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Abstract

Robust estimation of the essential matrix, which encodes the relative position
and orientation of two cameras, is a fundamental step in structure from motion
pipelines. Recent deep-based methods achieved accurate estimation by using
complex network architectures that involve graphs, attention layers, and hard
pruning steps. Here, we propose a simpler network architecture based on Deep
Sets. Given a collection of point matches extracted from two images, our method
identifies outlier point matches and models the displacement noise in inlier matches.
A weighted DLT module uses these predictions to regress the essential matrix. Our
network achieves accurate recovery that is superior to existing networks with
significantly more complex architectures.

1 Introduction

Estimating the relative pose of two cameras depicting a stationary scene is a fundamental computer
vision task and a basic step in multiview structure from motion (SFM) [33, 24, 45, 1, 51, 43, 20, 26, 35]
and simultaneous localization and mapping (SLAM) [22, 47, 7, 21] pipelines. Both classical and
recent deep network-based algorithms (see a review in Section 2) use point matches to compute the
essential matrix, which encodes the relative position and orientation of the two cameras. Identifying
such point matches by existing heuristics, however, is prone to mistakes, due to possibly large
viewpoint changes, illumination differences, and the presence of ambiguous repetitive scene structures,
resulting in noisy matches and extremely large numbers of outlier matches (often as many as 95%)
that must be identified and pruned to enable accurate pose recovery.

Classical SFM algorithms use RANSAC [16] to robustly identify inliers and estimate pose parameters.
While RANSAC has been used effectively for consensus recovery, learning-based deep network
approaches have introduced a competitive alternative, making steady progress in accuracy while
allowing for efficient inference and demonstrating resilience to very large fractions of outliers. This
progress was obtained at the price of complicating the network architecture, e.g., using message
passing in local, near-neighbour graphs [58, 28, 31, 52] or expensive attention (transformer) layers
[28, 52], along with the addition of hard pruning steps [58, 28, 52].

In this paper, we introduce a simpler network architecture for consensus learning based on the Deep
Sets framework [55]. Deep Sets architectures are based on shared, element-wise layers that are
combined with global features produced by summing the element-wise features. Zaheer et al. and
others [55, 50] proved that such architectures can express universal permutation-equivariant functions
over sets. In our network, the input set elements include pairs of keypoints, i.e., the coordinates
of matching pairs of points. In each layer, element-wise features are produced by a linear layer
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with shared weights, followed by SoftPlus activation. Global features are obtained by averaging the
element-wise features, where averaging is used to maintain invariance to set cardinality. The network
utilizes a stack of such permutation equivariant layers to classify point matches as either inliers or
outliers and identify a consensus set to enable accurate relative camera pose regression. We further
improve accuracy by integrating a noise regression module that aims to predict the displacement, due
to noise, of the (clean) positions of inlier keypoints. Finally, we observe that training in two stages,
i.e., first on a noise-free version of the real data (while including the outliers) and subsequently on the
original real data, improves the accuracy of the predicted pose. Our network achieves accurate pose
recovery that is superior to existing networks with significantly more complex architectures.

In summary, our contributions include:

• NACNet, a Noise Aware Consensus Network, for consensus learning tasks and robust
geometric model estimation.

• A DeepSets based architecture that includes inlier displacement error estimation.
• An effective noise-free pretraining scheme: first, pretrain on a denoised version of the real

data, then train on the real (noisy) data.
• Experiments demonstrate that NACNet achieves superior results compared to baselines on

indoor and outdoor image pairs applied on various descriptors.

Our code is available at https://github.com/drormoran/NACNet.

2 Related work

Classical methods. RANSAC [16] and its successors, LO-RANSAC [8], USAC [39], MAGSAC
[3], and MAGSAC++ [4] search over minimal point configurations to find consensus sets from noisy
and corrupted data and estimate a corresponding parametric model. These are applied to matched
keypoints with distinct descriptors obtained by filtering with Lowe’s ratio test [30]. These classical
methods are regarded as the standard solutions for finding consensus in data consisting of mixtures of
inlier and outlier point matches.

Learning-based methods. Deep learning-based methods have been used recently to regress a
geometric model and outlier classification. DFE [40] used a deep-based iteratively reweighted least
squares (IRLS) scheme to predict inlier/outlier scores. LFGC [34] utilized an architecture that
involves an inlier/outlier classifier and weight sharing, followed by context normalization, and applied
a geometric loss to the output of the weighted 8-point algorithm (also called weighted DLT [17]).

Follow-up works improve prediction results by introducing more complex network designs. OANet
[56] introduced an order-aware block, which contains differentiable permutation invariant pooling
and unpooling operators that capture local context by utilizing soft clustering of correspondences in
the feature space. CLNet [58] used this order-aware block together with pruning and local-to-global
consensus learning procedure strategy to classify the correspondences by employing convolutions
on local and global graphs built based on the Euclidean distance in feature space. All the methods
mentioned above suffer from the leakage of outliers to the consensus set. Consequently, they all use
RANSAC at the end of their inference step. In contrast, NCMNet [28], MGNet [31], and BCLNet
[52] used weighted DLT also at inference, showing that the performance of the results is not improved
further when RANSAC is applied in addition. NCMNet [28] proposed a local-to-global consensus
learning scheme in which it first creates a local spatial graph, then a local feature space graph, and
finally a global graph based on the inlier scores from the local graphs. BCLNet [52] introduced the
idea of Bilateral Consensus, adopting the local graph from CLNet [58] as their projection step in a
channel-wise transformer that learns global consensus. MGNet [31] used a similar scheme, building
both implicit and explicit local graphs and a global graph. Unlike previous methods, this method
does not prune correspondences inside the network.

In contrast to these methods, we use an architecture based on Deep Sets [55]. Deep Sets enable
efficient information transfer between the point matches through global features without the need to
construct and manipulate graphs. Our newly proposed noise regression module further improves our
results. Finally, as with recent methods, our method too does not require a final RANSAC step.

Learned feature matching. Deep learning-based detectors and descriptors [11, 54, 13, 14] based
on both CNNs and Transformers have been used in recent years to replace the handcrafted features
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Figure 1: Network architecture. Noise Aware Consensus Network (NACNet) architecture, see text
for details.

[30, 36, 5] used in classical methods. Those methods trained with challenging and diverse data have
improved the accuracy and robustness of matching even with the classical nearest neighbor matching.
Yet the main problems of high outlier rate remained. Consequently, learned matchers that match
keypoints while rejecting non-matchable ones have merged[42, 27], combining Transformers with
optimal transport[37] to produce more accurate matches even with large camera movement. These
matchers rely on the descriptors for the matching and keypoint rejection and require RANSAC as a
post-processing step. In contrast, our method, similar to [28], [31], [52], gets as an input the keypoints
(point correspondences) only and does not incorporate RANSAC.

Keypoint refinement. Previous works [15, 48, 12, 26] have shown that correcting keypoints position
could positively influence the results of geometric model estimation. All of those works use visual
and learned features (SIFT descriptors or features obtained from applying a convolutional network to
the input images) to correct the positions. To our knowledge, our paper is the first to use the input
point set directly to correct keypoint position, as opposed to previous works, which rely on either an
estimated geometric model or visual features.

3 Method

Consider a pair of images captured by (internally) calibrated cameras expressed with 3× 4 matrices,
P = [I,0] and P̃ = [R, t], where R and t respectively denote the relative rotation and translation
between the two views. The essential matrix E = [t]×R, determines the epipolar geometry between
the two views, so that for any two corresponding points, p and p̃, projected from a 3D point, it holds
that p̃TEp = 0. Existing algorithms commonly estimate the essential matrix directly from a set of
putative matches between the two views, i.e., pairs of keypoints.

Our aim in this work is to construct a network that identifies a consensus set of point matches (a set
of inliers), given a set of putative matches as input (generally contaminated with noise and outliers),
and, based on this consensus set, predicts the essential matrix between the two images. We seek to
construct a network that can overcome positional noise, which can reside in the inlier matches, and
cope with a considerable fraction of outlier matches, up and above 95%. In addition, we aim for a
method that can generalize to unseen image pairs and work with a varying number of point matches
and a variety of fractions of outliers.

Those goals are achieved by employing a permutation-equivariant network architecture with the
following key properties: (1) a two-stage noise-aware training scheme, (2) a noise head for predicting
positional inlier noise, and (3) a classification head to discriminate between inliers and outliers. These
three key properties are at the core of our method. Hence, we refer to our network as a Noise-Aware
Consensus Network (NACNet).
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Ground truth outliers
Ground truth inliers
Denoised inliers

Figure 2: NACNet point location denoising on a line-fitting task. The set X (right panel) is
composed of 90% outliers (marked in grey) and (noisy) inliers (red). Our model predicts the denoised
version X̂ (purple, left panel). Evidently, the prediction of the positional noise, yielding noise-free
inliers, agrees with the line model.

Formally, let X = {x1, . . . ,xn} ⊂ R4 denote a set of point correspondences, with xi =
(pi, qi, p̃i, q̃i) denoting a match between a keypoint pi = (pi, qi) in the left image and a keypoint
p̃i = (p̃i, q̃i) in the right image. Our aim is, given X as an input to classify each matching pair xi as
an inlier (yi = 1) or outlier (yi = 0) and associate with it an (inlier) confidence score Ci ∈ R. Those
predictions are used to estimate the essential matrix that relates the two views.

Network architecture. Our network comprises of three noise-aware consensus (NAC) blocks. Each
NAC block uses a set encoder to map the input matches to a latent representation and to correct their
positions due to positional noise. The third block further classifies the points as inliers or outliers and
produces their corresponding confidence scores. Its outputs feed the model regression block, which
implements a weighted differentiable Direct Linear Transformation (DLT) algorithm [34], based on
the confidence scores, to predict the essential matrix. We refer the reader to Figure 1 for a detailed
scheme of our network architecture.

Noise aware consensus (NAC) block. Each NAC block comprises of a set encoder, a noise head, and
a classification head. The set encoder uses DeepSets layers to map the coordinates of the input point
matches to a latent representation L ∈ Rn×d. Each DeepSets layer includes a linear, permutation
equivariant layer followed by SoftPlus activation. These layers apply a linear transformation to each
set member and an additional (different) linear transformation to their average. (We replace the sum
in [55] with an average to maintain invariance to set cardinality.)

The noise and classification heads are implemented with simple two-layer MLPs. The noise head
uses the latent representation to predict displacement vectors for all input points, δ ∈ Rn×4. These
displacement vectors are subtracted from the input points, X , producing their predicted denoised
locations, X̂ . The classification head uses as input the latent representation and outputs predictions
for the inlier/outlier classification labels Ŷ ∈ [0, 1]n with their corresponding weights W ∈ Rn.

The predicted denoised version of the keypoints X̂ and the latent representation L are passed to the
next NAC block. In the third block, the inlier/outlier predicted labels Ŷ , the weights W , and the
denoised keypoints X̂ are passed to the model regression block.

We demonstrate the NAC block denoising effect on a simple line-fitting task. We randomly sample
100 noisy points on a line and, in addition, 900 outliers. An example is shown in Figure 2, where our
NACNet significantly reduces the positional noise in the inlier points.

Model regression block. The model regression block uses the predicted weights, W , and the
classification labels, Ŷ , obtained from the classification head, and the denoised version of the
keypoints, X̂ , obtained from the noise head to predict the essential matrix in the following way.

Ê = g(X̂, Ŷ ,W ), (1)
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where g denotes the differentiable DLT algorithm (also called the weighted eight-point algorithm, see
formulation in [34], Section 3). Similarly to [46], we calculate confidence scores as follows

Ci =
Ŷi · exp(Wi)∑
j Ŷj · exp(Wj)

. (2)

The confidence scores are used as the weights corresponding to the denoised keypoints X̂ in the
weighted DLT algorithm.

3.1 Loss function

We minimize a loss composed of three terms

L(X̂, Ŷ , Ê;X,Y,E) = Lcls(Ŷ , Y ) + αmodLmod(Ê, E) + αnsLns(X̂,X,E). (3)

The first term Lcls uses a weighted binary cross entropy loss, due to the imbalanced of the inliers and
outliers in the data, to penalize for inlier/outlier classification errors

Lcls(Ŷ , Y ) = − 1

n

n∑
i=1

[βinliers · yi · log(ŷi) + βoutliers · (1− yi) · log(1− ŷi)] . (4)

Here, n is the cardinality of the keypoint set, X , and βinliers and βoutliers are determined by a hyperpa-
rameter search.

The second term Lmod penalizes for errors in the predicted essential matrix, similarly to the suggestion
in [40]. We start with a grid of k point pairs and use the Optimal Triangulation Method (OTM) [17]
(page 318) to find the closest points that satisfy the ground truth epipolar constraints. Specifically,
given a pair of grid points (pi, p̃i), OTM seeks to find the global minimum for the following
optimization problem:

(qi, q̃i) = argmin
p′

i,p̃
′
i

d(pi,p
′
i)

2 + d(p̃i, p̃
′
i)

2 subject to p̃′T
i Ep′

i = 0, (5)

where E is the ground truth essential matrix, and d is the Euclidean distance between the points.
Given the optimal points {qi, q̃i}ki=1, we define the loss using the Symmetric Epipolar Distance:

Lmod(Ê, E) =

k∑
i=1

(q̃T
i Êqi)

2

(
1

∥ÊT q̃i∥22
+

1

∥Êqi∥22

)
, (6)

where Ê is the predicted essential matrix and k = 400.

The last term Lns is used to minimize the distance between the noise-free keypoints, X̄ , and the
predicted denoised version of the keypoints, X̂ , over the set of the ground truth inliers, as follows

Lns(X̂,X,E) = ∥X̂inliers − X̄inliers∥. (7)
To determine the ground truth, noise-free inlier keypoints, X̄inliers, we apply the Optimal Triangulation
Method ([17], page 318). The parameters αmod and αns are determined by a hyperparameter search.

3.2 Training

Training our model to remove outlier matches is complicated by the presence of noise in the positions
of inlier matches, potentially resulting in a small classification margin. This, in turn, has been shown
(in the case of kernel SVM) to have a negative effect on sample complexity and generalization
error [44] (Pages 205-206, 221). A further complication is the lack of ground truth labels; i.e., our
inlier/outlier labels are set by applying a preset threshold to the deviation of the points from the
projections derived by the Optimal Triangulation Method ([17], page 318)(see Section 4.1).

To approach this problem, we train our model by applying a two-stage, noise-aware optimization
process. The input to the first stage includes the set X̄ containing the noise-free inlier matches along
with the outlier matches. The optimization in this stage, therefore, uses only the first two terms of
the loss (3), and the noise head is muted. In the second stage, the input to the network includes the
original set of keypoints X , and the full loss, i.e., including (7), is optimized. Our experiments and
ablations indicate that this two-stage training process significantly improves the performance of our
method.
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(a) YFCC - SIFT (b) YFCC - SuperPoint (c) SUN3D - SIFT

Figure 3: Distributions of outliers in the different datatsets. Histograms showing for each dataset
(YFCC and Sun3D) and feature descriptor (SIFT or SuperPoint) the number of image pairs (the
Y-axis) with a given fraction of outlier matches (the X-axis). The means and standard deviations
(from left to right) are 0.89± 0.06, 0.77± 0.14, 0.92± 0.08

4 Experiments

4.1 Datasets and baselines

Datasets. We trained and tested our method on both indoor and outdoor datasets. For an outdoor
dataset, we used Yahoo’s YFCC dataset[49], which contains 100 million images from flicker later
reconstructed using SFM[18]. For an indoor dataset, we used the SUN3D [53]. For both datasets, we
used the same preprocessing and dataset split as in [56], i.e., the camera poses are extracted from
an SFM pipeline, and the test set is split into in-scene and cross-scene generalization. In contrast to
previous methods that use the Symmetric Epipolar Distance for "ground truth" inlier/outlier labeling,
we determined the labels by the deviation of the points from the projections derived by the Optimal
Triangulation Method ([17], page 318) using a threshold of 3 × 10−3. In practice, changing the
labeling paradigm did not affect the results. Additionally, we used the Phototourism dataset[19] to
test our model’s generalization across datasets. For keypoint detection, we used SIFT [30], ORB[36],
and SuperPoint [11] followed by the preprocessing steps suggested in [58]. As is shown in Figure 3,
consensus learning on these datasets is highly challenging due to the high fraction of outliers in all
datasets and with all descriptors.

Baselines. We compare our methods with RANSAC[16], DEGENSAC[9], GC-RANSAC[2],
MAGSAC++[4], PointNet++[38], DFE[40], LFGC[34], OA-Net[56], ACNe [32], LMC-Net[29], CL-
Net[58], MS2DG-Net[10], ConvMatch[57], U-Match[25], NCMNet[28], MGNet[31], BCLNet[52],
and SuperGlue[42]. All the evaluations of deep learning-based methods are taken from their re-
spective papers unless specifically stated otherwise. We used the official SuperGlue repository for
evaluation on SuperPoint, and the paper[42] results for evaluation on SIFT. For the RANSAC-based
methods [2, 4, 9, 16], we set the maximal number of iterations to 100K and use Lowe’s ratio test[30]
to filter the initial matches, with a threshold tuned differently for the SIFT and SuperPoint descriptors
to maximize performance.

Evaluation metrics. We use the mean average precision (mAP) to evaluate our model predictions
as suggested in [34]. We compute the mAP over the maximum between the translation and rotation
angular errors of our predicted essential matrix up to the threshold of 5◦.

4.2 Essential matrix estimation

Our results are shown in Table 1-3. (Additional evaluations are shown in the Appendix.) The results
demonstrate that our model outperforms the current SOTA in almost all conditions, including with
indoor (SUN3D data) and outdoor (YFCC) images, with keypoint matches obtained with SIFT and
SuperPoint, in in-scene (unseen image pairs from scenes included in training), cross-scene, and even
cross-dataset (PhotoTourism) experiments. Specifically, in the YFCC/SIFT task (Table 1), our model
outperforms the other methods by a significant margin in the in-scene generalization task and with a
smaller margin in the cross-scene generalization task. Likewise, on the SUN3D dataset, our method
outperforms the other methods in both in-scene and cross-scene generalization, improving over the
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previous SOTA by 3.6% in the cross-scene test. Qualitative results can be seen in Figure 4 and in
Appendix A.3.

Original Pair Input Matches Our Output

Figure 4: NACNet inlier/outlier classification. An example from the SUN3D dataset. Left to right:
input image pairs, input matches, and our model’s predicted inliers. Color mark ground truth labels:
inlier matches are marked in green; outliers are marked in red.

Table 1: SIFT evaluation. Evaluation of essential matrix estimation on the YFCC and SUN3D
datasets with keypoint matching obtained with SIFT. mAP5◦(%) is reported, and the best result in
each column is in bold. In-scene denote results on novel image pairs taken from scenes that were
included in the training data and cross-scene denote results on image pairs taken from unseen scenes.
The first set of methods (above the middle line) includes methods that incorporate RANSAC.

Method YFCC(%) SUN3D(%)
In-scene Cross-scene In-scene Cross-scene

RANSAC 31.57 42.78 20.88 15.79
GC-RANSAC 30.88 42.55 18.69 13.57
LO-RANSAC 30.96 42.60 19.01 13.85
MAGSAC++ 31.01 42.57 19.55 14.23
SuperGlue - 59.25 - -
Point-Net++ 10.49 16.48 10.58 8.10
DFE 19.13 30.27 14.05 12.06
LFGC 13.81 23.95 11.55 9.30
OA-Net++ 32.57 38.95 20.86 16.18
ACNe 29.17 33.06 18.86 14.12
LMC-Net 33.73 47.50 19.92 16.82
CL-Net 39.16 53.10 20.35 17.03
MS2DG-Net 38.36 49.13 22.20 17.84
ConvMatch 43.48 54.62 25.36 21.71
U-Match 46.78 60.53 24.98 21.38
NCMNet 52.33 63.43 26.12 20.66
MGNet 51.43 64.63 25.96 21.27
BCLNet 52.62 66.08 24.59 19.96
Ours 60.10 66.14 34.15 25.36

We also tested our model using the deep-learning based descriptor SuperPoint on both the YFCC
and SUN3D datasets. Table 2 shows that our model improves over existing SOTA methods that do
not incorporate RANSAC by 6.9% on the cross-scene YFCC test and by 2.96% on the cross-scene
SUN3D test. Overall, our model achieves SOTA results over both datasets and descriptors.

4.3 Generalization to different descriptors and datasets

We next examined our model’s ability to generalize across different descriptors and datasets. For
these experiments we used our model trained on the YFCC dataset with SIFT matches. We then
tested this model on image pairs from novel scenes (i.e., cross-scene experiment) from the YFCC
dataset with matches obtained using ORB and SuperPoint. Additionally, we applied the YFCC/SIFT
model to image pairs from the test set of the Phototurisem dataset with matches obtained with SIFT
and SuperPoint. The results are shown in Table 3. While our model slightly underperforms the
SOTA with ORB matches, it outperforms existing methods with SP matches by almost 3.9%. On
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Table 2: SuperPoint evaluation. Evaluation of camera pose estimation in experiments on outdoor
and indoor datasets using matches obtained with SuperPoint. mAP5◦(%) is reported, and the best
result in each column is in bold. In-scene denote results on novel image pairs taken from scenes that
were included in the training data and cross-scene denote results on image pairs taken from unseen
scenes. The first set of methods (above the middle line) includes methods that incorporate RANSAC.

Method YFCC(%) SUN3D(%)
In-scene Cross-scene In-scene Cross-scene

RANSAC 20.36 25.60 21.25 15.89
GC-RANSAC 17.27 22.27 19.32 14.17
LO-RANSAC 17.25 22.12 19.22 14.46
MAGSAC++ 18.09 23.47 20.23 15.02
SuperGlue 39.71 57.45 24.09 19.45
Point-Net++ 11.87 17.95 11.40 9.38
DFE 18.79 29.13 13.35 12.04
LFGC 12.18 24.25 12.63 10.68
OA-Net++ 29.52 35.27 20.01 15.62
ACNe 26.72 32.98 18.35 13.82
CL-Net 29.35 38.99 15.89 14.03
MS2DG-Net 30.40 37.38 20.28 16.08
U-Match 35.12 45.72 22.73 18.87
ConvMatch 38.34 48.80 25.36 21.71
NCMNet – 52.20 – –
MGNet 41.53 49.37 24.58 20.65
BCLNet 40.56 48.07 - -
Ours 55.94 59.10 33.97 24.67

Table 3: Generalization across descriptors and datasets. This table shows the results obtained
with our model trained on the YFCC dataset with SIFT matches applied in inference to the YFCC
dataset with the ORB and SuperPoint (SP) feature extractors and to the PhotoTourism dataset with
SIFT and SuperPoint (SP). mAP5◦(%) is reported, and the best result in each column is marked in
bold. † indicates evaluation conducted using published models.

YFCC(%) PhotoTourism(%)
ORB SP SIFT SP

LFGC 7.40 14.78 20.17 5.89
OA-Net++ 12.05 19.40 40.39 8.99
CL-Net 14.75 21.00 45.54 9.41
MS2DG-Net 11.38 21.05 45.53 12.91
U-Match 16.70 28.38 54.43 11.48
NCMNet 19.95 33.20 54.73 30.60
BCLNet† 18.70 25.85 54.29 23.34
MGNet 20.00 32.88 57.64 20.41
Ours 19.17 37.14 60.81 49.03

generalization to the Phototurism dataset our method performs best with both SIFT and SuperPoint
matches.

4.4 Resource utilization

In Table 4, we provide an account of the resources used by our model including the number of
parameters, GPU memory usage, and runtime. It can be seen that while our model uses more
parameters than NCMNet and BCLNet, which use graph attention architectures, it is 4-6 times faster
than these methods and consumes less GPU memory at inference. We further compare our runtime to
RANSAC-based methods. With 100K iterations, RANSAC is significantly slower than our method.
We note that RANSAC is implemented in CPU. We further considered the recent Kornia’s GPU
implementation of RANSAC for fundamental matrix estimation [41]. Using a batch size of 10000
samples, their model runtime and maximum GPU memory usage were 40.94ms and 414.66MB,
respectively, which are 4 times higher than our model. For GPU resource usage, we used an NVIDIA
GeForce RTX 2080Ti and an Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz for CPU.
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Table 4: Resource utilization. The table shows the resource usage of our model compared to previous
methods in terms of number of parameters, GPU memory usage, and runtime. Tested on YFCC with
SIFT descriptors. Note that GC-RANSAC and MAGASAC++ are implemented in CPU.

Methods #Params Max GPU Runtime
(M) Mem (MB) Avg.(ms)

GC-RANSAC - - 217.3
MAGASAC++ - - 295.29
NCMNet 4.77 174.52 67.43
BCLNet 4.87 140.91 46.94
Ours 22.14 130.75 11.12

4.5 Ablation study

Keypoint denoising. In ablation studies we tested the importance of our noise head, i.e., keypoint
denoising process, by training our model with and without this head. In both cases, we used our two
stage training scheme. The results in Table 5 demonstrate that our keypoint denoising improves our
model performance in both indoor (SUN3D) and outdoor (YFCC) scenes and using both SIFT and
SuperPoint matches. This improvement is more noticeable in the more challenging indoor scenario,
as it includes fewer inliers and less accurate positions of keypoints.

Two-stage noise-aware training. To test the importance of our two-stage training scheme, we trained
our model in a single stage on the original (noisy) set of keypoints X , while the noise head is muted
on the YFCC dataset with SIFT matches. The results are shown in Table 5 (first row vs. second row).
The model trained in a single stage performs similarly to the two-stage trained model in the in-scene
generalization test and significantly worse in the cross-scene test.

Correspondences pruning. Previous works [58, 28, 52] used correspondence pruning to reduce
the effect of the outliers’ distribution on the final prediction. Specifically in these schemes, matches
with the lowest classification scores were removed after each block in their networks. To test the
effect of iterative pruning in our model, we implemented a similar scheme, removing half of the input
matches with the lowest scores after each block. We test this pruning strategy on a model trained on
YFCC with SIFT matches without keypoint denoising. In contrast to results reported for previous
methods, the pruning process had a slightly negative effect on our model prediction, decreasing its
mAP5◦ cross-scene score from 65.32% to 64.52%, probably because pruning may also remove some
inlier matches. This experiment suggests that our NAC blocks can handle large numbers of outliers
successfully without the need for additional pruning.

Table 5: Ablation studies. Evaluation of our model without keypoint denoising and 2-stage training.
mAP5◦(%) is reported, and the best result in each column and dataset/descriptors is marked in bold.
In-scene denote results on novel image pairs taken from scenes that were included in the training data
and cross-scene denote results on image pairs taken from unseen scenes.

Dataset Descriptor 2-stage Keypoint In-scene Cross-scenetraining denoising

YFCC
SIFT

– – 57.31 59.70
! – 58.95 65.32
! ! 60.10 66.14

SuperPoint ! – 54.65 58.64
! ! 55.94 59.10

SUN3D
SIFT ! – 30.73 23.02

! ! 34.15 25.36

SuperPoint ! – 27.19 21.67
! ! 33.97 24.67

Hyper-parameter search. We tested our model with different hyper-parameters, including the
number of NAC blocks (which affects the number of DeepSet layers) and the encoder dimension.
Using two NAC blocks instead of three reduces the mAP5◦ to 53.52% and 59.75% for in-scene and
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cross-scene, respectively. Setting the encoder dimension to 256 instead of 512 reduces the mAP5◦ to
54.86% and 63.47%. These hyper-parameters search further justify our choices.

4.6 Implementation details

Training. At first, we trained our model on the YFCC dataset with SIFT matches (25 epochs in
the noise-free pretraining stage and an additional 10 epochs in the second stage). Then, to save on
resources, we finetuned the noise-free pretrained YFCC/SIFT model to initialize the training of the
rest of the models (SUN3D and YFCC with SuperPoint features), for another 5 epochs with the
respective noise-free dataset. Lastly, we train these pretrained models for 10 more epochs using the
original (noisy) data. Training was run on an NVIDIA Quadro RTX 6000/ DGX V100/ A40 GPUs,
with a maximum memory usage of 5GB.

For the loss function we set βinliers = 1, βoutliers = 10, αmod = 1 and αns = 100. We used a threshold
of 3× 10−3 for labeling inliers and outliers. In training, we used the ADAM[23] optimizer with a
batch size of 32 image pairs and a learning rate of 10−4. We note that in the noise-free pretraining
stage, the predictions of all three blocks are considered in the loss function, whereas in the second
stage, only the prediction of the third block is considered.

Architecture details. The network consists of three consecutive NAC blocks, where we only use
the output of the last block at inference time. The Set Encoders in the NAC blocks combine 12 set
layers interleaved with SoftPlus activation, layer normalization, and skip connections in a ResNet-like
architecture. We set the dimension of the Set Encoder to 512. The Classification and Noise Heads
consist of two-layer MLPs interleaved with an activation function. We used a SoftPlus activation
for the classification head and a LeakyReLU for the noise head. The classification head produces an
n× 2 vector. We apply a sigmoid function on the first coordinate to predict Ŷ and use the second
coordinate for the weight prediction W .

5 Conclusion

We presented NACNet, a Noise-Aware Deep Sets framework to estimate relative camera pose, given
a set of putative matches extracted from two views of a scene. We demonstrated that a position
denoising of inliers and noise-free pretraining enable accurate estimation of the essential matrix.
Our experiments indicate that our method can handle large numbers of outliers and achieve accurate
pose estimation superior to previous methods. We generally observed good cross-dataset and cross-
descriptor generalization compared to existing methods, but hope to further improve on those in
future work. In addition, we believe adding a block performing degeneracy test, can further help
properly utilizing non-degenerate configurations of matches and consequently improve the results of
the DLT block. Finally, in future work, we will seek to incorporate our work in multiview structure
from motion pipelines.
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A Appendix

Below, we include further quantitative evaluations, a comparison of visual results between our method
and previous methods, and a list of used assets’ licenses.

A.1 Denoising evaluation

Below we evaluate the utility of the denoising component of our network. Figure 5 shows the noise
distribution before and after our keypoint denoising, measured according to the ground truth essential
matrix. The median of the mean reprojection error (over each pair) reduces due to this component by
0.202 pixels and even more (0.246 pixels) for image pairs with pose error (maximum between the
translation and rotation errors) lower than five degrees.

Figure 5: Denoising evaluation. Reprojection error of inlier keypoints before and after applying our
denoising scheme, computed using the ground truth pose. The box plots show the 0.25, 0.5, and 0.75
quantiles. The two left bar plots represent the evaluation over all the image pairs in the YFCC dataset.
The right two bar plots focus on image pairs whose pose prediction was accurate (i.e., pose error
below 5◦, where the pose error is defined as the maximum of the translation and rotation angular
errors.). Evaluation was conducted on the YFCC dataset using SIFT descriptors.

A.2 Classification evaluation

Our inlier/outlier classification results are shown in Table 6. “Ground truth" labels are determined by
triangulation, as discussed in Section 3.2. It can be seen that our model achieves higher F1 scores
compared to previous methods, possibly explaining our overall improved regression accuracy.

A.3 Qualitative results

Figure 6 shows results obtained with our method, compared with CLNet and MGNet. Here we use
the same indoor and outdoor image pairs shown in the MGNet paper. In Figure 7 we compare our
results to NCMNet (using their published checkpoint) on randomly selected image pairs from the
YFCC dataset. It can be seen in both figures that our method generally outputs fewer outliers than
previous methods.

A.4 License of used assets

• YFCC100M dataset[49] images are under a common-creative license, and each media file in
the dataset is subject to the Creative Commons licenses chosen by their creators/uploaders.

• SUN3D dataset[53] is published under MIT license.
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Table 6: Classification evaluation. Inlier/outlier classification results on the YFCC dataset and SIFT
descriptors. Precision(P), Recall(R), and F1 score are reported.

Methods In-scene Cross-scene

P (%) R(%) F1(%) P (%) R(%) F1(%)

RANSAC 47.4 52.6 49.9 43.5 50.6 46.8
PointNet++ 49.8 86.4 63.2 46.6 84.1 59.9
LFGC 56.6 86.3 68.3 54.6 84.7 66.4
OANet++ 60.0 89.3 71.8 55.7 85.9 67.6
MSA-Net 61.9 90.5 73.5 58.7 87.9 70.4
CLNet 76.0 79.2 77.6 75.0 76.4 75.7
MS2DG-Net 63.1 90.9 74.5 59.1 88.4 70.8
ConvMatch 63.0 91.5 74.6 58.7 89.3 70.9
NCMNet 78.4 81.7 79.6 77.0 78.2 77.4
BCLNet 78.4 82.5 80.1 77.3 79.7 78.3
Ours 84.6 82.9 83.2 82.2 79.1 80.2

• Phototourism dataset[19] is published under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA 4.0

• SuperGlue[42] code and weights are published under a license for:"ACADEMIC OR NON-
PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY"

• SuperPoint[11] code and weights are published under a license for:"ACADEMIC OR
NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY"

• part of our code is adopted from CLNet[58] which is published under GPL-3.0 license.
• BCLNet[52] and NCMNet[28] code is published without specifying a license.
• OPENCV[6] and Kornia[41] are published under Apache License 2.0
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(a) Input (b) NACNet(Ours) (c) CLNet (d) MGNet

Figure 6: Qualitative results. Visualization results of two-view correspondence pruning on unknown
outdoor and indoor scenes. From left to right are the input pairs and the results of NACNet, CLNet,
and MGNet, respectively. Inliers are marked in green and outliers are marked in red.
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(a) Input (b) NACNet(Ours) (c) NCMNet

Figure 7: Qualitative results. Visualization results of two-view correspondence pruning on unknown
outdoor scenes. From left to right are the input pairs and the results of NACNet and NCMNet,
respectively. Inliers are marked in green and outliers are marked in red.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All of the claims made in the abstract and introduction are described in the
method and experiment parts.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our model limitations in the conclusion section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There are no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper describes our method’s implementation details and training scheme
in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our code and data are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of our training and test details are written in the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The common practice in the outlier removal papers is not to report error bars
and statistical significance of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the implementation details section, we indicate the GPU types and memory
consumption used in our training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics, and our research and paper are in line with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not have any direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no risk for misuse of our model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of the models and data are cited correctly, their license terms of use are
respected, and explicitly mentioned in the supplementary.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have yet to release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We didn’t use crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We didn’t use crowdsourcing or human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

101551 https://doi.org/10.52202/079017-3220




