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Abstract

Recent advancements in Large Language Models (LLMs) have renewed interest in
automatic programming language translation. Encoder-decoder transformer models,
in particular, have shown promise in translating between different programming
languages. However, translating between a language and its high-performance com-
puting (HPC) extensions remains underexplored due to challenges such as complex
parallel semantics. In this paper, we introduce CodeRosetta, an encoder-decoder
transformer model designed specifically for translating between programming
languages and their HPC extensions. CodeRosetta is evaluated on C++ ↔ CUDA
and Fortran ↔ C++ translation tasks. It uses a customized learning framework
with tailored pretraining and training objectives to effectively capture both code
semantics and parallel structural nuances, enabling bidirectional translation. Our
results show that CodeRosetta outperforms state-of-the-art baselines in C++ to
CUDA translation by 2.9 BLEU and 1.72 CodeBLEU points while improving com-
pilation accuracy by 6.05%. Compared to general closed-source LLMs, our method
improves C++ to CUDA translation by 22.08 BLEU and 14.39 CodeBLEU, with
2.75% higher compilation accuracy. Finally, CodeRosetta exhibits proficiency
in Fortran to parallel C++ translation, marking it, to our knowledge, as the first
encoder-decoder model for this complex task, improving CodeBLEU by at least
4.63 points compared to closed-source and open-code LLMs.1

1 Introduction

Automatic code translation between programming languages offers numerous benefits, such as
modernizing legacy systems, enabling cross-platform development, and refactoring sequential code
into parallel high-performance versions. However, this task poses significant challenges, primarily
due to the scarcity of parallel corpora—paired datasets of the same applications written in different
languages (e.g., C++ ↔ CUDA or Fortran ↔ C++). This lack of data limits the effectiveness of
supervised learning approaches. While recent advances in code LLMs have shown promise in general
code translation, translating code that involves parallel programming paradigms (e.g., C++ to CUDA)
remains largely unexplored. That is primarily due to the inherent complexities in capturing and
correctly replicating parallel code semantics [28].

TransCoder [36] and its follow-up works [37, 39] have demonstrated the potential of unsupervised
learning for code translation. However, these methods often struggle with the complexities of
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translating between a language and its specialized extensions, such as C++ to CUDA. To address this,
BabelTower [46] proposes a CUDA-specific metric and ranking model. Yet, its reliance on language-
or library-specific metrics limits its scope, restricting it to unidirectional code translation (C++ →
CUDA). Moreover, extending BabelTower to other programming paradigms requires redefining
syntax-specific metrics, a process that is both time-consuming and dependent on domain expertise.

To address these limitations, we introduce CodeRosetta, an encoder-decoder transformer model
specifically designed for unsupervised translation between programming languages and their high-
performance computing (HPC) parallel extensions. Unlike prior methods that rely on language-specific
metrics, CodeRosetta employs new pre-training and training objectives—including Abstract Syntax
Tree (AST) Entity Recognition and customized noise injection strategies for Denoising Auto-
Encoding—to learn the inherent features and semantics of code in an unsupervised manner, without
relying on language-specific metrics. In summary, this paper makes the following contributions:

• Unsupervised code translation for parallel programming. We present CodeRosetta, an
encoder-decoder transformer model tailored for translating between programming languages and
their parallel programming extension, specifically targeting C++ to CUDA and Fortran to C++.

• Customized pre-training and training objectives for code translation to parallel programs. We
introduce two new learning objectives for learning parallel programming syntax and nuances: (1)
Abstract Syntax Tree (AST) entity recognition, enabling the model to reason about code structure by
identifying and categorizing different syntactic elements, and (2) tailored denoising auto-encoding,
incorporating weighted token dropping and insertion, along with an adaptive corruption rate, to
help the model discern subtle differences between language constructs and their extensions.

• Bidirectional translation without language-specific metrics. Unlike prior works that rely on
program-specific metrics for parallel code translation, which narrow the scope of code translation,
CodeRosetta learns bidirectionally (e.g., C++ ↔ CUDA and CUDA ↔ C++) in an unsupervised
manner, broadening its scope to different translation tasks.

Our results show that for C++ to CUDA translation, CodeRosetta achieves a 2.9 BLEU and 1.72
CodeBLUE improvement over existing methods while also increasing compilation accuracy by 6.05%.
Compared to closed-source LLMs, CodeRosetta’s bidirectional approach exhibits even higher gains,
with a 19.84 BLEU and 14.39 CodeBLEU improvement, and 2.75% higher compilation accuracy.
To the best of our knowledge, CodeRosetta is the first model to demonstrate proficiency in the
task of Fortran to C++ translation, surpassing the performance of existing closed-source LLMs and
open-code LLMs on standard metrics, with up to 4.63-point improvement in CodeBLEU.

2 Related Works

Automatic parallelization. Translating from C to CUDA poses a major challenge. Early efforts in
this area primarily involved semi-automatic tools that required significant developer intervention.
Noaje et al. [30] implemented an OpenMP C [11] to CUDA translation using the OMPi compiler.
Other tools, such as CUDAfy.NET and GPUcc [48], provided annotations to assist the translation
process. DawnCC [27] automatically annotates C and C++ code for parallelism, utilizing static
analysis to identify opportunities for optimizing execution on multicore and GPU architectures with
OpenMP/OpenACC directives. However, much of the responsibility for identifying parallelizable
sections and optimizing memory usage remained with the developer. Efforts to translate between
C/C++ and Fortran have been more limited. FABLE [15] is one of the few frameworks designed
for this, facilitating automatic translation of Fortran to C++ while preserving the original code’s
semantics through advanced analysis and transformation techniques.

Neural machine translation. Tournavitis et al. [42] proposed a framework that combines static
analysis with machine learning to identify parallelizable code regions and determine the optimal
parallelization scheme. This adaptive approach aims to reduce the overhead of manual parallelization
while accommodating different architectures. TransCoder [36] pioneered the use of unsupervised
learning techniques to translate code across various high-level languages, including Java, C++, and
Python, without the need for parallel corpora. Building on TransCoder’s architecture, BabelTower [46]
extends its capabilities to perform parallel semantic conversion between C and CUDA.

Denoising Auto-Encoding (DAE) has become a popular technique for training encoder-decoder
models, as seen in methods like CodeT5 [45] and PLBART [2]. These models typically use common
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noising strategies such as masking and token dropping. One of the key differences in the noising
strategies used by CodeRosetta lies in its language-specific characteristics. Rather than random token
dropping, CodeRosetta employs weighted random dropping, prioritizing language-specific reserved
keywords to enhance the model’s understanding of the target language’s semantics. Another unique
strategy is token insertion, which encourages the model to differentiate between valid and invalid
tokens. These objectives enable CodeRosetta to better distinguish between different extensions of
the same programming language. In summary, CodeRosetta is a sequence-to-sequence transformer
model that learns in an unsupervised manner to translate between programming languages and parallel
programming APIs. Additional related work is presented in Appendix J.

3 CodeRosetta: Unsupervised Code Translation for Parallel Programming

This section presents the design and training methodology of CodeRosetta, our proposed encoder-
decoder transformer model for unsupervised code translation. We begin by outlining the overall
architecture, followed by a detailed discussion of the pre-training and training objectives that enable
CodeRosetta to effectively capture the nuances of both general-purpose programming languages
and their parallel extensions. We focus on the C++↔CUDA and C++↔Fortran translation tasks.

3.1 Cross Language Masked Language Modeling

Input CUDA code
__global__ void Mul_half(float 
*src, float *dst) {
    int index = threadIdx.x;
    if (index < 3) {
        dst[index] = 
src[index] * 0.5;
    }}

Masked code Reconstructed code

<MASK> void Mul_half(float 
*src, <MASK> *dst) {
    int <MASK> = threadIdx.x;
    if (index < 3) {
        <MASK>[index] = 
src[index] * 0.5;
    }}

__global__ void Mul_half(float 
*src, float *dst) {
    int index = threadIdx.x;
    if (index < 3) {
        dst[index] = 
src[index] * 0.5;
    }}

CODEROSETTA
(Encoder)Masking

Figure 1: Masked Language Modeling (MLM) pretraining steps in CodeRosetta.

Pre-training plays a crucial role in enabling transformer models to develop a foundational understanding
of programming languages. We use Masked Language Modeling (MLM) [47], a widely adopted
pre-training objective, to achieve this, as outlined in Figure 1. In MLM, the model receives input
code with a portion of tokens randomly masked. The objective is to predict the masked tokens based
on the surrounding context, thereby encouraging the model to learn both local syntactic patterns and
broader semantic relationships within code.

To further challenge the model and better reflect code structure, we mask entire words rather than
individual tokens. For instance, in the input code snippet “ int index”, the entire word “ index” would
be masked, requiring the model to predict the missing identifier based on its type (“ int”) and its
usage in the surrounding code. This approach mirrors how code comprehension often relies on
understanding the roles of variables and functions within their scope.

Additionally, while MLM is typically applied to monolingual datasets, we extend it to a cross-lingual
setting by training on a combined dataset of both C++ and the target language (CUDA or Fortran).
This cross-lingual exposure enables CodeRosetta to learn shared programming concepts and
syntactic structures across languages, such as control flow statements (if, else, while) and variable
declarations. By recognizing these commonalities, the model can transfer knowledge across languages,
improving its ability to translate even unseen code patterns.

3.2 Abstract Syntax Tree Entity Recognition

Input CUDA code
__global__ void Mul_half(float 
*src, float *dst) {
    int index = threadIdx.x;
    if (index < 3) {
        dst[index] = 
src[index] * 0.5;
    }}

CODEROSETTA
(Encoder)

Abstract Syntax
Tree

Extracted AST entities
0, 7, 3, 0, 7, 13, 13, 0, 7, 13, 13, 0, 
0, 7, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 9, 
0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 9, 
0, 0, 0

0:O
1:Var
2:Func
...

Predicted entities

0, 7, 3, 0, 7, 13, 13, 0, 7, 
13, 13, 0, 0, 7, 1, 0, 1, 0, 
0, 0, 0, 0, 1, 0, 9, 0, 0, 1, 
0, 1, 0, 0, 1, 0, 1, 0, 0, 9, 
0, 0, 0

Label

Input

Figure 2: Abstract Syntax Tree Entity Recognition pretraining steps in CodeRosetta.
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Following cross-lingual MLM pre-training, we introduce a new pre-training objective called Abstract
Syntax Tree (AST) Entity Recognition (AER) to further improve CodeRosetta’s understanding of
code structure. This approach draws inspiration from Named Entity Recognition (NER) in natural
language processing [20], where models learn to classify words or phrases into predefined categories
(e.g., person, location, or organization). In AER, CodeRosetta learns to recognize and categorize
various syntactic components in code.

The process, illustrated in Figure 2, starts by using Tree-sitter2, a multi-language parsing library, to
generate the Abstract Syntax Tree (AST) of a source code snippet. The AST representation provides
a hierarchical, tree-structured view of the code, with each node corresponding to constructs such as
function definitions, variable declarations, or arithmetic expressions. From this AST, we extract a set
of entities and their corresponding categories. Examples of categories used in our implementation
include function, variable, constant, pointer, and literal.

During AER pre-training, CodeRosetta tokenizes the input code and predicts the syntactic category
of each token based on its role in the AST. Tokens that do not correspond to any specific category
are labeled as “O” (Outside). This training enables CodeRosetta to develop an understanding of
the syntactic relationships between code elements, an essential step in accurately translating and
generating code across different languages and extensions.

A key strength of AER is its flexibility—the set of entity categories can be easily adapted for different
languages or programming paradigms. For instance, when focusing on CUDA code, we can introduce
specialized categories for parallel constructs such as threadIdx, blockIdx, and gridDim, enabling
CodeRosetta to learn the language-specific semantics of parallel programming.

Furthermore, AER is highly adaptable. Even in cases where AST parsing is only partially available,
CodeRosetta can still leverage this pre-training, showcasing its applicability to diverse code
translation tasks. The complete list of tags used in our implementation is provided in Appendix D.2.

3.3 Denoising Auto Encoding with Adaptive Noise Injection

Code with noises
__global__ delete 
Mul_half(float *src, *dst) {
    int = <MASK>.x;
    3 < if (index) {
        catch[index] = 
src[<MASK>] * 0.5;
    }}

Reconstructed CUDA code
__global__ void Mul_half(float 
*src, float *dst) {
    int index = threadIdx.x;
    if (index < 3) {
        dst[index] = 
src[index] * 0.5;
    }}

Input CUDA code
__global__ void Mul_half(float 
*src, float *dst) {
    int index = threadIdx.x;
    if (index < 3) {
        dst[index] = 
src[index] * 0.5;
    }}

CODEROSETTA
(Encoder-Decoder)

Noise Seeding

Dropping

Inserting

Shuffling

Masking

Figure 3: Denoising Auto Encoding.

While cross-lingual MLM and AST Entity Recognition effectively pre-train CodeRosetta’s encoder
to generate meaningful representations of source code, the decoder remains untrained at this stage.
Consequently, attempting direct code translation would result in suboptimal performance due to the
decoder’s lack of exposure to the target language’s syntax and semantics. To bridge this gap, we
employ a Denoising Auto-Encoding (DAE) training strategy specifically tailored for code translation
with adaptive noise injection mechanisms. In essence, DAE training involves corrupting the input
source code with various types of noise and then training the model to reconstruct the original,
noise-free code. This process compels the decoder to learn both the underlying syntactic rules of
the target language and the ability to recover meaningful code from perturbed inputs, simulating the
challenges of translating real-world code with potential variations and inconsistencies.

To initiate the DAE training phase, we first initialize the decoder using the pre-trained encoder’s
weights, providing it with a starting point for language understanding. Next, we apply a combination
of common noise injection techniques, such as random token masking and shuffling, alongside our
new noise strategies designed to emphasize the distinctions between programming languages and
their extensions. Figure 3 illustrates the overall process of DAE training in CodeRosetta. We now
delve into the specifics of our customized noise injection methods, which distinguish CodeRosetta
from conventional DAE-based code translation models. These strategies are crucial for enabling
the model to discern the subtle but significant differences between languages like C++ and their
high-performance counterparts like CUDA.

2https://tree-sitter.github.io
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Weighted token dropping. To encourage the model to learn the distinctive features of each language
and its extensions, we introduce a weighted token dropping strategy during the noise injection
phase. Unlike uniform random token removal, this approach assigns higher removal probabilities to
language-specific keywords, encouraging the model to focus on critical syntactic elements.

For each programming language or extension, CodeRosetta maintains a list of reserved keywords.
During token dropping, these keywords are prioritized, making them more likely to be removed
than other tokens. For example, when training on CUDA code, keywords like blockIdx, threadIdx,
blockDim, __global__, and atomicSub are more frequently targeted for removal.

This weighted sampling creates a more challenging reconstruction task for the model, compelling
the decoder to develop a deeper understanding of the language-specific semantics and parallel
programming constructs. While the reserved keywords are given higher priority, the weighted random
sampling still ensures that other tokens are occasionally dropped, preserving the overall balance of
the noise injection process.

Language-specific token insertion. In addition to weighted token dropping, we implement a
language-specific token insertion strategy to improve CodeRosetta’s ability to discern between
languages and their extensions during code generation. This method strengthens the model’s
robustness against out-of-vocabulary tokens, preventing it from inadvertently blending elements from
different languages.

During DAE training, CodeRosetta must distinguish between valid and invalid tokens within the
target language. To facilitate this, we construct a vocabulary of unique tokens for each programming
language in our training dataset, tracking their frequency of occurrence. Tokens from the vocabulary
of other languages are then randomly inserted into the input code based on their probability from the
frequency distribution. For example, in the C++ to CUDA translation task, we insert CUDA-specific
tokens into C++ code inputs during DAE training. CodeRosetta is then trained to recognize and
disregard these foreign tokens while reconstructing the original C++ code. This process enables the
model to develop an understanding of language boundaries, ensuring it generates syntactically and
semantically valid code during translation.

Adaptive noise ratios Additionally, we introduce an adaptive noise strategy. Instead of applying a
fixed noise ratio, such as 10% for token dropping, we begin with an initial noise ratio and progressively
increase it throughout the training process. This approach allows the model to gradually adapt to
more challenging conditions as it learns to reconstruct the corrupted input sequences. As the training
progresses, the input sequences become increasingly corrupted, making the reconstruction task more
difficult and forcing the model to learn more robust representations.

There is a maximum corruption rate that, once reached, halts further increases in noise. This prevents
over-corrupting the inputs, ensuring that the model can still derive meaningful patterns. The impact
of adaptive noise ratios, along with the new noise strategies, is examined in our ablation study
(Section 5.3).

To further support accurate code generation in the target language, we prepend a special <LANG>
token to each input sequence. During DAE, this token indicates the language of the corrupted input,
prompting the decoder to reconstruct the code in the same language. This mechanism ensures that the
model remains focused on generating code within the correct language context.

3.4 Back Translation for Unsupervised Refinement

Reconstructed C++ code
void Mul_half_cpu(float* src, 
float* dst) {
    for (int index = 0; index 
< 3; index++) {
        dst[index] = 
src[index] * 0.5;
    }}

Translated CUDA code
__global__ void Mul_half(float 
*src, float *dst) {
    int index = threadIdx.x;
    if (index < 3) {
        dst[index] = 
src[index] * 0.5;
    }}

Input C++ code
void Mul_half_cpu(float* src, 
float* dst) {
    for (int index = 0; index 
< 3; index++) {
        dst[index] = 
src[index] * 0.5;
    }}

CODEROSETTA
(Encoder-Decoder)

(C++ to CUDA)

CODEROSETTA
(Encoder-Decoder)

(CUDA to C++)

Figure 4: Back Translation.

To further improve CodeRosetta’s translation quality and its ability to capture complex code
semantics, we employ back translation during the training process [36]. As illustrated in Figure 4,
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this technique leverages the model’s bidirectional capability, enabling both source-to-target and
target-to-source translations, forming a weakly supervised learning loop.

In back translation, the model is trained on a source-to-target task (e.g., C++ to CUDA) while
simultaneously performing the reverse translation (target-to-source, CUDA to C++). For each batch
of source code, CodeRosetta first translates it into the target language. The generated target code
is then used as input for a reverse translation, where the model attempts to reconstruct the original
source code.

This forward and backward translation cycle provides continuous feedback, allowing CodeRosetta to
compare the reconstructed source code with the original input, thereby learning to detect and correct
errors in both translation directions. Through this iterative refinement, the model gradually improves
its comprehension of nuanced language differences and complex code structures, resulting in more
accurate and semantically consistent translations.

Crucially, we alternate between batches of different language pairs during back translation. This
ensures that the model receives balanced exposure to both directions, preventing bias towards a
specific language and encouraging the development of robust, generalized translation capabilities.

3.5 Finetuning with Synthetic Data from Language Models (Optional Step)

While CodeRosetta demonstrates promising results through unsupervised training, we explore the
potential of further enhancements by leveraging the capabilities of large language models (LLMs) such
as GPT-4 [1] and Gemini Ultra [41]. These LLMs, trained on extensive text and code datasets, have
exhibited impressive code generation abilities. However, directly employing such large models for
code translation can be computationally expensive and impractical for many real-world applications.

To address this, we adopt a knowledge distillation approach [18], where these LLMs serve as teacher
models to generate synthetic data for fine-tuning CodeRosetta, a smaller student model. This method
allows us to capture the expertise of the larger models while maintaining computational efficiency.

Specifically, we prompt GPT-4 and Gemini to translate C++ code into CUDA where feasible. After
filtering out empty or invalid translations, natural text, and non-relevant data (i.e., instances lacking
CUDA-specific keywords), we are left with approximately 5,000 high-quality translations from an
initial set of 100,000. This significant reduction highlights the inherent challenges in C++ to CUDA
translation.

The resulting synthetic dataset of C++↔CUDA pairs is then used to fine-tune CodeRosetta. This
process allows CodeRosetta to incorporate the valuable knowledge embedded in the larger LLMs
without incurring their high computational costs. It is important to note that this fine-tuning step is
optional and can be omitted if access to powerful LLMs for synthetic data generation is not feasible.

4 Experimental Setup

Training hyperparameters. We implement CodeRosetta using the HuggingFace Transformers
library v4.40.1 [47]. The model is a 12-layer encoder-decoder transformer, with each layer having
12 attention heads and a hidden dimension of 1,536. We initialized the tokenizer with a pre-trained
Byte Pair Encoding (BPE) tokenizer from UniXcoder [17], which was further trained on our specific
training datasets. The training was conducted using the AdamW optimizer [24] and a batch size of
16, using gradient accumulation over two steps. The experiments were run on a single node with
four Nvidia A100 SXM4 GPUs, each with 80GB of memory. To speed up the training process,
mixed-precision training was enabled. The final model consists of ∼0.8 billion parameters.

4.1 Datasets

We evaluate CodeRosetta on two code translation tasks: C++ to CUDA and Fortran to C++. Table 8
provides an overview of the datasets used. For the C++ to CUDA translation task, we use the dataset
from BabelTower [46], which consists of:

• Unpaired training set: A collection of 243,008 C++ and CUDA source code files, meeaning there
is no direct correspondance between the files in each language. To avoid any language bias, we
ensure an equal number of C++ and CUDA files during training.

6

100970https://doi.org/10.52202/079017-3202



• Paired validation and test sets: The validation set consists of 184 pairs, and the test set has 180
pairs of C++ and CUDA source code files. Each pair represents the same program implemented in
both languages, providing a benchmark for evaluating translation accuracy.

For Fortran to C++, no dedicated parallel corpus exists for this specific translation. Thus, we construct
our training dataset as follows:

• Unpaired training set: We extract the C++ and Fortran subsets from the Stack V2 dataset [25],
which includes over 3 billion source code files across more than 600 programming languages. We
ensure an equal number of files from each language to prevent bias during training.

• Paired fine-tuning set: For fine-tuning, we use the small paired C++-Fortran dataset introduced by
Bin et al. [19]. This set is also used for validation.

• Test set: To evaluate the final model performance, we use a test set of 33 paired C++ and Fortran
programs.

4.2 Data Preprocessing

To ensure the quality and consistency of training data, we applied task-specific preprocessing steps for
each translation task. C++ to CUDA. Although the BabelTower dataset [46] was reportedly cleaned,
we found noisy data within the CUDA files. To address this, we curated a list of CUDA-specific
reserved keywords and filtered the dataset, retaining only those CUDA files that contained at least one
such keyword. This step significantly reduced noise and resulted in a final training set of 243,008 C++
files, matched by an equal number of CUDA files. The validation and test sets remained unchanged,
comprising 184 and 180 paired examples, respectively.

C++ to Fortran. Preprocessing the Stack V2 dataset for C++ to Fortran translation involved managing
the large imbalance between C++ and Fortran files, as well as filtering out low-quality or uninformative
code snippets. We implemented the following steps:

• Educational value filtering: Inspired by the phi-1 model data filtering approach [16], We randomly
sampled 100,000 C++ files from Stack V2 and employed GPT-3.5 to assess their “educational value”
for learning C++ coding concepts. We prompted GPT-3.5 (see Figure 5 to classify each snippet as
either “Yes” or “No” based on its educational value. These labels were then used to fine-tune a
binary classifier built on the CodeSage model [49], which we applied to the remaining C++ files in
Stack V2. Only files deemed educationally valuable were retained.

• Balancing language representation: From the filtered C++ files, we randomly selected a subset
equal in size to the number of Fortran files to create a balanced training set.

• Length-based filtering: To ensure training stability and avoid biases toward very short or long
code snippets, we filtered out files containing fewer than ten tokens or more than 1,000 tokens in
both languages.

After these steps, the final training set for C++ to Fortran translation consisted of 474,856 files. For
fine-tuning and validation, we used the small paired C++-Fortran dataset from Bin et al. [19], which
contains 282 samples. The model was then evaluated on a test set of 33 paired samples.

Determine the educational value of the following code for a student whose goal is to learn C++ coding
concepts. If it has educational value, return only "Yes", else, return "No".↪→

Code:{code}
Educational value:

Figure 5: Prompt for determining the quality of C++ source code

4.3 Evaluation

To evaluate CodeRosetta’s translations, we use two widely used code translation metrics: BLEU [32]
and CodeBLEU [34]. We benchmark CodeRosetta against the following baselines. For C++ to
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Table 1: Summary of C++ to CUDA translation results across various code metrics and compilation
accuracy. Second-best results are underlined.

Model Static Metrics Compilation
Accuracy (%)BLEU CodeBLEU ChrF ROGUE-L

GPT4 46.98 64.45 70.15 63.37 96.10
Gemini-Ultra 57.06 61.18 73.20 69.27 80.00
Gemini-Pro 54.82 64.20 72.58 69.82 75.50
DeepSeekCoder 26.63 21.46 28.41 15.10 57.80
StarCoder 37.58 62.58 60.16 41.84 79.40
TransCoder 72.21 71.03 N/A N/A 83.80
BabelTower 74.00 77.12 N/A N/A 92.80
CodeRosetta (Ours) 76.90 78.84 81.05 82.12 98.85

CUDA, we compare (a) “BabelTower [46]”,3 a state-of-the-art unsupervised code translation model
specifically designed for C++ to CUDA translation, and (b) “Transcoder [36]”, a general unsupervised
code translation model that has demonstrated strong performance on various language pairs. Since a
single evaluation metric may capture only one aspect of translation quality [14], we supplement BLEU
and CodeBLEU with ROUGE-L [22] and ChrF [33], as recommended by [14]. However, because
generated translations from TransCoder and BabelTower were unavailable, ROUGE-L and ChrF scores
are only provided for GPT-4, Gemini-Ultra, and Gemini-Pro. We further compare CodeRosetta
with two popular open-source code LLMs: StarCoder (starcoder2-7b) [21] and DeepSeekCoder
(DeepSeek-Coder-V2-Lite-Base) [12].

For the Fortran to C++ task, we evaluate CodeRosetta against StarCoder [21], an LLM model
(15.5B parameters) featuring a decoder-only transformer architecture, fine-tuned on a comprehensive
corpus of Fortran code and DeepSeekCoder (DeepSeek-Coder-V2-Lite-Base) [12]. Additionally,
we evaluate CodeRosetta alongside several prominent closed-source LLMs, including GPT-4 [1]
and Gemini [41], by prompting them to perform code translation using carefully crafted prompts
(Appendix I). By evaluating against a broad spectrum of both specialized code translation models and
general-purpose LLMs, we effectively gauge CodeRosetta’s stranghts and limitations across diverse
translation tasks and programming paradigms.

5 Experimental Results

5.1 C++ to CUDA

Table 1 presents the results of CodeRosetta for C++→CUDA translation. For BabelTower and
TransCoder, the results are directly quoted from BabelTower [46], as their models and implementations
are not publicly available. Comparing the performance of CodeRosetta to other models, it demon-
strates superior translation capabilities for C++ to CUDA. Specifically, CodeRosetta outperforms
BabelTower by 2.9 BLEU points. Additionally, it achieves a CodeBLEU score of 78.84, which is
1.72 points higher than BabelTower. Although GPT4 and Gemini were not specifically trained on this
dataset, they still reached CodeBLEU scores of 64.45 and 64.20, respectively. Evtikhiev et.al [14]
indicate that ChrF and ROGUE-L metrics are better suited for code generation tasks than BLEU
and CodeBLEU. Notably, CodeRosetta also surpasses these models in both ChrF and ROUGE-L
metrics.

CodeRosetta effectively learns the necessary semantics to generate CUDA code without relying
on specific metrics for training, a departure from previous approaches. The compilation accuracy
of CodeRosetta is 98.85% after post-processing. For examples of the CUDA code generated by
our model compared to other baselines, please refer to Appendix B. Furthermore, CodeRosetta is
bidirectional, allowing it to translate both C++ to CUDA and vice versa. Please refer to Appendix A
for CUDA to C++ results.

3We contacted the authors of BabelTower for access to their trained model, source code, and translations but
were not able to gain access. Therefore, we cite results directly from their paper.
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Table 3: Ablation Study for C++ to CUDA.

Experiment Metrics
BLEU ↑ CodeBLEU ↑

Removing MLM 52.12 (-24.78) 51.96 (-26.88)
Removing AER 74.98 (-1.92) 75.55 (-3.29)
Removing DAE (special noises) 72.41 (-4.49) 73.22 (-5.62)
Removing BT 75.08 (-1.82) 73.18 (-5.66)
Removing Fine-Tuning 73.55 (-3.35) 71.21 (-7.63)
Baseline 76.90 78.84

5.1.1 Post-processing: Compilation Error Analysis

Our test set, consisting of 180 samples, provided diverse input scenarios to evaluate our model’s
performance. We observed that 23 samples generated compilation errors when processed through the
NVCC compiler with the required flags.4 Upon manual investigation, we found that most errors were
trivial and could be easily fixed with minor edits.

Table 2: Types of compilation errors (28
codes with compilation error out of a total
180 codes).

Error Type Percent
Undefined generic type T 48
Missing variable initialization 26
Missing closing braces 9
Wrong function call 9
Non-trivial errors 8

Specifically, 48% of the errors were attributed to the use
of an undefined generic type T. Another 9% resulted
from missing closing braces, while 26% were due to a
single missing variable initialization. Additionally, 9%
of the errors were caused by incorrect function calls.
Only 8% of the files contained no trivial errors. By
applying quick fixes for the undefined generic type T,
missing variable initializations, and missing closing
braces, the overall compilation accuracy significantly
improved, with 98.85% of all generated code becoming
compilable. This indicates that most errors were simple
and could be easily resolved by incorporating compiler
feedback, which will be a focus of our future work.
Subsection F.1 and Figure 13 in the Appendix presents
examples of our findings.

5.2 Runtime Evaluation

Although CodeRosetta demonstrates more accurate translations based on the aforementioned metrics
compared to the reference code, these metrics are derived from static evaluations, leaving runtime
performance uncertain. To address this, we randomly selected 30 translated CUDA kernels from the
test set and created unique template programs to execute them. We ran the translated CUDA kernels
using NVCC and found that the functional correctness of the generated code was preserved in the
majority of samples (approximately 93%). For further details, see Appendix Section B.

5.3 Ablation Study

We conduct an ablation study to evaluate the impact of each training objective on the code translation
results of CodeRosetta. Specifically, we remove individual training objectives (e.g., AER) while
keeping the other components intact and retraining the model. Table 3 presents the results of the
ablation study for C++ to CUDA translation. As observed, removing any of the pertaining or training
objectives negatively impacts translation results, with Masked Language Modeling having the most
significant effect when omitted. This is expected, as Masked Language Modeling is the primary
pretraining objective that enables the model to understand source code.

AER training task. CodeRosetta employs two pre-training tasks for training its encoder: Mask
Language Modeling (MLM) and Abstract Syntax Tree Entity Recognition (AER). In this phase, we
maintain consistent training setups except for the removal of the AER component.

4https://developer.nvidia.com/cuda-11-8-0-download-archive
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Table 4: Fortran to C++ translation results.

Model CodeBLEU
GPT4 19.21
Gemini-Ultra 13.62
Gemini-Pro 18.91
DeepSeekCoder 12.09
StarCoder 18.21
StarCoder (fine-tuned) 61.30
CodeRosetta (0.8B) 65.93

Denoising Auto Encoding. We also investigate the effectiveness of various noise types and the
adaptive corruption rate during Denoising Auto Encoding. For this ablation study, we train the model
without weighted token dropping, insertion, and adaptive corruption rate.

Fine-tuning Data extraction from larger models is a common practice. In this phase of the ablation
study, we evaluate CodeRosetta’s performance without fine-tuning it on the synthetic dataset. From
Table 3, we observe that the removal of each proposed learning objective negatively impacts the
model’s ability to deliver improved code translation.

5.4 Fortran to C++

We train and apply CodeRosetta for translation between C++ and Fortran. Fortran has had a
long-standing presence in the scientific computing community; however, its integration with modern
HPC systems [38] can pose significant challenges for developers. Due to the complexities involved in
translating Fortran to C++, there has been limited effort to address this issue. Bin et al. [19] were
the first to make significant strides in this area, curating a small paired dataset specifically for this
translation task and fine-tuning several open-code LLMs.

They found StarCoder (15B), when fine-tuned, benefited the most from their paired dataset. We
compare CodeRosetta with the fine-tuned StarCoder (15B), as well as with other general LLMs.
The results are shown in Table 4. Fine-tuning CodeRosetta on the dataset from Bin et al. [19]
further enhances its performance, achieving a CodeBLEU score of 65.93. Notably, CodeRosetta
outperforms StarCoder, even though StarCoder is nearly 20 times larger, highlighting the efficiency of
our model. It also surpasses state-of-the-art models like GPT-4 and Gemini by a substantial margin,
achieving an improvement of at least 4.63 points in CodeBLEU.

6 Conclusion

In this paper, we introduced CodeRosetta, an encoder-decoder transformer model designed for
translating between programming languages and their high-performance computing (HPC) extensions.
We proposed two novel learning objectives: Abstract Syntax Tree (AST) Entity Recognition (AER)
and customized Denoising Auto-Encoding, which incorporates weighted token dropping and insertion.
These contributions enable CodeRosetta to capture both the general syntactic structure of code and
the specific nuances of parallel programming constructs, without relying on language-specific metrics.
Our experiments show that CodeRosetta significantly outperforms state-of-the-art baselines on C++
to CUDA translation, achieving improvements up to 2.9 BLEU, 1.72 in CodeBLEU, and 6.05% in
compilation accuracy. Furthermore, CodeRosetta is, to the best of our knowledge, the first model
to demonstrate proficiency in translating Fortran to its parallel counterpart in C++, highlighting its
potential in handling diverse programming paradigms.
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A CUDA to C++ Translation Results

CodeRosetta is capable of bidirectional translation between languages. Once trained for C++ to
CUDA translation, it can also translate CUDA back to C++, unlike previous approaches such as
BabelTower [46]. In this section, we compare CodeRosetta with GPT4 and Gemini on the task
of translating CUDA back to C++. Table 5 summarizes the results. As shown, CodeRosetta
demonstrates higher accuracy in translating CUDA to C++. Moreover, we observed that Gemini
struggles to clearly distinguish between CUDA and C++, frequently generating C++ translations that
are nearly identical to the original CUDA input.

Table 5: CUDA to C++ translation results across different models. We use a similar prompt as the
one in Figure 15 with small adjustments.

Model BLEU CodeBLEU
GPT4 70.18 68.67
Gemini-Pro 35.96 61.09
CodeRosetta (Ours) 77.03 71.28
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B Functional Correctness Analysis

The metrics and results shown in Table 1 may have limitations in capturing functional equivalence,
as discussed by Evtikhiev et al. [14]. To address this, we evaluated the functional correctness of
the translated code by compiling and executing the generated programs. For the C++ → CUDA
translation task, we randomly selected 30 generated CUDA kernels and developed a template program
for their execution. We then compared the runtime results of the translated CUDA code against the
reference implementations. Our findings indicate that 93% of the translated CUDA code produced
results consistent with the reference.

We analyzed three representative cases of CUDA translation in detail. In the first case, shown in
Figure 6, the kernel is designed to be launched with a grid of thread blocks. Each thread calculates its
global index i, and if i is within the array’s bounds (i < N), it assigns the value ALPHA to the element
at index i * INCX in the array X. CodeRosetta successfully identified the optimal 2D grid struc-
ture with (blockIdx.x + blockIdx.y * gridDim.x) * blockDim.x + threadIdx.x,
whereas other models defaulted to a less efficient 1D structure using
blockIdx.x * blockDim.x + threadIdx.x. This choice of grid structure significantly
impacts CUDA performance, and CodeRosetta’s selection mirrors that of the baseline implementa-
tion. Furthermore, CodeRosetta employed the correct grid structure in four additional instances
where other models did not.

The second case, illustrated in Figure 7, involves a kernel designed to initialize an array of offsets
for sorting purposes. Each offset corresponds to the starting position of a column in a flattened 2D
grid. This is often useful for parallel sorting algorithms or other operations requiring column-wise
processing. The expression int tid = threadIdx.x + blockIdx.x * blockDim.x; assigns
each thread a unique index across the entire grid of blocks, enabling access to distinct elements in a
global array. In contrast, the expression int tid = threadIdx.x; provides an index that is only
unique within a single block. Without proper offset calculations, threads across different blocks
could access the same data, potentially leading to race conditions and negating the kernel’s intended
behavior. This issue was observed in several examples where Gemini-Ultra produced incorrect results
due to this oversight.

The third case, depicted in Figure 8, processes 3D arrays in parallel. Each thread calculates its
3D position, checks bounds, and updates specific elements of the array vec based on values from
vec1. The kernel averages and scales values from vec1, storing the results in vec while ensuring
safe memory access within the array’s limits. CodeRosetta correctly handled large block and grid
dimensions by using unsigned long, whereas both GPT-4 and Gemini-Ultra failed due to the use
of int, leading to index overflow.

We also analyzed Fortran to C++ translations, shown in Figure 9. The translated code snippets
maintained functional equivalence, specifically in the synchronization of shared variables between
threads. OpenMP, used in the Fortran code, relies on directives such as #pragma omp critical,
#pragma omp flush, and #pragma omp atomic to ensure synchronization and memory visibility.
In the C++ translation, equivalent functionality was achieved using std::mutex, std::atomic,
and std::atomic_thread_fence. Both approaches ensure that x is updated and visible to the
second thread before it prints its value, effectively synchronizing the thread actions. CodeRosetta,
Gemini-Pro, and Gemini-Ultra correctly recognized the use of OpenMP in the original code, while
GPT-4 did not and opted for a different approach. This highlights the limitations of metrics such as
BLEU, which focus on syntax rather than functionality. Despite functional equivalence, GPT-4’s
translation would score lower due to its syntactic divergence. This underscores the necessity of human
evaluation to ensure code correctness, as no single automated metric can fully capture functional
behavior.

C Decontamination Analysis

The C++ to CUDA dataset was obtained from BabelTower [46], which has gone through deduplication
and cleaning. Notably, there is no paired trained data available within the dataset, meaning the model
does not encounter C++ code alongside the CUDA equivalent during training. As such, the model
must rely solely on self-supervised training objectives to learn to embed source code from different
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__global__ void fill_kernel(int N, float ALPHA,
float *X, int INCX) {
int i = (blockIdx.x + blockIdx.y *

gridDim.x) * blockDim.x + threadIdx.x;
if (i < N) {

X[i * INCX] = ALPHA;
}

}

(a) Reference CUDA kernel.

__global__ void fill_gpu(int N, float ALPHA,
float *X, int INCX) {
int i = (blockIdx.x + blockIdx.y *

gridDim.x) * blockDim.x + threadIdx.x;
if (i < N) {

X[i * INCX] = ALPHA;
}

}

(b) CodeRosetta generated CUDA.

__global__ void fill_gpu(int N, float ALPHA,
float *X, int INCX) {
int i = blockIdx.x * blockDim.x +

threadIdx.x;
if (i < N) {

X[i * INCX] = ALPHA;
}

}

(c) GPT4 generated CUDA.

__global__ void fill_gpu(int N, float ALPHA,
float *X, int INCX) {
int i = blockIdx.x * blockDim.x +

threadIdx.x;
if (i < N) {

X[i * INCX] = ALPHA;
}

}

(d) Gemini Ultra generated CUDA.

Figure 6: CUDA kernel function to fill an array X with a constant value ALPHA, parallelized across
threads.

__global__ void set_sorting_offset(const int
nrows, const int ncols, int *offsets) {
int tid = threadIdx.x + blockIdx.x *

blockDim.x;
if (tid < ncols) {

offsets[tid] = tid * nrows;
}
return;

}

(a) Reference CUDA kernel.

__global__ void set_sorting_offset(const int
nrows, const int ncols, int *offsets) {
int tid = blockIdx.x * blockDim.x +

threadIdx.x;
if (tid <= ncols) {

offsets[tid] = tid * nrows;
}
return;

}

(b) CodeRosetta generated CUDA.

__global__ void set_sorting_offset_cuda(const
int nrows, const int ncols, int *offsets) {
int tid = threadIdx.x + blockIdx.x *

blockDim.x;
if (tid <= ncols) {

offsets[tid] = tid * nrows;
}

}

(c) GPT4 generated CUDA.

__global__ void set_sorting_offset(const int
nrows, const int ncols, int* offsets) {
int tid = threadIdx.x;
if (tid < ncols) {

offsets[tid] = tid * nrows;
}

}

(d) Gemini Ultra generated CUDA.

Figure 7: CUDA kernel to set sorting offsets based on row and column indices, where each thread
computes an offset value for a given column index.

languages into a shared embedding space. Paired data is available only in the test set, which we used
for evaluating the model’s performance.

To assess the potential overlap between the test and the training data from BabelTower, we used
CodeBERTScore [51] to measure similarity.

Table 6: C++7→CUDA Decontamination Analysis.

Data CodeBERTScore range
0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

C++ ↔ CUDA Train Data 0% 1.7% 44.80% 48.61% 4.78% 0.03%
C++ ↔ CUDA Synthetic Data 0% 0.8% 33% 58% 7% 0.05%

Table 6 presents the distribution of CodeBERT scores and the corresponding amount of data in each
range. For example, 48.61% of training data achieved a CodeBERTScore between 0.7 and 0.8 when
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__global__ void opL23(float *vec, float *vec1,
long depth, long rows, long cols) {
unsigned long x = threadIdx.x + blockIdx.x *

blockDim.x;
unsigned long y = threadIdx.y + blockIdx.y *

blockDim.y;
unsigned long z = threadIdx.z + blockIdx.z *

blockDim.z;
unsigned long long i = z * rows * cols + y *

cols + x;
unsigned long long j = z * rows * cols + y *

cols;
unsigned long size2d = cols;
unsigned long size3d = depth * rows * cols +

rows * cols + cols;
if (x >= cols y >= rows z >= depth)

return;
if (i + cols + 1 >= size3d) return;
vec[i + cols] = 0.5 * (vec1[i + cols] +

vec1[i]);
if (j + 1 >= size2d) return;
vec[j] = 0.5 * (vec1[j]);

}

(a) Referece CUDA kernel.

__global__ void opL23_gpu(float *vec, float
*vec1, long depth, long rows, long cols) {
unsigned long x = blockIdx.x * blockDim.x +

threadIdx.x;
unsigned long y = blockIdx.y * blockDim.y +

threadIdx.y;
unsigned long z = blockIdx.z * blockDim.z +

threadIdx.z;
unsigned long long i = z * rows * cols + y *

cols + x;
unsigned long long j = z * rows * cols + y *

cols;
unsigned long size2d = cols;
unsigned long size3d = depth * rows * cols +

rows * cols + cols;
if (i + cols + 1 >= size3d) return;
vec[i + cols] = 0.5 * (vec1[i + cols] +

vec1[i]);
if (j + 1 >= size2d) return;
vec[j] = 0.5 * (vec1[j]);

}

(b) CodeRosetta generated CUDA.

__global__ void opL23_gpu(float *vec, float
*vec1, long depth, long rows, long cols) {
int x = blockIdx.x * blockDim.x +

threadIdx.x;
int y = blockIdx.y * blockDim.y +

threadIdx.y;
int z = blockIdx.z * blockDim.z +

threadIdx.z;
if (x < cols && y < rows && z < depth) {

unsigned long long i = z * rows * cols +
y * cols + x;

unsigned long long j = z * rows * cols +
y * cols;

unsigned long size2d = cols;
unsigned long size3d = depth * rows *

cols + rows * cols + cols;
if (i + cols + 1 < size3d) {

vec[i + cols] = 0.5 * (vec1[i +
cols] + vec1[i]);

}
if (j + 1 < size2d) {

vec[j] = 0.5 * (vec1[j]);
}

}
}

(c) GPT4 generated CUDA.

__global__ void opL23_gpu(float *vec, float
*vec1, long depth, long rows, long cols) {
int x = blockIdx.x * blockDim.x +

threadIdx.x;
int y = blockIdx.y * blockDim.y +

threadIdx.y;
int z = blockIdx.z * blockDim.z +

threadIdx.z;
if (x < cols && y < rows && z < depth) {
unsigned long long i = z * rows * cols + y *

cols + x;
unsigned long long j = z * rows * cols + y *

cols;
unsigned long size2d = cols;
unsigned long size3d = depth * rows * cols +

rows * cols + cols;
if (i + cols + 1 < size3d) {
vec[i + cols] = 0.5 * (vec1[i + cols] +

vec1[i]);
}
if (j + 1 < size2d) {
vec[j] = 0.5 * (vec1[j]);

}
}

}

(d) Gemini Ultra generated CUDA.

Figure 8: CUDA kernel opL23, averaging 3D grid elements from vec1 into vec, with boundary
checks.

compared against test data. Ranges with no data are omitted. A score below 0.8 indicates low or
moderate similarity. As shown, the majority of the training samples exhibit a CodeBERTScore below
0.8, reflecting minimal similarity to the test set. A similar trend was observed when we applied this
analysis to the synthetic dataset.

D Unsupervised Training Parameters

D.1 Training Parameters

For Masked Language Modeling (MLM) training, we use a learning rate of 8× 10−5 and train for
100 epochs with 15% masking. After each epoch, we measure the perplexity on the validation set and
save the model if the perplexity is the lowest. For Abstract Syntax Tree (AST) entity recognition,
we use a learning rate of 5 × 10−6 and train for ten epochs. We then create the encoder-decoder
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model by transferring the encoder’s weights to initialize the decoder, so the decoder begins with some
foundational knowledge.

For Denoising Auto-Encoding and Back Translation, we use a learning rate of 5× 10−5 and train for
20 epochs. For Denoising Auto-Encoding, we set the masking to 15%, token dropping to 25%, and
token insertion to 15%, with a denoising ratio increasing by 2.5% per epoch. Finally, for fine-tuning,
we use a learning rate of 5× 10−5 for ten epochs. At each training iteration, we save the model with
the lowest validation loss. All the parameter values are determined empirically through detailed
hyperparameter tuning.

D.2 AST Entity Recognition Tags

Table 7: AER Tags.

Tag ID Tag Type
1 identifier/variable
3 function
5 type identifier
7 primitive type (int, float, etc.)
9 number literal
11 & pointer expression/reference
13 * pointer declarator
15 constant

The AER tags used in pretraining are shown in Table 7.

D.3 Dataset Statistics

A detailed overview of the dataset is shown in Table 8.

E Impact of Beam Size

We conducted beam search decoding with varying beam sizes, returning the top candidate in each
case. The results, shown in Table 9, indicate that CodeRosetta consistently produces the same
output, regardless of the beam size.

F Analysis of Generated Code from CodeRosetta and Closed-Source LLMs

C++ → CUDA: In this part, we compare the code generated by CodeRosetta, GPT4, and Gemini-
Ultra. As the BabelTower model and its code are not publicly available, we were unable to access them.
However, the BabelTower paper highlights a kernel where the model failed to generate CUDA code
due to a syntax error when defining keyCharPtr, as shown in Figure 10. In contrast, CodeRosetta
successfully generates the correct CUDA code. It is interesting to note that CodeRosetta also
recognized the if condition and improved the readability of the code by inverting the if statement,
similar to the approach taken by Gemini-Ultra and GPT4. Additionally, CodeRosetta adheres to
the preferred practice of declaring a variable or pointer before assigning a value, which is why first
keyCharPtr is defined out of the if statement.

We demonstrate another example in Figure 11, where CodeRosetta accurately reproduces the
reference CUDA kernel without adding unnecessary lines of code, such as a host or main function,
which is often seen in other models.

Fortran→C++: Figures 9, 12 show examples of C++ code generated by CodeRosetta in comparison
with other LLMs. Despite CodeRosetta’s smaller size, it effectively translates Fortran code into
correct C++ code.

Moreover, we also evaluated our model in terms of C++ → Fortran translation 10. The results indicate
the capability of CodeRosetta in translating to and from Fortran code.

19

100983 https://doi.org/10.52202/079017-3202



Table 8: Dataset statistics for C++, CUDA, and Fortran programming languages.

Programming Pair Train Valid Test Size
C++ ↔ CUDA 243,008 (unpaired) 184 180 626.1 MB (Train)

139.1 KB (Valid)
141.9 KB (Test)

C++ ↔ Fortran 474,856 (unpaired) N/A 33 1.2 GB (Train)
282 (paired) 99.0 KB (Test)

Table 9: Effect of different beam sizes on C++ to CUDA translation.

Beam Size Metrics
BLEU CodeBLEU

1 76.47 78.43
5 76.90 78.84
10 76.85 78.87
25 76.70 78.67
50 76.61 78.65

Table 10: C++ to Fortran translation results in terms of CodeBLEU.

Model CodeBLEU
GPT4 35.32
Gemini-Ultra 33.64
Gemini-Pro 32.36
CodeRosetta (Ours) 70.46

F.1 Common Issues and Post-processing in CodeRosetta-Generated Code

Code translated by large language models like GPT-4 often includes additional caller functions that
extend beyond the scope of the original function. In contrast, code translated by CodeRosetta may
occasionally fail to compile despite being syntactically correct. We identified two common issues in
the code generated by CodeRosetta and applied a simple post-processing method to ensure a fair
comparison across models.

The first issue involves the use of generic types, which can enhance code efficiency but require explicit
type definitions at compile time. Figure 13a shows the use of a generic type, although the necessary
definition is missing. Adding the type definition, as shown in Figure 13b, resolves the compilation
issue. The second issue relates to misses variable initialization in the function definition, as shown
in Figure 13c. By initializing the required variable, as demonstrated in Figure 13d, the compilation
problem is resolved. Lastly, for longer code snippets, CodeRosetta occasionally omits the closing
curly bracket.

G Discussion on Unsupervised Training

G.1 Fine-tuning for Code Translation

In the context of code translation, paired data is scarce. However, our model benefits from a strong
foundational understanding of code translation acquired through unsupervised and self-supervised
pre-training on 243K training examples for C++ ↔ CUDA. We demonstrate that fine-tuning, even with
a small amount of synthetic data—without verifying the one-to-one mapping between the generated
samples and the input code in a supervised manner—can further improve the model’s performance.
Specifically, fine-tuning with merely 5K paired samples (less than 2% of total data) generated by larger
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models still led to significant performance gains. While synthetic data may introduce some errors (as
large models can make translation mistakes), the combination of this foundational pre-training and
fine-tuning with a small synthetic dataset yields further improvements.

G.2 Back Translation

Back Translation (BT) has been extensively used in unsupervised translation tasks for both natural
language and code. We integrate this technique with the denoising auto-encoding (DAE) objective,
ensuring that the model is not trained exclusively on a single objective. During training, the model
alternates between DAE and BT for each batch of data. This prevents the model from relying solely
on BT and ’cheating’ by outputting the input source code as an intermediate translation. To better
understand this behavior, we analyzed the intermediate outputs during back translation.

For instance, Figure 14 shows a C++ input and its corresponding intermediate CUDA translation. As
shown, while the model attempts to translate the code to CUDA, the output contains errors, such as
the undefined variable j. In the back translation process, this noisy CUDA code output is fed back
into the model, which then attempts to reconstruct the original C++ input. Since the model alternates
between languages during back translation, it occasionally generates noisy CUDA or C++ code. This
approach improves the model’s robustness when handling noisy inputs in translation tasks.

H Translation Pitfalls: Invalid Tokens in Target Language

During translation between programming languages (e.g., from C++ to CUDA), certain entities,
libraries, and syntaxes present in the source language may not be valid or supported in the target
language. For example, C++ Standard Template Libraries (STL) such as std::unique_ptr are
not compatible with CUDA’s device code and must be excluded from translations. The pre-training
process in CodeRosetta equips the model with semantic knowledge of both source and target
languages, reducing the frequency of invalid tokens during translation. Nonetheless, there are still
instances where the model may fail to correctly map common source language entities to valid target
language counterparts.

While our test set contained no occurrences of std::unique_ptr, we deliberately included this
construct in a separate C++ code example to evaluate CodeRosetta’s handling of STL-specific
constructs. Figure 16 demonstrates this case, where the model successfully generates CUDA
code by omitting the unsupported std::unique_ptr in the device kernel. Instead, the use of
std::unique_ptr is correctly retained in the host kernel, specifically in the main function, which
runs on the CPU. Since CodeRosetta is trained to focus on device function generation, the translation
is accurate in this instance.

On the other hand, Figure 17 illustrates a case of incorrect translation, where CodeRosetta, along
with other large closed-source models like GPT-4, Gemini-Ultra, and Gemini-Pro, failed to generate
valid CUDA code. The translated code includes the line *rho = 0;, which initializes the rho
variable to zero. In a multi-threaded GPU environment, executing this kernel across multiple threads
and blocks simultaneously can lead to a race condition, as multiple threads would attempt to write to
the same memory location concurrently. Without synchronization mechanisms like atomic operations
or reduction techniques, this results in unpredictable and incorrect behavior. The correct approach
would be to initialize rho in the host code and use atomicAdd to accumulate values in the device
code safely.

I Prompt Template and LLMs

In this section, we describe the prompt template used to translate between different programming
languages and libraries. The template, shown in Figure 15, served as the basis for all translation tasks,
with language-specific adjustments made by updating the source and target languages as required. For
this study, we use OpenAI API’s GPT-4 API, using a fixed temperature of zero to ensure deterministic
outputs across all models, including CodeRosetta. All queries were executed on May 18th, 2024,
ensuring consistency in results throughout the experiments.
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J Additional Related Work

Automatic parallelization. Early efforts in auto-parallelization were primarily focused on identifying
independent loops that could be executed in parallel. Renowned compilers like the Portland Group
(PGI) and Intel’s C++ Compiler (ICC) have embedded auto-parallelization capabilities, offering
pragma-based hints to guide the parallelization process. These compilers analyze loop dependencies,
data flow, and potential side effects to generate parallel code, often targeting OpenMP or MPI for
multi-threading and distributed computing, respectively. The advent of Polyhedral model-based
tools marked a significant advancement in auto-parallelization techniques. The Polyhedral model [6]
offers a powerful algebraic representation for optimizing loop nests with affine bounds and access
patterns. Pluto [8] is an auto-parallelization tool that utilizes the Polyhedral model to perform loop
transformations, tiling, and fusion for effective parallel execution while considering data locality
optimization. PPCG (Polyhedral Parallel Code Generation) [44] is another tool that exploits the
polyhedral model to automatically optimize and generate parallel code from high-level abstractions,
targeting multicore CPUs and GPUs.

Neural machine translation. TransCoder-ST [37] extends the original work [36] by adding automated
unit testing. TransCoder-IR [39] extends it even further by exploiting LLVM IR for program translation.
HPC-GPT [13] uses GPT4 to create an instruction-answer dataset for two tasks (AI models and
datasets for HPC and data race detection), then Llama model [43] is supervised tuned on this dataset.
Pan et al. [31] provided one of the first studies on the types of errors that are often produced in code
translation.

There is a growing number of large language models (LLMs) for code generation [5, 35, 40, 50, 26, 4,
29, 3]. Most of these works focus mainly on natural language to code generation. Although these
Code LLMs can generate code in various programming languages, Python, in particular, has received
more attention compared to others. This could be due to the number of available benchmarks that
assess Python coding capabilities [10, 23], though other programming languages have been gaining
more attention recently as well [9]. Despite the growing number of Code LLMs, these models are
typically not specifically trained for code translation, even though they can perform code translation
to some extent, as shown by Pan et al. [31].

K Limitations

While CodeRosetta demonstrates promising results in code translation, several avenues for future
work exist. Currently, CodeRosetta targets C++→CUDA and Fortran→C++ translation. Extending
its capabilities to encompass a wider range of HPC languages and parallel programming models would
further broaden its scope. In addition, we plan to improve the set of entity categories used in AER to
capture a better representation of code semantics. This will involve incorporating additional tags for
constructs like data types, control flow mechanisms, and parallel programming-specific primitives.
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#include <stdio.h>
#include <omp.h>

int main() {
int x = 0, y;
#pragma omp parallel num_threads(2)
{

int thrd = omp_get_thread_num();
if (thrd == 0) {

#pragma omp critical
{

x = 10;
}
#pragma omp flush(x)
#pragma omp atomic write
y = 1;

} else {
int tmp = 0;
while (tmp == 0) {

#pragma omp atomic read acquire
tmp = y;

}
#pragma omp critical
{

if (x != 10) printf("x = %d\n",
x);

}
}

}
return 0;

}

(a) Reference C++.

#include <stdio.h>
#include <omp.h>

int main() {
int x = 0, y;
#pragma omp parallel num_threads(2)
{

int thrd = omp_get_thread_num();

if (thrd == 0) {
#pragma omp critical
{

x = 10;
}
#pragma omp flush
#pragma omp atomic write
y = 1;

} else {
int tmp = 0;
while (tmp == 0) {

#pragma omp atomic read acquire
tmp = y;

}
#pragma omp critical
{

if (x != 10) {
printf("x = %d\n", x);

}
}

}
}
return 0;

}

(b) CodeRosetta generated C++.

#include <iostream>
#include <atomic>
#include <thread>
#include <mutex>
std::atomic<int> x(0);
std::atomic<int> y(0);
std::mutex mtx;
void threadFunc(int thrd) {

if (thrd == 0) {
{
std::lock_guard<std::mutex> lock(mtx);
x.store(10, std::memory_order_relaxed);
}
std::atomic_thread_fence(
std::memory_order_release
);
y.store(1, std::memory_order_relaxed);

} else {
int tmp = 0;
while (tmp == 0) {
tmp =

y.load(std::memory_order_acquire);
}
{
std::lock_guard<std::mutex> lock(mtx);
std::cout << "x = "
<< x.load(std::memory_order_relaxed)
<< std::endl;

}
}

}
int main() {

std::thread t1(threadFunc, 0);
std::thread t2(threadFunc, 1);
t1.join();
t2.join();
return 0;

}

(c) GPT4 generated C++.

#include <iostream>
#include <omp.h>

int main() {
int x, y, thrd;
int tmp;

x = 0;

#pragma omp parallel num_threads(2)
private(thrd, tmp)

{
thrd = omp_get_thread_num();

if (thrd == 0) {
#pragma omp critical
{

x = 10;
}
#pragma omp flush(x)
#pragma omp atomic write
y = 1;

} else {
tmp = 0;
while (tmp == 0) {

#pragma omp atomic read acquire
tmp = x;

}
#pragma omp critical
{

std::cout << "x = " << x <<
std::endl;

}
}

}

return 0;
}

(d) Gemini Ultra generated C++.

Figure 9: A C++ OpenMP example with thread sync using atomic operations and critical sections.
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void kernelXor(unsigned int key, char*
input_str_cuda, unsigned char*
possible_plaintext_str_cuda, int
input_length) {
int id;
char* keyCharPtr;

for(id = 0; id < input_length; id++) {
int keyIndex = id % 4;
keyCharPtr = (char*)&key;
char keyChar = keyCharPtr[keyIndex];
possible_plaintext_str_cuda[id] =

keyChar ^ input_str_cuda[id];
}

}

(a) C++ code.

__global__ void kernelXor(unsigned int key,
char *input_str_cuda, unsigned char
*possible_plaintext_str_cuda, int
input_length) {
int id = threadIdx.x + blockDim.x *

blockIdx.x;
if (id >= input_length) return;

int keyIndex = id % 4;
char *keyCharPtr = ((char *)&key);
char keyChar = keyCharPtr[keyIndex];

possible_plaintext_str_cuda[id] = keyChar ^
input_str_cuda[id];

}

(b) CUDA reference.

__global__ void kernelXor(
unsigned int key,
char *input_str_cuda,
unsigned char *possible_plaintext_str_cuda,
int input_length)

{
int id = blockIdx.x * blockDim.x +

threadIdx.x;
if (id >= input_length)

return;
int keyIndex = id % 4;
int keyCharPtr = ((char *)&key);
char keyChar = keyCharPtr[keyIndex];
possible_plaintext_str_cuda[id] = keyChar ^

input_str_cuda[id];
}

(c) BabelTower.

__global__ void kernelXor(unsigned int key,
char* input_str_cuda, unsigned char*
possible_plaintext_str_cuda, int
input_length) {
int id = blockIdx.x * blockDim.x +

threadIdx.x;
char* keyCharPtr;

if (id < input_length) {
int keyIndex = id % 4;
keyCharPtr = ((char*)&key);
char keyChar = keyCharPtr[keyIndex];
possible_plaintext_str_cuda[id] =

keyChar ^ input_str_cuda[id];
}

}

(d) CodeRosetta.

__global__ void kernelXor(unsigned int key,
char *input_str_cuda,

unsigned char
*possible_plaintext_str_cuda,

int input_length) {
int id = blockIdx.x * blockDim.x +

threadIdx.x;
if (id < input_length) {

int keyIndex = id % 4;
char *keyCharPtr = (char *)&key;
char keyChar = keyCharPtr[keyIndex];
possible_plaintext_str_cuda[id] =

keyChar ^ input_str_cuda[id];
}

}

(e) Gemini Ultra.

__global__ void kernelXor(unsigned int key,
char* input_str_cuda, unsigned char*
possible_plaintext_str_cuda, int
input_length) {
int id = threadIdx.x + blockIdx.x *

blockDim.x;
if (id < input_length) {

int keyIndex = id % 4;
char* keyCharPtr = ((char*)&key);
char keyChar = keyCharPtr[keyIndex];
possible_plaintext_str_cuda[id] =

keyChar ^ input_str_cuda[id];
}

}

(f) GPT4.

Figure 10: Comparison of the generated kernelXor CUDA kernel.
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void pow_cpu(int N, float ALPHA, float* X, int
INCX, float* Y, int INCY) {
int i;

for(i = 0; i < N; ++i) {
Y[i * INCY] = pow(X[i * INCX], ALPHA);

}
}

(a) C++ code.

__global__ void pow_kernel(int N, float ALPHA,
float *X, int INCX, float *Y, int INCY) {
int i = (blockIdx.x + blockIdx.y *

gridDim.x) * blockDim.x + threadIdx.x;

if (i < N) {
Y[i * INCY] = powf(X[i * INCX], ALPHA);

}
}

(b) CUDA reference.

__global__ void pow_gpu(int N, float ALPHA,
float *X, int INCX, float *Y, int INCY) {
int i = (blockIdx.x + blockIdx.y *

gridDim.x) * blockDim.x + threadIdx.x;
if (i < N) {

Y[i * INCY] = pow(X[i * INCX], ALPHA);
}

}

(c) CodeRosetta.

__global__ void pow_gpu(int N, float ALPHA,
float *X, int INCX, float *Y, int INCY) {
int i = blockIdx.x * blockDim.x +

threadIdx.x;
if (i < N) {

Y[i * INCY] = powf(X[i * INCX], ALPHA);
}

}

void pow_cpu(int N, float ALPHA, float *X, int
INCX, float *Y, int INCY) {
int threadsPerBlock = 256;
int blocksPerGrid = (N + threadsPerBlock -

1) / threadsPerBlock;
pow_gpu<<<blocksPerGrid,

threadsPerBlock>>>(N, ALPHA, X, INCX, Y,
INCY);

cudaDeviceSynchronize();
}

(d) GPT4.

// CUDA program to calculate the power of each element of an array

__global__ void pow_gpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) {

Y[i * INCY] = powf(X[i * INCX], ALPHA);
}

}

int main() {
int N; // Number of elements in the array
float ALPHA; // Exponent to raise each element to
float *X; // Input array
int INCX; // Stride of the input array
float *Y; // Output array
int INCY; // Stride of the output array

// Initialize the input and output arrays

// Allocate memory for the input and output arrays on the device

// Copy the input array to the device

// Call the kernel to compute the power of each element of the array

// Copy the output array back to the host

// Free the device memory

return 0;
}

(e) Gemini Ultra.

Figure 11: Power of elements CUDA kernel.
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subroutine add
use sp_data
implicit none
integer :: i, j, k, m
if (timeron) call timer_start(t_add)
do k = 1, nz2

do j = 1, ny2
do i = 1, nx2

do m = 1, 5
u(m, i, j, k) = u(m, i, j,

k) + rhs(m, i, j, k)
end do

end do
end do

end do
if (timeron) call timer_stop(t_add)
return

end subroutine add

(a) Fortran code.

void add() {
int i, j, k, m;
int thread_id = omp_get_thread_num();
if (timeron && thread_id == 0) {

timer_start(T_ADD);
}
#pragma omp for
for (k = 1; k <= nz2; k++) {

for (j = 1; j <= ny2; j++) {
for (i = 1; i <= nx2; i++) {

for (m = 0; m < 5; m++) {
u[k][j][i][m] =

u[k][j][i][m] +
rhs[k][j][i][m];

}
}

}
}
if (timeron && thread_id == 0) {

timer_stop(T_ADD);
}

}

(b) C++ reference.

void add() {
int i, j, k, m;
int thread_id = omp_get_thread_num();
if (timeron && thread_id == 0) {

timer_start(T_ADD);
}
#pragma omp for
for (k = 1; k <= nz2; k++) {

for (j = 1; j <= ny2; j++) {
for (i = 1; i <= nx2; i++) {

for (m = 0; m < 5; m++) {
u[k][j][i][m] =

u[k][j][i][m] +
rhs[k][j][i][m];

}
}

}
}
if (timeron && thread_id == 0) {

timer_stop(T_ADD);
}

}

(c) CodeRosetta.

#include "sp_data.h"
void add() {

int i, j, k, m;

if (timeron) {
timer_start(t_add);

}
for (k = 1; k <= nz2; k++) {

for (j = 1; j <= ny2; j++) {
for (i = 1; i <= nx2; i++) {

for (m = 1; m <= 5; m++) {
u[m][i][j][k] =

u[m][i][j][k] +
rhs[m][i][j][k];

}
}

}
}
if (timeron) {

timer_stop(t_add);
}

}

(d) GPT4.

void add() {
using namespace sp_data;
int i, j, k, m;
if (timeron) {

timer_start(t_add);
}
for (k = 1; k <= nz2; k++) {

for (j = 1; j <= ny2; j++) {
for (i = 1; i <= nx2; i++) {

for (m = 1; m <= 5; m++) {
u(m, i, j, k) = u(m, i, j, k) + rhs(m, i, j, k);

}
}

}
}
if (timeron) {

timer_stop(t_add);
}
return;

}

(e) Gemini Ultra.

Figure 12: Element-wise addition of two multi-dimensional arrays.
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__global__ void set_valid_mask_gpu(const T
*score, T score_thr, int *valid_mask, int
dims) {
int tid = blockIdx.x * blockDim.x +

threadIdx.x;
if (tid < dims) {

if (score[tid] > score_thr) {
valid_mask[tid] = 1;

} else {
valid_mask[tid] = 0;

}
}

}

(a) Generated CUDA code.

template <typename T>
__global__ void set_valid_mask_gpu(const T
*score, T score_thr, int *valid_mask, int
dims) {
int tid = blockIdx.x * blockDim.x +

threadIdx.x;
if (tid < dims) {

if (score[tid] > score_thr) {
valid_mask[tid] = 1;

} else {
valid_mask[tid] = 0;

}
}

}

(b) Corrected CUDA code.

__global__ void get_ev(double *old_arr, double
*new_arr) {
int tid = blockIdx.x * blockDim.x +

threadIdx.x;
if (tid < size) {

new_arr[tid] = old_arr[tid];
}

}

(c) Generated CUDA code

__global__ void get_ev(double *old_arr, double
*new_arr, int size) {
int tid = blockIdx.x * blockDim.x +

threadIdx.x;
if (tid < size) {

new_arr[tid] = old_arr[tid];
}

}

(d) Corrected CUDA code

Figure 13: Post Compilation fixes on CUDA kernel.

static void makexgraph(graph *g, xword *h, int
n) {
setword gi;
int i, j;
xword hi;
for (i = 0; i < n; ++i) {

hi = 0;
gi = g[i];
while (gi) {

j = FIRSTBITNZ(gi);
gi ^= bit[j];
hi |= XBIT(j);

}
h[i] = hi;

}
}

(a) Input C++ code.

__global__ void makexgraph(graph *g, xword *h,
int n) {
setword gi;
int i = blockIdx.x * blockDim.x +

threadIdx.x;
xword hi;
for (; i < n; i += blockDim.x * gridDim.x)
{
hi = 0;
gi = g[i];
while (gi) {

j = FIRSTBITNZ(gi);
gi ^= bit[j];
hi |= XBIT(j);

}
h[i] = hi;

}
}

(b) Intermediate CUDA generated code.

Figure 14: Back translation intermediate results.

You are an expert in translating C++ programs to CUDA programs.
Given the C++ program below, translate it to CUDA. Ensure that the CUDA

program is compatible with the C++ program and preserves the
semantics of the original code.

↪→
↪→
Just print the CUDA program and remove any unnecessary comments. Surround

the generated CUDA program in #start and #end.↪→

### C++ Program:{cpp_code_content}

### CUDA Version:

Figure 15: Prompt for translating C++ to CUDA.
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void initializeArray(std::unique_ptr<int[]>&
array, int size) {
for (int i = 0; i < size; ++i) {

array[i] = i * 10;
}

}

(a) Example of C++ code with std::unique_ptr

__global__ void initializeArray(int *array, int
size) {
int i = blockIdx.x * blockDim.x +

threadIdx.x;
if (i < size) {

array[i] = i * 10;
}

}

(b) Translated CUDA code.

Figure 16: Example of translation of a C++ code with std::unique_ptr

void getRho(const int numOfNucl, const double*
psi, const double* occNo, double* rho,
const char debug) {
*rho = 0;
for (int i = 0; i < numOfNucl; ++i) {

*rho += occNo[i] * psi[i] * psi[i];
}
if (debug == 1) {

printf("DEBUG _ print _ of _ RHO:\n_
RHO _ = _ %f\nThis _ is _ the _
last _ line (RHO).\n\n", *rho);

}
}

(a) C++ Code

__global__ void getRho(const int numOfNucl,
const double *psi, const double *occNo,
double *rho, const char debug) {
*rho = 0;
for (int i = blockIdx.x * blockDim.x +

threadIdx.x; i < numOfNucl; i +=
blockDim.x * gridDim.x) {
*rho += occNo[i] * psi[i] * psi[i];

}
if (debug == 1) {

printf("DEBUG print of RHO:\nRHO =
%f\nThis is the last line
(RHO).\n\n", *rho);

}
}

(b) Wrong translated CUDA code.

Figure 17: Example of a failed C++ to CUDA translation.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer:[Yes]
Justification: We provide a bidirectional encoder-decoder transformer model that is capable
of learning to translate programming languages as well as their HPC extensions. Results
indicated
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our study are addressed in Appendix(Section K) . First,
our research does not extend CodeRosetta to a broader range of applications. Second, we
have not incorporated several potentially beneficial AER tags. Despite these limitations,
our methodology has demonstrated significant effectiveness in two critical tasks in the
HPC community: translating C++ to Fortran and C++ to CUDA. We plan to address these
limitations in future research efforts.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We submitted the code as supplemental material and also created an anonymous
repository ( https://anonymous.4open.science/r/neurips_coderosetta-CAB2/)
to include everything needed to reproduce the experiments. Please refer to the README
file in the repository for detailed steps.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We submitted the code as supplemental material and also created an anonymous
repository ( https://anonymous.4open.science/r/neurips_coderosetta-CAB2/)
to include both data and code. Please refer to the README file in the repository for details.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 discussed experimental settings/details such as data preprocessing,
data splits, hyper-parameters, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our work does not include statistical experiments due to limited computational
resources.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?[Yes]
Justification: We discussed the information on the computer resources at the beginning of
Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in our paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of the data and models used in this work have been properly
credited. The license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not release new assets. We use existing, publicly available
resources for our analysis.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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