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Abstract

We introduce BIOTROVE, the largest publicly accessible dataset designed
to advance AT applications in biodiversity. Curated from the iNaturalist
platform and vetted to include only research-grade data, BIOTROVE contains
161.9 million images, offering unprecedented scale and diversity from three
primary kingdoms: Animalia ("animals"), Fungi ("fungi"), and Plantae
("plants"), spanning approximately 366.6K species. Each image is annotated
with scientific names, taxonomic hierarchies, and common names, providing
rich metadata to support accurate AI model development across diverse
species and ecosystems.

We demonstrate the value of BIOTROVE by releasing a suite of CLIP
models trained using a subset of 40 million captioned images, known as
B10TROVE-TRAIN. This subset focuses on seven categories within the
dataset that are underrepresented in standard image recognition models,
selected for their critical role in biodiversity and agriculture: Aves ("birds"),
Arachnida ("spiders/ticks/mites"), Insecta ("insects"), Plantae ("plants"),
Fungi ("fungi"), Mollusca ("snails"), and Reptilia ("snakes/lizards"). To
support rigorous assessment, we introduce several new benchmarks and
report model accuracy for zero-shot learning across life stages, rare species,
confounding species, and multiple taxonomic levels.

We anticipate that BIOTROVE will spur the development of AT models capa-
ble of supporting digital tools for pest control, crop monitoring, biodiversity
assessment, and environmental conservation. These advancements are cru-
cial for ensuring food security, preserving ecosystems, and mitigating the
impacts of climate change. BIOTROVE is publicly available, easily accessible,
and ready for immediate use.

1 Introduction

AT advances are poised to play a crucial role in biodiversity conservation, ecology management,
and agriculture. Already, Al tools have been shown to enable automated species identification,
monitoring of ecological changes, and optimization of crop management [36, 5]. However,
standard Al approaches for biodiversity applications persistently face major challenges.
Training datasets are labor-intensive and costly to create; they cover only a narrow set of
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Figure 1: Top Seven Phyla in the BioTrove Dataset. This figure displays the seven most
frequently occurring phyla within BIOTROVE, which is curated to include data exclusively
from the three primary kingdoms: Animalia, Plantae, and Fungi. For each phylum, the five
most common species are shown, including their scientific names, common names, and the
number of images per species. The phyla are ordered by species diversity, with the most
diverse phylum on the right and the least diverse on the left.

visual concepts; standard vision models excel at single tasks but require extensive retraining
for new tasks; models often struggle with generalizing to unseen labels and new environments,
limiting their effectiveness in real-world applications [34, 14]. Models that perform well on
benchmarks often fail in the wild [12, 1]. Standard computer vision datasets (ImageNet and
its successors) have significant limitations, including incorrectly labeled images, geographical
and cultural biases, and overlapping or ill-defined labels, all of which impair the development
of high-performant AI models [24]. Consequently, there is a critical need for large, diverse,
accurately annotated datasets that are specific to biodiversity, ecology, and agricultural
research [27, 23].

In response to this need, several datasets have been introduced. Perhaps the most well-known
(raw) pool of biodiversity images on the Web is iNaturalist [42], from which several curated
datasets have been sourced, among them being iNat2021 [41] with 2.7M images of over
10,000 species of plants, animals, and fungi. However, insects (which comprise a very large
fraction of extant species) are under-represented in this dataset. IP102 [44], Insecta [10], and
the more recent BIOSCAN-1M [13], are alternative datasets that focus on the Insecta Class.
Perhaps the latest advance in such research is TREEOFLIFE-10M [39], which is currently
the state-of-the-art dataset of text-annotated biological images, comprising 10M images with
approximately 450K unique taxonomic classes.

In this paper, we contribute to advancing biodiversity Al research by curating and releasing
BioTrove, a dataset comprising 161.9 million captioned images across approximately
366.6K species. This dataset surpasses all previous collections in both scale and diversity,
representing the largest publicly available, “Al-ready" dataset of curated biodiversity images.
Each image in BIOTROVE is paired with language data and spans a diverse range of
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taxonomic groups, including Reptilia (reptiles), Plantae (plants), Mollusca (mollusks),
Mammalia (mammals), Insecta (insects), Fungi (fungi), Aves (birds), Arachnida (arachnids),
Animalia (animals), Amphibia (amphibians), and Actinopterygii (ray-finned fish). The
dataset spans global regions, supporting robust training across diverse environmental contexts.
Representative examples are shown in Figure 1, and additional details are provided on the
project website.

Each image in BIOTROVE originates from the iNaturalist community science platform [42]
and is annotated with detailed metadata, including the common name, scientific name,
and complete taxonomic hierarchy. This curated metadata provides research-grade high-
quality text annotations that enhance Al model training. Additionally, we open-source a
data management pipeline, BIOTROVE-PROCESS, to facilitate interaction with BIOTROVE
metadata. With BIOTROVE-PROCESS, researchers can efficiently filter and balance data by
selecting specific taxonomic categories, adjusting for taxonomy level, and managing species
distribution to reduce skewness. This enables users to create custom subsets that align with
their research goals while maintaining consistency in species representation.

To showcase the capabilities of BIOTROVE, we introduce two technical contributions. First,
we train and release BIOTROVE-CLIP, a suite of vision-language foundation models, using
a subset, BIOTROVE-TRAIN, consisting of approximately 40M images from BIOTROVE
and representing around 33K species. This subset, constructed with BIOTROVE-PROCESS,
includes diverse taxa, specifically focusing on birds (Awves), spiders/ticks/mites (Arachnida),
insects (Insecta), plants (Plantae), fungi (Fungi), snails (Mollusca), and snakes/lizards
(Reptilia). These taxonomic classes were selected to capture a broad range of species—outside
of charismatic megafauna—that critically impact biodiversity. The models exhibit robust
generalization capabilities, demonstrating high zero-shot and few-shot performance on unseen
taxa when using either common or scientific names. We anticipate that BIOTROVE-CLIP
will serve as a valuable foundation for biodiversity-related applications and can be further
fine-tuned for specific research needs.

Second, we rigorously quantify the performance of our foundation models on five existing
fine-grained image classification benchmarks, as well as on three newly curated test datasets.
We find that BIOTROVE-CLIP models comfortably achieve the state-of-the-art in certain
settings, while both the original (OpenAI) CLIP model as well as BIOCLIP [39] excel in
certain other settings. We analyze these findings in further detail below, but overall we hope
that our dataset can be used by the Al community as a testbed for further algorithmic and
scaling research in fine-grained image recognition.

The remainder of this paper is organized as follows. Section 2 introduces the BIOTROVE
dataset, the dataset’s salient characteristics, and a comparison with previous work. Section 3
details our curation methodology. Section 4 introduces our newly proposed test datasets
and their characteristics. Section 5 details our new BIOTROVE-CLIP models and their
benchmark performance relative to previous work. Section 6 concludes with a discussion of
limitations and potential future directions.

2 The BioTrove Dataset

Characteristics. BIOTROVE comprises over 161.9 million images spanning 372,966 species.
This dataset is an order of magnitude larger than existing biodiversity datasets, such as
the state-of-the-art TREEOFLIFE-10M dataset, which it surpasses in scale by a factor of
nearly 13.5x while maintaining comparable species diversity. Figure 1 shows representative
image samples, while Figure 2 displays the distribution of samples across the seven major
categories with the most frequently observed species. Additionally, Figure 3 illustrates the
range of phyla, taxonomic classes, orders, and families represented in the dataset.

B10TROVE includes only research-grade data and publicly accessible licensed content for
research purposes from iNaturalist, which designates observations as research-grade once they
meet strict validation criteria. To qualify, two or more experienced iNaturalist community
members—naturalists, biologists, or citizen scientists—must agree on the species identification.
Additionally, the observation must meet other requirements, such as a clear photograph
and precise geolocation data. Recent experiments have shown that iNaturalist’s Research
Grade observations achieve approximately 97% accuracy, underscoring the reliability of this
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Figure 2: Distribution of the BioTrove dataset. (a) Size of the top seven Phyla in the
BioTrove dataset. (b) Species counts for the top seven Phyla. (c¢) The 40 highest occurring
species in entire BioTrove dataset.

community-based validation process [17]. Furthermore, iNaturalist continuously enhances
data quality by refining validator criteria and implementing new data quality assessment
measures, ensuring BIOTROVE remains a robust dataset for scientific use.

Each image sample in BIOTROVE is enriched with detailed, curated metadata that facilitates
efficient filtering by species count and taxonomic information. The metadata includes
common names, scientific names, and hierarchical taxonomic data, which enhances the
usability of the dataset for AI model training. For the complete list of metadata fields, see
Table 1.

Along with the dataset, we also release our data curation tooling pipeline: BIOTROVE-
PROCESS, which enables users to easily access and manipulate the dataset. This pipeline
allows researchers to select specific categories across different taxonomic levels, visualize data
distributions, and effectively manage class imbalance according to their needs. It facilitates
the downloading of specific images by their URLs and provides image-text pairs as well as
user-defined chunks to support various Al applications. BIOTROVE-PROCESS thus enables
users to define custom subsets of BIOTROVE with ease, making the dataset fully Al-ready
and reducing barriers to follow-up research in biodiversity-focused Al.

Dual-language text descriptions. We adopt both common and scientific names since
Latin is a low-resource language, and current AI models do not perform well on scientific
names alone in a zero-shot manner. We found that a well-structured text description that
integrates common names, scientific names, and detailed taxonomic hierarchies facilitates the
learning of relationships between Latin and English terms, thereby improving the models’
applicability in scientific contexts [6, 38, 43]. Moreover, incorporating the taxonomic hierarchy
enables models to more effectively associate visual data with taxonomic terminology [25, 2].
This matches the guidelines suggested by BIOCLIP [39] to enhance model performance
and generalization. Privacy Measures: The images of BIOTROVE were sourced from the
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Figure 3: Treemap diagram of the BioTrove dataset, starting from Kingdom. The
nested boxes represent phyla, (taxonomic) classes, orders, and families. Box size represents
the relative number of samples.

Table 1: Annotations provided in the BioTrove Dataset.

Text Type Description
Common Name Vernacular name (e.g., Western honey bee)
Scientific Name Genus and species (e.g., Apis mellifera)

Taxonomic Name Flattened taxonomy concatenated into a single string
Taxonomic Rank  Specific level in the hierarchy (e.g., subspecies, species)

iNaturalist Open Dataset, whose metadata included Personally Identifiable Information (PII).
This included information about observers, such as their usernames and sometimes their real
names if they have chosen to share that information publicly. We removed all such fields to
ensure that no PII is present in the metadata associated with BIOTROVE samples, ensuring
the privacy of all contributors. License: During curation, we took care to include only
images from iNaturalist Open Data, which are all licensed under either the CCO, or CC-BY, or
CC-BY-NC licenses. This ensures that all our images are available for public research purposes.
Offensive Content: Some of our URLs may point to images that users could find disturbing
or harmful, such as photos of dead or dismembered animals. We retained these types of
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images since they sometimes can provide valuable scientific data about wildlife, including
information on predation events, roadkill, and other occurrences relevant to conservation
and biodiversity studies. Although iNaturalist relies on user contributions and community
moderation to maintain the quality and appropriateness of the data, we acknowledge that
the vast and diverse nature of the data means that some offensive or inappropriate content
might be present.

Our closest comparisons are with BIOSCAN-1M (which appeared in NeurIPS 2023 Datasets
and Benchmarks) and TREEOFLIFE-10M (which will appear in CVPR 2024). BioScaN-1M
focuses solely on the Insecta Class and provides scientific names, taxonomic ranks, as well as
DNA barcodes. The TREEOFLIFE-10M dataset comprises 10.4 million images, integrating
data from iNat2021 [41], BIoSCAN-1M, and a fresh set of image samples sourced from the
Encyclopedia of Life (EOL). It also supports dual-language labels and detailed taxonomic
hierarchies and was used to train the BIOCLIP vision-language model. See Table 2 for
essential differences.

3 Data Collection and Curation Methodology

Challenges with iNaturalist Open Data. All of BIOTROVE is sourced from the
iNaturalist Open Data community science platform, which (in all) comprises over 280M
biodiversity-relevant observations shared by users. However, there are still significant gaps
in usability for AI research. The photos and metadata, although easily downloadable, are
provided in four separate metadata sheets that are not ready to use. Taxa information is
encoded as numerical IDs, requiring additional APT calls and non-trivial lookups to convert
these into common or scientific names. The multiple metadata sheets structure is fragmented
across four separate files—photos, taxa, observations, and observers—adding complexity to
data integration. Managing data balance and filtering out species with too few images can
lead to biases toward common (charismatic) species and an imbalanced training process.

Curation of BioTrove. The iNaturalist Open Dataset comprises a collection of 284.2
million images stored on an AWS S3 bucket as of 2024-09-27, with associated metadata
provided across four separate CSV files (photos, observations, taxa, and observers).
Details on each of these files are presented in Section A.5 in the Appendix. Although these
files contain a wealth of valuable information, they are structured for rapid retrieval rather
than Al-readiness. To address this, we curate the metadata into a streamlined, Al-optimized
format.

We populate an SQL database with each CSV file as an individual SQL table, then create an
aggregated table by joining photos, observations, and taxa on their relational columuns,
discarding irrelevant columns. In this aggregate table, we add a new column populated with

Table 2: Comparison of BioTrove with existing biodiversity datasets.

Feature BioTrove TreeOfLife BioScan
Size 161.9 million images 10.4 million images 1.1 million images
Diversity 366.6K species 454.1K species 8.3K

Single language

Dual language Dual language (scientific names)
Labels (common and scientific | (common and scientific taxonomic ranks.
Provided names), detailed names), detailed

(family to species),
DNA barcodes

Specimens from
Malaise traps, DNA

taxonomic hierarchies taxonomic hierarchies

iNaturalist,

iNaturalist Open Encyclopedia of Life

Data Source

Dataset barcodes matched to
(EOL), BroScan-1M BOLD
Ready-to-use pipeline, Rich hierarchical Focus on insects,
reduce class imbalance, representations, high-resolution images,
Key high-quality comprehensive detailed taxonomic
Features annotations, supports metadata, supports annotation, DNA
BioTrovE-CLIP BioCLIP codes
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the Amazon S3 URL and generate individual columns for taxonomic kingdom, phylum, class,
order, family, genus, and species.

B10TROVE includes only research-grade images from the Animalia, Plantae, and Fungi
kingdoms, filtering out other domains to maintain a clear biodiversity focus. To achieve
this filtering, we apply strict taxonomic criteria, ensuring only these three kingdoms are
represented. The iNaturalist metadata files lack common names, so we reconstruct this
information by cross-referencing species names from the iNaturalist Taxonomy DarwinCore
Archive, updated monthly. This enriched metadata, including common names, is then
appended to the SQL table. The final curated dataset is exported as parquet files, available
for public access on HuggingFace.

Data Filtering and Preprocessing. As outlined, BIOTROVE includes structured meta-
data that is both comprehensive and easy to work with, featuring full taxonomic information
and direct URLs to image files. To further support accessibility, we release an accompanying
software pipeline that allows users to filter specific categories, visualize data distributions, and
manage dataset imbalances effectively. These tools make it simple for researchers to interact
with BIOTROVE, creating tailored subsets based on their specific needs. The iNaturalist data,
sourced from citizen science contributions, has inherent variability in species representation,
with some species documented extensively and others less so. To address this, our tools
enable user-defined filters to exclude species with fewer than a set number of images and to
cap image counts per species, thus supporting more balanced model training.

To further mitigate dataset imbalances (detailed in our experiments section), we use a
semi-global shuffling strategy in which the data is organized into chunked tar files. These
files are shuffled, divided into smaller groups, and then merged into larger batches to ensure
a balanced species distribution within each batch. This method enhances dataset integrity,
helping to prevent the overrepresentation of any single species across the batches.

4 Models and Benchmarks

We now showcase and demonstrate the utility of the BIOTROVE dataset by creating and
benchmarking BIOTROVECLIP, a new suite of vision-language foundation models for
biodiversity.

4.1 BioTrove-Train

BIOTROVE-TRAIN is a curated subset comprising approximately 40M samples and 33K
species, focused specifically on seven taxonomic categories: Aves, Arachnida, Insecta, Plantae,
Fungi, Mollusca, and Reptilia. As discussed previously, the BIOTROVE dataset is accompanied
by a flexible pipeline that enables users to apply customized filtering to select specific
categories or subsets based on research needs, thereby allowing researchers to generate their
own training datasets. For BIOTROVE-TRAIN, these seven categories were pre-selected due to
their significant impact on biodiversity and agricultural ecosystems, as well as their relative
underrepresentation in standard image recognition models. Unlike megafauna, which are
typically well-represented in existing models, these categories address unique challenges in
biodiversity-focused Al

This subset comprises data posted on iNaturalist prior to 2024-01-27. We applied strict
filtering criteria to ensure high-quality data, excluding species with fewer than 30 images
and capping the maximum number of images per species at 50,000. To maintain balance,
we employed a semi-global shuffling method, organizing the data into mini-batches of
approximately 50,000 samples. From these, 95% were randomly selected for training and
validation, while the remaining 5% were reserved for testing. Detailed statistics can be found
in Table 3.

4.2 New Benchmarks

We created three new benchmark datasets, all of which are non-overlapping curated subsets
of the BIOTROVE dataset. These benchmarks focus on fine-grained image classification
within the seven taxonomic categories: Aves, Arachnida, Insecta, Plantae, Fungi, Mollusca,
and Reptilia. All benchmarks presented here are independent and strictly within these
seven categories, without overlapping with each other or with the BIOTROVE-TRAIN subset.
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Table 3: Training data sources used in BioTrove-Train and Diversity in Different
Taxonomy Levels. We integrate taxonomic labels into the images.

Dataset Description Images gln lque Level Uniques
asses kingdom 3
Dataset combines a subset phylum 14
TREEOFLIFE- of iNaturalist, class 50
10M Encyclopedia of Life 10.4M 454,103 order 311
(EOL), BIOSCAN-1M. family 1692
BIOTROVE- One subset of BioTrove genus 11506
TRAIN with size 40M. 39.9M 33,364 species 33364

Additionally, we report results on several established benchmarks from the literature (see
Table 4).

BioTrove-Balanced. To ensure balanced species representation across the seven key
taxonomic categories, we curate the BIOTROVE-BALANCED benchmark. Each category
includes up to 500 species, with 50 images per species, resulting in a total of 112,209 images.
This balanced dataset provides a consistent foundation for model performance evaluations.
The exact species counts for each category are detailed in Table 7 (see Appendix).

BioTrove-Unseen. To assess the ability of models to generalize to previously unseen species
within the seven categories, we curated the BIOTROVE-UNSEEN benchmark. This dataset
includes species from BIOTROVE-TRAIN with fewer than 30 instances, ensuring they were
unseen during training. Each species is represented by at least 10 images, with a total of
11,983 images. This benchmark tests the models’ robustness on rare species not encountered
during training.

BioTrove-LifeStages. The BIOTROVE-LIFESTAGES benchmark evaluates the model’s
ability to recognize species across different developmental stages, focusing on insect species
that exhibit significant visual variations throughout their life cycle. This dataset contains
20 labels representing four life stages (egg, larva, pupa, and adult) for five distinct insect
species. The data was collected via the observation export feature on the iNaturalist platform
between February 1, 2024, and May 20, 2024, ensuring no overlap with the training dataset.
This benchmark allows for comprehensive evaluations of model performance across various
life stages (see Figure 4).
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Figure 4: (a) Example images from BioTrove-Unseen. (b) BIOTROVE-LIFE-STAGES with 20
class labels: four life stages (egg, larva, pupa, and adult) for five distinct insect species.
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Table 4: Existing benchmark datasets; our novel datasets are described separately in
section 4.2.

Name Description Examples Classes Labels

Scraped dataset of bird images from
web search [31].

Subset of species in the IUCN Red
List categories: Near Threatened
through Extinct in the Wild (iuc-
nredlist.org).

Birds 525 89 885 525 Taxonomic

Anim

BioCLIP-Rare 12000 400 Taxonomic

Expert-labeled images of Danish
fungi [30].

Weed images collected in situ from
DeepWeeds eight rangelands across northern 17509 9 Common
Australia [29].

Fungi 1000 25 Scientific

Plt & Fun

Dataset evaluating models on chal-
Confounding Species lenging visually similar species pairs 100 10 Mixed
[4].
Mixed common and scientific name
classification for insect pests [44].

Inse

Insects-2 4080 102 Mixed

4.3 BioTrove-CLIP: New vision-language foundation models for biodiversity

We use BIOTROVE-TRAIN to train new CLIP-style foundation models and then evaluate
them on zero-shot image classification tasks. Following the implementation of Stevens et al.
[39], we utilize a ViT-B/16 architecture initialized from the OpenAl CLIP weights [33], and
train for 40 epochs. We also train a ViT-L/14 model from the MetaCLIP [45] checkpoint
for 12 epochs and a ViT-B/16 from the BioCLIP checkpoint for 8 epochs. All training
hyperparameters are included in the Appendix (Section A.8). We compare with OpenAl’s
ViT-B/16 CLIP model, the BioCLIP ViT-B/16 checkpoint, and MetaCLIP-CC ViT-L/14.
We publicly release all code needed to reproduce our results here.

5 Experimental Results

Metrics. We evaluate model performance using top-1 zero-shot accuracy across all bench-
mark datasets. For datasets containing taxonomic information, we report accuracy based on
scientific names, ensuring fine-grained classification. For datasets that lack explicit taxonomic
details, we use the category labels as defined by the original benchmark authors. We compute
an aggregate performance metric, which represents the weighted average accuracy over all
unique class labels across the benchmark suite. This aggregate metric provides an overall
view of model performance across diverse tasks.

To account for statistical variability, we include 95% confidence intervals for all reported
metrics, calculated using the binomial proportion confidence interval method (denoted by +).
This provides a robust understanding of the performance and reliability of our results. As
suggested during the review process, we incorporated this statistical analysis to strengthen
the evaluation of our models.

Overview of results. In Table 5, we report the results of our core benchmark suite. At a
high level, we observe that BIOTROVE-CLIP variants achieve the best accuracy averaged
over benchmarks. In particular, they perform extremely well on BIOTROVE-BALANCED (a
remarkable 91.1 top-1 accuracy over 2250+ class labels). BIOTROVE-CLIP also does very
well on the Fungi dataset (even though the Fungi class is not central to BIOTROVE-TRAIN),
and the DeepWeeds dataset. Therefore, BIOTROVE-CLIP exhibits strong generalization
capabilities across diverse datasets.

We also observe that BIOCLIP performs very well on BIOTROVE-UNSEEN and BIoCLIP-
RARE. The reasons might be that BIOCLIP has seen approximately 450K species, and
there might be nontrivial overlap with the species set in BIOTROVE-UNSEEN. On the other
hand, it could be that BIOTROVE-CLIP suffers from forgetting issues while training on
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Table 5: BioTrove-CLIP performance on various benchmarks. The top three rows
are pre-trained checkpoints: OpenAI-B refers to OpenAl’s ViT-B-16 model, BioCLIP-B
refers to the BioCLIP ViT-B-16 model, and MetaCLIP-L refers to the MetaCLIP-cc Vi'T-
L-14 model. The bottom three rows are BIOTROVE-CLIP models fine-tuned on different
checkpoints: BT-Clip-O (from OpenAI-B), BT-Clip-B (from BioCLIP-B), and BT-Clip-M
(from MetaCLIP-L). Benchmark abbreviations: BTU (Biotrove-Unseen, n=300), BTB
(Biotrove-Balanced, n=2253), BCR (BioCLIP-Rare, n=400), F (Fungi, n=25), 12 (Insects-2,
n=102), B (Birds-525, n=>525), LS (Life-Stages, n=20), and DW (DeepWeeds, n=9). 95%
confidence intervals (£) are included.

Model BTU BTB BCR F 12 B LS DW ‘Weighted Avg.
OpenAl-B 129 +06 7.3 +015 10.9 056 11.5 + 198 10.2 +0.93 50.0 +0.33 56.5 +3.97 10.3 + 0.45 14.7
BioCLIP-B  68.2 + 083 62.2 +0.28 30.2 £0.82 45.1 +3.08 20.8 +1.25 68.7 £0.30 18.0 £3.07 19.9 +0.59 58.5
MetaCLIP-L 24.9 + 077 154 +o021 20.5 +072 24.6 +267 16.1 +1.13 70.1 +0.30 64.3 +3.83 14.7 £ 0.52 25.0
BT-CLIP-O 47.1 +0.89 91.1 +0.17 229 +o075 43.2 £3.07 16.5 +1.14 47.8 +033 28.0 £3.59 17.0 +0.56 70.8
BT-CLIP-B 53.8 + 089 82.2 +022 23.7 £0.76 53.9 +3.09 16.9 +1.15 57.1 032 15.0 £2.86 18.4 +0.57 67.2
BT-CLIP-M 44.3 £ 089 91.1 +0.17 21.8 + 074 54.7 +3.09 5.1 +o068 425 +032 26.3 £352 49.9 +0.74 69.5

BioTrove-Train. For BioCLIP-Rare, the dataset is a subset from EOL which BioCLIP did
not see before, but TreeofLife contains the majority of the EOL dataset.

Limitations. We also evaluated all models on the challenging CONFOUNDING-SPECIES
benchmark introduced in [4], but find that all models perform at or below random chance
and do not report results here; this could be an interesting avenue for follow-up work.

In Table 8 in the Appendix, we report model performance at different levels of the taxonomic
hierarchy. Generally, we find that models trained on web-scraped data perform better with
common names, whereas models trained on specialist datasets perform better when using
scientific names. Additionally, models trained on web-scraped data excel at classifying at the
highest taxonomic level (kingdom), while models begin to benefit from specialist datasets
like BioTrove-Train and Tree-of-Life-10M at the lower taxonomic levels (order and species).
From a practical standpoint, this is not problematic: BIOTROVE-CLIP is highly accurate at
the species level, and higher-level taxa can be deterministically derived from lower ones.

Addressing these limitations will further enhance the applicability of models like BIOTROVE-
CLIP in real-world biodiversity monitoring tasks.

6 Concluding Discussion

We introduce BIOTROVE, the largest publicly accessible dataset designed to advance Al
for biodiversity applications. This dataset, curated from the iNaturalist community science
platform, includes 161.9 million images, surpassing existing datasets in scale by an order of
magnitude. We anticipate that BIOTROVE will enable the development of Al models that
can enable various digital tools ranging from pest control strategies, crop monitoring, and
worldwide biodiversity assessment and environmental conservation.

We also believe that BIOTROVE can be used as a unique testbed for measuring progress on
fine-grained image recognition. The success of BIOTROVE-CLIP on BIOTROVE-UNSEEN
underscores the importance of scaling up per-category sample size, or vertical scaling [9], in
achieving high accuracy on long-tailed extreme-imbalance classification. However, BIOCLIP
continues to exhibit superior performance on several datasets, and we believe that this
is because TREEOFLIFE-10M contains an order-of-magnitude more classes (species) than
BIOTROVE-TRAIN. We invite the Al community to create new subsets of BIOTROVE with
varying degrees of balance and species diversity and use our tooling to measure model
performance against current benchmarks.
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A  Appendix

A.1 Background on CLIP and zero-shot classification

Unlike traditional vision models, CLIP jointly trains an image encoder and a text encoder
to predict the correct pairings of a batch of (image, text) examples, leveraging natural
language supervision to enhance generalization [33]. CLIP’s approach allows it to learn
from a wide variety of images and their associated textual descriptions, making it more
flexible and general compared to standard vision models. This flexibility is crucial for in
various domains, including biodiversity monitoring and agriculture. For instance, CLIP
models analyze digital plant specimen images, aiding in pre-processing and filtering for
further analysis for agriculture purposes [19, 20]. As for biodiversity, WildCLIP and KI-
CLIP facilitate wildlife observation and monitoring with high accuracy and effectiveness
in data-sparse settings [11, 26]. These examples underscore the importance of developing
and utilizing comprehensive datasets to fully leverage the capabilities of CLIP models in
advancing biodiversity and agricultural research.

A.2 The value of taxonomic information

Taxonomic classification, the hierarchical arrangement of organisms into categories based on
shared characteristics, is foundational in biological sciences. Taxonomy underpins various
scientific, ecological, and agricultural applications. It allows for precise identification and
classification of species, which is fundamental for understanding biodiversity and monitoring
ecosystems. For instance, accurate species identification can aid in tracking invasive species,
as noted in studies such as [37]. In agriculture, detailed taxonomic information helps in
identifying pests and beneficial species, thereby improving pest control strategies and crop
management; supports ecological research by providing insights into species interactions,
distribution patterns, and evolutionary relationships [13]; and is essential for policy-making
and conservation planning [35].

A.3 Scientific versus common names

Although we identify the importance and need to include taxonomic information in the
dataset for biodiversity, one potential challenge is the fact that this information is mostly
in Latin for which text embedding models often exhibit suboptimal performance due to its
status as a low-resource language [40]. Nonetheless, Latin remains indispensable as it is
the standard for representing scientific names and taxonomic classifications. We therefore
integrate common names, scientific names, and detailed taxonomic hierarchies. We believe
that such an “all-encompassing” approach facilitates the learning of relationships between
Latin and English terms, thereby improving the models’ applicability in scientific contexts
[6, 38, 43]. Furthermore, incorporating taxonomic data into the training process significantly
enhances the multimodal capabilities of the models, enabling them to associate visual data
with taxonomic terminology [25, 2].

A.4 iNaturalist, iNaturalist Open Data

iNaturalist is an online social network for sharing biodiversity information and learning about
nature. It serves as a crowdsourced species identification system and organism occurrence
recording tool. Users from around the world upload images, making the continuously updated
dataset valuable for AT applications in biodiversity and research. Each photo includes detailed
metadata: copyright status, location, uploader, time, and taxonomic classification. This
diversity in image sources makes iNaturalist an excellent dataset for training Al models
intended for real-world applications [41, 28, 7, 3]. Despite its vast and diverse data, iNaturalist
is not directly optimized for Al researchers: arranging this data for use in AI models like
CLIP is not straightforward. Each photo has its own page on the iNaturalist website, making
it difficult to download images along with all the necessary information in a streamlined
manner.

The iNaturalist Open Dataset aims to address some of these challenges. It is one of the
world’s largest public datasets of photos of living organisms, structured as a "bucket" of
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images stored using Amazon Web Service’s Simple Storage Service (S3). The dataset includes
multiple resized versions of each photo, allowing users to download the size most useful to
their research.

Additionally, the dataset provides four tab-separated CSV files representing observations,
observers, photos, and taxa_id. These files are generated monthly, capturing a snapshot of
the continually changing iNaturalist data. The images in the iNaturalist Open Dataset are
licensed under either CC0, CC-BY, or CC-BY-NC and are open for public research. Photos
with a CCO license can be attributed as "[observer name or login], no rights reserved (CCO0)".
Photos with other Creative Commons licenses can be attributed as "© [observer name or
login], some rights reserved ([license abbreviation])".

A.5 iNaturalist Details

Each image in the iNaturalist Open Dataset can be associated with its appropriate metadata
through a group of four metadata CSV files, representing photos, observations, taxa, and
observers.

The photos metadata file contain nine distinct columns of metadata information of
each photo. Of these columns, only photo_id and observation_ uuid are relevant for
us. The value of photo id is a identifier number used to access individual pho-
tos, the photo’s iNaturalist page can be found by constructing a URL in this format:
https://www.inaturalist.org/photos/[photo_id]. The value of observation_ uuid indicates
which observation the photo is associated with, it is used to map the photos metadata to the
observations metadata.

An observation represents one user submission of a species encounter to the iNaturalist website.
One observation can have multiple photos of the same species but never multiple species. The
observation metedata file contains eight distinct columns of metadata information on each
observation. The columns relevant to us are observation_ uuid, quality grade, and taxon__id.
Each observation is given a unique number identifier indicated by its observation_ uuid.
iNaturalist has its own system to determining the quality of an observation and its associated
photos, quality_grade represents this and can range from "Casual", "Research Grade", or
"Needs ID". The value taxon__id indicates the species is represented in the observation, it is
used to map the observations metadata to the taxa metadata.

The taxa metadata file contains information about each specific taxon in iNaturalist, it has
has six distinct metadata columns. The columns relevant to us are taxon_ id, name, ancestry,
and active. Each specific taxon in iNaturalist has a unique identifier number associated
with it, this is its taxon_id. This taxon_id will map to the scientific name of the taxon
which is represented in the name metadata column. Each taxon also has associated with it a
taxonomic ancestry, this is represented as a string of taxon_ ids concatenated together with
"\" like so "48460/1/47115/47584/1051154". The active column indicated whether the taxon
is currently in use in iNaturalist.

The observer metadata file comtains information about each user within the iNaturalist
site. For the purpose of machine learning research none of its three metadata columns are
relevant.

While the iNaturalist Open Dataset metadata files provide a plethora of interesting infor-
mation, its structure makes it inherently cumbersome to use for research. To solve this, we
aggregate and process the iNaturalist metadata into a concise and streamlined format for
easy query and usage.

First, the respective CSV files are used to populate a SQL database with each CSV file as its
own SQL table. A new aggregate SQL table is created that joins the photos, observations,
and taxa tables on its relational columns. Only the metadata columns we deemed relevant
are kept and the extraneous non-useful metadata columns are discarded.

One of the difficulties working with the base iNaturalist metadata files is that it does not
contain the image URL, information that is critical in image downloads. We include a new
column in the aggregated metadata table that explicitly links to the Amazon S3 URL in
which the image is hosted.
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Table 6: Comparison of BIOTROVE with other biodiversity datasets.

. Wildlife . . iNaturalist iNaturalist GBIF
Dataset BioTrove Insights TreeOfLife BioScan 2017 [42] 2019 [16, 15] | Backbone [8]
161.9 million 148.8 million
Size > i.l.naO'e images (52.6M 10.4M images 1.1M images 675,170 images 13.1M images 7.5M records
868 wildlife images)
. . PO, . o . . . p . . . . Millions of
Diversity 366.6K species 3,682 species 454.1K species 8.3K species 5,089 species 166.8K species species
L . . Common/scientifi¢ Scientific names, | Common/scientifi¢ Common /scientifi¢
Common/scientific | Species, location, . .
Labels names. taxonomic timestamps names, taxonomic ranks names, names, Species names,
Provided A . bS, taxonomic (family-species), | taxonomic ranks | taxonomic ranks | OTU identifiers
hierarchies behavioral tags . . - . .
hierarchies DNA barcodes (genus-species) (genus-species)
. - I Catalogue of
Data iNaturalist Open Camera traps, iNaturalist, Mal(u:s( trap . . N . Life, iBOL,
3 EOL, specimens, iNaturalist iNaturalist
Source Dataset sensors BioScan- 1M DN A-barcodes UNITE,
i ST WoRMS, etc.
AI_Y{"?dY plp‘chnc‘ Automated Rich hierarchical | Insect-focused, Imbalanced Large-scale Comprehensive
high-quality . . . 2
Key annotations processing, Al data, metadata, | high-resolution, classes, species data, taxonomy,
Features ‘@upp;)rtsl ? species supports taxonomic data, fine-grained growth from cross-referencing
BIOTROVE-CLIP recognition BioCLIP DNA codes taxonomy 2017 datasets
Al- Yes Yes Yes Yes No No No
Ready

The BIOTROVE metadata file used for model training contains the metadata columns phylum,
class, order, family, genus, species, scientific_ name, common_ name for the seven BioTrove
categories Aves, Arachnida, Insecta, Plantae, Fungi, Mollusca, and Reptilia. To ensure that
only images and metadata from the seven BioTrove categories appear in our final dataset
we use the taxa table to find the taxon in our categories then use it in a SQL query on the
ancestry column of our aggregated metadata table.

The taxonomic rank columns are also found utilizing the ancestry metadata column. A
difficulty in working with the ancestry metadata is present in that there is not a clear
indication of what taxonomic rank a taxon id represents the ancestry string. This problem
is exacerbated due to the presence of taxonomic ranks and dsub ranks whose presence
is variable across different species. As such, a custom function is applied to each row to
dynamically find the rank of each taxon id in the ancestry and then appropriately populate
the taxon id to a metadata column of that rank. This process results in all taxonomies rank
represented as metadata columns; only phyllum, class, order, family, genus and species are
kept in the BioTrove metadata file.

The scientific name of a species is found using the name metadata column of our aggregated
metadata table. The common name of a species is also useful metadata information.
Unfortunately, the iNaturalist Open Data metadata files do not contain the common name
information of a species. To address this, we curate a lookup table of the common names in
our dataset. This is obtained from the iNaturalist Taxonomy DarwinCore Archive, Having
obtained the common names for each species, we append it to the BioTrove-specific metadata.

A.6 Composition of BioTrove and Related Datasets

In Table 6, we compare BIOTROVE with existing large-scale biodiversity datasets. BIOTROVE
comprises 161.9 million research-grade images, representing approximately 372,966 species,
and significantly surpasses other datasets in terms of both diversity and scale.

A.7 Composition of BioTrove-Train
See Figure 5 and Table 7.

A.8 BioTrove-CLIP training details

We use BIOTROVE-TRAIN to train new CLIP-style foundation models, and then evaluate
them on zero-shot image classification tasks. Following the implementation of Stevens et al.
[39], we utilize a ViT-B/16 architecture initialized from the OpenAl pretrained weights for
our main model, and train for 40 epochs.
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Figure 5: BioTrove-Train Dataset Analysis: a) Consistent category distribution across

BioTrove-Train and BioTrove-116M datasets. b) Species exhibit a long-tailed distribution. c)
Impact of local vs. semi-global shuffling on species representation within training minibatches.

Table 7: Number of Unique Species in Each Category in BioTrove-Balanced.

Category Number of Unique Species
Kingdom: Fungi 281
Kingdom: Plantae 500
Phylum: Mollusca 147
Class: Insecta 500
Class: Arachnida 136
Class: Reptilia 189
Class: Aves 500

In addition, we also train a ViT-L/14 model from the MetaCLIP [45] checkpoint for 12
epochs, and a ViT-B/16 from the BioCLIP checkpoint for 8 epochs. We select the AdamW
optimizer from Loshchilov and Hutter [22] along with a cosine learning rate scheduler, as
this has previously been shown to perform well for CLIP pretraining [32]. We conduct
twenty rounds of hyperparameter optimization using Ray Tune [21] to determine the optimal
learning rate, 51, B2 and weight decay settings.

We train our models for a combined 10 days on 8xH100 nodes in bfloat16 precision [18]
with gradient checkpointing, computing loss with local features, and utilizing static graph
optimization for DDP.

A.9 Additional BioTrove-CLIP results

In Table 8, we report model performance at different levels of the taxonomic hierarchy.
Generally, we find that models trained on web-scraped data perform better with common
names, whereas models trained on specialist datasets perform better when using scientific
names. Additionally, models trained on web-scraped data excel at classifying at the highest
taxonomic level (kingdom), while models begin to benefit from specialist datasets like
BioTrove-Train and Tree-of-Life-10M at the lower taxonomic levels (order and species).

However, BIOTROVE-CLIP shows a performance decline at taxonomic levels below the
species level. This is likely because our training metadata structure allows for classifications
solely by referring to species information. From a practical standpoint, this is not problematic
for the species in our test set since BIOTROVE-CLIP is highly accurate at the species level,
and higher-level taxa can be deterministically derived from the lower ones.
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Furthermore, the OpenCLIP and MetaCLIP baselines outperform BIOTROVE-CLIP on the
life stages benchmark. This highlights the importance of retaining the general linguistic
capabilities of the pretrained CLIP models for hybrid tasks.

Table 8: Performance Comparison Across Benchmarks: This table compares the performance
of BC-INAT21 (trained solely on the iNaturalist 2021 dataset) and BT-CLIP (trained from
the BIOCLIP checkpoint, originally trained on the TREEOFLIFE dataset). Metrics include
Top-1 Accuracy and Top-5 Accuracy.

Benchmark BC-iNat21 Top-1 BC-iNat21 Top-5 BT-Clip Top-1 BT-Clip Top-5
B10TROVE UNSEEN 0.2100 0.3470 0.5380 0.8220
Fungi 0.4420 0.7550 0.5390 0.7590
LIFE-STAGES 0.2867 0.8617 0.1500 0.8600
DEEPWEEDS 0.2057 0.6897 0.1840 0.5740
Insects-2 0.0103 0.0483 0.1690 0.5710
Birds-525 0.5030 0.6330 0.5710 0.7540
BioCLIP-RARE 0.1490 0.2790 0.2370 0.7600
BI0TROVE BALANCED 0.5020 0.6450 0.5180 0.6610

A.10 Additional BioTrove-CLIP Comparative Analysis

We conducted a comparative evaluation of the top-1 and top-5 zero-shot accuracy of the
B1oCLIP model, which was trained exclusively on the iNaturalist 2021 (iNat21) dataset,
and the BIOTROVE-CLIP model, initialized from BIOCLIP checkpoints originally trained
on the TREEOFLIFE dataset. The comparison highlights the performance differences across
various benchmarks, as presented in Table 9.

Our analysis shows that models trained on the BIOTROVE dataset consistently outperform
those trained solely on iNat21, particularly in benchmarks such as BIOTROVE-UNSEEN,
Fungi, and Insects-2. While certain benchmarks like LIFE-STAGES and DEEPWEEDS show
moderate differences, the results emphasize the advantages of training on BIOTROVE, leading
to enhanced model accuracy and robustness.

The following table provides detailed performance metrics for both models across various
benchmarks, comparing their top-1 and top-5 accuracy scores with associated confidence
intervals.

Table 9: Performance Comparison Across Benchmarks: This table compares the performance
of BC-INAT21 (trained solely on the iNaturalist 2021 dataset) and BT-CLIP (trained from
the BIOCLIP checkpoint, originally trained on the TREEOFLIFE dataset). Metrics include
Top-1 Accuracy and Top-5 Accuracy. BC-INAT21 refers to BioCLIP (iNat21), and BT-CrLip
refers to BioTrove-CLIP (BioCLIP checkpoint from TreeOfLife).

Benchmark BC-iNat21 BC-iNat21 BT-Clip BT-Clip
Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc.
B10TROVE-UNSEEN 0.2100 0.3470 0.5380 0.8220
Fungi 0.4420 0.7550 0.5390 0.7590
LIFE-STAGES 0.2867 0.8617 0.1500 0.8600
DEEPWEEDS 0.2057 0.6897 0.1840 0.5740
Insects-2 0.0103 0.0483 0.1690 0.5710
Birds-525 0.5030 0.6330 0.5710 0.7540
B1oCLIP-RARE 0.1490 0.2790 0.2370 0.7600
Bi10TROVE BALANCED 0.5020 0.6450 0.5180 0.6610

As demonstrated, the model trained on BIOTROVE exhibits superior performance in most
categories, particularly when evaluated on rare and unseen species, underscoring the im-
portance of diverse and large-scale datasets like BIOTROVE for enhancing biodiversity Al
models.

102119 https://doi.org/10.52202/079017-3241



Checklist

1. For all authors...
(a) Do the main claims made in the abstract, and introduction accurately reflect
the paper’s contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(¢) Have you read the ethics review guidelines and ensured that your paper conforms
to them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes]
See Section 4.3.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how
they were chosen)? [Yes] See Section 4.3 and the Appendix.

(¢) Did you report error bars (e.g., with respect to the random seed after running

experiments multiple times)? Training a single model took several weeks
and we do not have the resources to train multiple models with the same
hyperprameters.

(d) Did you include the total amount of compute and the type of resources used
(e.g., type of GPUs, internal cluster, or cloud provider)? [Yes| See Section 4.3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new
assets...

(a) If your work uses existing assets, did you cite the creators? [Yes| See Section A.4.
section 2-1 and 3, we mentioned Inat open dataset . we mention INAT open
dataset; how to cite it?

(b) Did you mention the license of the assets? [Yes] See Section 2.

(¢) Did you include any new assets either in the supplemental material or as a
URL? [Yes] See Section 2.

(d) Did you discuss whether and how consent was obtained from people whose data
you're using/curating? [Yes] See Section 2.

(e) Did you discuss whether the data you are using/curating contains personally
identifiable information or offensive content? [Yes] See Section 2.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots,
if applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional
Review Board (IRB) approvals, if applicable? [N/A]

(¢) Did you include the estimated hourly wage paid to participants and the total
amount spent on participant compensation? [N/A]

https://doi.org/10.52202/079017-3241 102120





