectors consistently maintain robust performance across various attack types,
demonstrating their potential for practical applications.

3.3 Generalization of detectors

In real-world applications, there is a significant demand for detectors that can effectively adapt to
various types of text. In this paper, we further investigate this requirement, specifically focusing on
the relationship between the distribution of training and test data for these detectors. We assessed the
generalization of three representative detectors: LRR [31], Fast-DetectGPT [32], and the RoB-Base
Classifier [36]. We discussed their generalization from three perspectives: domain, LLM, and attack.
Notably, we observed phenomena that align with the findings discussed in Section 3.2.

As shown in Table 5, our experimental results indicate that detectors trained on less formal stylistic
domain data, such as creative writing and social media, exhibit stronger generalization. Their
comprehensive performance is around 10% AUROC better than detectors trained on more formal
stylistic domain data, such as academic writing and news writing. The variations in statistical
patterns of generative models significantly impact the generalization of detectors. Detectors trained
on texts generated by models with similar statistical patterns, such as GPT-3.5, PaLM-2, and Llama-2,
generally perform well with each other. However, they struggle with texts generated by Claude. As
discussed in Section 3.2, data with perturbation attacks poses the greatest challenge for generalization.
Taking LRR as an example, the average AUROC for detectors trained on data with direct prompts,
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Table 5: The performance of selected detectors in generalization assessment. The shades of blue and
red illustrate the performance differences between the zero-shot and the supervised detectors.

Detectors → LRR (Zero-shot) Fast-DetectGPT (Zero-shot) Rob-Base (Supervised)

Multi-Domain
Train ↓ Eval → ArXiv XSum Writing Review Avg. ArXiv XSum Writing Review Avg. ArXiv XSum Writing Review Avg.

ArXiv 57.55 40.88 38.44 55.81 48.17 24.46 23.71 59.67 60.17 42.00 100.0 75.90 77.68 70.69 81.06
XSum 57.45 41.32 39.08 55.81 48.41 28.43 28.39 62.99 63.08 45.72 68.43 99.85 71.79 67.17 76.81
Writing 61.14 46.31 59.38 67.98 58.70 34.81 33.60 67.84 68.30 51.13 78.58 72.72 99.65 94.24 86.29
Review 61.49 47.02 57.12 67.22 58.21 40.70 37.66 68.25 71.62 54.55 82.64 84.15 85.10 99.50 87.84

Multi-LLM
Train ↓ Eval → GPT-3.5 PaLM-2 Claude Llama-2 Avg. GPT-3.5 PaLM-2 Claude Llama-2 Avg. GPT-3.5 PaLM-2 Claude Llama-2 Avg.

GPT-3.5 52.12 61.79 24.70 75.34 53.48 59.55 59.56 12.96 69.93 50.50 99.97 70.34 62.90 94.68 81.97
PaLM-2 52.36 65.51 26.23 75.58 54.92 55.77 57.58 08.20 68.43 47.49 99.25 99.40 93.43 99.25 97.83
Claude 45.73 57.66 18.91 72.67 48.74 00.19 00.00 00.00 01.18 00.34 96.83 83.92 99.80 89.77 92.58
Llama-2 52.14 62.23 25.25 75.51 53.78 56.28 57.74 08.65 69.08 47.93 99.45 93.02 87.56 99.45 94.87

Multi-Attack
Train ↓ Eval → Prompt Paraph. Perturb Mixing Avg. Prompt Paraph. Perturb Mixing Avg. Prompt Paraph. Perturb Mixing Avg.

Direct 74.23 58.35 30.69 56.42 54.92 64.01 40.45 41.02 31.81 44.32 95.73 94.91 64.32 89.07 86.00
Prompt 74.30 58.35 30.81 56.42 54.97 64.00 39.94 40.40 31.25 43.89 97.18 94.98 86.18 92.92 92.81
Paraphrase 70.22 55.20 20.25 51.26 49.23 61.54 38.32 36.86 27.90 41.15 93.66 98.26 78.81 89.38 90.02
Perturb 71.81 58.22 29.27 55.19 53.62 64.01 40.45 41.14 31.93 44.38 87.01 91.46 98.66 91.38 92.12
Mixing 71.02 55.77 24.01 53.81 51.15 65.89 46.38 45.78 40.93 49.74 93.46 91.93 95.26 93.64 93.57

prompt attacks, paraphrase attacks, and data mixing, and then tested on data with perturbation attacks,
is only 27.00%. This performance is 45.31%, 30.17%, and 27.62% lower than when tested on data
with prompt attacks, paraphrase attacks, and data mixing, respectively. However, detectors trained on
data with perturbation attacks do not show a significant decline in performance when tested on other
types of attacks. This indicates that perturbation attack data may possess inherent complexities that
are particularly challenging to detect.

3.4 Impact of text length

20 80 140 200 260 320
Text Length

0.0
0.2
0.4
0.6
0.8
1.0

AU
RO

C

(a) Training-Time

20 80 140 200 260 320
Text Length

0.0
0.2
0.4
0.6
0.8
1.0 (b) Test-Time

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Likelihood
Rank

LogRank
LRR

NPR
DetectGPT

DNA-GPT
Revise-Detect.

Binoculars
Fast-DetectGPT

RoB-Base
X-RoB-Base

Figure 3: Impact of text length on AUROC during training-time and test-time.

Shorter training samples for stronger detectors. We assessed the performance of detectors
trained on datasets with varying text lengths, using a test set within a specific pivot length interval
of 160-180 words. The results, as shown in Figure 3 (a), revealed a golden length interval of 60-80
words, where texts consistently demonstrated strong detection performance across all detectors.
However, as the length of the training texts increased, the performance of all zero-shot detectors
gradually declined. This indicates that zero-shot detectors trained on shorter texts might be more
effective than those trained on longer texts. In contrast, supervised detectors maintained consistent
performance both within the golden length interval and in tests involving longer text lengths.

Longer test samples for better zero-shot detection. Similarly, we trained detectors using data from
the pivotal length interval and assessed their performance on test sets with varying text lengths. The
experimental results, shown in Figure 3 (b), reveal that as test text length increased, the performance
of the zero-shot detectors improved steadily. This suggests a positive correlation between zero-
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shot detectors’ performance and test text length. In contrast, supervised methods showed a rapid
performance increase up to the pivotal length interval, followed by a slight decline.

3.5 Impact of real-world human writing scenarios

Table 6: The performance of detectors in real-world human writing assessment. The shades of blue
and red illustrate the performance differences between the zero-shot and the supervised detectors,
respectively. The underlined values represent the best performance.

Settings → Direct Paraphrase Attack Perturbation Attack Data Mixing Avg.
Detectors ↓ AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Zero-shot Detectors

Log-Likelihood 89.25 82.09 76.77 74.28 99.53 97.76 88.40 80.88 88.48 83.75
Entropy 26.47 00.00 27.15 00.00 03.37 00.00 32.58 66.40 22.39 16.60
Rank 83.50 76.27 72.14 74.13 99.63 98.13 80.17 71.48 83.86 80.00
Log-Rank 89.25 81.45 76.78 75.17 99.49 97.57 88.32 81.23 88.46 83.85
LRR 85.83 77.40 76.05 74.46 98.09 94.78 83.99 75.60 85.99 80.56
NPR 77.98 71.61 69.82 70.60 98.35 95.51 73.97 66.22 80.03 75.98
DetectGPT 52.84 40.90 68.45 73.45 87.95 79.74 34.20 00.98 60.86 48.76
DNA-GPT 88.01 80.78 77.19 75.95 98.81 95.83 87.40 76.55 87.85 82.27
Revise-Detect. 86.88 79.61 65.39 73.65 98.96 95.48 85.52 77.37 84.18 81.52
Binoculars 94.75 88.10 80.00 74.76 98.26 94.87 93.80 88.32 91.70 86.51
Fast-DetectGPT 79.56 72.45 77.18 70.13 84.43 74.45 65.23 60.53 76.60 69.39
Avg. 77.67 68.24 69.72 66.96 87.89 84.01 73.96 67.77 77.30 71.67

Supervised Detectors

Rob-Base 99.77 98.10 89.82 80.98 99.99 99.65 99.81 98.51 97.34 94.31
Rob-Large 99.77 98.95 87.01 80.42 99.99 99.95 99.95 99.20 96.68 94.63
X-Rob-Base 98.36 96.20 81.93 75.06 99.96 99.30 93.47 90.62 93.43 90.29
X-Rob-Large 99.79 98.31 89.07 80.32 99.99 99.90 99.82 99.20 97.21 94.43
Avg. 99.42 97.89 86.95 79.19 99.98 99.70 98.26 96.88 96.16 93.41

We explored a critical question in real-world detection: How do human-driven factors impact detector
performance? To investigate this, we simulated various modifications to human-written texts. We
introduced paraphrase attacks to mimic text revisions and incorporated spelling errors through
perturbation attacks. Moreover, we mixed LLM-generated sentences with human-written content to
simulate AI-assisted writing scenarios. Experimental results, as shown in Table 6, indicate that attacks
on human-written texts yield markedly different outcomes compared to those on LLM-generated texts.
Specifically, paraphrasing attacks on human-written texts effectively confused zero-shot detectors,
reducing the AUROC by an average of 7.95%. In contrast, data mixing had a minimal impact on
zero-shot detectors’ performance, with only a slight decline of 3.71% in AUROC. This contrasts
sharply with the significant 18.17% decline in AUROC when human-written texts were mixed with
LLM-generated texts. The resilience of human-written texts to such mixing may be attributed to
their inherent complexity, making it difficult for zero-shot detectors to identify the inclusion of LLM-
generated content. Interestingly, perturbation attacks on human-written texts appeared to enhance the
discernment capabilities of zero-shot detectors, resulting in an average increase of 10.22% in AUROC.
Similar trends were observed with supervised detectors. This suggests that human-written texts may
inherently contain more adversarial features [41], which are utilized by detectors for identification.
Such perturbations can further emphasize these distinctions, leading to improved performance.

4 Conclusion

In this paper, we introduce DetectRL, a novel benchmark designed to evaluate the detection capa-
bilities of detectors against LLM-generated text. DetectRL compiles texts from human sources in
high-risk and abuse-prone domains, utilizes popular and powerful LLMs, employs well-designed at-
tack techniques, and constructs datasets encompassing a diverse range of text lengths. This benchmark
aims to assess the usability of detectors in scenarios that closely resemble real-world applications.
Our experimental findings reveal the primary reasons why existing detectors for LLM-generated texts
struggle in practical applications. Additionally, we engage in an in-depth discussion of the potential
factors influencing detector performance, offering valuable insights into current detection research.
Furthermore, DetectRL provides a data curation framework to facilitate the future development of
LLM-generated text detection technologies. This framework supports the rapid creation of an evolv-
ing, comprehensive, and adversarial benchmark, enabling continuous adaptation and improvement of
detectors in the ongoing cat-and-mouse game of LLM-generated text detection.
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A Related work

A.1 LLM-generated text and risk

With the expansion of model size [42] and the development of efficient preference alignment meth-
ods [43, 44], LLMs have emerged with powerful capabilities for text understanding and generation
[45, 46]. The text produced by the current LLMs closely resembles the quality of human-written text,
particularly in terms of coherence, fluency, and grammatical accuracy, making it difficult for humans
to distinguish between the two [47]. The release of ChatGPT has propelled human society into the
era of LLMs, with these models finding widespread application across various aspects of daily life,
such as generating advertising copy [48], writing news articles [49], storytelling [50], and coding
[51]. They are also significantly influencing various fields and industries, including education [52],
law [53], and medicine [54], gaining broad acceptance among people.

However, the use of LLMs has raised several concerns. Recent research by [4] highlights significant
challenges and potential risks associated with LLM-generated text from five perspectives: regulatory
oversight related to artificial intelligence and copyright [55], erosion of user trust in internet content,
homogenization of generated text that could impede LLM progress [56], challenges posed to education
and academia by LLM misuse [57], and the formation of information echo chambers in society.

A.2 LLM-generated text detection

Given the potential misuse of LLMs, it is crucial to develop detectors that can effectively identify
LLM-generated text. These detectors can help minimize the threats posed by misuse, thereby
promoting the trustworthy AI applications in the era of LLMs [58, 59]. Existing LLM-generated text
detection technologies [4, 60] mainly includes watermarking technology, statistics-based methods,
neural-based detectors and human-assisted methods. Despite the impressive progress in LLM-
generated text detection task, [23, 61] point out that these detectors become unreliable when under
real-world scenarios and well-designed attacks. Building more effective and robust detectors remains
a significant challenge.

A.3 Detection benchmark

Previous work has already dedicated significant effort to the construction of benchmarks for LLM-
generated text detection, mainly encompassing early deepfake research such as the TweepFake
dataset [62] and the GROVER Dataset [63], as well as prior work on detecting LLM-generated texts
like the GPT-2 Output Dataset6 and TuringBench [8]. HC3 [47] is one of the recent impressive
datasets, containing ChatGPT-generated text data in both English and Chinese, covering multi-domain
and multi-lingual evaluation. Other benchmarks, such as MGTBench [9], ArguGPT [64], and the
MAGE [11], also consider texts generated by various LLMs. M4 [65] is a comprehensive dataset
recently released, covering multi-domain, multi-lingual, and multi-generator evaluation scenarios.

However, these benchmarks still mainly focused on ideal detection settings, such as using some
open-source language models with limited performance and simple text generation settings, while
they lack simulations and explorations of real-world application scenarios, which has been explicitly
highlighted in [4]. Our work aims to bridge this gap by offering a benchmark for detecting LLM-
generated texts in a form more adapted to real-world scenarios, primarily including high-risk and
abuse-prone domain, the use of more powerful and commonly employed LLMs, well-designed attack
methods, varied text lengths for training and testing, and factors related to real-world human writing.

B Limitations

Considering the rapid innovation within the NLP community, we acknowledge that our benchmark’s
temporal relevance could be a potential limitation. This is due to the fast-paced development of
LLMs and the emergence of new application scenarios and challenges. From the perspective of
LLM development, new LLMs are being created at an astonishing rate and will continue to impact
existing detectors, while our benchmark only examines the detectors’ ability to discriminate against
the advanced and popular LLMs currently available. Regarding application scenarios and challenges,

6https://github.com/openai/gpt-2-output-dataset
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newly designed attack methods, the requirement for increasingly fine-grained detection, and the
ever-expanding demands of application domains place progressively higher demands on existing
detectors. Our benchmark setup only examines the current major demands and does not encompass
the full spectrum of challenges, including those that may arise in the future.

Nonetheless, we open-source our benchmark framework and encourage researchers to build upon it.
By using our framework, researchers can quickly create more applicable and demand-specific test
data to evaluate detector performance, ensuring the benchmark remains relevant as the field evolves.

C Ethics statement

We developed DetectRL by collecting publicly available human-written texts in high-risk and abuse-
pron domains, generating similar texts using advanced and popular LLMs, designing and applying
various attack methods for data augmentation. The release of DetectRL aims to advance research on
detecting LLM-generated texts, enhancing their robustness and applicability of detectors in real-world
scenarios. However, while promoting this research, we have also considered the potential for misuse.
By making our dataset construction framework publicly available, there’s a possibility that our
well-designed attack methodologies could be used to develop defenses that might undermine existing
detection systems.

Despite this risk, we believe that our work will significantly contribute to the development of
more robust and applicable detectors for LLM-generated text. These detectors can be continuously
improved and employed to enhance LLM-generated text applications in the era of LLMs, all while
participating in the ongoing cat-and-mouse game with evolving attack methods.

Additionally, although we have manually reviewed most of the data, there remains a risk that the data
may still contain personally identifiable information or offensive content. Therefore, please ensure
that our data is used solely for academic purposes and exercise caution.

D Data collection

D.1 Human-written datasets

The human-written texts we utilized were sourced from domains where real-world applications of
LLMs present higher risks. We selected Arxiv Abstracts to represent academic writing, Xsum for
news writing, Writing Prompts for creative writing, and Yelp Reviews for social media interactions.
The specific details of these datasets are as follows:

ArXiv Abstracts The ArxivPapers dataset7 is an unlabelled collection of over 104K papers related
to machine learning published on arXiv.org between 2007 and 2020. The dataset includes around
94K papers (with available LaTeX source code) organized into a structured format comprising titles,
abstracts, sections, paragraphs, and references.

XSum The Extreme Summarization dataset serves as a benchmark for evaluating abstractive single-
document summarization systems. This collection includes 226,711 news articles sourced from BBC
reports between 2010 and 2017, covering a diverse range of topics such as news, politics, sports,
weather, business, technology, science, health, family, education, entertainment, and the arts [17].

Writing Prompts The Writing Prompts dataset is a dataset focused on the art of story generation,
comprising 300,000 human-written stories, each paired with a unique writing prompt from an online
community. This extensive collection is designed to support hierarchical story generation, a process
that starts with creating a story premise and evolves into a complete narrative [18].

Yelp Reviews The Yelp Reviews Polarity dataset originates from the Yelp Dataset Challenge
2015,8 featuring reviews posted on Yelp. Refined by [19] for text classification research, the dataset
categorizes reviews with 1 and 2 stars as negative (class 1) and those with 3 and 4 stars as positive

7https://www.kaggle.com/datasets/spsayakpaul/arxiv-paper-abstracts/data
8http://www.yelp.com/dataset_challenge
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(class 2), providing a balanced approach to sentiment analysis. It includes a total of 560,000 training
samples and 38,000 testing samples.

D.2 Generative models and hyper-parameters

The generative models we selected are powerful LLMs commonly used in daily life. Table 7 lists
the model paths or API services of these LLMs. The temperature for all models is set to the default
parameter of 1, promoting the generation of creative and unpredictable text. The specific details of
these LLMs are as follows:

Table 7: Details of the generative models that is used to produce LLM-generated text.

Generative Model Model Path / API Service Hyper-parameters

GPT-3.5-turbo OpenAI/gpt-3.5-turbo temperature=1
PaLM-2-bison Google/chat-bison@002 temperature=1
Claude-instant Anthropic/claude-instant-1.2 temperature=1
Llama-2-70b meta-llama/Llama-2-70b-chat-hf temperature=1

GPT-3.5-turbo GPT-3.5-turbo [66], developed by OpenAI, is a variant of the Generative Pre-
trained Transformer (GPT) model, specifically tailored for generating human-like text based on the
input it receives. This model has been trained on a diverse range of internet text, enabling it to
understand and produce responses across a vast array of topics and styles.

PaLM-2-bison PaLM-2-bison [14] represents the latest advancement in Google’s LLMs technology,
building upon the foundation of PaLM [67]. This model showcases exceptional capabilities in
advanced reasoning tasks such as code interpretation and mathematical problem-solving, classification
and question-answering, adept translation, and multilingual communication, as well as in generating
natural language with improved proficiency over previous models.

Claude-instant Claude-instant [15] represents a significant leap forward in the realm of AI assis-
tants, developed from Anthropic’s rigorous research into crafting AI systems that are helpful, honest,
and harmless. Designed to accommodate a wide array of use cases, Claude excels in summarization,
search functionalities, creative and collaborative writing, question answering, and coding, among
other tasks.

Llama-2-70b Llama-2-70b is a SOTA generative open-source LLMs developed by Meta, part of
the broader Llama 2 collection [42]. This model outperforms numerous open-source chat models in
benchmark evaluations and equates to the leading closed-source models like ChatGPT and PaLM in
terms of helpfulness and safety.

D.3 Data generation settings

All text generation tasks were conducted through chat with LLMs. Specifically, for academic writing
abstracts, we provided the article’s title to the LLMs and asked them to generate an abstract based on
the title; for news articles, we provided the summary of the article and asked the LLMs to generate
the complete news article based on the summary; for creative writing, we provided writing prompts
to the LLMs and requested that they engage in creative storytelling based on these prompts. Social
media was the simplest task, as the LLMs would continue writing based on the first sentence of the
social commentary text. Below, we provide the generation instructions for texts in different domains:

D.3.1 Academic writing� �
[

{’role’: ’user’, ’content ’: ’Given the academic article title , write
an academic article abstract with <sentences num > sentences :\n academic
article title: <prefix > \n academic article abstract:’},
]� �

1: Direct prompt for academic writing
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The <sentences num> refers to the sentences length corresponding to the human-written sample, and
<prefix> is the specific article title. For example, it could be like “Calculation of prompt diphoton
production cross sections at Tevatron and LHC energies”, and the response is supposed to write an
academic abstract based on the sentences length and article title of the human-written sample.

D.3.2 News writing� �
[

{’role’: ’user’, ’content ’: ’Given the news article summary , write a
news article with <sentences num > sentences :\n news article summary: <
prefix > \n news article:’},
]� �

2: Direct prompt for news writing

The <sentences num> refers to the sentences length corresponding to the human-written sample, and
<prefix> is the specific news article summary. For example, it could be like “A former Lincolnshire
Police officer carried out a series of sex attacks on boys, a jury at Lincoln Crown Court was told.”,
and the response is supposed to write a news article based on the sentences length and the news article
summary of the human-written sample.

D.3.3 Creative writing� �
[

{’role’: ’user’, ’content ’: ’Given the writing prompt , write a story
with <sentences num > sentences: \n writing prompt: <prefix > \n story:’},
]� �

3: Direct prompt for creative writing

The <sentences num> refers to the sentences length corresponding to the human-written sample, and
<prefix> is the specific writing prompt. For example, it could be like “Through Iron And Flame”, and
the response is supposed to write a story based on the sentences length and the writing prompt of the
human-written sample.

D.3.4 Social media� �
[

{’role’: ’user’, ’content ’: ’Given the review\’s first sentence ,
please help to continue the review with <sentences num > sentences :\n
review ’s first sentence: <prefix > \n continued review:’},
]� �

4: Direct prompt for social media

The <sentences num> refers to the sentences length corresponding to the human-written sample,
and <prefix> is the specific writing prompt. For example, it could be like “I don’t know what Dr.
Goldberg was like before moving to Arizona, but let me tell you, STAY AWAY from this doctor and
this office.”, and the response is supposed to write the continued review based on the sentences length
and the first sentence of the human-written sample.

D.4 Data attacks settings

D.4.1 Prompt attacks

Prompt attacks are designed to use carefully crafted prompts to guide LLMs to generate text that aligns
more closely with human writing styles. The Prompt Attacks we use include Few-Shot Prompt [21]
and ICO Prompt (part of SICO Prompt) [22]. Few-Shot Prompting involves presenting LLMs with a
few human-written examples to enhance alignment with human writing styles. The SICO Prompt
introduces a novel approach called Substitution-based In-Context Example Optimization (SICO),
which automatically constructs prompts to evade detection, as proposed by [22]. It operates through a
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Table 8: Data attacks settings.
Attacks Typts Sub Types Methods

Direct Prompt Direct Prompt Prompt

Prompt Attacks Few-Shot Prompt Prompt
ICO Prompt Prompt

Paraphrase Attacks
DIPPER Paraphrase DIPPER Paraphraser
Polish Using LLMs Prompt
Back Translation Google Translation API

Perturbation Attacks
Character-Level Perturbation TextFooler
Word-Level Perturbation DeepBugWord
Sentence-Level Perturbation TextBugger

Data Mixing Multi-LLMs Mixing Sentence Mixing
LLM-Centered Mixing Sentence Mixing

two-stage prompting process. We specifically use the ICO (In-Context Example Optimization) aspect
of SICO, excluding the substitution process to prevent text perturbations. We provide examples of
Few-Shot Prompting and ICO Prompting for academic writing tasks as fellow:� �
[

{’role’: ’user’, ’content ’: ’<in content learning examples > \n Given
the academic aticle title , write an academic aticle with <{sentences num >
sentences: \n academic aticle title: <prefix >: \n academic aticle:’},

]� �
5: Few-Shot Prompt

The <In-content learning examples> refer to contextual examples retrieved for LLMs to learn from.
We set the number of examples to three, using the BM25 retrieval algorithm. Each example includes
an academic article title and a corresponding article pair. The <sentences num> refers to the sentences
length of the corresponding human-written sample, the <prefix> is the specific article title, and the
task is to write an academic article abstract based on the sentence length and article title of the
human-written sample.� �
[

{’role’: ’user’, ’content ’: ’Here are the writings from AI and human:
\n <in-content learning examples > \n Compare and give the key distinct

feature (specifically vocabulary , sentence structure) of human\’s
writings (do not use examples):’},

{’role’: ’bot’, ’content ’: ’<step1 response >’},
{’role’: ’user’, ’content ’: ’Based on the description , given the

academic article title , write an academic article with <sentences num >
sentences in human style writings: \n academic article title: <prefix > \n
human:’},

]� �
6: ICO Prompt

Similar to Few-Shot Prompt, the <in - content learning examples > in the ICO Prompt refer to context
examples retrieved for the LLM to learn from. We set the number of examples to 3, using the BM25
retrieval algorithm. Each example consists of text generated by an LLM and text written by a human.
<step1 response> refers to the answer from the first round of questioning, where the model extracts
key distinct features of human writings. The <sentences num> refers to the word length of the
corresponding human writing sample, and <prefix> is the specific article title.

D.4.2 Paraphrase attacks

Paraphrase attacks involve rewriting text to preserve its original meaning. We utilize various tech-
niques, including the DIPPER paraphrasing tool [23], Back-translation, and Polishing with LLMs.
The Discourse Paraphraser (DIPPER), as described by [23], is an advanced 11-billion parameter
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model designed for generating paraphrases by considering context and managing lexical diversity
and content order. Inspired by real-world applications, we implement machine translation for para-
phrasing through back-translation. Specifically, we use the Google Translate API9 to translate each
LLM-generated sample from English to Chinese and then back to English. To ensure that the text
maintains good semantic consistency before and after Back-translation, we use BERTScore [68], an
automatic evaluation metric that assesses translation quality from a semantic perspective. Polishing
with LLMs is a widely used paraphrasing method in the era of LLMs, typically initiated via prompts.
Below, we provide an example of polishing with LLMs for academic writing tasks:� �
[

{’role’: ’user’, ’content ’: ’Given the academic article abstract ,
polish the writing to meet the review style , improve the spelling ,
grammar , clarity , concision and overall readability: \n academic article
abstract: <prefix >’},
]� �

7: Polish Prompt

The <prefix> is the specific article abstract, and the response is supposed to polish the provided
academic article abstract.

Table 9: Datasets Statistics. FP stands for Few-Shot Prompt, IP stands for ICO Prompt; DP represents
DIPPER paraphrase, PP represents Polishing with LLMs, BP represents Back-translation paraphrase;
CP stands for Character-Level perturbation, WP stands for Word-Level perturbation, SP stands for
Sentence-Level perturbation; MM represents Multi-LLMs Mixing, LM represents LLM-Centered
Mixing.

Domains Channel Direct Prompt Attacks Paraphrase Attacks Perturbation Attacks Data Mixing Total
&Datasets FP IP DP PP BP CP WP SP MM LM

Arxiv Abstracts Human 2,800 - - 2,800 2,800 2,800 2,800 2,800 2,800 - 2,800 25,200
GPT-3.5-turbo 700 700 700 700 700 700 700 700 700 700 700 8,400
Claude-instant 700 700 700 700 700 700 700 700 700 700 700 8,400
PaLM-2-bison 700 700 700 700 700 700 700 700 700 700 700 8,400
Llama-2-70b 700 700 700 700 700 700 700 700 700 700 700 8,400

XSum Human 2,800 - - 2,800 2,800 2,800 2,800 2,800 2,800 - 2,800 25,200
GPT-3.5-turbo 700 700 700 700 700 700 700 700 700 700 700 8,400
Claude-instant 700 700 700 700 700 700 700 700 700 700 700 8,400
PaLM-2-bison 700 700 700 700 700 700 700 700 700 700 700 8,400
Llama-2-70b 700 700 700 700 700 700 700 700 700 700 700 8,400

Writing Prompts Human 2,800 - - 2,800 2,800 2,800 2,800 2,800 2,800 - 2,800 25,200
GPT-3.5-turbo 700 700 700 700 700 700 700 700 700 700 700 8,400
Claude-instant 700 700 700 700 700 700 700 700 700 700 700 8,400
PaLM-2-bison 700 700 700 700 700 700 700 700 700 700 700 8,400
Llama-2-70b 700 700 700 700 700 700 700 700 700 700 700 8,400

Yelp Reviews Human 2,800 - - 2,800 2,800 2,800 2,800 2,800 2,800 - 2,800 25,200
GPT-3.5-turbo 700 700 700 700 700 700 700 700 700 700 700 8,400
Claude-instant 700 700 700 700 700 700 700 700 700 700 700 8,400
PaLM-2-bison 700 700 700 700 700 700 700 700 700 700 700 8,400
Llama-2-70b 700 700 700 700 700 700 700 700 700 700 700 8,400

Totall - 22,400 11,200 11,200 22,400 22,400 22,400 22,400 22,400 22,400 11,200 22,400 235,200

D.4.3 Perturbation attacks

Perturbation attacks primarily focus on adversarial perturbations on the text directly generated by
LLMs, effectively simulating post-processing of LLM-generated text by humans and common writing
errorslike spelling mistakes in real life. Our approach employs adversarial perturbation methods
include TextFooler [25], DeepWordBug [24], and TextBugger [24], which correspond to word-level,
character-level, and sentence-level adversarial perturbations, respectively. DeepWordBug [24] is
a black-box perturbation method that can efficiently generate character-level text perturbations
with the goal of minimizing the edit distance of the perturbation. TextFooler [25] is a text-based
adversarial method that uses synonyms to replace words in a sentence that are vulnerable to attacks
while maintaining good grammatical correctness and semantic coherence. TextBugger [24] creates
adversarial texts suitable for real-world applications, ensuring that the adversarial samples remain
visually and semantically consistent with the originals, and considers both character and word-level
perturbations. All perturbation attacks are implemented using the TextAttacks [26] framework.

9https://translate.google.com/
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D.4.4 Data mixing

Data mixing is a common real-world scenario. Our data mixing methods include a mixing of texts
generated by various LLMs (Multi-LLMs Mixing) and texts centered around LLM-generated text
with a mixing of human-written text (LLM-Centered Mixing). The Multi-LLMs Mixing refers to a
single text composed of sentences from different generative models. LLM-Centered Mixing involve
replacing one quarter of the sentences in an LLM-generated text with human-written text at random.
To facilitate this, we ensured that both human-written and LLM-generated texts contained at least
four sentences during collection, providing a solid foundation for our data mixing process.

For Multi-LLMs Mixing, we sample and recombine sentences from texts generated by four different
LLMs, aligning with the length of human-written texts to create a new sample. Similarly, for LLM-
Centered Mixing, one-quarter of the sentences in the LLM-generated text are randomly replaced with
sentences from the corresponding human-written text. This approach presents a more challenging
scenario, as the data-mixed samples often lack coherent semantics.

D.5 Datasets statistics

The statistics for the curated datasets are presented in Table 9. The datasets include 100,800
human-written samples, consisting of 11,200 raw samples and 89,600 that have undergone attack
manipulations. Additionally, there are 134,400 samples generated by LLMs, categorized as follows:
11,200 with direct prompt, 22,400 with prompt attacks, 33,600 with paraphrase attacks, 33,600 with
perturbation attacks, and 22,400 involving data mixing.

D.6 Textual features analysis

In this section, we analyze the textual features of DetectRL samples to provide additional potentially
valuable insights.
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Figure 4: Text length distribution of DetectRL.

Text length We performed a statistical analysis of text length distribution in DetectRL, as shown in
Figure 4. Compared to academic writing and social media texts, news writing and creative writing
exhibit notably longer average lengths. The distributions for texts generated by Claude-instant,
PaLM-2-bison, and Llama-2-70b are similar, whereas GPT-3.5-turbo tends to produce longer texts.
Additionally, we observed that samples subjected to attack manipulation show almost no significant
difference in length, except in the data mixing setup.
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Figure 5: N-gram distribution of DetectRL.
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N-grams We performed statistical analysis of the n-gram distribution in DetectRL, focusing on
unigrams, bigrams, and trigrams. The results are presented in Figure 5. Among the four domains,
creative writing exhibits the greatest variety of unigrams, bigrams, and trigrams, indicating a higher
n-gram diversity. In contrast, academic writing shows the lowest diversity. Among the different
LLMs, GPT-3.5-turbo demonstrates the most extensive vocabulary usage, followed by Claude-instant,
Llama-2-70b, and PaLM-2-bison, in order of decreasing n-gram richness. Additionally, samples
with perturbation attack show the highest n-gram diversity due to the substitution of characters
and vocabulary. Notably, in samples involving data mixing, n-gram richness is significantly lower,
approximately half that of other sample types.
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Figure 6: Readability distribution of DetectRL.

Readability We carried out a statistical analysis of the readability distribution within DetectRL,
primarily by calculating the Flesch Reading Ease Score (FRES) for each sample. The FRES [69]
assesses reading difficulty by considering word length and sentence length. The formula used to
calculate this score is as follows:

FRES = 206.835− 1.015×
(

Total Words
Total Sentences

)
−84.6×

(
Total Syllables

Total Words

) (1)

Scores range from 0 to 100, with higher scores indicating better readability. The results revealed
significant differences in text readability across various domains. Among all categories, creative
writing texts exhibit the highest readability, followed by social media and news writing texts, while
academic writing texts are the least readable. When comparing texts generated by different LLMs,
we observed that the texts produced by Claude-instant, PaLM-2-bison, and Llama-2-70b show a high
degree of consistency in readability. However, texts generated by GPT-3.5-turbo show a noticeable
readability gap compared to the others. Similarly, texts generated from direct prompts, prompt
attacks, paraphrase attacks, and perturbation attacks display a comparable distribution of readability
scores. Yet, samples processed through data mixing show lower average readability, likely due to the
inclusion of human-written texts.
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Figure 7: Lexical diversity distribution of DetectRL.

Lexical diversity We conducted a statistical analysis of the Lexical Diversity Score (LDS) within
DetectRL, using the following formula to calculate this feature:

25

100393 https://doi.org/10.52202/079017-3186



LDS =
Number of Unique Word Types

Total Number of Words
(2)

Upon examining different dimensions within DetectRL, we observed a unique phenomenon in
Figure 7: there is almost no significant variation in the distribution of lexical diversity across domains
and attacks. This contrasts sharply with the other three features we analyzed. Additionally, we
noted that although GPT-3.5-turbo generated samples exhibited slight differences compared to those
samples generated by various other LLMs, they generally clustered around a lexical diversity score
of 0.7.

E Experiment settings

E.1 Black-box detection task settings

The focus of our research is to develop a detector assessment benchmark that closely aligns with real-
world usage scenarios. A crucial prerequisite is black-box detection, as texts encountered in reality
often originate from unknown sources. Therefore, we designed all our experiments as black-box text
detection tasks. In this context, all detectors assessed does not have access to the source model used
for text generation.

The setting of the black-box detection task significantly distinguishes our experiments from traditional
LLM-generated text detection experiments. In this paper, we follow the experimental settings of
[32] and use GPT-Neo-2.7B [38] as a surrogate model for the traditional zero-shot method. For the
supervised method, we train the detector using data specific to each task setting. In the generalization
experiment, we assess the detector’s ability to recognize and handle text generated by different
domains and models, testing its performance on data from other domains and generative models.

E.2 Detectors settings

Table 10: Performance of prompt attacks and data mixing.

Settings → Few-Shot Prompt ICO Prompt Muti-models LLM-centered
Detectors ↓ Pre Rec F1 AUROC Pre Rec F1 AUROC Pre Rec F1 AUROC Pre Rec F1 AUROC

Zero-shot Detectors
Log-Likelihood 90.60 71.72 80.06 89.50 89.09 65.67 75.61 85.10 86.57 77.40 81.73 89.94 74.83 56.64 64.48 74.92
Entropy 00.00 00.00 00.00 23.38 50.02 100.0 66.68 28.88 00.00 00.00 00.00 44.13 50.02 100.0 66.68 37.36
Rank 82.50 69.24 75.29 84.16 78.65 65.07 71.22 80.17 75.84 78.20 77.00 84.05 60.78 50.89 55.39 61.06
Log-Rank 84.59 77.87 81.09 89.10 91.45 63.69 75.08 84.65 85.32 79.10 82.09 82.81 74.38 57.34 64.76 74.62
LRR 83.43 70.93 76.67 82.74 91.10 57.93 70.83 80.31 85.22 67.50 75.33 85.19 79.27 45.53 57.84 71.33
NPR 76.55 71.00 73.67 79.76 74.50 63.85 68.77 76.41 77.00 67.50 71.94 79.46 58.90 42.82 49.59 55.60
DetectGPT 64.94 25.02 36.12 48.16 81.38 30.38 44.25 56.65 69.95 29.12 41.13 52.97 61.83 12.73 21.12 46.32
DNA-GPT 81.03 77.97 79.47 87.50 79.02 72.12 75.41 84.66 78.13 84.00 80.96 87.93 62.48 65.27 63.85 66.30
Revise-Detect. 82.48 83.13 82.80 90.13 80.61 67.65 73.57 81.38 78.26 81.00 79.60 87.40 72.71 63.19 67.62 76.35
Binoculars 96.44 75.29 84.56 92.09 96.92 75.00 84.56 88.88 95.20 87.40 91.13 95.57 87.48 73.51 79.89 86.15
Fast-DetectGPT 82.35 47.22 60.02 68.87 84.11 53.57 65.45 73.28 82.21 60.10 69.43 77.14 74.74 29.36 42.16 59.30
Avg. 74.99 60.85 66.34 75.94 81.53 64.99 70.13 74.57 73.97 64.66 68.21 78.78 68.85 54.29 57.58 64.48

Supervised Detectors
Rob-Base 98.29 97.02 97.65 99.38 97.45 98.71 98.07 99.75 98.00 98.40 98.20 99.81 97.07 95.53 96.30 96.32
Rob-Large 99.00 98.51 98.75 99.88 99.20 99.20 99.20 99.93 99.00 99.90 99.45 99.45 96.04 98.80 97.40 97.37
X-Rob-Base 94.00 94.84 94.41 98.23 96.46 97.42 96.93 96.92 90.96 96.60 93.69 97.56 90.98 90.07 90.52 96.01
X-Rob-Large 98.49 97.51 98.00 98.01 98.03 98.80 98.41 98.41 99.59 98.90 99.24 99.25 97.54 98.71 98.12 99.64
Avg. 97.45 96.97 97.20 98.88 97.78 98.53 98.15 98.75 96.89 98.45 97.65 99.02 95.41 95.78 95.58 97.33

In this section, we introduce the different detector setups we used. For zero-shot detectors, clas-
sification thresholds are statistically derived by accessing the logits and their variants from the
white-box model, utilizing the GPT-Neo-2.7B [38] to align with Fast-DetectGPT [32] experiments.
Perturbation-based zero-shot methods, such as NPR [31] and DetectGPT [27], use T5-small [70] for
sample perturbation. Additionally, Fast-DetectGPT employs GPT-J-6B [71] as the reference model,
following the optimal settings reported by [32]. For black-box zero-shot detection methods like
Revise-Detect [33] and DNA-GPT [34], we use GPT-4o-Mini [39] for operations such as text revision
and continuation. For training supervised detectors, we use the parameters detailed in Table 12.

All supervised detectors were trained on a single NVIDIA GeForce RTX 3090 24GB, and all zero-shot
detectors were run on a single NVIDIA A100 80GB.
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Table 11: Performance of paraphrase attacks.

Settings → DIPPER Paraphrase Polish using LLMs Back Translation
Detectors ↓ Pre Rec F1 AUROC Pre Rec F1 AUROC Pre Rec F1 AUROC

Zero-shot Detectors
Log-Likelihood 85.60 80.85 83.16 91.30 77.73 64.78 70.67 78.61 100.0 00.29 00.59 22.03
Entropy 00.00 00.00 00.00 32.42 50.02 100.0 66.68 32.66 74.36 72.81 73.58 79.77
Rank 77.91 73.51 75.65 82.91 69.43 63.09 66.11 72.38 100.0 00.29 00.59 24.77
Log-Rank 85.18 82.14 83.63 91.47 77.91 62.30 69.23 77.40 85.71 00.59 01.18 23.52
LRR 86.21 77.57 81.67 88.94 76.98 51.09 61.41 70.33 62.96 05.05 09.36 31.15
NPR 75.54 65.87 70.37 77.20 66.70 59.02 62.63 68.37 75.00 00.29 00.59 24.47
DetectGPT 66.23 20.70 31.54 45.90 72.72 19.84 31.17 47.83 00.00 00.00 00.00 03.81
DNA-GPT 82.78 76.78 79.67 88.33 73.26 66.07 69.48 77.33 100.0 01.68 03.31 28.77
Revise-Detect. 85.68 89.08 87.35 94.03 81.11 69.44 74.82 84.17 00.00 00.00 00.00 20.41
Binoculars 95.68 88.09 91.73 96.58 95.68 70.43 81.14 85.04 65.58 40.27 49.90 58.22
Fast-DetectGPT 72.92 63.59 67.93 75.06 78.42 37.50 50.73 61.68 00.00 00.00 00.00 17.77
Avg. 73.97 65.28 68.42 78.55 74.54 60.32 64.00 68.70 60.32 10.99 12.64 30.42

Supervised Detectors
Rob-Base 99.00 99.00 99.00 99.90 99.30 98.90 99.10 99.95 100.0 99.40 99.70 99.97
Rob-Large 99.70 99.40 99.55 99.91 98.62 99.50 99.06 99.89 99.90 99.80 99.85 99.99
X-Rob-Base 97.34 98.31 97.82 99.56 94.15 97.51 95.80 98.69 97.24 97.91 97.57 99.13
X-Rob-Large 98.52 99.60 99.06 99.77 98.33 99.30 98.81 99.93 100.0 99.50 99.75 99.75
Avg. 98.64 99.08 98.86 99.78 97.60 98.80 98.19 99.61 99.28 99.15 99.22 99.71

Table 12: Parameters for supervised detectors training.
Parameters Settings

Learning Rate 1e-6
Batch Size 8
Epochs 3
Seed 2023
GPU Envs NVIDIA GeForce RTX 3090 24GB

We use Youden’s J statistic to determine the optimal threshold for the detectors. This approach
achieves the best balance between the TPR and the FPR, thereby maximizing the overall correct
classification rate.

Log-Likelihood [30] A simple zero-shot method employs a language model to calculate the log-
probability for each token within a text. A higher average log-likelihood indicates a greater likelihood
that the text is generated by an LLM.

Entropy [29] A zero-shot method relies on entropy to assess the randomness of text in order to
identify text generated by LLMs. Human-written text typically shows more unpredictable variations.
Consequently, text with lower entropy is more likely to have been produced by an LLM.

Rank [30] A zero-shot method assigns a rank score to each token based on the previous context.
By calculating the average score, a higher average rank score suggests a greater likelihood that the
text is generated by an LLM.

Log-Rank [30] An enhanced version of the Rank-based method. It uses a language model to
calculate the logarithmic rank score of each word in the text. By calculating the average score, a
higher average log-rank score suggests a greater likelihood that the text is generated by an LLM.

LRR [31] The Log-Likelihood Log-Rank Ratio (LRR), an enhanced zero-shot method that ef-
fectively integrates Log-Likelihood and Log-Rank. Text with a higher LRR is more likely to be
generated by an LLM.

NPR [31] The Normalized Perturbed Log-Rank (NPR) is a zero-shot method that identifies differ-
ences by comparing the Log-Rank scores of perturbed human-written text with those generated by
LLMs. Text with a higher NPR is more likely to be generated by an LLM.
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DetectGPT [27] A zero-shot method for detection using probabilistic curvature. It utilizes random
perturbations of paragraphs from a general pre-trained language model and discriminates LLM-
generated text through the statistical curvature threshold of log probabilities.

DNA-GPT [34] A zeo-shot detection method that utilizes N-gram analysis or probability divergence
in a white-box setting to compare the differences between the truncated original text and the text
completed by a language model. A higher score suggests a greater likelihood that the text was
generated by an LLM.

Revise-Detect. [33] A zero-shot black-box method based on the intuition that ChatGPT makes
fewer edits to text generated by LLMs compared to human-written text. If the similarity between the
text and its ChatGPT-revised version is higher, the text is more likely to be generated by an LLM.

Binoculars [35] A zero-shot detection method employs a pair of LLMs to calculate the ratio of
perplexity to cross-perplexity. This evaluates how one model reacts to the next token predictions of
another model. A lower score suggests that the text is more likely generated by an LLM.

Fast-DetectGPT [32] An optimized zero-shot detector that replaces the perturbation step of De-
tectGPT with a more efficient sampling step. We chose the optimal settings reported by the authors,
using GPT-Neo-2.7b as the scoring model and GPT-J-6b [71] as the reference model.

RoBERTa Classifier [36] A popular and competitive detector method. Recognize LLM generated
text by fine-tuning the RoBERTa classifier on large amounts of labeled text.

XLM-RoBERTa Classifier [37] A multi-lingual version of RoBERTa. We use XLM-RoBERTa-
Base and XLM-RoBERTa-Large to build detectors to explore the potential of multilingual supervised
methods.

F Additional experiment results

Table 13: Performance of perturbation attacks.

Settings → Char-Level Perturbation Word-Level Perturbation Sentence-Level Perturbation
Detectors ↓ Pre Rec F1 AUROC Pre Rec F1 AUROC Pre Rec F1 AUROC

Zero-shot Detectors

Log-Likelihood 60.00 00.29 00.59 28.33 80.00 00.79 01.57 39.35 75.00 00.59 01.18 39.25
Entropy 73.65 70.73 72.16 77.12 60.30 69.94 64.76 62.70 61.51 72.61 66.60 65.28
Rank 00.00 00.00 00.00 09.68 00.00 00.00 00.00 04.38 00.00 00.00 00.00 10.42
Log-Rank 66.66 00.59 01.17 28.96 78.57 01.09 02.15 42.79 72.72 00.79 01.57 41.49
LRR 71.42 01.98 03.86 33.43 66.37 29.96 41.28 53.79 72.59 14.98 24.83 49.40
NPR 00.00 00.00 00.00 08.82 00.00 00.00 00.00 02.92 00.00 00.00 00.00 08.40
DetectGPT 00.00 00.00 00.00 16.83 00.00 00.00 00.00 16.27 00.00 00.00 00.00 22.90
DNA-GPT 88.88 01.58 03.11 35.44 94.44 01.68 03.31 41.35 81.81 01.78 03.49 45.54
Revise-Detect. 00.00 00.00 00.00 41.81 64.27 64.78 64.52 67.82 00.00 00.00 00.00 34.51
Binoculars 83.98 61.40 70.94 75.65 82.99 57.14 67.68 73.10 88.30 62.20 72.99 79.56
Fast-DetectGPT 73.11 42.36 53.64 61.99 63.63 00.69 01.37 31.69 73.19 46.32 56.74 66.49
Avg. 47.06 16.26 18.67 38.00 53.68 20.55 22.42 39.65 47.73 18.11 20.67 42.11

Supervised Detectors

Rob-Base 99.70 99.80 99.75 99.99 98.31 98.51 98.41 99.79 100.0 99.30 99.65 99.99
Rob-Large 99.90 99.80 99.85 99.96 99.50 99.90 99.70 99.98 100.0 99.40 99.70 99.97
X-Rob-Base 99.90 99.50 99.70 99.97 97.98 96.52 97.25 97.27 99.89 98.51 99.20 99.92
X-Rob-Large 99.90 99.80 99.85 99.99 99.50 99.90 99.70 99.99 99.89 99.00 99.45 99.69
Avg. 99.85 99.73 99.79 99.98 98.82 98.71 98.77 99.26 99.94 99.05 99.50 99.89

F.1 Detailed robustness analysis against different types of attacks.

In this section, we will further discuss the performance of detectors against various specific attack
methods. Our study on prompt attack, including Few-Shot Prompt and ICO Prompt, revealed that
these methods have minimal impact on detector performance. Both zero-shot and supervised detectors
showed only a 1-2% decrease in average AUROC performance. This indicates that efforts to guide
models to mimic human writing through such instructions may not effectively evade detection.
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For paraphrase attacks, the results in Table 11 demonstrate that DIPPER Paraphrase is not an effective
tool for assessing the performance of detectors in complex black-box scenarios, as detectors nearly
maintain the same identification performance as with direct prompts. However, Polishing using
LLMs proves relatively effective, reducing the detector’s AUROC and F1 Score by approximately
10%, indicating that self-editing texts with LLMs can still diminish detection capabilities. Notably,
Back-translation, a widely used paraphrasing method in our daily life, exhibits strong attack capability,
significantly reducing the detector’s AUROC and F1 Score to 30.42% and 12.64%, respectively, a
decline of over 40%.

Regarding perturbation attacks, the results in Table 13 underscore their more threatening nature
compared to paraphrase attacks. On average, Character-Level, Word-Level, and Sentence-Level
Perturbations resulted in a 37.75% AUROC performance decrease for detectors. Among all the
attack methods we evaluated, Character-Level Perturbation ranks second only to Back-translation.
Interestingly, these three types of perturbations not only showed high consistency but also revealed
their potential threat in assessing detector stability. Nonetheless, all supervised detectors still
performed well on datasets with the same distribution.

Lastly, we assessed detector performance in data mixing scenarios, as shown in Table 10. The results
indicate that mixing texts generated by different LLMs is ineffective at confusing detectors. However,
LLM-Centered Mixing poses a greater threat, particularly when a quarter of the replacement sample
sentences are human-written. This leads to a performance decrease of 13.19% AUROC for the
detectors.

F.2 Details of detectors generalization performance

We conducted a comprehensive analysis of the generalization of detectors, providing detailed experi-
mental results from three perspectives: Generalization in multi-LLM, Generalization in multi-domain,
and Generalization in multi-attack. To visually present these capabilities, we have utilized heatmaps
for illustration. The specific heatmaps can be found in Figure 8, Figure 9 and Figure 10.
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Figure 8: Generalization in multi-domain.

F.3 Benchmark examples
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Figure 9: Generalization in multi-LLM.

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.82 0.79 0.61 0.15 0.59

0.79 0.78 0.58 0.06 0.55

0.79 0.78 0.58 0.061 0.55

0.5 0.48 0.27 0.0078 0.29

0.77 0.76 0.55 0.046 0.53

Likihood

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.76 0.74 0.56 0 0.48

0.74 0.73 0.53 0 0.46

0.73 0.72 0.53 0 0.45

0 0 0 0 0

0.7 0.69 0.47 0 0.42

Rank

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.81 0.79 0.61 0.15 0.58

0.78 0.78 0.57 0.069 0.54

0.79 0.77 0.59 0.096 0.57

0.5 0.46 0.27 0.0078 0.27

0.79 0.77 0.59 0.097 0.57

LogRank

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.77 0.74 0.58 0.31 0.56

0.77 0.74 0.58 0.31 0.56

0.74 0.7 0.55 0.2 0.51

0.77 0.72 0.58 0.29 0.55

0.75 0.71 0.56 0.24 0.54

LRR

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.72 0.71 0.52 0 0.45

0.7 0.71 0.5 0 0.43

0.67 0.67 0.46 0 0.39

0 0 0 0 0

0.65 0.65 0.43 0 0.38

NPR

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.41 0.41 0.22 0.063 0.022

0.36 0.38 0.18 0.039 0.0077

0.32 0.35 0.17 0.024 0.0058

0 0 0 0 0

0 0 0 0 0

DetectGPT

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.69 0.64 0.4 0.41 0.32

0.68 0.64 0.4 0.4 0.31

0.67 0.62 0.38 0.37 0.28

0.69 0.64 0.4 0.41 0.32

0.7 0.66 0.46 0.46 0.41

Fast-DetectGPT

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.81 0.77 0.6 0.17 0.55

0.81 0.77 0.6 0.17 0.55

0.75 0.72 0.55 0.079 0.48

0.34 0.3 0.16 0.027 0.16

0.78 0.74 0.56 0.097 0.097

DNA-GPT

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.8 0.77 0.64 0.3 0.64

0.75 0.76 0.62 0.17 0.62

0.76 0.76 0.62 0.18 0.62

0.6 0.6 0.47 0.067 0.47

0.75 0.76 0.62 0.17 0.62

Revise-Detect.

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.88 0.84 0.71 0.59 0.66

0.88 0.84 0.72 0.62 0.68

0.88 0.84 0.75 0.69 0.72

0.88 0.84 0.75 0.72 0.74

0.88 0.84 0.75 0.71 0.74

Binoculars

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.98 0.96 0.95 0.64 0.89

0.99 0.97 0.95 0.86 0.93

0.97 0.94 0.98 0.79 0.92

0.91 0.87 0.91 0.99 0.92

0.97 0.93 0.95 0.96 0.95

Rob-Base

Direct Prompt Paraph. Perturb Mixing

Di
re

ct
Pr

om
pt

Pa
ra

ph
.

Pe
rtu

rb
M

ix
in

g

0.96 0.94 0.95 0.82 0.87

0.97 0.96 0.95 0.86 0.92

0.95 0.92 0.96 0.88 0.89

0.8 0.69 0.77 0.98 0.89

0.96 0.92 0.94 0.95 0.93

X-Rob-Base

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.60

0.65

0.70

0.75

0.80

0.85

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.70

0.75

0.80

0.85

0.90

0.95

Figure 10: Generalization in multi-attack.
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Table 14: Academic writing samples written by human in DetectRL. We use blue to mark human-
written text, green to mark the modified parts in human-written text after paraphrase attacks, and
orange to mark the modified parts in human-written text after perturbation attacks.

Setting Text

Human-Written Text
Human The standard C*-algebraic version of the algebra of canonical com-

mutation relations, the Weyl algebra, frequently causes difficulties in
applications since it neither admits the formulation of physically interest-
ing dynamic laws nor does it incorporate pertinent physical observables
such as (bounded functions of) the Hamiltonian. . . .

Polish Using LLM The standard C*-algebraic version of the Weyl algebra, which describes
canonical commutation relations, often poses challenges in applications.
It hinders the formulation of physically meaningful dynamical laws and
the incorporation of relevant physical observables, such as bounded
functions of the Hamiltonian. . . .

Back Translation Standard C*algebra version of the specification exchange algebra, Wel-
did numbers often cause difficulties in applications, because it neither
recognizes interesting dynamic expressions, nor relevant physical ob-
servable objects, such as Hamilton, Hamilton (Limited). . . .

DIPPER Paraphrase Here we present a new C*-algebra of the canonical commutation re-
lations which does not suffer from these problems. It is based on the
resolvents of the canonical operators and their algebraic relations. The
resulting C*-algebra, the resolvent algebra, is shown to have many desir-
able analytic properties and the regularity structure of its representations
is surprisingly simple. . . .

Character Perturbation The standard C*-algebraec ersion of the algebra of canonical commuta-
tion relations, the Weyl algebra, frequently causes difficulties in appli-
cations since it neither admits the formulation of physically interesting
dyanmicallaws nor does it incorporate pertinent physical obervables such
as (bounded functions of) the Hamiltonian. . . .

Word Perturbation The standard C*-algebraic version of the algebra of canonical commuta-
tion relations, the Weyl math, frequently causes hardship in applications
since it neither admits the formulation of physically outstanding dynam-
icallaws nor does it incorporate thereto physical observables such as
(bounded functions of) the Hamiltonian. . . .

Sentence Perturbation The standard C*-algebraic version of the algebra of canonical com-
mutation relations, the Weyl algera, frequently causes difficulties in
applications since it neither admits the devising of physically interesting
dynamical laws nor does it incorporate pertinent physical observables
such as (bounded functions of) the Hamiltonian. . . .
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Table 15: Academic writing samples generated by PaLM-2-bison in DetectRL. We use pink to
mark LLM-generated text, red to mark text generated by the selected prompt, green to mark the
modified parts in LLM-generated text after paraphrase attacks, and orange to mark the modified parts
in LLM-generated text after perturbation attacks.

Setting Text

LLM-Generated Text
Direct Prompt The resolvent algebra is a new mathematical structure that provides a

powerful framework for studying quantum systems. It is based on the
idea of using the resolvent operator, which is the inverse of the energy
operator, as the basic building block for constructing the algebra. . . .

Few-Shot Prompt The resolvent algebra is a new approach to canonical quantum systems.
It is a *-algebra of operators that is generated by the resolvent of the
Hamiltonian and the identity operator. The resolvent algebra is a natural
setting for the study of quantum systems, as it provides a unified frame-
work for describing both the classical and quantum aspects of a system.
. . .

ICO Prompt In this paper, we introduce a new algebraic structure, called the resolvent
algebra, which provides a unified framework for studying a wide class
of canonical quantum systems. The resolvent algebra is a *-algebra
with involution, which is generated by the resolvents of the system’s
Hamiltonian. . . .

Polish Using LLM The resolvent algebra is a novel mathematical structure offering a robust
framework for studying quantum systems. This framework is rooted in
the concept of using the resolvent operator, the inverse of the energy
operator, as the fundamental building block for constructing the algebra.
. . .

Back Translation Analysis algebra is a new mathematical structure that provides a pow-
erful framework for studying the quantum system. It is based on the
use of decomposition operators (the countdowner counts) as the basic
construction block of the construction algebra. . . .

DIPPER Paraphrase The resolvent algebra is a *-algebra, which means that it has a natural
notion of multiplication and involution. It also has a natural topology,
which makes it possible to study the structure of the algebra in a rigorous
way. It is based on the idea of using the resolvent operator, which
is the inverse of the energy operator, as the basic building block for
constructing the algebra. . . .

Character Perturbation The reolvent algebra is a new mathematical structure that provides a
powerful framework for studying quantum systems. It is based on the
idea of using the resolvent operator, which is the inversG of the energy
operator, as the basic buildig block for constructing the algebra. . . .

Word Perturbation The resolvent algebra is a new mathematical structure that provides a
powerful framework for investigation quantum systems. He is based on
the thought of using the resolvent operator, which is the inverse of the
energy operator, as the basic building block for constructing the algebra.
. . .

Sentence Perturbation The resolvent algebra is a new mathemtical structure that provides a
powerful framework for studying quantum systems. It is based on the
idea of using the resolvent operator, which is the inverse of the energy
operandi, as the basic building block for constructing the algebra. . . .
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Abstract and section 1.
(b) Did you describe the limitations of your work? [Yes] See Appendix B.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix C.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Appendix D for data collection details and Appendix E.2 for
detectors settings.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Our random seeds are only used for sampling data and
will not affect the fairness of the experimental results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Table E.2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We borrow or extend

some code from Fast-DetectGPT [27], and we acknowledge this and cite the relevant
works in our experimental setup.

(b) Did you mention the license of the assets? [N/A] The datasets used are completely
open source and public to the research community.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [No] All data and code will be completely open source and no
permission is required.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Appendix C.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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