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Abstract

We introduce BioTrove, the largest publicly accessible dataset designed
to advance AI applications in biodiversity. Curated from the iNaturalist
platform and vetted to include only research-grade data, BioTrove contains
161.9 million images, offering unprecedented scale and diversity from three
primary kingdoms: Animalia ("animals"), Fungi ("fungi"), and Plantae
("plants"), spanning approximately 366.6K species. Each image is annotated
with scientific names, taxonomic hierarchies, and common names, providing
rich metadata to support accurate AI model development across diverse
species and ecosystems.
We demonstrate the value of BioTrove by releasing a suite of CLIP
models trained using a subset of 40 million captioned images, known as
BioTrove-Train. This subset focuses on seven categories within the
dataset that are underrepresented in standard image recognition models,
selected for their critical role in biodiversity and agriculture: Aves ("birds"),
Arachnida ("spiders/ticks/mites"), Insecta ("insects"), Plantae ("plants"),
Fungi ("fungi"), Mollusca ("snails"), and Reptilia ("snakes/lizards"). To
support rigorous assessment, we introduce several new benchmarks and
report model accuracy for zero-shot learning across life stages, rare species,
confounding species, and multiple taxonomic levels.
We anticipate that BioTrove will spur the development of AI models capa-
ble of supporting digital tools for pest control, crop monitoring, biodiversity
assessment, and environmental conservation. These advancements are cru-
cial for ensuring food security, preserving ecosystems, and mitigating the
impacts of climate change. BioTrove is publicly available, easily accessible,
and ready for immediate use.

1 Introduction
AI advances are poised to play a crucial role in biodiversity conservation, ecology management,
and agriculture. Already, AI tools have been shown to enable automated species identification,
monitoring of ecological changes, and optimization of crop management [36, 5]. However,
standard AI approaches for biodiversity applications persistently face major challenges.
Training datasets are labor-intensive and costly to create; they cover only a narrow set of
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Figure 1: Top Seven Phyla in the BioTrove Dataset. This figure displays the seven most
frequently occurring phyla within BioTrove, which is curated to include data exclusively
from the three primary kingdoms: Animalia, Plantae, and Fungi. For each phylum, the five
most common species are shown, including their scientific names, common names, and the
number of images per species. The phyla are ordered by species diversity, with the most
diverse phylum on the right and the least diverse on the left.

visual concepts; standard vision models excel at single tasks but require extensive retraining
for new tasks; models often struggle with generalizing to unseen labels and new environments,
limiting their effectiveness in real-world applications [34, 14]. Models that perform well on
benchmarks often fail in the wild [12, 1]. Standard computer vision datasets (ImageNet and
its successors) have significant limitations, including incorrectly labeled images, geographical
and cultural biases, and overlapping or ill-defined labels, all of which impair the development
of high-performant AI models [24]. Consequently, there is a critical need for large, diverse,
accurately annotated datasets that are specific to biodiversity, ecology, and agricultural
research [27, 23].
In response to this need, several datasets have been introduced. Perhaps the most well-known
(raw) pool of biodiversity images on the Web is iNaturalist [42], from which several curated
datasets have been sourced, among them being iNat2021 [41] with 2.7M images of over
10,000 species of plants, animals, and fungi. However, insects (which comprise a very large
fraction of extant species) are under-represented in this dataset. IP102 [44], Insecta [10], and
the more recent BioScan-1M [13], are alternative datasets that focus on the Insecta Class.
Perhaps the latest advance in such research is TreeOfLife-10M [39], which is currently
the state-of-the-art dataset of text-annotated biological images, comprising 10M images with
approximately 450K unique taxonomic classes.
In this paper, we contribute to advancing biodiversity AI research by curating and releasing
BioTrove, a dataset comprising 161.9 million captioned images across approximately
366.6K species. This dataset surpasses all previous collections in both scale and diversity,
representing the largest publicly available, “AI-ready" dataset of curated biodiversity images.
Each image in BioTrove is paired with language data and spans a diverse range of
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taxonomic groups, including Reptilia (reptiles), Plantae (plants), Mollusca (mollusks),
Mammalia (mammals), Insecta (insects), Fungi (fungi), Aves (birds), Arachnida (arachnids),
Animalia (animals), Amphibia (amphibians), and Actinopterygii (ray-finned fish). The
dataset spans global regions, supporting robust training across diverse environmental contexts.
Representative examples are shown in Figure 1, and additional details are provided on the
project website.
Each image in BioTrove originates from the iNaturalist community science platform [42]
and is annotated with detailed metadata, including the common name, scientific name,
and complete taxonomic hierarchy. This curated metadata provides research-grade high-
quality text annotations that enhance AI model training. Additionally, we open-source a
data management pipeline, BioTrove-Process, to facilitate interaction with BioTrove
metadata. With BioTrove-Process, researchers can efficiently filter and balance data by
selecting specific taxonomic categories, adjusting for taxonomy level, and managing species
distribution to reduce skewness. This enables users to create custom subsets that align with
their research goals while maintaining consistency in species representation.
To showcase the capabilities of BioTrove, we introduce two technical contributions. First,
we train and release BioTrove-CLIP, a suite of vision-language foundation models, using
a subset, BioTrove-Train, consisting of approximately 40M images from BioTrove
and representing around 33K species. This subset, constructed with BioTrove-Process,
includes diverse taxa, specifically focusing on birds (Aves), spiders/ticks/mites (Arachnida),
insects (Insecta), plants (Plantae), fungi (Fungi), snails (Mollusca), and snakes/lizards
(Reptilia). These taxonomic classes were selected to capture a broad range of species—outside
of charismatic megafauna—that critically impact biodiversity. The models exhibit robust
generalization capabilities, demonstrating high zero-shot and few-shot performance on unseen
taxa when using either common or scientific names. We anticipate that BioTrove-CLIP
will serve as a valuable foundation for biodiversity-related applications and can be further
fine-tuned for specific research needs.
Second, we rigorously quantify the performance of our foundation models on five existing
fine-grained image classification benchmarks, as well as on three newly curated test datasets.
We find that BioTrove-CLIP models comfortably achieve the state-of-the-art in certain
settings, while both the original (OpenAI) CLIP model as well as BioCLIP [39] excel in
certain other settings. We analyze these findings in further detail below, but overall we hope
that our dataset can be used by the AI community as a testbed for further algorithmic and
scaling research in fine-grained image recognition.
The remainder of this paper is organized as follows. Section 2 introduces the BioTrove
dataset, the dataset’s salient characteristics, and a comparison with previous work. Section 3
details our curation methodology. Section 4 introduces our newly proposed test datasets
and their characteristics. Section 5 details our new BioTrove-CLIP models and their
benchmark performance relative to previous work. Section 6 concludes with a discussion of
limitations and potential future directions.

2 The BioTrove Dataset
Characteristics. BioTrove comprises over 161.9 million images spanning 372,966 species.
This dataset is an order of magnitude larger than existing biodiversity datasets, such as
the state-of-the-art TreeOfLife-10M dataset, which it surpasses in scale by a factor of
nearly 13.5× while maintaining comparable species diversity. Figure 1 shows representative
image samples, while Figure 2 displays the distribution of samples across the seven major
categories with the most frequently observed species. Additionally, Figure 3 illustrates the
range of phyla, taxonomic classes, orders, and families represented in the dataset.
BioTrove includes only research-grade data and publicly accessible licensed content for
research purposes from iNaturalist, which designates observations as research-grade once they
meet strict validation criteria. To qualify, two or more experienced iNaturalist community
members—naturalists, biologists, or citizen scientists—must agree on the species identification.
Additionally, the observation must meet other requirements, such as a clear photograph
and precise geolocation data. Recent experiments have shown that iNaturalist’s Research
Grade observations achieve approximately 97% accuracy, underscoring the reliability of this
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Figure 2: Distribution of the BioTrove dataset. (a) Size of the top seven Phyla in the
BioTrove dataset. (b) Species counts for the top seven Phyla. (c) The 40 highest occurring
species in entire BioTrove dataset.

community-based validation process [17]. Furthermore, iNaturalist continuously enhances
data quality by refining validator criteria and implementing new data quality assessment
measures, ensuring BioTrove remains a robust dataset for scientific use.
Each image sample in BioTrove is enriched with detailed, curated metadata that facilitates
efficient filtering by species count and taxonomic information. The metadata includes
common names, scientific names, and hierarchical taxonomic data, which enhances the
usability of the dataset for AI model training. For the complete list of metadata fields, see
Table 1.
Along with the dataset, we also release our data curation tooling pipeline: BioTrove-
Process, which enables users to easily access and manipulate the dataset. This pipeline
allows researchers to select specific categories across different taxonomic levels, visualize data
distributions, and effectively manage class imbalance according to their needs. It facilitates
the downloading of specific images by their URLs and provides image-text pairs as well as
user-defined chunks to support various AI applications. BioTrove-Process thus enables
users to define custom subsets of BioTrove with ease, making the dataset fully AI-ready
and reducing barriers to follow-up research in biodiversity-focused AI.

Dual-language text descriptions. We adopt both common and scientific names since
Latin is a low-resource language, and current AI models do not perform well on scientific
names alone in a zero-shot manner. We found that a well-structured text description that
integrates common names, scientific names, and detailed taxonomic hierarchies facilitates the
learning of relationships between Latin and English terms, thereby improving the models’
applicability in scientific contexts [6, 38, 43]. Moreover, incorporating the taxonomic hierarchy
enables models to more effectively associate visual data with taxonomic terminology [25, 2].
This matches the guidelines suggested by BioCLIP [39] to enhance model performance
and generalization. Privacy Measures: The images of BioTrove were sourced from the
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Animalia

Plantae Fungi

Chordata Arthropoda

Mollusca Cnidaria Echinodermata

Tracheophyta Basidiomycota

Ascomycota

Aves

Mammalia Reptilia Amphibia

Actinopterygii

Ascidiacea

Insecta

Arachnida Malacostraca
Diplopoda

Entognatha

Gastropoda Bivalvia Anthozoa Asteroidea

Magnoliopsida Liliopsida

Polypodiopsida Pinopsida

Lycopodiopsida

Agaricomycetes

Lecanoromycetes

Pezizomycetes

Sordariomycetes

Passeriformes Anseriformes Charadriiformes

Pelecaniformes Accipitriformes

Piciformes

Columbiformes

Caprimulgiformes

Gruiformes

Suliformes

Galliformes Falconiformes

Psittaciformes Coraciiformes

Strigiformes

Cathartiformes

Podicipediformes Cuculiformes

Ciconiiformes

Procellariiformes

Gaviiformes

Bucerotiformes

Phoenicopteriformes

Trogoniformes

Rodentia

Carnivora

Artiodactyla

Lagomorpha

Diprotodontia

Chiroptera

Cingulata

Perissodactyla

Squamata

Testudines

Anura
Caudata

Perciformes

Blenniiformes

Centrarchiformes

Cypriniformes

Siluriformes

Lepidoptera

Coleoptera

Hymenoptera

Odonata Hemiptera

Diptera Orthoptera

Mantodea Neuroptera

Blattodea

Phasmida

Dermaptera

Psocodea

Araneae Decapoda
Isopoda

Asterales

Lamiales

Fabales

Caryophyllales

Rosales

Ericales Ranunculales Malpighiales

Gentianales

Sapindales

Apiales

Brassicales Fagales Myrtales

Solanales

Dipsacales

Boraginales

Saxifragales Malvales

Geraniales

Proteales

Oxalidales

Cornales Celastrales

Cucurbitales Vitales Laurales

Piperales

Magnoliales

Santalales Aquifoliales

Zygophyllales

Asparagales

Poales

Liliales Alismatales Commelinales

Arecales

Zingiberales

Dioscoreales

Polypodiales

Equisetales

Osmundales Cyatheales

Ophioglossales

Pinales

Agaricales

Polyporales

Boletales

Russulales

Hymenochaetales Phallales

Lecanorales

Passerellidae
1,258,356

Fringillidae
1,246,912

Corvidae
1,125,872

Turdidae
989,178

Parulidae
915,112

Icteridae
893,754

Tyrannidae
850,897

Paridae
631,129

Cardinalidae
571,170

Muscicapidae
542,225

Passeridae
476,931

Hirundinidae
451,608

Mimidae
376,568

Sturnidae
335,497

Thraupidae
327,196

Motacillidae
312,542

Troglodytidae
289,290

Sittidae
212,069

Meliphagidae
156,931

Bombycillidae
140,045

Laniidae
138,016

Regulidae
134,268

Emberizidae
133,020

Vireonidae
116,923

Pycnonotidae
100,539

Aegithalidae
94,510

Phylloscopidae
94,244

Sylviidae
93,472

Alaudidae
89,063

Estrildidae
88,913

Artamidae
87,689

Furnariidae
86,252

Acrocephalidae
64,990

Polioptilidae
64,944

Nectariniidae
61,551

Certhiidae
59,787

Ploceidae
57,032

Cisticolidae
56,114

Acanthizidae
48,411

Maluridae
47,641

Rhipiduridae
47,113

Campephagidae
29,112

Cinclidae
26,727

Calcariidae
26,404

Thamnophilidae
26,288

Ptiliogonatidae
25,304

Remizidae
24,224

Tityridae
19,854

Cotingidae
13,759

Pardalotidae
13,622

Dicaeidae
12,803

Locustellidae
12,104

Pipridae
11,077

Icteriidae
10,809

Anatidae
3,013,476

Laridae
1,102,110

Scolopacidae
1,043,700

Charadriidae
422,230

Recurvirostridae
156,145

Haematopodidae
93,028

Jacanidae
30,245

Burhinidae
16,850

Stercorariidae
16,305

Ardeidae
1,597,393

Threskiornithidae
252,826

Pelecanidae
192,020

Accipitridae
1,858,316

Pandionidae
166,689

Picidae
1,100,367

Columbidae
843,465

Trochilidae
512,566

Apodidae
59,324

Caprimulgidae
39,772

Rallidae
485,841

Gruidae
110,271

Phalacrocoracidae
388,069

Anhingidae
62,425

Phasianidae
324,391

Falconidae
431,769

Strigidae
315,719

Sciuridae
957,997

Cricetidae
93,204

Castoridae
89,017

Muridae
62,097

Erethizontidae
26,580

Canidae
281,645

Procyonidae
175,903 Felidae

135,558

Mustelidae
134,510

Ursidae
68,410

Otariidae
64,638

Mephitidae
43,512

Cervidae
550,103

Bovidae
117,767

Delphinidae
68,256

Suidae
34,330

Colubridae
873,279

Phrynosomatidae
410,057

Anolidae
264,852

Scincidae
227,656

Lacertidae
224,445

Viperidae
201,222

Gekkonidae
170,097

Agamidae
132,016

Iguanidae
111,442

Phyllodactylidae
32,734

Varanidae
32,705

Chamaeleonidae
30,806

Boidae
25,344

Corytophanidae
24,035

Ranidae
524,027

Bufonidae
497,273

Hylidae
450,090

Plethodontidae
264,033

Salamandridae
176,184

Nymphalidae
3,664,732

Erebidae
1,752,848

Noctuidae
1,599,111

Geometridae
1,505,088

Lycaenidae
1,124,038

Hesperiidae
1,003,057

Pieridae
812,501

Crambidae
775,450

Papilionidae
769,723

Sphingidae
605,708

Tortricidae
353,256

Saturniidae
294,987

Notodontidae
240,964

Pyralidae
211,748

Lasiocampidae
183,669

Oecophoridae
82,154

Limacodidae
80,942

Zygaenidae
77,359

Riodinidae
75,744

Gracillariidae
71,772

Tineidae
64,335

Nolidae
58,364

Depressariidae
30,071

Psychidae
29,117

Adelidae
27,510

Plutellidae
23,293

Megalopygidae
20,636

Uraniidae
18,122

Choreutidae
16,945

Yponomeutidae
15,750

Xyloryctidae
13,313

Cosmopterigidae
12,853

Nepticulidae
12,734

Euteliidae
11,296

Thyrididae
10,831

Coccinellidae
1,088,814

Cerambycidae
676,365

Scarabaeidae
593,910

Chrysomelidae
593,892

Curculionidae
418,161

Carabidae
406,566

Cantharidae
199,480

Buprestidae
128,078

Tenebrionidae
122,244

Lucanidae
105,392

Elateridae
100,962

Silphidae
83,382

Meloidae
79,924

Lampyridae
63,148

Staphylinidae
62,426

Dytiscidae
34,631

Lycidae
30,976

Pyrochroidae
24,434

Passalidae
24,309

Erotylidae
22,322

Brentidae
19,352

Nitidulidae
17,415

Attelabidae
16,936

Anthribidae
15,163

Zopheridae
14,093

Mordellidae
11,411

Apidae
2,164,496

Vespidae
780,468

Formicidae
769,144

Cynipidae
283,160

Halictidae
204,485

Sphecidae
184,933

Megachilidae
152,931

Crabronidae
119,598

Tenthredinidae
100,688

Andrenidae
90,330

Scoliidae
74,358

Mutillidae
72,200

Ichneumonidae
63,339

Diplolepididae
31,312

Pompilidae
28,674

Argidae
19,479

Chrysididae
16,964

Siricidae
14,125

Thynnidae
11,326

Cimbicidae
11,203

Evaniidae
9285

Libellulidae
1,619,347

Coenagrionidae
677,959

Aeshnidae
269,190

Gomphidae
154,523

Calopterygidae
150,311

Lestidae
126,516

Pentatomidae
554,469

Coreidae
290,096

Cicadellidae
210,052

Reduviidae
197,437

Cicadidae
189,103

Miridae
179,127

Lygaeidae
159,817

Aphididae
99,193

Rhopalidae
91,369

Pyrrhocoridae
83,595

Fulgoridae
60,605

Flatidae
47,324

Acanthosomatidae
34,341

Gerridae
31,537

Aphalaridae
26,811

Aphrophoridae
26,785 Alydidae

26,738

Cydnidae
25,957

Tingidae
20,929

Nabidae
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Moraceae
216,315

Cannabaceae
136,271
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Sapindaceae
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Anacardiaceae
521,236

Rutaceae
203,400
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Capparaceae
28,781

Tropaeolaceae
28,037

Fagaceae
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Myricaceae
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Onagraceae
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Myrtaceae
366,062

Lythraceae
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Solanaceae
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Convolvulaceae
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Viburnaceae
436,171

Boraginaceae
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Crassulaceae
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Saxifragaceae
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31,387

Malvaceae
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Thymelaeaceae
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Cistaceae
104,916

Geraniaceae
592,910

Proteaceae
402,878

Cucurbitaceae
208,459

Vitaceae
250,656

Lauraceae
198,611

Orchidaceae
1,689,057

Asparagaceae
1,049,581

Iridaceae
510,491

Amaryllidaceae
437,476

Asphodelaceae
169,328

Hypoxidaceae
32,909

Poaceae
1,958,414

Cyperaceae
783,002

Juncaceae
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Bromeliaceae
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Restionaceae
40,538

Eriocaulaceae
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Liliaceae
555,054

Melanthiaceae
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Smilacaceae
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Araceae
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Aspleniaceae
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Taxonomic Distribution

Figure 3: Treemap diagram of the BioTrove dataset, starting from Kingdom. The
nested boxes represent phyla, (taxonomic) classes, orders, and families. Box size represents
the relative number of samples.

Table 1: Annotations provided in the BioTrove Dataset.
Text Type Description
Common Name Vernacular name (e.g., Western honey bee)
Scientific Name Genus and species (e.g., Apis mellifera)
Taxonomic Name Flattened taxonomy concatenated into a single string
Taxonomic Rank Specific level in the hierarchy (e.g., subspecies, species)

iNaturalist Open Dataset, whose metadata included Personally Identifiable Information (PII).
This included information about observers, such as their usernames and sometimes their real
names if they have chosen to share that information publicly. We removed all such fields to
ensure that no PII is present in the metadata associated with BioTrove samples, ensuring
the privacy of all contributors. License: During curation, we took care to include only
images from iNaturalist Open Data, which are all licensed under either the CC0, or CC-BY, or
CC-BY-NC licenses. This ensures that all our images are available for public research purposes.
Offensive Content: Some of our URLs may point to images that users could find disturbing
or harmful, such as photos of dead or dismembered animals. We retained these types of
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images since they sometimes can provide valuable scientific data about wildlife, including
information on predation events, roadkill, and other occurrences relevant to conservation
and biodiversity studies. Although iNaturalist relies on user contributions and community
moderation to maintain the quality and appropriateness of the data, we acknowledge that
the vast and diverse nature of the data means that some offensive or inappropriate content
might be present.
Our closest comparisons are with BioScan-1M (which appeared in NeurIPS 2023 Datasets
and Benchmarks) and TreeOfLife-10M (which will appear in CVPR 2024). BioScan-1M
focuses solely on the Insecta Class and provides scientific names, taxonomic ranks, as well as
DNA barcodes. The TreeOfLife-10M dataset comprises 10.4 million images, integrating
data from iNat2021 [41], BioScan-1M, and a fresh set of image samples sourced from the
Encyclopedia of Life (EOL). It also supports dual-language labels and detailed taxonomic
hierarchies and was used to train the BioCLIP vision-language model. See Table 2 for
essential differences.

3 Data Collection and Curation Methodology
Challenges with iNaturalist Open Data. All of BioTrove is sourced from the
iNaturalist Open Data community science platform, which (in all) comprises over 280M
biodiversity-relevant observations shared by users. However, there are still significant gaps
in usability for AI research. The photos and metadata, although easily downloadable, are
provided in four separate metadata sheets that are not ready to use. Taxa information is
encoded as numerical IDs, requiring additional API calls and non-trivial lookups to convert
these into common or scientific names. The multiple metadata sheets structure is fragmented
across four separate files—photos, taxa, observations, and observers—adding complexity to
data integration. Managing data balance and filtering out species with too few images can
lead to biases toward common (charismatic) species and an imbalanced training process.

Curation of BioTrove. The iNaturalist Open Dataset comprises a collection of 284.2
million images stored on an AWS S3 bucket as of 2024-09-27, with associated metadata
provided across four separate CSV files (photos, observations, taxa, and observers).
Details on each of these files are presented in Section A.5 in the Appendix. Although these
files contain a wealth of valuable information, they are structured for rapid retrieval rather
than AI-readiness. To address this, we curate the metadata into a streamlined, AI-optimized
format.
We populate an SQL database with each CSV file as an individual SQL table, then create an
aggregated table by joining photos, observations, and taxa on their relational columns,
discarding irrelevant columns. In this aggregate table, we add a new column populated with

Table 2: Comparison of BioTrove with existing biodiversity datasets.
Feature BioTrove TreeOfLife BioScan

Size 161.9 million images 10.4 million images 1.1 million images
Diversity 366.6K species 454.1K species 8.3K

Labels
Provided

Dual language
(common and scientific

names), detailed
taxonomic hierarchies

Dual language
(common and scientific

names), detailed
taxonomic hierarchies

Single language
(scientific names),
taxonomic ranks

(family to species),
DNA barcodes

Data Source iNaturalist Open
Dataset

iNaturalist,
Encyclopedia of Life
(EOL), BioScan-1M

Specimens from
Malaise traps, DNA
barcodes matched to

BOLD

Key
Features

Ready-to-use pipeline,
reduce class imbalance,

high-quality
annotations, supports

BioTrove-CLIP

Rich hierarchical
representations,
comprehensive

metadata, supports
BioCLIP

Focus on insects,
high-resolution images,

detailed taxonomic
annotation, DNA

codes
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the Amazon S3 URL and generate individual columns for taxonomic kingdom, phylum, class,
order, family, genus, and species.
BioTrove includes only research-grade images from the Animalia, Plantae, and Fungi
kingdoms, filtering out other domains to maintain a clear biodiversity focus. To achieve
this filtering, we apply strict taxonomic criteria, ensuring only these three kingdoms are
represented. The iNaturalist metadata files lack common names, so we reconstruct this
information by cross-referencing species names from the iNaturalist Taxonomy DarwinCore
Archive, updated monthly. This enriched metadata, including common names, is then
appended to the SQL table. The final curated dataset is exported as parquet files, available
for public access on HuggingFace.

Data Filtering and Preprocessing. As outlined, BioTrove includes structured meta-
data that is both comprehensive and easy to work with, featuring full taxonomic information
and direct URLs to image files. To further support accessibility, we release an accompanying
software pipeline that allows users to filter specific categories, visualize data distributions, and
manage dataset imbalances effectively. These tools make it simple for researchers to interact
with BioTrove, creating tailored subsets based on their specific needs. The iNaturalist data,
sourced from citizen science contributions, has inherent variability in species representation,
with some species documented extensively and others less so. To address this, our tools
enable user-defined filters to exclude species with fewer than a set number of images and to
cap image counts per species, thus supporting more balanced model training.
To further mitigate dataset imbalances (detailed in our experiments section), we use a
semi-global shuffling strategy in which the data is organized into chunked tar files. These
files are shuffled, divided into smaller groups, and then merged into larger batches to ensure
a balanced species distribution within each batch. This method enhances dataset integrity,
helping to prevent the overrepresentation of any single species across the batches.

4 Models and Benchmarks
We now showcase and demonstrate the utility of the BioTrove dataset by creating and
benchmarking BioTroveCLIP, a new suite of vision-language foundation models for
biodiversity.

4.1 BioTrove-Train
BioTrove-Train is a curated subset comprising approximately 40M samples and 33K
species, focused specifically on seven taxonomic categories: Aves, Arachnida, Insecta, Plantae,
Fungi, Mollusca, and Reptilia. As discussed previously, the BioTrove dataset is accompanied
by a flexible pipeline that enables users to apply customized filtering to select specific
categories or subsets based on research needs, thereby allowing researchers to generate their
own training datasets. For BioTrove-Train, these seven categories were pre-selected due to
their significant impact on biodiversity and agricultural ecosystems, as well as their relative
underrepresentation in standard image recognition models. Unlike megafauna, which are
typically well-represented in existing models, these categories address unique challenges in
biodiversity-focused AI.
This subset comprises data posted on iNaturalist prior to 2024-01-27. We applied strict
filtering criteria to ensure high-quality data, excluding species with fewer than 30 images
and capping the maximum number of images per species at 50,000. To maintain balance,
we employed a semi-global shuffling method, organizing the data into mini-batches of
approximately 50,000 samples. From these, 95% were randomly selected for training and
validation, while the remaining 5% were reserved for testing. Detailed statistics can be found
in Table 3.

4.2 New Benchmarks
We created three new benchmark datasets, all of which are non-overlapping curated subsets
of the BioTrove dataset. These benchmarks focus on fine-grained image classification
within the seven taxonomic categories: Aves, Arachnida, Insecta, Plantae, Fungi, Mollusca,
and Reptilia. All benchmarks presented here are independent and strictly within these
seven categories, without overlapping with each other or with the BioTrove-Train subset.
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Table 3: Training data sources used in BioTrove-Train and Diversity in Different
Taxonomy Levels. We integrate taxonomic labels into the images.

Dataset Description Images Unique
Classes

TreeOfLife-
10M

Dataset combines a subset
of iNaturalist,

Encyclopedia of Life
(EOL), BioScan-1M.

10.4M 454,103

BioTrove-
Train

One subset of BioTrove
with size 40M. 39.9M 33,364

Level Uniques
kingdom 3
phylum 14

class 50
order 311
family 1692
genus 11506

species 33364

Additionally, we report results on several established benchmarks from the literature (see
Table 4).
BioTrove-Balanced. To ensure balanced species representation across the seven key
taxonomic categories, we curate the BioTrove-Balanced benchmark. Each category
includes up to 500 species, with 50 images per species, resulting in a total of 112,209 images.
This balanced dataset provides a consistent foundation for model performance evaluations.
The exact species counts for each category are detailed in Table 7 (see Appendix).
BioTrove-Unseen. To assess the ability of models to generalize to previously unseen species
within the seven categories, we curated the BioTrove-Unseen benchmark. This dataset
includes species from BioTrove-Train with fewer than 30 instances, ensuring they were
unseen during training. Each species is represented by at least 10 images, with a total of
11,983 images. This benchmark tests the models’ robustness on rare species not encountered
during training.
BioTrove-LifeStages. The BioTrove-LifeStages benchmark evaluates the model’s
ability to recognize species across different developmental stages, focusing on insect species
that exhibit significant visual variations throughout their life cycle. This dataset contains
20 labels representing four life stages (egg, larva, pupa, and adult) for five distinct insect
species. The data was collected via the observation export feature on the iNaturalist platform
between February 1, 2024, and May 20, 2024, ensuring no overlap with the training dataset.
This benchmark allows for comprehensive evaluations of model performance across various
life stages (see Figure 4).

Actias luna Harmonia axyridis Danaus plexippus Hippodamia convergens Papilio machaon

A
du
lt

Pu
pa

La
rv
a

Eg
g

(b)

Phyllopertha horticolaPopillia japonica

Euschistus servusHalyomorpha halys

Erthesina fulloEuschistus tristigmus

Harmonia axyridis

Adalia bipunctataHarmonia axyridis

Epilachna mexicana

(a)

Figure 4: (a) Example images from BioTrove-Unseen. (b) BioTrove-Life-Stages with 20
class labels: four life stages (egg, larva, pupa, and adult) for five distinct insect species.
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Table 4: Existing benchmark datasets; our novel datasets are described separately in
section 4.2.

Name Description Examples Classes Labels
A

ni
m Birds 525 Scraped dataset of bird images from

web search [31]. 89 885 525 Taxonomic

BioCLIP-Rare
Subset of species in the IUCN Red
List categories: Near Threatened
through Extinct in the Wild (iuc-
nredlist.org).

12 000 400 Taxonomic

P
lt

&
Fu

n Fungi Expert-labeled images of Danish
fungi [30]. 1000 25 Scientific

DeepWeeds
Weed images collected in situ from
eight rangelands across northern
Australia [29].

17 509 9 Common

In
se Confounding Species

Dataset evaluating models on chal-
lenging visually similar species pairs
[4].

100 10 Mixed

Insects-2 Mixed common and scientific name
classification for insect pests [44]. 4080 102 Mixed

4.3 BioTrove-CLIP: New vision-language foundation models for biodiversity
We use BioTrove-Train to train new CLIP-style foundation models and then evaluate
them on zero-shot image classification tasks. Following the implementation of Stevens et al.
[39], we utilize a ViT-B/16 architecture initialized from the OpenAI CLIP weights [33], and
train for 40 epochs. We also train a ViT-L/14 model from the MetaCLIP [45] checkpoint
for 12 epochs and a ViT-B/16 from the BioCLIP checkpoint for 8 epochs. All training
hyperparameters are included in the Appendix (Section A.8). We compare with OpenAI’s
ViT-B/16 CLIP model, the BioCLIP ViT-B/16 checkpoint, and MetaCLIP-CC ViT-L/14.
We publicly release all code needed to reproduce our results here.

5 Experimental Results
Metrics. We evaluate model performance using top-1 zero-shot accuracy across all bench-
mark datasets. For datasets containing taxonomic information, we report accuracy based on
scientific names, ensuring fine-grained classification. For datasets that lack explicit taxonomic
details, we use the category labels as defined by the original benchmark authors. We compute
an aggregate performance metric, which represents the weighted average accuracy over all
unique class labels across the benchmark suite. This aggregate metric provides an overall
view of model performance across diverse tasks.
To account for statistical variability, we include 95% confidence intervals for all reported
metrics, calculated using the binomial proportion confidence interval method (denoted by ±).
This provides a robust understanding of the performance and reliability of our results. As
suggested during the review process, we incorporated this statistical analysis to strengthen
the evaluation of our models.
Overview of results. In Table 5, we report the results of our core benchmark suite. At a
high level, we observe that BioTrove-CLIP variants achieve the best accuracy averaged
over benchmarks. In particular, they perform extremely well on BioTrove-Balanced (a
remarkable 91.1 top-1 accuracy over 2250+ class labels). BioTrove-CLIP also does very
well on the Fungi dataset (even though the Fungi class is not central to BioTrove-Train),
and the DeepWeeds dataset. Therefore, BioTrove-CLIP exhibits strong generalization
capabilities across diverse datasets.
We also observe that BioCLIP performs very well on BioTrove-Unseen and BioCLIP-
Rare. The reasons might be that BioCLIP has seen approximately 450K species, and
there might be nontrivial overlap with the species set in BioTrove-Unseen. On the other
hand, it could be that BioTrove-CLIP suffers from forgetting issues while training on
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Table 5: BioTrove-CLIP performance on various benchmarks. The top three rows
are pre-trained checkpoints: OpenAI-B refers to OpenAI’s ViT-B-16 model, BioCLIP-B
refers to the BioCLIP ViT-B-16 model, and MetaCLIP-L refers to the MetaCLIP-cc ViT-
L-14 model. The bottom three rows are Biotrove-Clip models fine-tuned on different
checkpoints: BT-Clip-O (from OpenAI-B), BT-Clip-B (from BioCLIP-B), and BT-Clip-M
(from MetaCLIP-L). Benchmark abbreviations: BTU (Biotrove-Unseen, n=300), BTB
(Biotrove-Balanced, n=2253), BCR (BioCLIP-Rare, n=400), F (Fungi, n=25), I2 (Insects-2,
n=102), B (Birds-525, n=525), LS (Life-Stages, n=20), and DW (DeepWeeds, n=9). 95%
confidence intervals (±) are included.

Model BTU BTB BCR F I2 B LS DW Weighted Avg.

OpenAI-B 12.9 ± 0.6 7.3 ± 0.15 10.9 ± 0.56 11.5 ± 1.98 10.2 ± 0.93 50.0 ± 0.33 56.5 ± 3.97 10.3 ± 0.45 14.7
BioCLIP-B 68.2 ± 0.83 62.2 ± 0.28 30.2 ± 0.82 45.1 ± 3.08 20.8 ± 1.25 68.7 ± 0.30 18.0 ± 3.07 19.9 ± 0.59 58.5
MetaCLIP-L 24.9 ± 0.77 15.4 ± 0.21 20.5 ± 0.72 24.6 ± 2.67 16.1 ± 1.13 70.1 ± 0.30 64.3 ± 3.83 14.7 ± 0.52 25.0

BT-CLIP-O 47.1 ± 0.89 91.1 ± 0.17 22.9 ± 0.75 43.2 ± 3.07 16.5 ± 1.14 47.8 ± 0.33 28.0 ± 3.59 17.0 ± 0.56 70.8
BT-CLIP-B 53.8 ± 0.89 82.2 ± 0.22 23.7 ± 0.76 53.9 ± 3.09 16.9 ± 1.15 57.1 ± 0.32 15.0 ± 2.86 18.4 ± 0.57 67.2
BT-CLIP-M 44.3 ± 0.89 91.1 ± 0.17 21.8 ± 0.74 54.7 ± 3.09 5.1 ± 0.68 42.5 ± 0.32 26.3 ± 3.52 49.9 ± 0.74 69.5

BioTrove-Train. For BioCLIP-Rare, the dataset is a subset from EOL which BioCLIP did
not see before, but TreeofLife contains the majority of the EOL dataset.
Limitations. We also evaluated all models on the challenging Confounding-species
benchmark introduced in [4], but find that all models perform at or below random chance
and do not report results here; this could be an interesting avenue for follow-up work.
In Table 8 in the Appendix, we report model performance at different levels of the taxonomic
hierarchy. Generally, we find that models trained on web-scraped data perform better with
common names, whereas models trained on specialist datasets perform better when using
scientific names. Additionally, models trained on web-scraped data excel at classifying at the
highest taxonomic level (kingdom), while models begin to benefit from specialist datasets
like BioTrove-Train and Tree-of-Life-10M at the lower taxonomic levels (order and species).
From a practical standpoint, this is not problematic: BioTrove-CLIP is highly accurate at
the species level, and higher-level taxa can be deterministically derived from lower ones.
Addressing these limitations will further enhance the applicability of models like BioTrove-
CLIP in real-world biodiversity monitoring tasks.
6 Concluding Discussion
We introduce BioTrove, the largest publicly accessible dataset designed to advance AI
for biodiversity applications. This dataset, curated from the iNaturalist community science
platform, includes 161.9 million images, surpassing existing datasets in scale by an order of
magnitude. We anticipate that BioTrove will enable the development of AI models that
can enable various digital tools ranging from pest control strategies, crop monitoring, and
worldwide biodiversity assessment and environmental conservation.
We also believe that BioTrove can be used as a unique testbed for measuring progress on
fine-grained image recognition. The success of BioTrove-CLIP on BioTrove-Unseen
underscores the importance of scaling up per-category sample size, or vertical scaling [9], in
achieving high accuracy on long-tailed extreme-imbalance classification. However, BioCLIP
continues to exhibit superior performance on several datasets, and we believe that this
is because TreeofLife-10M contains an order-of-magnitude more classes (species) than
BioTrove-Train. We invite the AI community to create new subsets of BioTrove with
varying degrees of balance and species diversity and use our tooling to measure model
performance against current benchmarks.
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A Appendix

A.1 Background on CLIP and zero-shot classification

Unlike traditional vision models, CLIP jointly trains an image encoder and a text encoder
to predict the correct pairings of a batch of (image, text) examples, leveraging natural
language supervision to enhance generalization [33]. CLIP’s approach allows it to learn
from a wide variety of images and their associated textual descriptions, making it more
flexible and general compared to standard vision models. This flexibility is crucial for in
various domains, including biodiversity monitoring and agriculture. For instance, CLIP
models analyze digital plant specimen images, aiding in pre-processing and filtering for
further analysis for agriculture purposes [19, 20]. As for biodiversity, WildCLIP and KI-
CLIP facilitate wildlife observation and monitoring with high accuracy and effectiveness
in data-sparse settings [11, 26]. These examples underscore the importance of developing
and utilizing comprehensive datasets to fully leverage the capabilities of CLIP models in
advancing biodiversity and agricultural research.

A.2 The value of taxonomic information

Taxonomic classification, the hierarchical arrangement of organisms into categories based on
shared characteristics, is foundational in biological sciences. Taxonomy underpins various
scientific, ecological, and agricultural applications. It allows for precise identification and
classification of species, which is fundamental for understanding biodiversity and monitoring
ecosystems. For instance, accurate species identification can aid in tracking invasive species,
as noted in studies such as [37]. In agriculture, detailed taxonomic information helps in
identifying pests and beneficial species, thereby improving pest control strategies and crop
management; supports ecological research by providing insights into species interactions,
distribution patterns, and evolutionary relationships [13]; and is essential for policy-making
and conservation planning [35].

A.3 Scientific versus common names

Although we identify the importance and need to include taxonomic information in the
dataset for biodiversity, one potential challenge is the fact that this information is mostly
in Latin for which text embedding models often exhibit suboptimal performance due to its
status as a low-resource language [40]. Nonetheless, Latin remains indispensable as it is
the standard for representing scientific names and taxonomic classifications. We therefore
integrate common names, scientific names, and detailed taxonomic hierarchies. We believe
that such an “all-encompassing” approach facilitates the learning of relationships between
Latin and English terms, thereby improving the models’ applicability in scientific contexts
[6, 38, 43]. Furthermore, incorporating taxonomic data into the training process significantly
enhances the multimodal capabilities of the models, enabling them to associate visual data
with taxonomic terminology [25, 2].

A.4 iNaturalist, iNaturalist Open Data

iNaturalist is an online social network for sharing biodiversity information and learning about
nature. It serves as a crowdsourced species identification system and organism occurrence
recording tool. Users from around the world upload images, making the continuously updated
dataset valuable for AI applications in biodiversity and research. Each photo includes detailed
metadata: copyright status, location, uploader, time, and taxonomic classification. This
diversity in image sources makes iNaturalist an excellent dataset for training AI models
intended for real-world applications [41, 28, 7, 3]. Despite its vast and diverse data, iNaturalist
is not directly optimized for AI researchers: arranging this data for use in AI models like
CLIP is not straightforward. Each photo has its own page on the iNaturalist website, making
it difficult to download images along with all the necessary information in a streamlined
manner.
The iNaturalist Open Dataset aims to address some of these challenges. It is one of the
world’s largest public datasets of photos of living organisms, structured as a "bucket" of

15

102115 https://doi.org/10.52202/079017-3241



images stored using Amazon Web Service’s Simple Storage Service (S3). The dataset includes
multiple resized versions of each photo, allowing users to download the size most useful to
their research.
Additionally, the dataset provides four tab-separated CSV files representing observations,
observers, photos, and taxa_id. These files are generated monthly, capturing a snapshot of
the continually changing iNaturalist data. The images in the iNaturalist Open Dataset are
licensed under either CC0, CC-BY, or CC-BY-NC and are open for public research. Photos
with a CC0 license can be attributed as "[observer name or login], no rights reserved (CC0)".
Photos with other Creative Commons licenses can be attributed as "© [observer name or
login], some rights reserved ([license abbreviation])".

A.5 iNaturalist Details

Each image in the iNaturalist Open Dataset can be associated with its appropriate metadata
through a group of four metadata CSV files, representing photos, observations, taxa, and
observers.
The photos metadata file contain nine distinct columns of metadata information of
each photo. Of these columns, only photo_id and observation_uuid are relevant for
us. The value of photo_id is a identifier number used to access individual pho-
tos, the photo’s iNaturalist page can be found by constructing a URL in this format:
https://www.inaturalist.org/photos/[photo_id]. The value of observation_uuid indicates
which observation the photo is associated with, it is used to map the photos metadata to the
observations metadata.
An observation represents one user submission of a species encounter to the iNaturalist website.
One observation can have multiple photos of the same species but never multiple species. The
observation metedata file contains eight distinct columns of metadata information on each
observation. The columns relevant to us are observation_uuid, quality grade, and taxon_id.
Each observation is given a unique number identifier indicated by its observation_uuid.
iNaturalist has its own system to determining the quality of an observation and its associated
photos, quality_grade represents this and can range from "Casual", "Research Grade", or
"Needs ID". The value taxon_id indicates the species is represented in the observation, it is
used to map the observations metadata to the taxa metadata.
The taxa metadata file contains information about each specific taxon in iNaturalist, it has
has six distinct metadata columns. The columns relevant to us are taxon_id, name, ancestry,
and active. Each specific taxon in iNaturalist has a unique identifier number associated
with it, this is its taxon_id. This taxon_id will map to the scientific name of the taxon
which is represented in the name metadata column. Each taxon also has associated with it a
taxonomic ancestry, this is represented as a string of taxon_ids concatenated together with
"\" like so "48460/1/47115/47584/1051154". The active column indicated whether the taxon
is currently in use in iNaturalist.
The observer metadata file comtains information about each user within the iNaturalist
site. For the purpose of machine learning research none of its three metadata columns are
relevant.
While the iNaturalist Open Dataset metadata files provide a plethora of interesting infor-
mation, its structure makes it inherently cumbersome to use for research. To solve this, we
aggregate and process the iNaturalist metadata into a concise and streamlined format for
easy query and usage.
First, the respective CSV files are used to populate a SQL database with each CSV file as its
own SQL table. A new aggregate SQL table is created that joins the photos, observations,
and taxa tables on its relational columns. Only the metadata columns we deemed relevant
are kept and the extraneous non-useful metadata columns are discarded.
One of the difficulties working with the base iNaturalist metadata files is that it does not
contain the image URL, information that is critical in image downloads. We include a new
column in the aggregated metadata table that explicitly links to the Amazon S3 URL in
which the image is hosted.
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Table 6: Comparison of BioTrove with other biodiversity datasets.
Dataset BioTrove Wildlife

Insights TreeOfLife BioScan iNaturalist
2017 [42]

iNaturalist
2019 [16, 15]

GBIF
Backbone [8]

Size 161.9 million
images

148.8 million
images (52.6M
wildlife images)

10.4M images 1.1M images 675,170 images 13.1M images 7.5M records

Diversity 366.6K species 3,682 species 454.1K species 8.3K species 5,089 species 166.8K species Millions of
species

Labels
Provided

Common/scientific
names, taxonomic

hierarchies

Species, location,
timestamps,

behavioral tags

Common/scientific
names,

taxonomic
hierarchies

Scientific names,
taxonomic ranks
(family-species),
DNA barcodes

Common/scientific
names,

taxonomic ranks
(genus-species)

Common/scientific
names,

taxonomic ranks
(genus-species)

Species names,
OTU identifiers

Data
Source

iNaturalist Open
Dataset

Camera traps,
sensors

iNaturalist,
EOL,

BioScan-1M

Malaise trap
specimens,

DNA-barcodes
iNaturalist iNaturalist

Catalogue of
Life, iBOL,

UNITE,
WoRMS, etc.

Key
Features

AI-ready pipeline,
high-quality
annotations,

supports
BioTrove-CLIP

Automated
processing, AI

species
recognition

Rich hierarchical
data, metadata,

supports
BioCLIP

Insect-focused,
high-resolution,
taxonomic data,

DNA codes

Imbalanced
classes,

fine-grained
taxonomy

Large-scale
species data,
growth from

2017

Comprehensive
taxonomy,

cross-referencing
datasets

AI-
Ready Yes Yes Yes Yes No No No

The BioTrove metadata file used for model training contains the metadata columns phylum,
class, order, family, genus, species, scientific_name, common_name for the seven BioTrove
categories Aves, Arachnida, Insecta, Plantae, Fungi, Mollusca, and Reptilia. To ensure that
only images and metadata from the seven BioTrove categories appear in our final dataset
we use the taxa table to find the taxon in our categories then use it in a SQL query on the
ancestry column of our aggregated metadata table.
The taxonomic rank columns are also found utilizing the ancestry metadata column. A
difficulty in working with the ancestry metadata is present in that there is not a clear
indication of what taxonomic rank a taxon id represents the ancestry string. This problem
is exacerbated due to the presence of taxonomic ranks and dsub ranks whose presence
is variable across different species. As such, a custom function is applied to each row to
dynamically find the rank of each taxon id in the ancestry and then appropriately populate
the taxon id to a metadata column of that rank. This process results in all taxonomies rank
represented as metadata columns; only phyllum, class, order, family, genus and species are
kept in the BioTrove metadata file.
The scientific name of a species is found using the name metadata column of our aggregated
metadata table. The common name of a species is also useful metadata information.
Unfortunately, the iNaturalist Open Data metadata files do not contain the common name
information of a species. To address this, we curate a lookup table of the common names in
our dataset. This is obtained from the iNaturalist Taxonomy DarwinCore Archive, Having
obtained the common names for each species, we append it to the BioTrove-specific metadata.

A.6 Composition of BioTrove and Related Datasets

In Table 6, we compare BioTrove with existing large-scale biodiversity datasets. BioTrove
comprises 161.9 million research-grade images, representing approximately 372,966 species,
and significantly surpasses other datasets in terms of both diversity and scale.

A.7 Composition of BioTrove-Train

See Figure 5 and Table 7.

A.8 BioTrove-CLIP training details

We use BioTrove-Train to train new CLIP-style foundation models, and then evaluate
them on zero-shot image classification tasks. Following the implementation of Stevens et al.
[39], we utilize a ViT-B/16 architecture initialized from the OpenAI pretrained weights for
our main model, and train for 40 epochs.
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Figure 5: BioTrove-Train Dataset Analysis: a) Consistent category distribution across
BioTrove-Train and BioTrove-116M datasets. b) Species exhibit a long-tailed distribution. c)
Impact of local vs. semi-global shuffling on species representation within training minibatches.

Table 7: Number of Unique Species in Each Category in BioTrove-Balanced.
Category Number of Unique Species

Kingdom: Fungi 281
Kingdom: Plantae 500
Phylum: Mollusca 147

Class: Insecta 500
Class: Arachnida 136
Class: Reptilia 189

Class: Aves 500

In addition, we also train a ViT-L/14 model from the MetaCLIP [45] checkpoint for 12
epochs, and a ViT-B/16 from the BioCLIP checkpoint for 8 epochs. We select the AdamW
optimizer from Loshchilov and Hutter [22] along with a cosine learning rate scheduler, as
this has previously been shown to perform well for CLIP pretraining [32]. We conduct
twenty rounds of hyperparameter optimization using Ray Tune [21] to determine the optimal
learning rate, β1, β2 and weight decay settings.
We train our models for a combined 10 days on 8xH100 nodes in bfloat16 precision [18]
with gradient checkpointing, computing loss with local features, and utilizing static graph
optimization for DDP.

A.9 Additional BioTrove-CLIP results

In Table 8, we report model performance at different levels of the taxonomic hierarchy.
Generally, we find that models trained on web-scraped data perform better with common
names, whereas models trained on specialist datasets perform better when using scientific
names. Additionally, models trained on web-scraped data excel at classifying at the highest
taxonomic level (kingdom), while models begin to benefit from specialist datasets like
BioTrove-Train and Tree-of-Life-10M at the lower taxonomic levels (order and species).
However, BioTrove-CLIP shows a performance decline at taxonomic levels below the
species level. This is likely because our training metadata structure allows for classifications
solely by referring to species information. From a practical standpoint, this is not problematic
for the species in our test set since BioTrove-CLIP is highly accurate at the species level,
and higher-level taxa can be deterministically derived from the lower ones.
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Furthermore, the OpenCLIP and MetaCLIP baselines outperform BioTrove-CLIP on the
life stages benchmark. This highlights the importance of retaining the general linguistic
capabilities of the pretrained CLIP models for hybrid tasks.

Table 8: Performance Comparison Across Benchmarks: This table compares the performance
of BC-iNat21 (trained solely on the iNaturalist 2021 dataset) and BT-Clip (trained from
the BioCLIP checkpoint, originally trained on the TreeOfLife dataset). Metrics include
Top-1 Accuracy and Top-5 Accuracy.

Benchmark BC-iNat21 Top-1 BC-iNat21 Top-5 BT-Clip Top-1 BT-Clip Top-5
BioTrove Unseen 0.2100 0.3470 0.5380 0.8220
Fungi 0.4420 0.7550 0.5390 0.7590
Life-Stages 0.2867 0.8617 0.1500 0.8600
DeepWeeds 0.2057 0.6897 0.1840 0.5740
Insects-2 0.0103 0.0483 0.1690 0.5710
Birds-525 0.5030 0.6330 0.5710 0.7540
BioCLIP-Rare 0.1490 0.2790 0.2370 0.7600
BioTrove Balanced 0.5020 0.6450 0.5180 0.6610

A.10 Additional BioTrove-CLIP Comparative Analysis

We conducted a comparative evaluation of the top-1 and top-5 zero-shot accuracy of the
BioCLIP model, which was trained exclusively on the iNaturalist 2021 (iNat21) dataset,
and the BioTrove-CLIP model, initialized from BioCLIP checkpoints originally trained
on the TreeOfLife dataset. The comparison highlights the performance differences across
various benchmarks, as presented in Table 9.
Our analysis shows that models trained on the BioTrove dataset consistently outperform
those trained solely on iNat21, particularly in benchmarks such as BioTrove-Unseen,
Fungi, and Insects-2. While certain benchmarks like Life-Stages and DeepWeeds show
moderate differences, the results emphasize the advantages of training on BioTrove, leading
to enhanced model accuracy and robustness.
The following table provides detailed performance metrics for both models across various
benchmarks, comparing their top-1 and top-5 accuracy scores with associated confidence
intervals.

Table 9: Performance Comparison Across Benchmarks: This table compares the performance
of BC-iNat21 (trained solely on the iNaturalist 2021 dataset) and BT-Clip (trained from
the BioCLIP checkpoint, originally trained on the TreeOfLife dataset). Metrics include
Top-1 Accuracy and Top-5 Accuracy. BC-iNat21 refers to BioCLIP (iNat21), and BT-Clip
refers to BioTrove-CLIP (BioCLIP checkpoint from TreeOfLife).

Benchmark BC-iNat21
Top-1 Acc.

BC-iNat21
Top-5 Acc.

BT-Clip
Top-1 Acc.

BT-Clip
Top-5 Acc.

BioTrove-Unseen 0.2100 0.3470 0.5380 0.8220
Fungi 0.4420 0.7550 0.5390 0.7590
Life-Stages 0.2867 0.8617 0.1500 0.8600
DeepWeeds 0.2057 0.6897 0.1840 0.5740
Insects-2 0.0103 0.0483 0.1690 0.5710
Birds-525 0.5030 0.6330 0.5710 0.7540
BioCLIP-Rare 0.1490 0.2790 0.2370 0.7600
BioTrove Balanced 0.5020 0.6450 0.5180 0.6610

As demonstrated, the model trained on BioTrove exhibits superior performance in most
categories, particularly when evaluated on rare and unseen species, underscoring the im-
portance of diverse and large-scale datasets like BioTrove for enhancing biodiversity AI
models.

19

102119 https://doi.org/10.52202/079017-3241



Checklist
1. For all authors...

(a) Do the main claims made in the abstract, and introduction accurately reflect
the paper’s contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Have you read the ethics review guidelines and ensured that your paper conforms

to them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes]
See Section 4.3.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how
they were chosen)? [Yes] See Section 4.3 and the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [No] Training a single model took several weeks
and we do not have the resources to train multiple models with the same
hyperprameters.

(d) Did you include the total amount of compute and the type of resources used
(e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new
assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section A.4.

section 2-1 and 3, we mentioned Inat open dataset . we mention INAT open
dataset; how to cite it?

(b) Did you mention the license of the assets? [Yes] See Section 2.
(c) Did you include any new assets either in the supplemental material or as a

URL? [Yes] See Section 2.
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [Yes] See Section 2.
(e) Did you discuss whether the data you are using/curating contains personally

identifiable information or offensive content? [Yes] See Section 2.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots,
if applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional
Review Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total
amount spent on participant compensation? [N/A]
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