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Abstract

Compared to traditional Artificial Neural Network (ANN), Spiking Neural Net-
work (SNN) has garnered widespread academic interest for its intrinsic ability to
transmit information in a more energy-efficient manner. However, despite previous
efforts to optimize the learning algorithm of SNNs through various methods, SNNs
still lag behind ANNs in terms of performance. The recently proposed multi-
threshold model provides more possibilities for further enhancing the learning
capability of SNNs. In this paper, we rigorously analyze the relationship among the
multi-threshold model, vanilla spiking model and quantized ANNs from a mathe-
matical perspective, then propose a novel LM-HT model, which is an equidistant
multi-threshold model that can dynamically regulate the global input current and
membrane potential leakage on the time dimension. The LM-HT model can also
be transformed into a vanilla single threshold model through reparameterization,
thereby achieving more flexible hardware deployment. In addition, we note that the
LM-HT model can seamlessly integrate with ANN-SNN Conversion framework
under special initialization. This novel hybrid learning framework can effectively
improve the relatively poor performance of converted SNNs under low time latency.
Extensive experimental results have demonstrated that our model can outperform
previous state-of-the-art works on various types of datasets, which promote SNNs
to achieve a brand-new level of performance comparable to quantized ANNs. Code
is available at https://github.com/hzc1208/LMHT_SNN.

1 Introduction

Recognized as the third generation of artificial neural networks [33], Spiking Neural Network (SNN)
is increasingly receiving significant academic attention due to its enormous potential in biological
plausibility and high energy efficiency. As the information transmission between the pre-synaptic
and post-synaptic layers relies on the discrete spike signal, which will be only emitted when the
membrane potential of the corresponding neuron exceeds the firing threshold, SNNs have a unique
event-driven property compared to conventional Artificial Neural Network (ANN). By utilizing this
property, researchers have pointed out that SNNs can achieve significant advantages in terms of
energy consumption on neuromorphic hardware [35, 5, 37]. Currently, SNNs have further fulfilled a
role in multiple application scenarios including object detection [22], natural language processing
[32], and 3D recognition [24].

Spatial-Temporal back-propagation (STBP) with surrogate gradients is currently the most mainstream
supervised learning algorithm suitable for SNNs. Although previous works have attempted to further
enhance the learning ability of SNNs by delving into various optimization strategies, including
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gradient adjustment [29, 8, 14] and structural improvement [54, 51, 44, 50], there is still a certain
performance gap between ANNs and SNNs.

Recently, the STBP learning algorithm based on multi-threshold models [41, 42] is considered as
another potential way to improve the performance of SNNs. In this scenario, multiple levels of the
firing threshold enable SNNs to transmit richer information at each time-step. Unfortunately, we think
that current related works have not accurately recognized the mathematical essence of multi-threshold
models as well as their relationship with ANNs and SNNs. In this paper, we innovatively propose
a learnable multi-hierarchical and equidistant threshold model based on global input information,
which is called LM-HT model. On the one hand, we note that our LM-HT model can equivalently
represent the information of the vanilla model over multiple consecutive time-steps within a single
step. Furthermore, we can convert the LM-HT model into a vanilla single threshold model through a
layer-by-layer reparameterization scheme. On the other hand, the STBP method based on the LM-HT
model can be transformed into the training modes of the vanilla STBP and quantized ANNs under
different parameter initialization conditions, respectively. The main contribution of this work has
been summarized as follows:

• We point out that the essence of the equidistant multi-threshold model is to simulate the
spike firing situation of the vanilla spiking model within specific time windows. Specially,
when the input current follows a completely uniform distribution on the time dimension, its
spike firing rate is mathematically equivalent to the activation output of quantized ANNs.

• We propose an advanced LM-HT model, which can enhance the performance of SNNs to the
level of ANNs and be transformed into a vanilla single threshold model losslessly during the
inference stage. By adopting different parameter initialization schemes, the LM-HT model
can further establish a bridge between the vanilla STBP and quantized ANNs training.

• We further design a brand-new hybrid training framework based on the LM-HT model,
which is enable to effectively improve the performance degradation problem of traditional
ANN-SNN Conversion methods regardless of the time latency degree involved.

• Experimental results have indicated that our model can fulfill state-of-the-art learning
performance for various types of datasets. For instance, we achieve the top-1 accuracy of
81.76% for CIFAR-100, ResNet-19 within merely 2 time-steps.

2 Related Works

STBP supervised training. STBP is the most prevailing recurrent-mode learning algorithm in the
field of SNN direct training. Wu et al. [47] tackled the non-differentiable problem existed in the spike
firing process by utilizing surrogate gradients and achieved gradient smoothing calculation between
layers. Deng et al. [8] and Guo et al. [14] respectively proposed brand-new target loss functions
by analyzing the temporal distribution of the spike sequence and membrane potential. Furthermore,
various temporal-dependent batch normalization layers [54, 10, 15] and advanced spiking neuron
models [51, 44] have been pointed out, which enhances the capability and stability of SNN learning.
The researchers also designed a variety of residual blocks [11, 20] and Transformer structures [55, 49]
suitable for SNNs, promoting the development of STBP training towards the domains of deep and
large-scale models. In addition, some variant and extended learning methods based on STBP have
also received widespread attention. Temporal Coding [36] and Time-to-First-Spike (TTFS) [21]
algorithm conduct one-time back-propagation based on the specific firing moment. Meng et al. [34]
introduced the idea of online learning into vanilla STBP algorithm, which significantly saves training
memory overhead by eliminating the gradient chains between different time-steps. Fang et al. [12]
proposed a spiking neuron model that supports parallel computing in forward propagation, which
also provides inspiration for this work.

ANN-SNN Conversion. ANN-SNN Conversion is another widely used method for obtaining high-
performance SNNs with limited computational resources, which establishes a mathematical mapping
relationship between activation layers and the Integrate-and-Fire (IF) models. Cao et al. [3] first
proposed a two-step conversion learning framework, which replaces the activation functions of
pre-trained ANNs with the IF models layer by layer. On this basis, Han et al. [16] and Li et al. [28]
classified and summarized the relevant errors existed in the conversion process. Deng et al. [7] and
Bu et al. [2] further reduced the conversion errors through deriving the optimal values for the bias
term and initial membrane potential. For the critical conversion error caused by uneven spike firing
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sequences, multiple optimization strategies have been proposed successively, including memorizing
the residual membrane potential [17], firing negative spikes [43, 25], calibrating offset spikes [18]
and hybrid finetuning training [45]. Currently, ANN-SNN Conversion has been further applied to the
training of large-scale visual and language models [46, 32].

Spiking neural models with multi-threshold. The current proposed multi-threshold models can
be generally divided into two categories: one emits signed spikes [22, 52, 43], while the other emits
multi-bit spikes [27, 41, 42, 24]. However, these works generally consider using multi-threshold
models to reduce ANN-SNN Conversion errors and lack further theoretical analysis. In this paper,
we have the foresight to recognize the mathematical equivalence relationship between equidistant
multi-threshold models and quantized ANNs under the conditions of using the soft-reset mechanism
and uniform input current, achieving the current optimal performance in the domain of STBP learning.

3 Preliminaries

The spiking neuron models for SNNs. The Leaky-Integrate-and-Fire (LIF) model is one of the most
commonly used models in the current SNN community. The following equations have depicted the
dynamic procedure of the LIF model in a discrete form:

  & \bm {m}_{\textit {LIF}}^l(t) = \lambda _{\textit {LIF}}^l \bm {v}_{\textit {LIF}}^l(t-1) + \bm {I}^l(t),\ \bm {I}^l(t) = \bm {W}^l \bm {s}_{\textit {LIF}}^{l-1}(t) \theta ^{l-1}. \label {eq01} \\ & \bm {v}_{\textit {LIF}}^l(t) = \bm {m}_{\textit {LIF}}^l(t) - \bm {s}_{\textit {LIF}}^l(t) \theta ^l,\ \bm {s}_{\textit {LIF}}^l(t) = \left \{ \begin {aligned} &1,\! & \bm {m}_{\textit {LIF}}^l(t) \geq \theta ^l \\ &0,\! & \text {otherwise} \end {aligned} \right .. \label {eq02}
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Eq.(1) describes the charging process: ∀t ∈ [1, T ], ml
LIF(t) and vl

LIF(t− 1) respectively represent
the membrane potential before and after the charging at the t-th time-step. I l(t) denotes the input
current and λl

LIF characterizes the leakage degree of the membrane potential. When λl
LIF = 1, the LIF

model will degenerate into a more specialized model called the IF model. Eq.(2) depicts the reset and
firing process: slLIF(t) indicates the spike emitting situation and θl is the firing threshold. Here we
adopt the soft-reset mechanism, which means that the reset amplitude of the membrane potential is
equal to the value of θl.

STBP learning algorithm for SNNs. The gradient calculation mode of STBP is inspired by the
back-propagation Through Time (BPTT) algorithm in Recurrent Neural Network (RNN), which will
propagate along the spatial and temporal dimensions of SNNs simultaneously. Following equations
have described the specific propagation process:

  \frac {\partial \mathcal {L}}{\partial \bm {m}_{\textit {LIF}}^l(t \!-\! 1)} & = \underbrace { \frac {\partial \mathcal {L}}{\partial \bm {s}_{\textit {LIF}}^l(t \!-\! 1)} \frac {\partial \bm {s}_{\textit {LIF}}^l(t \!-\! 1)}{\partial \bm {m}_{\textit {LIF}}^l(t \!-\! 1)} }_{\text {spatial dimension}} + \underbrace { \frac {\partial \mathcal {L}}{\partial \bm {m}_{\textit {LIF}}^l(t)} \frac {\partial \bm {m}_{\textit {LIF}}^l(t)}{\partial \bm {v}_{\textit {LIF}}^l(t \!-\! 1)} \frac {\partial \bm {v}_{\textit {LIF}}^l(t \!-\! 1)}{\partial \bm {m}_{\textit {LIF}}^l(t \!-\! 1)} }_{\text {temporal dimension}} , \label {eq17}
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Here L denotes the target loss function. From Eq.(2) one can note that the mathematical relationship
between slLIF(t) and ml

LIF(t) is equivalent to slLIF(t) = H(ml
LIF(t) − θl), where H(·) denotes

Heaviside step function. As Heaviside function is non-differentiable, researchers consider using
a surrogate function, which is approximate to Heaviside function but differentiable, to handle the
term ∂sl

LIF(t)

∂ml
LIF(t)

in the back-propagation chain. For example, ∂sl
LIF(t)

∂ml
LIF(t)

= sign
(∣∣ml

LIF(t)− θl
∣∣ ≤ θl

2

)
describes the well-known rectangular surrogate function.

Quantized ANNs. The quantized ANN model is a widely used structure in the field of ANN-SNN
Conversion. Compared to traditional ANNs, quantized ANNs usually use the following Quantization-
Clip-Floor-Shift (QCFS) function [28, 2] as their activation function:

  \bm {a}^l &= \frac {\vartheta ^l}{T_q}\text {clip}\left ( \left \lfloor \frac {\bm {W}^l\bm {a}^{l-1}T_q + \varphi ^l}{\vartheta ^l} \right \rfloor , 0, T_q \right ). \label {eq19}






  




 


 (4)

Here al and φl represent the activation output and shift factor, while Tq and ϑl denote the quantization
level and learnable scaling factor. If we set Tq = T, ϑl = θl,al =

∑T
t=1 s

l
IF(t)θ

l/T,vl
IF(0) = φl,

one can find that the so-called QCFS function actually simulate the average spike firing rate of the IF
model (we set rlIF(Tq) =

∑Tq

t=1 s
l
IF(t)θ

l/Tq) under the condition of the uniform input current and
soft-reset mechanism. This conclusion suggests that SNNs have the potential to maintain the same
level of performance as ANNs under specific conditions.
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Figure 1: Forward and backward propagation of the M-HT model. (a)-(c): mathematical relationship
between the M-HT model and vanilla IF model. (d)-(e): surrogate gradient calculation for the M-HT
model.

4 Methodology

4.1 The Multi-hierarchical Threshold (M-HT) Model

In this section, we first introduce the M-HT model, which has equidistant multi-level thresholds and
will select the threshold closest to its current membrane potential at each time-step to achieve the
process of firing spikes and resetting potential. Eqs. (5)-(6) describe the dynamic equations of the
M-HT model.

  & \bm {m}^l(t) = \lambda ^l \bm {v}^l(t-1) + \bm {I}^l(t),\ \bm {I}^l(t) = \bm {W}^l \bm {s}^{l-1}(t) \theta ^{l-1}. \label {eq05} \\ & \bm {v}^l(t) = \bm {m}^l(t) - \bm {s}^l(t) \theta ^l,\
\bm {s}^l(t) = \left \{ \begin {aligned} &L,\! & \bm {m}^l(t) \geq L \theta ^l \\ &k,\! & k\theta ^l \!\leq \! \bm {m}^l(t) \!<\! (k \!+\! 1)\theta ^l, k=1,\! ..., L \!-\! 1 \\ &0,\! & \text {otherwise} \end {aligned} \right .. \label {eq08}           

    


  

    



 (6)

Here L denotes the number of level for the firing threshold. Regarding the surrogate gradient
calculation of the M-HT model, similar to the vanilla spiking models, we propose ∂sl(t)

∂ml(t)
=

sign
(
1
2θ

l ≤ ml(t) ≤ (L+ 1
2 )θ

l
)
, which covers a wider range of the membrane potential, as shown

in Fig.1(d)-(e). As the M-HT model has L different firing options at each time-step, we can consider
the information transmitted by the M-HT model within one time-step as an information integration
of the vanilla model for L time-steps. Therefore, we attempt to bridge a mathematical equivalent
relationship between the M-HT and IF model:
Lemma 4.1. ∀t ∈ [1, T ], if vl(t − 1) ∈ [0, θl), the effect of inputting current I l(t) into
a M-HT model with L-level threshold at the t-th time-step, is equivalent to continuously in-
putting uniform current I l(t)/L for L time-steps into a IF model with vl

IF(0) = vl(t − 1), i.e.

sl(t) = clip
(⌊

vl(t−1)+Il(t)
θl

⌋
, 0, L

)
=

∑L
j=1 s

l
IF(j).

Lemma 4.1 indicates that the M-HT model under a single time-step can be used to simulate the
total number of spikes emitted by the IF model under uniform input current within L consecutive
time-steps. In addition, note that sl(t) in Lemma 4.1 can also be calculated through clip (⌊·⌋ , ·, ·),
which is equivalent to the QCFS function mentioned before in quantized ANNs. The above conclusion
preliminarily demonstrates that the M-HT model can achieve the same-level performance as pre-
trained ANNs with L-level quantization under single-step condition.

4.2 The Representation Ability of the M-HT Model on Multiple Time-steps

Based on Lemma 4.1, we further consider the information representation of the M-HT model on
multiple time-steps:
Theorem 4.2. When λl = 1,vl(0) ∈ [0, θl), for a M-HT model with L-level threshold, after T
time-steps, we will derive the following conclusions:
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M-HT IF
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(b)

Multi-step IF
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local information

temporal attribute
global information
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?
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LM-HT R-I Curve QCFS R-I Curve

LM-HT model Initialized LM-HT model QCFS ANN

Figure 2: The STBP learning framework based on the LM-HT model. (a): vanilla STBP training. (b):
STBP training with the LM-HT model. (c): direct training of quantized ANNs. (d): hybrid training
with the LM-HT model, here R-I Curve denotes Rate-Input Curve.

(i) If we further assume ∀t ∈ [1, T ], I l(t) ∈ [0, Lθl), we will have: ∀t ∈ [1, T ], sl(t) =∑Lt
j=L(t−1)+1 s

l
IF(j),v

l(t) = vl
IF(Lt),

∑T
t=1 s

l(t) =
∑LT

j=1 s
l
IF(j).

(ii) If we further assume I l(1) = ... = I l(T ), we will have:
∑T

t=1 s
l(t) =

clip
(⌊

vl(0)+
∑T

t=1 Il(t)

θl

⌋
, 0, LT

)
.

Here the IF model has uniform input currents I l(1)/L, ..., I l(T )/L respectively within every L steps
and satisfies vl

IF(0) = vl(0).

The proofs of Lemma 4.1 and Theorem 4.2 have been provided in the Appendix. From Theorem
4.2(i) and Fig.1(a)-(c), one can find that the M-HT model is actually equivalent to dividing the spike
firing sequence of the IF model on consecutive LT steps into T L-step time windows. Combining
with the soft-reset mechanism, the M-HT model actually focuses on a specific time window of the
vanilla IF model at each time-step and maintains an equal membrane potential with the IF model
at the end of each time window (i.e. ∀t ∈ [1, T ],vl(t) = vl

IF(Lt)). The M-HT model follows the
assumption of uniform input current within each window, while maintaining the basic calculation
properties of spiking neurons between different windows. When the input current follows a complete
uniform distribution, according to Theorem 4.2(ii), the M-HT model can further simulate the output
of an ANN with LT -level quantization.

4.3 The Learnable Multi-hierarchical Threshold (LM-HT) Model

The uniform and uneven firing regions in the M-HT model. For a specific spike firing rate, the
M-HT model can often provide multiple spike firing sequences. For example, [1, 1], [0, 2], [2, 0] can
all represent the situation where 2 spikes are emitted within 2 time-steps, while only [1, 1] can be
viewed as a case of uniform firing situation. However, even when the input current is uniformly
distributed, as the sum of spikes that cannot be divided by L in [0, LT ] is unable to be represented by
a uniform spike output sequence, there are still uneven firing situations:
Corollary 4.3. If λl = 1,vl(0) = 0 and I l(1) = ... = I l(T ), for a M-HT model with L-level
threshold, sl(1) = ... = sl(T ) is only satisfied when I l(1) ∈ [kθl, kθl + θl/T ),∀k = 0, ..., L − 1
or I l(1) ∈ (−∞, 0) ∪ [Lθl,+∞).

The proof is provided in the Appendix. From Corollary 4.3, we can divide the input current into
uniform and uneven firing regions according to the corresponding intervals, as shown in Fig.1(a)-(b).
Note that the uneven spike sequences emitted by the l-th layer may further cause the input current of
the l + 1-th layer to no longer follow the uniform distribution. That is to say, as the number of layers
increases, the uneven firing cases will tend to increase gradually without introducing extra regulation.

Learnable Temporal-Global Information Matrix and leaky parameters. Enhancing the uniform
firing pattern can promote SNNs to achieve superior performance similar to quantized ANNs, while
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Figure 3: Reparameterization procedure of the LM-HT model.

uneven spike sequences retain more temporal and biological characteristics. Therefore, how to
comprehensively utilize these two spike firing patterns becomes a critical problem. To address this
issue, we first introduce the concept of Temporal-Global Information Matrix (T-GIM):

  \forall t\in [1,T], \bm {I}^l(t) = \sum \limits _{j=1}^T \omega _{tj}^l \bm {W}^l \bm {s}^{l-1}(j) \theta ^{l-1}. \label {eq09}      







 (7)

Here ωl
tj is the element at row t and column j of the T-GIM Ωl, Ωl ∈ RT×T . As shown in Eq.(7)

and Fig.2(b), this brand-new input current adopts a multi-step current weighting form, allowing the
model to simultaneously focus on the global information along the time dimension. Note that the
new input current will follow a uniform distribution when ∀i, j ∈ [1, T ], ωl

ij =
1
T and degrade to the

vanilla input current when Ωl = diag(1, ..., 1). For the first case mentioned above, if we further add
the condition λl = 1, according to Theorem 4.2(ii), one can find that the output of the model will
be consistent with the activation output of a LT -level quantized ANN layer by layer, as shown in
Fig.2(b)-(c). For the second case, when L = 1, the model will degenerate into vanilla LIF model, as
shown in Fig.2(a)-(b).

To enable the model to dynamically adjust the above calculation process, we set both Ωl and λl

as learnable parameters. The initial values of Ωl and λl are set to 1/T and 1, respectively. During
the training process, we choose the Sigmoid function σ(·) to control the parameters for fulfilling
smooth gradient updates within a bounded learning range. We call this novel model as Learnable
Multi-hierarchical Threshold (LM-HT) Model, which combines T-GIM and learnable attributes. We
think the LM-HT model can regulate its spike firing pattern more flexibly and reasonably.

Since we can regulate the computational relationships between different time-steps through learnable
Ωl and λl in the LM-HT model, during the back-propagation process, unlike Eq.(3), we detach
the term ∂L

∂ml(t)
∂ml(t)
∂vl(t−1)

∂vl(t−1)
∂ml(t−1)

from the gradient calculation graph, thereby reducing redundant
calculations and completely leaving the gradient propagation between different time-steps to Ωl and
λl for control. The back-propagation calculation chains for the LM-HT model have been described
as follow. Here ⊙ denotes the Hadamard product.

  & \frac {\partial \mathcal {L}}{\partial \bm {m}^l(t)} = \frac {\partial \mathcal {L}}{\partial \bm {s}^l(t)} \frac {\partial \bm {s}^l(t)}{\partial \bm {m}^l(t)},\ \frac {\partial \bm {s}^l(t)}{\partial \bm {m}^l(t)} = \text {sign}\left ( \frac {1}{2}\theta ^l \leq \bm {m}^l(t)\leq \left ( L+\frac {1}{2} \right ) \theta ^l \right ). \label {eq10} \\ & \frac {\partial \mathcal {L}}{\partial \lambda ^l} = \sum _{t=1}^T \frac {\partial \mathcal {L}}{\partial \bm {m}^l(t)} \odot \bm {v}^l(t-1),\ \frac {\partial \mathcal {L}}{\partial \omega _{ij}^l} = \frac {\partial \mathcal {L}}{\partial \bm {m}^l(i)} \odot \left ( \bm {W}^l \bm {s}^{l-1}(j) \theta ^{l-1} \right ). \label {eq11}





















  
























 















 (9)

4.4 Hybrid Training based on the LM-HT Model

Although the traditional ANN-SNN Conversion frameworks have much lower computational overhead
than STBP training algorithm, a serious performance degradation phenomenon often exists on the
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Table 1: Ablation study for the LM-HT model on a
subset of ImageNet-1k.

Model T-GIM Arch. Acc.(%) SOPs(G) E.(mJ)
L=1,T=4 w/o

ResN-18
76.22 1.60 1.44

L=2,T=2 w/o 80.52 1.08 0.97
L=2,T=2 w/ 80.56 0.73 0.66
L=1,T=4 w/o

ResN-34
65.62 3.20 2.88

L=2,T=2 w/o 82.18 2.42 2.18
L=2,T=2 w/ 82.72 1.72 1.55

Table 2: Validation for the reparame-
terization procedure.

Arch. Acc.(%) SOPs(G) E.(mJ)
Before reparameterization (L=2, T=2)

VGG-13 61.64 0.26 0.23
ResN-18 64.44 0.52 0.46

After reparameterization (L=1, T=4)
VGG-13 61.66 0.26 0.23
ResN-18 64.50 0.52 0.46

converted SNNs under low time latency [17]. To address this problem, previous researchers [39]
considered adopting STBP training for a few epochs on the pre-trained ANN models to enhance the
performance of the converted SNNs under fewer time-steps, which is called as hybrid training. In
this work, we propose a brand-new hybrid training framework based on the LM-HT model.

We firstly choose QCFS function to train the quantized ANN models and then replace the QCFS
function modules layer by layer with the LM-HT models under specific initialization (∀i, j ∈
[1, T ], ωl

ij =
1
T ;λ

l = 1, θl = ϑl,vl(0) = θl

2 ), as shown in Fig.2(d). Combining with the conclusion
pointed out by [2], one can note that the initialized LM-HT model and the QCFS function before
substitution have an equivalence in terms of mathematical expectation, which has been described as
the following theorem:

Theorem 4.4. When
∑T

t=1 I
l(t)/LT = W lrl−1

IF (Tq) and
∑T

t=1 I
l(t) ∈ [0, LTθl], if ∀i, j ∈

[1, T ], ωl
ij = 1

T and λl = 1, θl = ϑl,vl(0) = θl

2 , for L, T, Tq with arbitrary values, we have:

E
(∑T

t=1 sl(t)θl

LT − ϑl

Tq
clip

(⌊
W lrl−1

IF (Tq)Tq

ϑl + 1
2

⌋
, 0, Tq

))
= 0.

Theorem 4.4 indicates that regardless of whether the time-steps we choose during the STBP training
phase is equal to the inference steps simulated in ANN-SNN Conversion, the average spike firing rate
of the LM-HT models under the initial state of STBP training maintains a mathematical equivalence
with that simulated by the QCFS function modules in the previous stage. Therefore, under this new
training framework, we can adopt STBP algorithm to optimize the inference performance of SNN
under any degree of time latency. The detailed pseudo-code has been provided in the Appendix.

4.5 Reparameterize the LM-HT model to vanilla LIF model

As discussed in Section 4.2, the mathematical essence of the LM-HT model is to simulate the
spike firing situation of vanilla LIF neurons within each time window. Considering that the current
neuromorphic hardware mainly supports single threshold models, we propose a reparameterization
scheme that can transform the LM-HT model obtained during the training stage into a vanilla LIF
model, which can further be deployed on hardware for inference.

As shown in Fig.3, for a L-level LM-HT model within T steps, we expand it into a vanilla LIF model
within LT steps, where the membrane leakage factor between different time windows is set to λl. In
addition, T-GIM will be extended from RT×T to RLT×LT and the parameters are averaged within
each L× L sub-region, ensuring that the input current meets the precondition in Theorem 4.2. We
also rectify the bias terms in synaptic layers, which involve addition operations at each time-step. By
performing layer-by-layer reparameterization in the above manner, we will obtain a single threshold
SNN model with theoretically lossless accuracy.

5 Experiments

To validate the effectiveness of our proposed STBP and hybrid training frameworks based on the
LM-HT model, we consider multiple static and neuromorphic datasets with different data scale,
including CIFAR-10(100) [23], ImageNet-200(1k) [6] and CIFAR10-DVS [26]. Consistent with the
previous works, we also choose VGG [40] and ResNet [19] as the basic network architecture . We
evaluate the computational overhead of SNNs based on the number of synaptic operations (SOPs) and
the calculation standard for related energy consumption refers to [55]. In addition, as the information
transmitted by our L-level LM-HT model within T time-steps remains at the same level as that of the
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Table 3: Comparison with previous state-of-the-art works.

Dataset Method Type Architecture Time-steps Accuracy(%)

CIFAR-10

STBP-tdBN [54] Direct Training ResNet-19 4 92.92
Dspike [29] Direct Training ResNet-18 4 93.66

TET [8] Direct Training ResNet-19 4 94.44
SLTT [34] Online Training ResNet-18 6 94.44

GLIF [51] Direct Training ResNet-18 2, 4, 6 94.15, 94.67, 94.88
ResNet-19 2, 4, 6 94.44, 94.85, 95.03

LM-HT (L=2) Direct Training ResNet-18 2 96.25
ResNet-19 2 96.89

CIFAR-100

Dspike [29] Direct Training ResNet-18 4 73.35
TET [8] Direct Training ResNet-19 4 74.47

SLTT [34] Online Training ResNet-18 6 74.38

GLIF [51] Direct Training ResNet-18 2, 4, 6 74.60, 76.42, 77.28
ResNet-19 2, 4, 6 75.48, 77.05, 77.35

RMP-Loss [14] Direct Training ResNet-19 2, 4, 6 74.66, 78.28, 78.98

LM-HT (L=2) Direct Training ResNet-18 2 79.33
ResNet-19 2 81.76

ImageNet-200

DCT [13] Hybrid Training VGG-13 125 56.90
Online-LTL [48] Hybrid Training VGG-13 16 54.82
Offline-LTL [48] 16 55.37

ASGL [44] Direct Training VGG-13 4, 8 56.57, 56.81
LM-HT (L=2) Direct Training VGG-13 2, 4 61.09, 61.75
LM-HT (L=4) 2 62.05

ImageNet-1k

STBP-tdBN [54] Direct Training ResNet-34 6 63.72
TET [8] Direct Training ResNet-34 6 64.79

MBPN [15] Direct Training ResNet-34 4 64.71
RMP-Loss [14] Direct Training ResNet-34 4 65.17

SEW ResNet [11] Direct Training ResNet-34 4 67.04
GLIF [51] Direct Training ResNet-34 4 67.52

LM-HT (L=2) Direct Training ResNet-34 2 70.90

CIFAR10-DVS

STBP-tdBN [54] Direct Training ResNet-19 10 67.80
Dspike [29] Direct Training ResNet-18 10 75.40
MBPN [15] Direct Training ResNet-19 10 74.40

RMP-Loss [14] Direct Training ResNet-19 10 76.20
LM-HT (L=2) Direct Training ResNet-18 2, 4 80.70, 81.00
LM-HT (L=4) 2 81.90

vanilla LIF model within LT time-steps, to make a fair evaluation, we will compare the performance
of the L-level LM-HT model within T steps with that of the previous works within LT steps.

5.1 Ablation & Validation Studies for the LM-HT Model

As shown in Tab.1, we investigate the impact of threshold levels and T-GIM for our proposed model.
One can note that vanilla IF neuron (L = 1, T = 4) is not well suited for deep networks (e.g. ResNet-
34) and causes relatively high energy consumption, while the M-HT series models (L = 2, T = 2)
can effectively overcome the performance degradation problem on deep networks. When we further
utilize T-GIM to regulate global information on the time dimension, the learning ability of our model
is enhanced and the computational overhead in synaptic layers is significantly reduced.

We also validate the feasibility about the reparameterization procedure mentioned above. As shown
in Tab.2 and Fig.3, by copying and reparameterizing the parameters of synapses, T-GIM and LM-
HT neurons layer by layer, we obtain a single threshold model that maintained almost the same
performance and power consumption as the original LM-HT model. This convertible property enables
the LM-HT model to be more flexibly deployed on neuromorphic hardware.

5.2 Comparison with Previous SoTA Works

We first investigate the competitiveness of our proposed model in the domain of STBP learning.
As shown in Tab.3, our comparative works incorporate previous state-of-the-art (SoTA) methods in
various sub-domains of STBP training, including batchnorm layer optimization [54, 15], improved
surrogate gradients [29], learning function design [8, 14], energy-efficient training [13, 48, 34] and
advanced neuron models [51, 44].
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Table 4: The performance of hybrid training based on the LM-HT model for CIFAR-100 dataset.

Method Time-steps VGG-16 ResNet-20
ANN Acc.(%) SNN Acc.(%) ANN Acc.(%) SNN Acc.(%)

RMP [16] 32, 64, 128 71.22 - , - , 63.76 68.72 27.64, 46.91, 57.69
SNM [43] 32, 64, 128 74.13 71.80, 73.69, 73.95 - -
SRP [17] 5, 6, 8 76.28 71.52, 74.31, 75.42 69.94 46.48, 53.96, 59.34

QCFS (Tq=4) [2] 2, 4, 8 76.11 63.33, 69.70, 74.12 63.90 38.04, 52.28, 61.77

LM-HT (L=2) 2 - 75.97 (+6.27) - 63.55 (+11.27)
4 - 76.49 (+2.37) - 64.87 (+3.10)

LM-HT (L=4) 2 - 76.38 (+2.26) - 63.43 (+1.66)
QCFS (Tq=8) [2] 2, 4, 8 77.31 64.85, 70.50, 74.63 69.56 19.76, 34.17, 55.50

LM-HT (L=2) 2 - 76.31 (+5.81) - 67.08 (+32.91)
4 - 76.79 (+2.16) - 69.00 (+13.50)

LM-HT (L=4) 2 - 76.08 (+1.45) - 67.21 (+11.71)

CIFAR-10 & CIFAR-100. For conventional static datasets, one can find that our solution demon-
strates significant performance advantages. For ResNet-18 structure, we achieve the top-1 accuracies
of 96.25% and 79.33% with merely 2 time-steps on CIFAR-10 and CIFAR-100 datasets, respectively.
For ResNet-19 network with a larger parameter scale, our method fulfills the precisions of 96.89%
and 81.76% within 2 time-steps, which at least outperforms other corresponding works with 2.04%
and 3.48% under the same time latency. In addition, it is worth noting that our above results have
even exceeded the performance of other works with more time-steps (e.g. 6 steps).

ImageNet-200 & ImageNet-1k. For large-scale datasets, we also confirm the superiority of the
LM-HT model. For the two-level LM-HT model, we respectively reach the top-1 accuracies of
61.09% and 70.90% within 2 time-steps on ImageNet-200 and ImageNet-1k datasets, which is
4.52% higher than ASGL (4 steps) and 3.38% higher than GLIF (4 steps) under the same-level time
overhead. For a larger training time-step, one can note that our method will also demonstrate a
significant advantage. For example, the two-level LM-HT model reaches the precision of 61.75%
with 4 time-steps, which has surpassed ASGL (8 steps) with 4.94%.

CIFAR10-DVS. We also evaluate the effectiveness of our approach on neuromorphic datasets.
Compared to other previous methods, our proposed model can achieve better results on shallower
networks with fewer time-steps. For instance, the two-level LM-HT model can achieve the accuracy
of 80.70% after merely 2 time-steps.

5.3 Performance Analysis of Hybrid Training

In our hybrid training framework, we first choose [2] as the backbone for our ANN-SNN Conversion
stage. Subsequently, we replace the QCFS function layer by layer with the initialized LM-HT model
and conduct STBP training for merely 30 epochs. Furthermore, we also consider other advanced
conversion methods [16, 43] and multi-stage error correction method [17] as our comparative works.

As shown in Tab.4, after conducting the STBP fine-tuning optimization with relatively low computa-
tional overhead, we note that the performance of the converted SNNs under different quantization
levels has been significantly improved and surpass other previous methods, especially under low time
latency. For instance, compared to the ResNet-20 network after eight-level quantization (i.e. Tq=8),
the two-level LM-HT model has achieved a performance improvement of 32.91% and 13.50% with 2
and 4 time-steps, respectively.

6 Conclusions

In this paper, we first investigate the mathematical equivalence among the multi-threshold model,
vanilla spiking model and quantized ANNs, then propose an advanced STBP training method
based on the LM-HT model, which has been proven to cover the representation range of vanilla
STBP and quantized ANNs training frameworks, thereby promoting SNNs to achieve superior
performance at the same level as quantized ANNs. Furthermore, the LM-HT model can achieve
lossless transformation towards single threshold models or quantized ANNs under specific parameter
configuration. Numerous experimental results have verified the effectiveness of our method. We
believe that our work will further promote in-depth research on advanced spiking neural model.
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A Appendix

A.1 Proof of Theorem

A.1.1 Proof of Lemma 4.1 & Theorem 4.2

Before the proof of Theorem 4.2, we first need to introduce Lemma A.1:
Lemma A.1. Assume a continuous T -step input current I l(1), ..., I l(T ), for a LM-HT model with
L-level threshold, when ∀t ∈ [1, T ], I l(t) ∈ [0, Lθl) and vl(0) ∈ [0, θl), λl = 1, we will have
vl(T ) ∈ [0, θl).

Proof. ∀t ∈ [0, T ), if vl(t) ∈ [0, θl), as ml(t + 1) = vl(t) + I l(t), we have ml(t + 1) ∈
[0, (L+ 1)θl). Therefore, after the firing process vl(t+ 1) = ml(t+ 1)− sl(t)θl, one can note that
vl(t+1) ∈ [0, θl). According to the idea of mathematical induction, if we directly set vl(0) ∈ [0, θl),
we can have vl(T ) ∈ [0, θl).

Theorem 4.2. When λl = 1,vl(0) ∈ [0, θl), for a M-HT model with L-level threshold, after T
time-steps, we will derive the following conclusions:
(i) If we further assume ∀t ∈ [1, T ], I l(t) ∈ [0, Lθl), we will have: ∀t ∈ [1, T ], sl(t) =∑Lt

j=L(t−1)+1 s
l
IF(j),v

l(t) = vl
IF(Lt),

∑T
t=1 s

l(t) =
∑LT

j=1 s
l
IF(j).

(ii) If we further assume I l(1) = ... = I l(T ), we will have:
∑T

t=1 s
l(t) =

clip
(⌊

vl(0)+
∑T

t=1 Il(t)

θl

⌋
, 0, LT

)
.

Here the IF model has uniform input currents I l(1)/L, ..., I l(T )/L respectively within every L steps
and satisfies vl

IF(0) = vl(0).

Proof. (i) If we consider the pre-condition in Theorem 4.2 and combine Eq.(1) with Eq.(2), ∀t ∈
[1, LT ], we will have:

  \bm {v}_{\textit {IF}}^l(t) - \bm {v}_{\textit {IF}}^l(t-1) &= \bm {I}^l\left ( \left \lceil \frac {t}{L} \right \rceil \right )/L - \bm {s}_{\textit {IF}}^l(t)\theta ^l. \label {eq:A01}


   









 (S1)

Similarly, if we set λl = 1 and incorporate Eq.(5), ∀t ∈ [1, T ], we will have:

  \bm {v}^l(t) - \bm {v}^l(t-1) &= \bm {I}^l(t) - \bm {s}^l(t)\theta ^l. \label {eq:A02}       (S2)

Then we accumulate Eq.(S1) along the time dimension and obtain the following equation:

  \bm {v}_{\textit {IF}}^l(Lt) - \bm {v}_{\textit {IF}}^l\left ( L(t-1) \right ) &= \bm {I}^l(t) - \sum _{j=L(t-1)+1}^{Lt}\bm {s}_{\textit {IF}}^l(j)\theta ^l. \label {eq:A03}


    





 (S3)

As I l(t) ∈ [0, Lθl), according to Lemma A.1, when vl(t−1) = vl
IF (L(t− 1))∧vl(t−1) ∈ [0, θl),

we will have vl(t) ∈ [0, θl) and vl
IF(Lt) ∈ [0, θl). Considering sl(t),

∑Lt
j=L(t−1)+1 s

l
IF(j) ∈ N,

if sl(t) ̸=
∑Lt

j=L(t−1)+1 s
l
IF(j), one can note that |

∑Lt
j=L(t−1)+1 s

l
IF(j)θ

l − sl(t)θl| = |(vl(t) −
vl(t−1))− (vl

IF(Lt)−vl
IF (L(t− 1)))| = |vl(t)−vl

IF(Lt)| ≥ θl, which will violate the conclusion
in Lemma A.1. Therefore, we can finally deduce that sl(t) =

∑Lt
j=L(t−1)+1 s

l
IF(j). Then we can

further have vl(t) = vl
IF(Lt) and

∑T
t=1 s

l(t) =
∑LT

j=1 s
l
IF(j).

(ii) If we accumulate Eq.(S2) along the time dimension and divide θl on both sides, we will have the
following equation:

  \frac {\bm {v}^l(T) - \bm {v}^l(0)}{\theta ^l} &= \frac {\sum _{t=1}^T\bm {I}^l(t)}{\theta ^l} - \sum _{t=1}^T\bm {s}^l(t). \label {eq:A04} 















 (S4)

If I l(1) < 0 or I l(1) ≥ Lθl, it is obvious that we will have
∑T

t=1 s
l(t) =

clip
(⌊

vl(0)+
∑T

t=1 Il(t)

θl

⌋
, 0, LT

)
= 0 or

∑T
t=1 s

l(t) = clip
(⌊

vl(0)+
∑T

t=1 Il(t)

θl

⌋
, 0, LT

)
= L.
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If I l(1) ∈ [0, Lθl), according to Lemma A.1, we will have vl(T ) ∈ [0, θl). As
∑T

t=1 s
l(t) ∈

N, based on Eq.(S4), we can finally deduce that
∑T

t=1 s
l(t) =

vl(0)+
∑T

t=1 Il(t)

θl − vl(T )
θl =⌊

vl(0)+
∑T

t=1 Il(t)

θl

⌋
= clip

(⌊
vl(0)+

∑T
t=1 Il(t)

θl

⌋
, 0, LT

)
.

One can note that Lemma 4.1 is actually a special case of Theorem 4.2 under the condition of T = 1,
therefore Lemma 4.1 is also proven.

A.1.2 Proof of Corollary 4.3

Corollary 4.3. If λl = 1,vl(0) = 0 and I l(1) = ... = I l(T ), for a M-HT model with L-level
threshold, sl(1) = ... = sl(T ) is only satisfied when I l(1) ∈ [kθl, kθl + θl/T ),∀k = 0, ..., L − 1
or I l(1) ∈ (−∞, 0) ∪ [Lθl,+∞).

Proof. If I l(1) < 0 or I l(1) ≥ Lθl, it is obvious that we will have sl(1) = ... =

sl(T ) = 0 or sl(1) = ... = sl(T ) = L. Otherwise, based on the conclusion
∑T

t=1 s
l(t) =

clip
(⌊

vl(0)+
∑T

t=1 Il(t)

θl

⌋
, 0, LT

)
in Theorem 4.2(ii), when I l(1) ∈ [kθl, kθl + θl/T ),∀k =

0, ..., L − 1, we will have
∑T

t=1 s
l(t) = kT,∀k = 0, ..., L − 1. Note that ∀T ′ ∈ [1, T ], we

can further have
∑T ′

t=1 s
l(t) = kT ′,∀k = 0, ..., L − 1. Therefore, it can be concluded that

sl(1) = ... = sl(T ) = k. Instead, if I l(1) ∈ [0, Lθl)∧I l(1) /∈ [kθl, kθl+ θl/T ),∀k = 0, ..., L−1,
we will have

∑T
t=1 s

l(t) ̸= kT,∀k = 0, ..., L − 1. Therefore, sl(1) = ... = sl(T ) does not hold
true.

A.1.3 Proof of Theorem 4.4

Theorem 4.4. When
∑T

t=1 I
l(t)/LT = W lrl−1

IF (Tq) and
∑T

t=1 I
l(t) ∈ [0, LTθl], if ∀i, j ∈

[1, T ], ωl
ij = 1

T and λl = 1, θl = ϑl,vl(0) = θl

2 , for L, T, Tq with arbitrary values, we have:

E
(∑T

t=1 sl(t)θl

LT − ϑl

Tq
clip

(⌊
W lrl−1

IF (Tq)Tq

ϑl + 1
2

⌋
, 0, Tq

))
= 0.

Proof. If ∀i, j ∈ [1, T ], ωl
ij = 1

T , λl = 1, θl = ϑl and vl(0) = θl

2 , com-

bining with the conclusion mentioned in Theorem 4.2(ii), we will have
∑T

t=1 sl(t)θl

LT =
θl

LT clip
(⌊∑T

t=1 Il(t)

θl + 1
2

⌋
, 0, LT

)
. According to the conclusion pointed out in [2], we have known

that E
(

θl

LT clip
(⌊

xlLT
θl + 1

2

⌋
, 0, LT

)
− ϑl

Tq
clip

(⌊
xlTq

ϑl + 1
2

⌋
, 0, Tq

))
= 0, here xl ∈ [0, θl].

Therefore, we directly set xl =
∑T

t=1 I
l(t)/LT = W lrl−1

IF (Tq) and then we will draw the fi-
nal conclusion.

A.1.4 Computational Equivalence about the Reparameterization Process

Theorem A.2. ∀t, i ∈ [1, T ],∀j ∈ [L(t − 1) + 1, Lt],∀k ∈ [L(i − 1) + 1, Li], when sl−1(t) =∑Lt
j=L(t−1)+1 s

l−1
IF (j), if b̂lj = blt/L, ω̂

l
jk = ωl

ti/L, we will have I l(t) =
∑Lt

j=L(t−1)+1 I
l
IF (j).

Here b̂l, ω̂l denote the rectified bias term and T-GIM layer after the reparameterization process.

Proof. Firstly, it is obvious that I l(t), I l
IF (j) can be rewritten as I l(t) =

∑T
i=1 ω

l
ti(W

lsl−1(i)+bli)

and I l
IF (j) =

∑LT
i=1 ω̂

l
ji(W

lsl−1
IF (i) + b̂li). Considering the precondition b̂lj = blt/L, ω̂

l
jk = ωl

ti/L,

15

101919 https://doi.org/10.52202/079017-3233



we will have:

  \bm {I}_{IF}^l(j) &= \sum _{i=1}^{T} \sum _{k=L(i-1)+1}^{Li} \hat {\omega ^l_{jk}} (\bm {W}^l \bm {s}_{IF}^{l-1}(k) + \hat {b^l_k}) \nonumber \\ &= \sum _{i=1}^{T} \frac {\omega ^l_{ti}}{L} \sum _{k=L(i-1)+1}^{Li} (\bm {W}^l \bm {s}_{IF}^{l-1}(k) + \frac {b^l_i}{L}).
 











  















 



 (S5)

Then we can further have:

  \sum _{j=L(t-1)+1}^{Lt} \bm {I}_{IF}^l(j) &= \sum _{j=L(t-1)+1}^{Lt} \sum _{i=1}^{T} \frac {\omega ^l_{ti}}{L} \sum _{k=L(i-1)+1}^{Li} (\bm {W}^l \bm {s}_{IF}^{l-1}(k) + \frac {b^l_i}{L}) \nonumber \\ &= \sum _{i=1}^{T} \frac {\omega ^l_{ti}}{L} \sum _{j=L(t-1)+1}^{Lt} (\bm {W}^l \sum _{k=L(i-1)+1}^{Li} \bm {s}_{IF}^{l-1}(k) + b^l_i) \nonumber \\ &= \sum _{i=1}^{T} \frac {\omega ^l_{ti}}{L} \sum _{j=L(t-1)+1}^{Lt} (\bm {W}^l \bm {s}^{l-1}(i) + b^l_i) \nonumber \\ &= \sum _{i=1}^T \omega ^l_{ti} (\bm {W}^l \bm {s}^{l-1}(i) + b^l_i) \nonumber \\ &= \bm {I}^l(t).



 
















 
























  














  









 

   (S6)

Due to the fact that the calculation process of the spike sequences passing through Conv & BN and
T-GIM layers can be abstractly described by Theorem A.2, we can conclude that the sum of the
input currents within the corresponding time windows before and after reparameterization remains
unchanged. The spike sequences obtained by passing the input currents through the spiking neuron
layer will also satisfy the precondition of Theorem A.2 (sl(t) =

∑Lt
j=L(t−1)+1 s

l
IF (j)). Therefore,

we can prove the computational equivalence before and after the reparameterization process.

A.2 Comparison with Other Advanced Network Backbones

As shown in Tab.S1, we have made comparison with related advanced works [20, 55, 49, 38] on
CIFAR datasets. One can find that our LM-HT model has superior scalability and can demonstrate its
effectiveness on multiple different backbones. For example, for CIFAR-100 dataset, compared to
GAC-SNN [38], we achieve an accuracy improvement of 1.35% on MS-ResNet-18. For Transformer-
4-384 architecture, our method also outperforms Spikformer [55] and Spike-driven Transformer [49]
in terms of performance.

Table S1: Comparison with previous methods based on advanced backbones and attention mechanism.

Dataset Method Architecture Time-steps Accuracy(%)

CIFAR-10

MS-ResNet [20] MS-ResNet-18 6 94.92
GAC-SNN [38] MS-ResNet-18 4 96.24
Spikformer [55] Transformer-4-384 4 95.51

Spike-driven Transformer [49] Transformer-4-384 4 95.6

Ours MS-ResNet-18 4 96.38
Transformer-4-384 4 95.82

CIFAR-100

MS-ResNet [20] MS-ResNet-18 6 76.41
GAC-SNN [38] MS-ResNet-18 4 79.83
Spikformer [55] Transformer-4-384 4 78.21

Spike-driven Transformer [49] Transformer-4-384 4 78.4

Ours MS-ResNet-18 4 81.18
Transformer-4-384 4 79.03
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A.3 Experimental Configuration

For static datasets, we attempt to suppress the possible overfitting phenomenon by utilizing data
augmentation techniques including AutoAugment [4] and Cutout [9]. For CIFAR10-DVS dataset, we
resize each image to 48× 48 pixels and split it into 10 frames. For ImageNet-1k dataset, we further
consider MS-ResNet architecture [20] and Mixup technique [53] to strengthen the generalization
ability of our network. We respectively try to use SGD [1] and AdamW [30] as our optimizers. The
corresponding initial learning rate and weight decay are set to 0.025, 5× 10−4 for SGD on CIFAR-
10(100), 0.0125, 5× 10−4 for SGD on ImageNet-200 and 0.02, 0.01 for AdamW on CIFAR10-DVS.
For ImageNet-1k dataset, we use SGD as our optimizer and set the corresponding weight decay as 0.
Furthermore, in the hybrid training framework, our initial learning rate and weight decay are both set
to 5× 10−4. The QCFS pretrained models are selected from related open-source checkpoints and
self-implementation. For all experimental cases, we choose the Cosine Annealing scheduler [31] to
dynamically regulate the learning rate. Our experiments are implemented on NVIDIA RTX A5000
and 4090.

A.4 The Pseudo-Code of Hybrid Training Algorithm

Algorithm 1 Hybrid training framework based on the LM-HT model.

Require: Pretrained QCFS ANN model fANN(W , Tq, ϑ) with LN layers; Dataset D; Number of
time-steps choosed for STBP training T .

Ensure: SNN model fSNN(W ,Ω, L, λ, θ).
1: # Convert ANN to SNN
2: for l = 1 to LN do
3: fSNN.W

l = fANN.W
l

4: fSNN.θ
l = fANN.ϑ

l

5: fSNN.Ω
l = 1

T

6: fSNN.λ
l = 1

7: fSNN.v
l(0) = fSNN.θ

l/2
8: end for
9: # STBP training based on the LM-H model

10: # Set fSNN.Ω
l, fSNN.λ

l as learnable parameters and fSNN.θ
l as scalars

11: for (Image,Label) in D do
12: for l = 1 to LN do
13: if Is the first layer then
14: for t = 1 to T do
15: I l(t) = I l(t)× L
16: end for
17: end if
18: LM-HT model performs forward propagation based on Eqs.(5)-(6) and Eq.(7)
19: LM-HT model performs back-propagation based on Eqs.(8)-(9)
20: end for
21: end for
22: return fSNN(W ,Ω, L, λ, θ)
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: We clearly point out the contributions and scope of this work in the abstract
and introduction sections.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA] .
Justification: We find no limitation which needs to be emphasized here.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
Justification: We provide the corresponding assumptions and proofs in the Appendix section.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We provide the detailed experimental configuration in the Appendix section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: We provide the data and code with sufficient instructions in the supplemental
materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: We specify the training and test details in the Appendix section and supple-
mentary materials.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No] .

Justification: The experiments choose a shared random seed to ensure fairness and repro-
ducibility.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: We make description about the computation resources in the Appendix section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: We find no societal impact which needs to be emphasized here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: We think that this paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We make proper statements and citations for relevant existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: We choose public datasets and models in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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