
CigTime: Corrective Instruction Generation Through
Inverse Motion Editing

Qihang Fang1, Chengcheng Tang2, Bugra Tekin2, and Yanchao Yang1*

1The University of Hong Kong
2Meta Reality Labs

{qihfang}@gmail.com, {chengcheng.tang,bugratekin}@meta.com, {yanchaoy}@hku.hk

Abstract

Recent advancements in models linking natural language with human motions have
shown significant promise in motion generation and editing based on instructional
text. Motivated by applications in sports coaching and motor skill learning, we
investigate the inverse problem: generating corrective instructional text, leveraging
motion editing and generation models. We introduce a novel approach that, given
a user’s current motion (source) and the desired motion (target), generates text
instructions to guide the user towards achieving the target motion. We leverage large
language models to generate corrective texts and utilize existing motion generation
and editing frameworks to compile datasets of triplets (source motion, target motion,
and corrective text). Using this data, we propose a new motion-language model
for generating corrective instructions. We present both qualitative and quantitative
results across a diverse range of applications that largely improve upon baselines.
Our approach demonstrates its effectiveness in instructional scenarios, offering
text-based guidance to correct and enhance user performance.

1 Introduction

Corrective instructions are crucial for learning motor skills, such as sports. Without feedback,
people are at risk of developing improper, suboptimal, and injury-prone moves that hinder long-term
progress and health. With the growing popularity and immersion of motion-sensing sports games,
the increasing accuracy and accessibility of 3D pose estimation techniques, and the advancement of
fitness equipment and trackers with versatile sensing technologies, the need for intelligent coaching
systems that provide corrective feedback on user motion is becoming increasingly important.

In this work, we study the task of Motion Corrective Instruction Generation, which aims to create text-
based guidance to help users correct and improve their physical movements. This task has significant
applications in sports coaching, rehabilitation, and general motor skill learning, providing users with
precise and actionable instructions to enhance their performance. By leveraging advancements in
human motion generation and editing, this task addresses the need for personalized and adaptive
feedback in various instructional scenarios.

Recent research in text-conditioned human motion generation has shown impressive progress. Meth-
ods like MotionCLIP [39] and TEMOS [34] have utilized neural networks and transformer-based
models to align text and motion into a joint embedding space, producing diverse and high-quality
motion sequences. These models, however, focus primarily on generating motions from text rather
than generating corrective instructions from motion pairs. Therefore they are not directly suitable for
analyzing and improving user movements based on a comparison of motion sequences.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

102011 https://doi.org/10.52202/079017-3237

Research specifically focused on corrective instruction generation is still in its early stages. Traditional
methods often rely on building statistical models for specific action categories, which require expert
experience and are difficult to scale and generalize to various actions. For example, Pose Trainer
[6] and AIFit [11] employ neural networks and statistical models to provide feedback on specific
exercises, but these methods have significant drawbacks: (1) They often require large amounts of
annotated data for each specific action class, making them hard to generalize across different types
of motions. However, unlike text-to-motion or human pose correction (which can be annotated
through simple pipelines [31]), human motion sequences involve temporal changes. Annotating the
differences between these temporal changes is challenging. (2) Many of these methods are limited to
analyzing static poses or images rather than dynamic sequences of motion, reducing their applicability
to real-world scenarios where movement dynamics are crucial.

LLMs, such as Llama [30], have shown potential in generating corrective instructions using few-shot
or zero-shot learning. However, without proper fine-tuning and additional modalities, LLMs struggle
to understand the spatial and temporal context of poses and motions, limiting their effectiveness in
specialized fields like coaching or corrective instruction generation.

To address these limitations, we propose a novel approach, CigTime, for generating motion corrective
instructions. Our method leverages existing motion editing pipelines to create datasets of motion
triplets (source, target, and instruction). The key components of our approach include: Motion-
Editing-Based Data Collection: We develop a pipeline that uses motion editing techniques to
generate large datasets of motion pairs and corresponding corrective instructions. This process in-
volves using a pre-trained motion editor to modify source motions according to generated instructions,
resulting in target motions that reflect the desired corrections. Fine-Tuning Large Language Models:
We fine-tune a large language model (LLM) on the generated datasets to enable it to produce precise
and actionable corrective instructions. By training the LLM on a diverse set of motion sequences and
corrections, we enhance its ability to understand and generate contextually relevant feedback.

In summary, our contributions include:

• We introduce a motion-editing-based pipeline to efficiently generate large datasets of correc-
tive instructions, reducing the dependency on extensive manual annotations.

• We propose a general motion corrective instruction generation method which utilizes a large
language model to translate motion discrepancies into precise and actionable instructional
text, addressing the relationship between language and dynamic motions.

• Through comprehensive evaluations, we show that our method significantly outperforms
existing models in generating high-quality corrective instructions, providing better guidance
for users in various real-world scenarios.

2 Related work

2.1 Text Conditioned Human Motion Generation.

Conditional motion generation aims to synthesize diverse and realistic motion conditioning on
different control signals, such as music [25, 26, 27, 28], action categories [2, 15, 21], physical signals
[10, 16, 33]. Recent years have seen significant progress in text conditioned human motion generation
[1, 2, 12, 13, 14, 20, 24, 34, 39, 40, 44, 45, 47]. Some methods [1, 12, 39] align the texts and
motions into a joint embedding space for generation. Benefiting by aligning motion latent to the
CLIP [35] embedding space, MotionCLIP [39] could generate out-of-distribution motions. Several
works utilize other mechanisms to increase the diversity and quality of generated motions. TEMOS
[34] and TEACH [2] employ transformer-based VAEs to generate motion sequences based on texts.
Guo et al. [13] propose an auto-regressive conditional VAE to generate human motion sequences.
Inspired by the achievements in image generation, the diffusion models, such as MotionDiffuse [45],
MDM [40] and FLAME [24], have also been applied to motion generation. Some follow-up works
[37, 43] attempt to improve the controllability of the diffusion model. Recently, the Vector Quantized
Variational Autoencoder (VQ-VAE) has gained significant traction in being used to convert 3D human
motion into motion tokens which are subsequently employed alongside language models. TM2T
[14] proposes using these quantized tokens to facilitate the mapping between text and motion. T2M-
GPT [44] employs an auto-regressive method to predict the next-index token. Further, MotionGPT
[20, 47] utilizes large language models (LLMs) to simultaneously handle different motion-related

2

102012https://doi.org/10.52202/079017-3237

tasks. Recently, AvatarGPT [48] extends the generation models to unify high-level and low-level
motion-related tasks, which supports human motions generation, prediction and understanding.

2.2 Motion Editing

Motion editing enables users to interactively refine generated motions to suit their expectations.
PoseFix [7] utilize neural networks to edit 3D poses. Holden et al. [17] employs an autoencoder
to optimize the trajectory constraints. MDM [40], MotionDiffuse [45] and FLAME [24] involve
processing by masks that designate parts for editing through reverse diffusion. GMD [22] and
PriorMDM [37] are designed to edit motion sequences conditioned on joint trajectories. OmniControl
[43] incorporates control signals that encourage motions to conform to the spatial constraints while
being realistic. Recently, FineMoGen [46] tackles fine-grained motion editing which allows for
editing the motion of individual body parts, however its heavy reliance on specific-fine grained format
limits the smooth coordination among movements of different body parts.

2.3 Corrective Instruction Generation

Traditional methods [6, 11] focus on specific action categories by building statistical models that
require expert experience. These methods struggle to scale and generalize to various actions. Pose
Tutor [8] uses neural networks to learn statistical models but requires large amounts of data for each
action and can only analyze static images or poses. FixMyPose [23] creates a dataset with human-
annotated corrective instructions on synthetic 2D images. PoseFix [7] designs an automatic annotation
system and a conditioned auto-regressive model for corrective instruction generation, but it is limited
to static poses. Recently, Large Language Models (LLMs) [30] have made significant advances in
text generation. With appropriate prompting, LLMs can generate pose corrective instructions with
few-shot or zero-shot example data. However, LLMs’ access to text makes them less aware of a
variety of possible motions that people could perform and links them with languages.

Our key insight for corrective instruction generation is to regard this task as a close yet inverse
problem to text-conditioned motion generation and editing, allowing us to bring the progress in that
fast-growing space to this understudied problem: We first propose a novel corrective instruction data
collection pipeline based on motion editing. Subsequently, we design a model that leverage large
language models to provide corrective instructions on spatial form and temporal dynamics.

3 Method

3.1 Overview

We present an overview of our approach in Fig. 1. Given a source motion sequence, xI ∈ RT×D,
where T is the number of frames and D is the dimensionality of the motion representation, and a
target motion sequence, xO ∈ RT×D, as input, our goal is to learn a function T which maps xI and
xO to the corrective text instruction L, i.e., T (xI , xO) = L.

To achieve this, we employ a pre-trained motion editor, which takes as input the source motion
sequence and ground-truth corrective text, to output target motion sequences. Next, we quantize the
source and target motion sequences into discrete tokens using a VQ-VAE-based network. Finally,
we organize these tokens with a predefined template to fine-tune an LLM on the triplets that contain
source motion sequence xI , target motion sequence XO, and corrective instruction L for generating
instructions that can efficiently modify the source to the target motion sequence.

3.2 Motion-Editing-Based Data Collection

The task of generating corrective instructions requires triplet data consisting of the source motion, the
target motion, and the corrective instruction. Collecting such a dataset through human annotation is
costly and inefficient. We aim to leverage existing pre-trained models to streamline the data collection
process. However, there isn’t an existing model that generates such triplets.

Our fundamental insight is to treat corrective instruction generation as an inverse process of motion
editing, which uses a given text to guide an agent in editing its initial motion. We utilize the motion
editing process to gather required triplets: we collect a set of source motions and employ a pre-trained

3

102013 https://doi.org/10.52202/079017-3237

Upper body, lift weights

Lift weights with the
upper body.

Source
Motion

Target
Motion

Figure 1: Overview of CigTime. Left: We leverage source motion tokens and corrective instructions
as input to a motion editor to produce target motion tokens. Right: We then employ a language model
to generate precise corrective instructions based on a given source and target motion. We demonstrate
in the example generating corrective instructions for lifting weights with the upper body.

motion editor to edit the source motion based on a corrective instruction, resulting in the target
motion.

Motion Editing In this work, we utilize the motion diffusion model (MDM) [40] as the motion
editor. Given the input motion sequence, x, and generation condition, c, MDM uses probabilistic
diffusion models for motion generation. It comprises a forward process, which is a Markov chain
involving the sequential addition of Gaussian noise to the data, and a reverse process that progressively
denoises the data to get the edited motion. The forward process of MDM is formulated as,

q(x1:T |x0) =
∏
t≥1

q(xt|xt−1), (1)

q(xt|xt−1) = N (
√
αtxt−1, (1− αt)I), (2)

where αt ∈ (0, 1) are constant hyper-parameters. Further, the reverse process is formulated as,

pθ(x0:T) = p(xT)
∏
t≥1

pθ(xt−1|xt), (3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (4)

where θ is the learnable parameters of the diffusion model, which gradually anneals the noise from a
Gaussian distribution to the data distribution. We train MDM as a conditional generator G(xt, c, t)
that outputs x0, where c is the text condition, to maximize pθ(x0:T).

In inference, MDM takes noise n as xT and applies the reverse process to denoise the input based
on the text condition, c, generating the motion sequences, x0, corresponding to c. For the motion
editing task, we utilize the corrective instruction, L, as the generation condition, c, to generate the
corresponding corrective motion sequence, xL. We then calculate the target motion sequence, xO, by
combining the source motion sequence, xI , and the corrective motion sequence, xL,

xO = m⊙ xL + (1−m)⊙ xI , (5)

where m is the joint mask for the body part P , and ⊙ is the element-wise multiplication for masking
operation. Through the above process, we are able to collect a large amount of ⟨xI , xO, L⟩ triplets.
We use this dataset to fine-tune a large language model (LLM) for the corrective instruction generation
task as in the following.

4

102014https://doi.org/10.52202/079017-3237

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

Instruction:
I will give you two motion sequences, representing sequences of the same character doing different
actions. You are asked to compare two sequences and output what modifications the person should make
to transfer from the first action to the second action.

Input:
Action 1: [Token list for source motion sequence]
Action 2: [Token list for Target motion sequence]

Response:
[Correctional Instruction]

Figure 2: Template for LLM fine-tuning. The LLM is required to output the corrective instructions
given token lists for the source and target motion sequences (i.e., Action 1 and Action 2) as well as
instructions on the expected output.

3.3 Fine-tuning LLMs for Corrective Instruction Generation

With the prepared dataset of triplets from the motion editing process, we learn the inverse process
of motion editing, a function, T , that maps source and target motion sequence pairs to corrective
instructions. We first learn an encoder based on VQ-VAE [41] to tokenize the motion sequences into
discrete tokens and organize the discrete tokens based on a pre-defined template. Then, we fine-tuned
an LLM to generate the corrective instruction, L, based on the tokens of the source and target motion
sequence, xI and xO.

Tokenizer Pre-training Compared to directly feeding the original data to the LLMs, the discrete
representation has been proven to be more suitable for fine-tuning LLMs with human-motion-related
tasks [20, 47]. Inspired by these works, we initialize a VQ-VAE-based network, which contains an
encoder E , a codebook C, and a decoder D. The encoder E takes motion sequence, x, as input and
maps, x, into discrete features, f ∈ T ×H, where H is the dimensionality of the frame feature.

The codebook, C ∈ RK×H , represents different codes, where K is a predefined number of different
discrete codes and ck ∈ RH is the k-th code. VQ-VAE quantizes the discontinuous feature f to the
discrete latent codes, z ∈ RT×H , through codebook, c, by projecting each per-frame feature fi to its
nearest code:

zi = Q (fi) = ck, where k = argminj ∥fi − cj∥22 , (6)

where Q represents the quantization operation. The decoder D takes the code, z, as input, and
reconstructs the motion sequence, xO′

. We use the index k as the token of each discrete code, ck, as
the token representation of the frame feature fi. We apply the L2 loss for the training of the tokenizer,

Lrecon = ||xO − xO′
||22. (7)

Considering that the quantization operation disrupts gradient backpropagation, we employ an ex-
ponential moving average (EMA) [42] for the codebook update and stabilize the training process.
Besides, we apply the commitment loss [41] to update the tokenizer encoder,

Lcom =

T∑
i=1

∥fi − sg(zi)∥22 , (8)

where sg(·) is the stop gradient operation that helps stabilize the training process.

Fine-tuning LLM Instruction Tuning is a widely used technique to enable LLMs to handle specific
tasks. In this work, we employ this technique to fine-tune our LLM. Specifically, given an LLM, T , a
source discrete token set, Is = Is0 , I

s
1 , ..., I

s
ns , and a target discrete token set, It = It0, I

t
1, ..., I

t
nt , we

5

102015 https://doi.org/10.52202/079017-3237

organize the input of T to follow the template as shown in Fig. 2. This input is then tokenized into
text tokens U I = uI

0, u
I
1, ..., u

I
nUI . Additionally, we tokenize the ground-truth corrective instruction,

L, into text tokens, UO = uO
0 , u

O
1 , ..., u

O
nUO .

The LLM processes the input tokens, U I , and auto-regressively predicts the probability distribution
of the next tokens pL(u|U I) =

∏
j pL(u

O
j |uO

0:j−1, U
I). During training, we maximize the log-

likelihood of the data distribution by applying cross-entropy loss:

LLLM = −
UO∑
j=0

log pL(u
O
j |uO

0:j−1, U
I). (9)

By using a structured input template and optimizing the cross-entropy loss, we enable the LLM to
generate accurate and contextually relevant corrective instructions. This approach ensures that the
model effectively learns to convert discrepancies between the source and target motions into precise
and actionable instructional text.

Learning Representation for Motion Tokens Previous methods for training text-to-motion models
involve either using an existing vocabulary for motion tokens [47] or assigning new learnable
embeddings [20, 48], followed by fine-tuning with techniques like LoRA. We tried both approaches,
but the results of utilizing one of them alone were not satisfying. There are two main reasons: First,
using a fixed vocabulary and embeddings prevents capturing the correlation of motion differences and
corrective instructions, as the weights are trained on tasks with a large domain gap. Second, while
new embeddings can be learned with LoRA, the distribution of the original vocabulary’s embeddings
imposes constraints, making the learned embeddings suboptimal, especially given the smaller scale
of training data for corrective instructions.

To address these challenges, we integrate the goods of both. We use existing vocabulary tokens for
their rich semantics and fine-tune all embeddings to maximize performance and reduce the domain
gap. We also introduce an anchor loss to prevent the embeddings from diverging:

LAnchor = λ · ∥W −W0∥22, (10)

where λ is a regularization coefficient that controls the influence of loss, W0 represents the network
weights before training, W represents the network weights after training.

4 Evaluation

4.1 Experiment Setup

Datasets We obtain the source motion sequences from HumanML3D [13], a dataset containing 3D
human motions and associated language descriptions. We make use of the entire dataset for the
collection of source motions. We then generate triplets based on pre-trained motion editor with
instructions and target motions. We split HumanML3D following the original setting and for each
motion sequence in HumanML3D, we randomly select one instruction from the corresponding
split for editing the sequence. We subsequently edit the source motion sequences with MDM [40]
conditioned on the corrective instructions to obtain the target sequences.

Implementation Details We fine-tune a pre-trained Llama-3-8B [30] using full-parameter fine-tuning
for corrective instruction generation. The model is optimized using the Adam optimizer with an
initial learning rate of 10−5. We use a batch size of 512 and train on four NVIDIA Tesla A100 GPUs
for eight epochs, which takes approximately 5 hours to complete. Following HumanML3D [13], the
dimensionality, D, of the motion sequences is set to 263 for our experiments.

Evaluation Metrics We evaluate the generated corrective instruction with two types of metrics.

(1) Corrective instruction quality: BLEU [32], ROUGE [29], and METEOR [4] are commonly
employed metrics that assess various n-gram overlaps between the ground-truth text and the generated
text. Although these metrics focus on structural text similarity, they tend to disregard semantic
meaning. Consequently, we also utilize the cosine similarity of text CLIP embeddings as an evaluation
metric to better compare semantic similarity.

6

102016https://doi.org/10.52202/079017-3237

(2) Reconstruction accuracy: To evaluate the quality, we use the generated corrective instruction
as an editing condition to modify the source motion sequences and obtain the generated target
motion. We then compare this with the ground-truth target motion. Specifically, we employ Mean
Per Joint Position Error (MPJPE) to measure the average Euclidean distance between the generated
and ground-truth 3D joint positions for all joints. Additionally, we calculate the Fréchet Inception
Distance (FID) using a feature extractor [13] to evaluate the distance between the feature distributions
of the generated and ground-truth target motions. Ideally, the generated motion sequences should
closely resemble the target motion sequences.

Table 1: Comparison to the Existing Work. We compare our approach against large lan-
guage (Llama-3-8B, Llama-3-8B-LoRA, Qwen-7B, Mistral-7B) and motion-language (MotionGPT,
MotionGPT-M2T) models. We demonstrate that our approach, CigTime outperforms all the baselines
by a large margin for corrective instruction generation for human motion.

Method Instruction Quality Reconstruction Accuracy
BLEU ↑ ROUGE↑ METERO ↑ CLIPScore ↑ MPJPE ↓ FID ↓

Ground-Truth 1.00 1.00 1.00 1.00 0.00 0.00

Llama-3-8B 0.15 0.29 0.45 0.77 0.21 3.04
Llama-3-8B-LoRA 0.10 0.19 0.36 0.77 0.24 2.09

Mistral-7B 0.16 0.30 0.46 0.80 0.22 5.03
Mistral-7B-LoRA 0.08 0.19 0.27 0.79 0.75 1.84

MotionGPT 0.02 0.10 0.11 0.76 0.80 8.84
MotionGPT-M2T 0.02 0.13 0.12 0.76 1.05 7.96

Ours 0.24 0.35 0.52 0.82 0.13 1.44

Comparison Baselines To the best of our knowledge, we are the first to generate corrective instruction
for general motion pairs. Thus, we adopt two different kinds of methods designed for general text-
based tasks and motion captioning.

(1) Llama3 [30], Qwen [3] and Mistral [19] are all large language models designed for general
text-based tasks. They can be applied to unseen tasks with just a few-shot data. We utilize the
in-context learning technique [9] to generate correction instructions by giving them examples of
the source-target-instruction triplets. We present the detailed prompts in the supplemental material.
In addition to the baselines that use in-context learning with LLMs, we ablate different fine-tuning
techniques. To do so, we compare our approach, which uses full-parameter LLM tuning to a variant,
which utilizes the LoRA adapter [18] to fine-tune the Llama 3 8B and Mistral 7B models.

(2) MotionGPT [20]. Although MotionGPT isn’t trained with corrective instruction data, it has been
proven to have the ability to generalize across different motion-based tasks by utilizing specific input
templates for different tasks. Thus, we adopt this method for corrective instruction generation by
utilizing the template mentioned in Section. 3.3. In addition, as generating corrective instructions is
not a target for MotionGPT, we create yet another baseline called MotionGPT-M2T that employs
MotionGPT to generate captions corresponding for the target motions.

4.2 Quantitative Results

Our quantitative results are presented in Table. 1. We further discuss below the quality of the
corrective instructions and the reconstruction accuracy of target motion after editing.

Corrective Instruction Quality Our method demonstrated superior performance across most
metrics when compared to baseline methods, as presented in Table. 1. Specifically, our method
achieved the highest BLEU-4, ROUGE-2 and METERO scores of 0.24, 0.35, and 0.52, significantly
surpassing the baseline methods. This indicates that our method generates text with higher precision.

Furthermore, our method achieved the highest CLIP Score of 0.82, outperforming other baselines.
The CLIP Score indicates the semantic alignment of the generated text with visual content, and a
higher score demonstrates better performance in maintaining this alignment.

We find that the two baselines adopted from MotionGPT both present inferior performances, which
can be attributed to its training on a text-motion dataset, which lacks the capability to compare

7

102017 https://doi.org/10.52202/079017-3237

two motion sequences and identify specific differences. Besides, although MotionGPT excels at
generating captions for motion sequences, it’s still difficult to reconstruct the original target motion
sequence from the generated descriptions. This is because describing the differences and similarities
between two motion sequences can help us accurately depict the target motion with fewer statements,
which MotionGPT does not possess.

This evidenced that simply fine-tuning Llama-3 using the generated data would not result in a
satisfactory corrective instruction generation, e.g., due to overfitting or catastrophic forgetting.
Although the outputs can induce similar target motion sequences compared to the ground truth,
the increased variance in the text can lead to a decrease in the overall NLP metrics such as BLEU,
ROUGE, and METERO.

Overall, these results highlight the effectiveness of our method in generating high-quality corrective
instructions, with significant improvements in precision, similarity, and visual-semantic consistency
over the baseline methods.

Table 2: Ablation study with different network structure. We extend the LLMs’ vocabularies with
new learnable embeddings for the motion tokens and update the corresponding embeddings during
fine-tuning as baselines. We also compare variants that utilizes T5 as the backbone (ours-T5), and
continous representaion (Ours-Continuous).

Method Instruction Quality Reconstruction Accuracy
BLEU ↑ ROUGE↑ METERO ↑ CLIPScore ↑ MPJPE ↓ FID ↓

Llama-3-8B-Extended 0.12 0.23 0.44 0.80 0.27 5.43
Mistral-7B-Extended 0.18 0.27 0.42 0.81 0.19 1.45

Ours-Extended 0.24 0.37 0.55 0.84 0.16 1.50
Ours-Continuous 0.12 0.24 0.47 0.78 0.20 2.56

Ours-T5 0.14 0.25 0.46 0.80 0.33 5.03
Ours 0.24 0.35 0.52 0.82 0.13 1.44

Reconstruction Accuracy The evaluation of reconstruction accuracy highlights the superior perfor-
mance of our method in distinguishing between source and target motions. As shown in Table 1, our
method achieved the lowest MPJPE of 0.1330, indicating the highest accuracy in pose reconstruction.
Furthermore, our method also attained the lowest FID - Target score of 1.4442, demonstrating its
effectiveness in generating data that closely matches the target motion. Similarly, MotionGPT’s
inferior performance in these metrics is a result of its limited ability to analyze differences between
motion pairs, as evidenced by its MPJPE of 0.8011 and FID score of 8.8350.

Additionally, although LLM models like Llama-3-8B can maintain text consistency via in-context
learning, they are unable to grasp the intricate connections between motion sequences and language,
leading to inferior overall performance compared to our approach. Even when benefiting from
fine-tuning through LoRA, these models still cannot generate high-quality corrective instructions.

Overall, these results underline the effectiveness of our method in accurately distinguishing and
reconstructing the differences between source and target motions, outperforming the baseline methods
in both MPJPE and FID metrics.

Table 3: Ablation study with different motion editors. We assess the reconstruction accuracy of
various methods employing different motion editors for evaluation.

Method
MDM PriorMDM – LW PriorMDM – RF

MPJPE ↓ FID ↓ MPJPE ↓ FID ↓ MPJPE ↓ FID ↓
Ground-Truth 0.00 0.00 0.22 2.97 0.25 5.22

Llama-3-8B-LoRA 0.24 2.09 0.27 3.08 0.37 7.08
MotionGPT 0.80 8.84 0.80 9.80 0.77 19.07

MotionGPT-M2T 1.05 7.96 0.80 8.48 0.74 28.95
Ours 0.13 1.44 0.22 3.02 0.26 5.34

Ablation study with different network structurer To validate that our token embedding training
method is superior to the extended token embedding approach used in previous algorithms, we

8

102018https://doi.org/10.52202/079017-3237

Figure 3: Visualization of corrective instructions and reconstructed motions for different methods.

conducted a comparison of LLMs trained using token embeddings, as shown in Table 2. Although
fine-tuning with extended vocabulary can enhance the text-based metrics, these instructions cause
a decline in the motion editing performance, resulting in a reduction in MPJPE and FID. From the
perspective of the task definition, we require a model that prioritizes high reconstruction quality over
instruction quality. Therefore, extending vocabulary is more detrimental than beneficial for our task.

Besides we fine-tune T5-770M [36], as in Motion-GPT [20] and AvatarGPT [48] to validate the
impact of different LLM frameworks on the results. The experimental results show that the T5
framework does not offer an advantage over larger language models [30] in the Motion Corrective
Instruction Generation task. We also compared our method with its variant based on continuous
representations, as implemented by MotionLlm [5]. As observed, our method still outperforms the
continuous baseline across all the reconstruction accuracy metrics.

Evaluation with Different Motion Editors Different people may perform various actions in
response to the same instruction. Our goal is for our model to produce instructions that are as accurate
and widely accepted as possible. Therefore, we evaluate our methods and baselines using different
motion editors. In addition to MDM, which we used to generate the ground-truth dataset, we also
assess the methods with two different versions of PriorMDM as shown in Table 3.

Our proposed method consistently outperforms other models across different motion editors, demon-
strating the lowest MPJPE and FID values, close to the ground truth. This highlights its effectiveness
in generating accurate and visually similar corrective motions. In contrast, models like MotionGPT
and its variant exhibit significantly higher errors, indicating limitations in their generation capabilities.

4.3 Visual Results

To further analyze the performance of different methods, we present visual comparisons in 3. As
shown in the results, our algorithm largely maintains similar semantics and achieves reconstruction
results that are closely aligned with the ground truth. This demonstrates the accuracy of our algorithm
in generating corrective instructions. In contrast, Llama3-8B, despite achieving favorable numerical
results, may incorrectly identify the joint parts involved in motion editing. This highlights our
approach’s superiority in providing accurate and contextually appropriate motion corrections.

5 Conclusion

We introduced a new task and a framework for generating corrective instructions that translate a source
motion into a target motion. Our key insight is to leverage the fast growing field of text-conditioned

9

102019 https://doi.org/10.52202/079017-3237

motion-editing for this related yet understudied inverse problem. To create a dataset for this task, we
proposed a motion editing pipeline that minimizes the need for extensive manual annotations. We
demonstrated the utility of our approach which largely outperforms existing related models.

While our work provides a strong foundation for corrective instruction generation in human motion,
there are limitations to our framework.

1. First, the curated dataset captures differences between source and target motions, but it
lacks targeted feedback on form and dynamics that are specific to actions and sports, which
require more detailed and subtle instructions for learning particular skills.

2. Second, due to the limitation of the pretrained motion editor [40], we can only handle source
and target motion pairs with the same sequence length, without context or scenes.

3. Third, the corrective instruction generation method may be misused to generate instructions
for insulting or inappropriate motions.

We aim to address these limitations in future research, along with further advances of text-conditioned
motion-editing frameworks, which share our challenges, limitations, and potential solutions.

Acknowledgment

This work is supported by the Early Career Scheme of the Research Grants Council (grant #
27207224), the HKU-100 Award, a donation from the Musketeers Foundation, an Academic Gift
from Meta, and the Microsoft Accelerate Foundation Models Research Program. The authors would
like to thank Robert Wang, Shugao Ma, Alexander Winkler, Yijing Li, and Chris Twigg for their
valuable discussions. Special thanks are also extended to Pei Zhou, Chenming Zhu, and Shumin Sun
for their support in the real-world application.

References
[1] Chaitanya Ahuja and Louis-Philippe Morency. Language2pose: Natural language grounded pose forecast-

ing. In 2019 International Conference on 3D Vision (3DV), pages 719–728. IEEE, 2019.

[2] Nikos Athanasiou, Mathis Petrovich, Michael J Black, and Gül Varol. Teach: Temporal action composition
for 3d humans. In 2022 International Conference on 3D Vision (3DV), pages 414–423. IEEE, 2022.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[4] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summarization, pages 65–72, 2005.

[5] Ling-Hao Chen, Shunlin Lu, Ailing Zeng, Hao Zhang, Benyou Wang, Ruimao Zhang, and Lei
Zhang. Motionllm: Understanding human behaviors from human motions and videos. arXiv preprint
arXiv:2405.20340, 2024.

[6] Steven Chen and Richard R Yang. Pose trainer: correcting exercise posture using pose estimation. arXiv
preprint arXiv:2006.11718, 2020.

[7] Ginger Delmas, Philippe Weinzaepfel, Francesc Moreno-Noguer, and Grégory Rogez. Posefix: Correcting
3d human poses with natural language. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15018–15028, 2023.

[8] Bhat Dittakavi, Divyagna Bavikadi, Sai Vikas Desai, Soumi Chakraborty, Nishant Reddy, Vineeth N
Balasubramanian, Bharathi Callepalli, and Ayon Sharma. Pose tutor: an explainable system for pose
correction in the wild. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 3540–3549, 2022.

[9] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

[10] Zhiyang Dou, Xuelin Chen, Qingnan Fan, Taku Komura, and Wenping Wang. C· ase: Learning conditional
adversarial skill embeddings for physics-based characters. In SIGGRAPH Asia 2023 Conference Papers,
pages 1–11, 2023.

10

102020https://doi.org/10.52202/079017-3237

[11] Mihai Fieraru, Mihai Zanfir, Silviu Cristian Pirlea, Vlad Olaru, and Cristian Sminchisescu. Aifit: Automatic
3d human-interpretable feedback models for fitness training. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 9919–9928, 2021.

[12] Anindita Ghosh, Noshaba Cheema, Cennet Oguz, Christian Theobalt, and Philipp Slusallek. Synthesis
of compositional animations from textual descriptions. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1396–1406, 2021.

[13] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating diverse and
natural 3d human motions from text. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5152–5161, 2022.

[14] Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. Tm2t: Stochastic and tokenized modeling for the
reciprocal generation of 3d human motions and texts. In European Conference on Computer Vision, pages
580–597. Springer, 2022.

[15] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun Gong, and
Li Cheng. Action2motion: Conditioned generation of 3d human motions. In Proceedings of the 28th ACM
International Conference on Multimedia, pages 2021–2029, 2020.

[16] Mohamed Hassan, Yunrong Guo, Tingwu Wang, Michael Black, Sanja Fidler, and Xue Bin Peng. Synthe-
sizing physical character-scene interactions. In ACM SIGGRAPH 2023 Conference Proceedings, pages
1–9, 2023.

[17] Daniel Holden, Jun Saito, and Taku Komura. A deep learning framework for character motion synthesis
and editing. ACM Transactions on Graphics (TOG), 35(4):1–11, 2016.

[18] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[19] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

[20] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as a
foreign language. Advances in Neural Information Processing Systems, 36, 2024.

[21] Sai Shashank Kalakonda, Shubh Maheshwari, and Ravi Kiran Sarvadevabhatla. Action-gpt: Leveraging
large-scale language models for improved and generalized action generation. In 2023 IEEE International
Conference on Multimedia and Expo (ICME), pages 31–36. IEEE, 2023.

[22] Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn, and Siyu Tang. Guided motion
diffusion for controllable human motion synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2151–2162, 2023.

[23] Hyounghun Kim, Abhay Zala, Graham Burri, and Mohit Bansal. Fixmypose: Pose correctional captioning
and retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 13161–
13170, 2021.

[24] Jihoon Kim, Jiseob Kim, and Sungjoon Choi. Flame: Free-form language-based motion synthesis &
editing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 8255–8263,
2023.

[25] Jinwoo Kim, Heeseok Oh, Seongjean Kim, Hoseok Tong, and Sanghoon Lee. A brand new dance
partner: Music-conditioned pluralistic dancing controlled by multiple dance genres. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3490–3500, 2022.

[26] Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun Wang, Yu-Ding Lu, Ming-Hsuan Yang, and Jan
Kautz. Dancing to music. Advances in neural information processing systems, 32, 2019.

[27] Ronghui Li, Junfan Zhao, Yachao Zhang, Mingyang Su, Zeping Ren, Han Zhang, Yansong Tang, and Xiu
Li. Finedance: A fine-grained choreography dataset for 3d full body dance generation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 10234–10243, 2023.

[28] Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Ai choreographer: Music conditioned 3d
dance generation with aist++. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 13401–13412, 2021.

11

102021 https://doi.org/10.52202/079017-3237

[29] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches
out, pages 74–81, 2004.

[30] Meta. Llama3, 2024.

[31] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. Posefix: Model-agnostic general human pose
refinement network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7773–7781, 2019.

[32] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pages 311–318, 2002.

[33] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-guided
deep reinforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG),
37(4):1–14, 2018.

[34] Mathis Petrovich, Michael J Black, and Gül Varol. Temos: Generating diverse human motions from textual
descriptions. In European Conference on Computer Vision, pages 480–497. Springer, 2022.

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

[37] Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H Bermano. Human motion diffusion as a generative
prior. arXiv preprint arXiv:2303.01418, 2023.

[38] Soyong Shin, Juyong Kim, Eni Halilaj, and Michael J Black. Wham: Reconstructing world-grounded
humans with accurate 3d motion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2070–2080, 2024.

[39] Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-Or. Motionclip: Exposing
human motion generation to clip space. In European Conference on Computer Vision, pages 358–374.
Springer, 2022.

[40] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano. Human
motion diffusion model. arXiv preprint arXiv:2209.14916, 2022.

[41] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

[42] Will Williams, Sam Ringer, Tom Ash, David MacLeod, Jamie Dougherty, and John Hughes. Hierarchical
quantized autoencoders. Advances in Neural Information Processing Systems, 33:4524–4535, 2020.

[43] Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and Huaizu Jiang. Omnicontrol: Control any joint at
any time for human motion generation. arXiv preprint arXiv:2310.08580, 2023.

[44] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli Huang, Yong Zhang, Hongwei Zhao, Hongtao Lu,
and Xi Shen. T2m-gpt: Generating human motion from textual descriptions with discrete representations.
arXiv preprint arXiv:2301.06052, 2023.

[45] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei Liu.
Motiondiffuse: Text-driven human motion generation with diffusion model. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

[46] Mingyuan Zhang, Huirong Li, Zhongang Cai, Jiawei Ren, Lei Yang, and Ziwei Liu. Finemogen: Fine-
grained spatio-temporal motion generation and editing. Advances in Neural Information Processing
Systems, 36, 2024.

[47] Yaqi Zhang, Di Huang, Bin Liu, Shixiang Tang, Yan Lu, Lu Chen, Lei Bai, Qi Chu, Nenghai Yu, and
Wanli Ouyang. Motiongpt: Finetuned llms are general-purpose motion generators. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 7368–7376, 2024.

[48] Zixiang Zhou, Yu Wan, and Baoyuan Wang. Avatargpt: All-in-one framework for motion understanding
planning generation and beyond. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1357–1366, 2024.

12

102022https://doi.org/10.52202/079017-3237

Instruction:
I utilize some tokens to represent human motion. You are asked to compare two sequences
and output the correctional instruction about what modifications the person should make to
transfer from the first action to the second action.

[Start of examples]

Example 1:
Action 1: [Token list for source motion sequence]
Action 2: [Token list for Target motion sequence]
Correction instruction: [Correction instruction]
……
Example N:
Action 1: [Token list for source motion sequence]
Action 2: [Token list for Target motion sequence]
Correction instruction: [Correction instruction]

[End of examples]

I will give you two new sequences. You need to compare the two and provide corresponding
corrective instructions.
Action 1: [Token list for source motion sequence]
Action 2: [Token list for Target motion sequence]

Figure 4: In-context learning for corrective instruction generation. The prompt for the LLMs in
in-context learning includes a task description and several examples. This information is given to the
LLMs, instructing them to generate correctional instructions for new motion pairs.

A Prompt for the LLMs In-context Learning

To enable large language models (LLMs) for generating correctional instructions grounded in given
sequences, we apply the in-context learning technique [9]. This method allows LLMs to make
predictions based on contexts supplemented with a limited number of examples. The prompt used for
in-context learning is displayed in Figure 4.

B Additional Experiments

B.1 Generalization to New Data

Our algorithm is fully trained and tested on the HumanML3D [13] dataset, which may impact its
generalization. To evaluate the generalization ability of our algorithm, we collected 1525 samples
from the Fit3D [11] dataset.

We present the results in Table 4. These results show that the BLEU, ROUGE, and METEOR scores
decreased from 0.24, 0.35, and 0.52 to 0.03, 0.05, and 0.20, respectively. This indicates that when the
dataset changes, the corrective instructions generated by our algorithm deviate from the ground truth
in form. However, the changes in CLIP score, MPJPE, and FID are subtle. This suggests that even
after switching datasets, our algorithm can still effectively capture the differences in motion pairs and
describe them in appropriate language. Our algorithm therefore generally showcases a notable level
of generalization capability.

B.2 Experimental Results on KIT Dataset

We further evaluate our method baselines on KIT dataset. As shown in Table 5 , our method still outperforms
other baselines across all metrics, demonstrating the generalization capability.

13

102023 https://doi.org/10.52202/079017-3237

Table 4: Numeric Results

Method Dataset Instruction Quality Reconstruction Accuracy
BLEU ↑ ROUGE↑ METERO ↑ ClipScore ↑ MPJPE ↓ FID ↓

Ours Humanml3D 0.24 0.35 0.52 0.82 0.13 1.44
Ours Fit3d 0.03 0.05 0.20 0.81 0.18 1.24

Source Motion Ground Truth Ours

Imitate a forehand table tennis hit with their
right hand with the upper body.

Gesture as if throwing a frisbee with their
left hand with the upper body.

Reach up with both hands as if grabbing
something with the upper body.

Geasture ‘all right' or 'okay' with their right
hand with the upper body.

Make a gentle waving gesture to the side
with the upper body.

Raise their left hand as if stopping traffic
with the upper body.

Figure 5: Diversity of the corrective instructions. We present some examples where the recon-
structed motions have a similar appearance to the target motions, but the corrective instructions still
differ from the ground truth, demonstrating the robustness of our approach generating effective and
semantically meaningful corrective instructions.

14

102024https://doi.org/10.52202/079017-3237

Table 5: Experimental results on KIT dataset. We conduct a comparative analysis of our method
against baselines on the KIT dataset.

Method Instruction Quality Reconstruction Accuracy
BLEU ↑ ROUGE↑ METERO ↑ CLIPScore ↑ MPJPE ↓ FID ↓

Llama-3-8B-LoRA 0.11 0.17 0.36 0.78 0.37 5.03
Qwen-1.5-7B-LoRA 0.14 0.25 0.46 0.80 0.33 5.03

Mistral-7B-LoRA 0.13 0.17 0.36 0.79 0.30 5.02
Ours 0.14 0.27 0.47 0.80 0.21 4.52

Figure 6: Real-world application. This figure illustrates the source and target motions collected
from real-world participants, alongside the corrective instructions generated by different methods.
Left to right: the source motion, target motion, generated corrective instruction, and the corrected
motions. We collect the videos with a single camera and extract motions with WHAM.

Kick football with my
right foot forward with
the lower body.

Jump rope while looking
off into the distance with
the lower body

Walking forward with
the lower body

Source motion Target motion Ours Video-Llava MotionLLM

Motion

Instruction

B.3 Additional Visual Results

We present visualization examples of our corrective instructions and reconstructed motion sequences in Fig. 5.
We observe that although the corrective instructions predicted by our algorithm sometimes differ from the
ground truth (e.g., "forehand table tennis" versus "throwing a frisbee"), they can still result in remarkably similar
modified motions. In specific frames, the resulting motions are nearly identical, as seen in the beginning and
ending frames of the first example. This phenomenon aligns with real-world scenarios where individuals can
provide multiple, semantically distinct suggestions that lead to similar corrective outcomes when correcting
others’ mistakes. This underscores the robustness of our approach in generating effective motion corrections,
even when the specific instructions vary.

Considering the diversity of correction instructions, traditional metrics such as BLEU, ROUGE, or METEOR
alone may not be sufficient to describe their correctness. Thus, we incorporated CLIP score and reconstruction
metrics as supplementary evaluation measures, creating a more exhaustive benchmark for evaluating correction
instruction generation. We present more visual results in Fig. 7 and 8.

C Implementation Details

C.1 Motion Editing

We utilize the pre-trained MDM [40] for motion editing. The model is trained on the HumanML3D dataset
with a batch size 32, a learning rate 0.0002, and training for 50000 epochs. In the editing process, we set the
maximum reverse diffusion steps to 50.

C.2 Architecture of Our Tokenizer

We utilize TCN-based structures for both encoder and decoders, which extract spatiotemporal features for
human motion through convolution with a kernel size of 1. We also extract temporal features through dilation
convolution and larger kernels (9 or 3). We list the details of our network architecture in Tab. 7. The decoders U
and B share the same architecture.

D Example of Corrective Instructions

We present some corrective instructions in Tab. 6.

15

102025 https://doi.org/10.52202/079017-3237

Table 6: Examples of corrective instructions.

Body part Corrective instruction

Upper body

Gesture as if explaining a large concept with both hands.
Act as if using a whip with their right hand
Feign holding and adjusting a large telescope
Performs a chest-expanding exercise, pulling arms back
Fake a tennis serve
Reenact painting a wall with a roller
Act out swinging a cricket bat
Shoot a bow and arrow

Lower body

Wade through water
Simulate hopping over a turning jump rope
Stand on their right leg briefly
Step side to side, simulating dancing
Act out getting on a bicycle
Jump over a puddle
Kick gently with the right foot
Walk like a model on a runway

E Real-world Application

Obtaining precise motion in real life is difficult. However, we find that existing motion estimation algorithms
enable us to obtain usable motion sequences in most cases. To verify whether the current pipeline can be applied
to real life, we conduct the following experiment.

We invited two participants, one acting as a coach and the other as a trainee. The trainee first performed a source
motion sequence. Then, the coach was tasked with generating a target motion sequence that differed from the
source sequence. We utilized a pose estimation algorithm (WHAM[38]) to extract these motion sequences and
use our method to generate corrective instructions. The trainee is then required to correct his motion based on
the corrective instructions. We present an example in Figure 6 of the global response pdf. In this example, it is
evident that existing motion estimation algorithms can accurately estimate the motions of both the trainee and the
coach. Furthermore, our algorithm is capable of understanding these motion sequences to provide appropriate
corrective instructions.

16

102026https://doi.org/10.52202/079017-3237

Table 7: Architecture of the tokenizer.

Components Architecture

Linear Encoder

(0): Conv1D(J*3, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): ReLU()
(2): 2 × Sequential(

(0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): ResConv1DBlock(

(0): (activation1): ReLU()
(1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,))
(2): (activation2): ReLU()
(3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,)))

(2): ResConv1DBlock(
(0): (activation1): ReLU()
(1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
(2): (activation2): ReLU()
(3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,)))

(3): ResConv1DBlock(
(0): (activation1): ReLU()
(1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(2): (activation2): ReLU()
(3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,))))

Residual VQ

(0): (conv1): Conv1D(256, 16, kernel_size=(1,), stride(1,))
(1): (codebook_class): nn.Parameter((64, 16), requires_grad=False)
(2): (codebook_residual): nn.Parameter((64, 16), requires_grad=False)
(3): (conv2): Conv1d: Conv1D(16, 256, kernel_size=(1,), stride=(1,))

Decoder

(0): 2 × Sequential(
(0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): ResConv1DBlock(

(0): (activation1): ReLU()
(1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,))
(2): (activation2): ReLU()
(3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,)))

(2): ResConv1DBlock(
(0): (activation1): ReLU()
(1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
(2): (activation2): ReLU()
(3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,)))

(3): ResConv1DBlock(
(0): (activation1): ReLU()
(1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(2): (activation2): ReLU()
(3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,))))

(2) Conv1D(256, 256, kerne_size=(1,), stride=(1,))
(1): ReLU()
(2): Conv1D(256, 75, kernel_size=(1,), stride=(1,))

17

102027 https://doi.org/10.52202/079017-3237

Simulate swimming with the front crawl

stroke with the upper body.

Swimming butterfly stroke with the upper

body.

Source Motion Ground Truth Ours

Perform a mock backward kick with the

lower body.

Perform a standing kick forward with the

lower body.

Pretend to throw a dart with their dominant

hand with the upper body.

Mimic throwing darts with their left hand

with the upper body.

Reach up with both hands as if grabbing

something from a high shelf with the upper

body.

Lift their right hand with the upper body.

Sidestep to their left with the lower body. Squat down, lifts both arms up over their

head, and then stands up with the lower body.

Figure 7: Additional visualizations. Qualitative results for the corrective instructions and recon-
structed motion sequences.

18

102028https://doi.org/10.52202/079017-3237

Perform a standing kick forward with the
lower body.

Lift his right leg and kicks it out repeatedly
with the lower body..

Does the moonwalk with the upper body.Twist their wrist with the upper body.

Gesture as if washing a window with both
hands with the upper body.

Hold something with the left arm with
the upper body

Lift up their left hand slowly with the upper
body

Pretend to hop over an obstacle with the
upper body.

Walk forward very slowly with the lower
body.

Imitate wading through knee-high water
with high steps with the lower body.

Source Motion Ground Truth Ours

Figure 8: Additional visualizations. Qualitative results for the corrective instructions and recon-
structed motion sequences.

19

102029 https://doi.org/10.52202/079017-3237

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect our paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include the discussion of the limitations in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results, our paper is mainly for application.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.

20

102030https://doi.org/10.52202/079017-3237

• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose the information needed to reproduce our experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will release the codes and our generated dataset after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

21

102031 https://doi.org/10.52202/079017-3237

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have specified the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: We don’t report any error bars in the paper, because we run the experiments with enough
scale of data.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide information for the computer resources in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.

22

102032https://doi.org/10.52202/079017-3237

• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We report the potential societal impacts in the conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [No]

Justification: This paper doesn’t include safeguards as we utilize the LLM which already have the
safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

23

102033 https://doi.org/10.52202/079017-3237

https://neurips.cc/public/EthicsGuidelines

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We properly cite the original paper that produced the code package or dataset and respect
to their license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We release new assets after acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: We don’t utilize crowdsourcing experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

24

102034https://doi.org/10.52202/079017-3237

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

25

102035 https://doi.org/10.52202/079017-3237

