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Abstract

Deep networks are known to be vulnerable to adversarial examples which are
deliberately designed to mislead the trained model by introducing imperceptible
perturbations to input samples. Compared to traditional perturbations crafted
specifically for each data point, Universal Adversarial Perturbations (UAPs) are
input-agnostic and shown to be more practical in the real world. However, UAPs are
typically generated in a close-set scenario that shares the same classification task
during the training and testing phases. This paper demonstrates the ineffectiveness
of traditional UAPs in open-set scenarios like Few-Shot Learning (FSL). Through
analysis, we identify two primary challenges that hinder the attacking process: the
task shift and the semantic shift. To enhance the transferability of UAPs in FSL, we
propose a unifying attacking framework addressing these two shifts. The task shift
is addressed by aligning proxy tasks to the downstream tasks, while the semantic
shift is handled by leveraging the generalizability of pre-trained encoders.The
proposed Few-Shot Attacking FrameWork, denoted as FSAFW, can effectively
generate UAPs across various FSL training paradigms and different downstream
tasks. Our approach not only sets a new standard for state-of-the-art works but also
significantly enhances attack performance, exceeding the baseline method by over
16%.

1 Introduction

Deep neural networks[16, 12] have made significant advancements in a variety of computer vision
tasks. Nowadays, there is a growing trend of pre-training a model that achieves strong generalization
capabilities and subsequently fine-tuning it for different unseen downstream tasks. A promising
method to handle this open set problem is Few-Shot Learning (FSL), which learns a model that can
rapidly adapt to unseen tasks with only a limited number of samples.

Meanwhile, deep networks have shown to be vulnerable to adversarial attacks [41, 14, 5], which are
deliberately designed to deceive a trained model by introducing imperceptible perturbations to the
input samples. Given the widespread adoption of the pre-training and fine-tuning paradigm, it is
crucial to acknowledge and address the security concerns associated with such approaches.

For a more applicable way to attack various downstream tasks, we focus on Universal Adversarial
Perturbations (UAPs) [26]. This kind of perturbation can be applied to all images once generated,
eliminating the need for crafting image-dependent perturbations for each task.

However, current approaches for generating UAPs have primarily concentrated on close-set scenar-
ios [26, 15, 30], where the classification tasks for both training and finetuning are essentially identical.
Despite achieving a high Attack Success Rate (ASR) in their respective settings, our research reveals
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Figure 1: (Left) A decline in the Attack Success Rate (ASR) can be observed when conventional
UAPs are applied to the FSL scenario. The yellow bar represents performance in traditional scenarios,
while the other three indicate performance in different FSL training paradigms. For the metric-based
paradigm, traditional methods even fail to generate UAPs. The detailed setting can be found in
Section 4.1 (Right). Solid arrows represent the pre-training phase, while dotted arrows depict the
testing phase. The attacker can only manipulate the pre-trained model, which suffers from the
semantic shift of different datasets and the task shift from base to novel tasks.

that in FSL scenarios these techniques are ineffective, and in some cases, incapable of crafting UAPs,
as shown in the left panel of Fig. 1.

To better understand how to effectively attack the FSL tasks, we conducted a comprehensive evaluation
and analysis of the challenges involved, namely task shift and semantic shift, as depicted in the right
panel of Fig. 1. To further fill up these two shifts and achieve a more generalizable UAP, we establish
a baseline attacking framework as an initial point and progressively improve upon it. To address
the task shift, we emphasize the significance of learning task bias for UAP, and handle this shift by
constructing proxy tasks. To tackle the semantic shift, we demonstrate the effectiveness brought by
the encoder’s generalizability and eliminate the need for fine-tuning in the process of UAP generation.

By systematically addressing the shifts, we successfully generate the single perturbation only based on
the parameters of the pre-trained encoder, without any prior knowledge of the pre-training dataset or
downstream tasks. The ASRs of our universal perturbation surpass others by 16.49% for 5-way 1-shot
tasks and 17.27% for 5-way 5-shot tasks. Additionally, our attacking framework(FSAFW) unifies
the generation of UAPs in various FSL training paradigms, including finetuning-based [10, 47, 7],
meta-based [13, 35, 39], and metric-based [43, 36, 50, 20] approaches, yielding state-of-the-art results
in all cases. We summarize our main contributions as follows:

• We propose a new standard for the study of UAP in FSL scenarios, which highlights the limitations
of traditional UAPs in the context of FSL.

• We provide a thorough analysis of the associated challenges, the task shift and semantic shift, which
diminish the effectiveness of UAPs on downstream FSL tasks.

• We construct an attacking framework and fill up the two shifts step by step to enhance the attack
performance, which is effective across various FSL paradigms.

• Our proposed method significantly advances state-of-the-art methods in FSL attacking performance,
with an increase of over 16% in ASR in our standard.

2 Related Works

Adversarial attacks can be categorized into two types: image-dependent attacks and universal attacks.
Image-dependent attacks have been widely studied [14, 23, 5, 22, 11]. The concept of Universal
Adversarial Perturbations (UAPs) was initially introduced by [26] using an iterative Deepfool attack
[27] applied to individual image samples. [28] developed a data-independent approach to generate
UAPs. Furthermore, [49] validated the efficacy of using random source images. Several studies have
explored the use of generative models to produce more generalized and natural-appearing UAPs.
[15] were the first to utilize the generative network. [30] introduced GAP, a framework applicable
to both classification and semantic segmentation models. [52] trained a generator by leveraging a
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Figure 2: Comparison of different scenarios. In contrast to traditional settings, the FSL framework
introduces two distinct challenges: the task shift from pre-training to testing, and the semantic shift
from the base to the novel dataset. Attackers must overcome the two shifts to mount successful
attacks in the FSL scenario.

contrastive loss function. However, none of these studies address the specific challenges associated
with attacking few-shot learning tasks.

Few-shot learning is a machine learning paradigm that aims to recognize novel classes from a
few labeled samples [25]. Existing FSL methods can be broadly grouped into three categories
according to [21]: finetuning-based, meta-based, and metric-based methods. Finetuning-based
strategies [47, 7, 10, 42, 32, 24] follow a transfer learning process that includes pre-training on base
classes and fine-tuning on novel classes. Meta-based approaches [13, 33, 38, 35, 39, 3, 31] adopts
a meta-learning paradigm to learn the cross-task knowledge through the optimization between the
meta-learner and base-learner. In this way, the model adopts a quick adaptation to the novel dataset.
Metric-based techniques [2, 40, 43, 36, 50, 20] focus on learning transferable representations and
making predictions based on the distance between feature representations. This strategy eliminates the
need for test-time fine-tuning. These paradigms have significantly advanced the progress of few-shot
learning, yet a unified method for generating UAPs across all paradigms remains undeveloped.

3 UAP Setting for Few-Shot Learning

In this section, we outline the threat model of attacking the few-shot tasks and present key definitions
and notations to facilitate a clearer understanding of the concepts involved.

3.1 Threat Model

We consider an attacker who aims to craft a universal adversarial perturbation to attack a pre-trained
victim model and further impair the performance of downstream few-shot tasks. The attacker only
has access to the pre-trained model (e.g., by downloading from public repositories), but can not obtain
the datasets used for pre-training and have no knowledge of the following few-shot tasks. Once the
perturbation is generated, the attacker attaches it to each query sample. The crafted perturbation is
imperceptible, and is expected to greatly mislead the few-shot classification.

3.2 Definition and Notations

In the domain of few-shot learning, abundant annotated images of the base dataset Db can be used
for pre-training. Subsequently, the model would be fine-tuned using limited samples from the novel
dataset Dn, where the categories in Dn do not overlap with those in Db. In the pre-training stage,
the victim model f(·) that composed of an encoder fe(·) and a base classifier fbc(·) is trained on Db.
In the evaluation stage, different forms of tasks are sampled from Dn. Each task contains a support
set S used for finetuning and a query set Q used for evaluation. The support set includes n different
classes with k samples per class, referred to as n-way k-shot. Similarly, the query set contains n
classes with q samples per class. For each task, a novel class classifier fnc(·) is newly trained on
S. For any image x in Q, fnc(fe(x),S) yields the classifier’s output. The goal of FSL is to learn a
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(a) An illustration of the ASRs under different down-
stream tasks.

(b) An illustration of the ASRs under dif-
ferent datasets.

Figure 3: The ASRs under different task shifts and semantic shifts. In (b), Cifar, Mini, Tiered are
different datasets detailed in Section 6.1.

generalizable fe(·) that exhibits good performance on Q across various tasks after learning from the
limited examples in S.

Once get the pre-trained encoder fe(·), an attacker can craft the adversarial images as follows:
xadv = x+ δ, where δ represents the perturbation. To ensure that the adversarial images are visually
indistinguishable from the original ones, δ is usually restricted by a chosen distance metric, such
as the ℓ∞ norm. This constraint can be expressed as ∥xadv − x∥∞ = ∥δ∥∞ ≤ ϵ. An effective
approach to generate δ is to train a generator gθ(·) on the proxy dataset Dp. The generator takes a
random vector z as input and it aims to produce perturbations that satisfy the given constraints while
maximizing adversarial impact.

4 A Closer Look at UAP Generation in Few-Shot Learning

In this session, we conduct a thorough analysis of the challenges associated with generating Universal
Adversarial Perturbations (UAPs) in the context of Few-Shot Learning (FSL). We first compare the
attack performance in the traditional scenario with that in the FSL scenario. Then we point out the
lower performance in the FSL scenario is due to the presence of two shifts.

4.1 Poor Performance of Traditional UAPs in the FSL Scenario

To better understand the performance of existing attacking methods on FSL tasks, we directly apply
the traditional method in the FSL scenario. We compare the Attack Success Rate (ASR) in the FSL
scenario with that observed in the original scenario. The ASR refers to the success rate of the UAP in
fooling the classifier. A higher ASR means a stronger attack capability.

We adopt the Generative Adversarial Perturbation (GAP)[30] method, due to its straightforward
applicability to FSL tasks and its high attack performance within its original context. The GAP
method generates UAP through a ResNet Generator[17], denoted as gGAP . The perturbation δ is
produced as follows:

δ = gGAP (z), (1)

where z represents a random vector. The generator is optimized with respect to the following loss
term:

LGAP = − log(H(f(x+ δ), y)). (2)

Here, (x, y) is the data point sampled from proxy dataset, f(·) denotes the model pre-trained on the
base dataset, and H(f(xadv), y) represents the cross-entropy loss.

For the traditional GAP setting, we compute the mean ASR on VGG16, VGG19, and ResNet152
reported in the original paper to gauge the average performance in the traditional scenario. In the FSL
scenario, where the attacker does not have access to the base or novel datasets, we utilize CIFAR-FS
[4] as the proxy dataset to generate UAPs. We attack three pre-trained FSL models representative of
different paradigms: finetuning-based, metric-based, and meta-based approaches.
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(a) An illustration of the attacking framework.

Methods TS SS ASR

1-shot 5-shot

Base classifier ✗ ✗ 65.07±0.36 61.73±0.30

Proxy linear ✓ ✗ 70.87±0.36 68.87±0.27

Base linear ✓ ✓ 76.75±0.32 74.67±0.21

Proxy protos ✓ ✓ 80.04±0.30 77.69±0.21

(b) An illustration of different ASRs.

Figure 4: (a) The Base Classifier is the pre-trained classifier. Proxy Linear and Proxy Protos are
newly designed to address the task shift and the semantic shift, as detailed in Section 5. (b) The
detailed Attack Success Rate(ASR) of different methods on 5-way 1-shot and 5-way 5-shot tasks. TS,
SS represents whether the Task Shift and the Semantic Shift are handled respectively.

As illustrated in the left panel of figure 1, GAP achieves a pretty high mean ASR of 89.43%
in traditional tasks. However, when switched to the FSL setting, there is a marked decrease in
performance, with a reduction of at least 25% observed in both 5-way 1-shot and 5-way 5-shot tasks.
Moreover, the GAP method is unable to generate UAPs for metric-based models, as its generation
process depends on the presence of a fixed classifier, which is lacking for metric-based methods. This
observation leads us to pose the question: What makes the attack success rate of UAPs decrease
so much in FSL? In the next subsection, we will discuss the factors.

4.2 Two Shifts in FSL Affect the Attack Transferability

We compare the differences in the UAP generation process between the traditional scenario and the
FSL scenario, as depicted in Figure 2. In traditional scenarios, UAP generation relies on a fixed
classifier that remains unchanged throughout both the training and testing phases. In contrast, FSL
scenarios present a variety of classification tasks during testing—encompassing different categories
and shapes, such as 5-way 1-shot and 5-way 5-shot, thereby posing challenges to UAP generalization.
Therefore, our first hypothesis is that the task shift in FSL hinders the transferability of the UAP.

To validate our hypothesis, we conducted experiments to evaluate the performance of the UAP across
different downstream tasks. The experiments vary the number of ways from 5 to 64 and the number of
shots from 1 to 20. To maintain the semantic consistency between the pre-training and testing datasets,
we sampled an additional 100 images for each category in the training split of mini-ImageNet to
serve as the downstream dataset. The results are presented in Figure 3 (a), demonstrating that as
the downstream task becomes less similar to the pre-training task(64-way full shot), the attacking
performance of the UAP diminishes.

From Figure 2, it can also be observed that the categories in training and testing datasets do not
overlap in the FSL scenario. This semantic shift may contribute to a reduction in the attacking
performance. Therefore, we derive a second hypothesis that the semantic shift in FSL hinders the
transferability of the UAP. To verify the impact of the semantic shift, we keep the downstream task
constant and vary the proxy dataset and downstream dataset. We choose a model pre-trained on the
mini-ImageNet as the victim model. As illustrated in Figure 3 (b), the attack performance declines
with increasing distances between both the downstream dataset and the pre-trained dataset(mini), as
well as between the proxy dataset and the pre-trained dataset(mini).

To summarize, we empirically demonstrate that the two shifts that existed in the FSL scenario degrade
the attack performance of traditionally generated UAPs.

5 Method

In this section, we propose a baseline framework aimed at generating effective Universal Adversarial
Perturbations (UAPs) within a Few-Shot Learning (FSL) scenario. Starting with an initial attacking
framework, we progressively refine our approach to address the two shifts mentioned before. Finally,
we have developed a universally applicable UAP generation strategy, capable of attacking models
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trained under all kinds of FSL paradigms and showing strong generalizability to different downstream
tasks.

5.1 A Baseline Attacking Framework

The attacking framework is illustrated in Figure 4 (a). The victim model, built on a ResNet12[16]
backbone, is pre-trained using the training split of the mini-ImageNet[43] dataset, following the
training paradigm established in [10]. For the attack, we train a generator to transform random vectors
into a UAP, which is also used in [52]. Since the attacker lacks access to both the training and testing
data from the mini-ImageNet dataset, we opt for the training split of the CIFAR-FS dataset[4] as
a proxy. To optimize our generator gθ, we employ a negative cross-entropy loss as the attacking
objective, defined by the following equation:

Lfool = −H(fbc(fe(x+ gθ(z))), y). (3)

As the original approach, we utilize a 64-way classifier fbc(·) from the baseline model to infer,
without any fine-tuning. The results are presented in the first row of Figure 4 (b), denoted as base
classifier. The results are far from satisfactory compared to the performance in traditional tasks,
highlighting the need for further refinement in the FSL scenario.

5.2 Fill Up the Task Shift through Task Alignment

As demonstrated in Section 4.2, a misalignment between upstream and downstream tasks can
adversely affect the performance of UAPs. Given that the attacker cannot foresee the specific
downstream tasks, we modify the tasks used in UAP generation to better align with those downstream
tasks. Importantly, we only aim to approximate the shape of the downstream tasks rather than
achieving exactness, which is sufficient to let the UAP acquire the necessary task bias. This is
supported by the ablation study detailed in Section 6.3. We sample proxy tasks with the shape of
5-way 1-shot from the proxy dataset Dp. For each task, we construct a linear classifier fpc(·) based
on its support set Sp. We refer to this method as proxy linear. The objective function for training the
classifier is given by:

Lpc = H(fpc(fe(x)), y), (4)

where (x, y) represents the data sampled from Sp. Once the proxy linear classifier has been trained,
the attacker generates perturbations guided by the perturbed query set Qadv

p from the proxy task, as
depicted in Figure 4 (a). The fooling loss is quite like equation 3 except that the classifier is newly
constructed and the data (x, y) is sampled from Qp, rather than the entire proxy dataset. The fooling
loss is calculated as follows to optimize the generator gθ :

Lfool = −H(fpc(fe(x+ gθ(z))), y), (5)

where (x, y) is sampled from Qp.

By integrating task alignment into the training of UAPs, we empower them to generalize more
effectively to downstream tasks, even in the absence of direct access to those tasks. From the results
presented in the second row of Figure 4 (b), it is evident that by addressing the task shift, there is a
marked improvement in the ASR, with an increase of 5% for 1-shot tasks and 7% for 5-shot tasks.

5.3 Fill Up the Semantic Shift by Leveraging the Encoder’s Generalizability

Analysis of the semantic shift. In Section 4.2, we discussed the impact of the semantic shift on
UAPs, a phenomenon widely present in FSL. As attackers lack access to upstream or downstream
datasets, our strategy emphasizes utilizing the generalization capabilities of the pre-trained encoder.
A well-trained encoder possesses the capability to transfer useful information to the novel dataset,
even trained on the base dataset. Consequently, we hypothesize that if the proxy dataset closely aligns
with the base dataset, the generated UAP can be more transferable to the novel dataset.

We substitute the proxy dataset with the base dataset to create an ideal scenario for testing our
assumption. While attackers cannot access the base dataset in real-world situations, utilizing it in our
experiments allows us to better understand and validate our hypotheses. To be specific, we sample
different tasks from the base dataset and train a linear classifier for each task, following the process
outlined in equation 4. The results are documented in the third row of Figure 4 (b), denoted as base
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Figure 5: (a) A qualitative illustration showing the effect of the supervisory signal. (b) The attack
performance comparison of different fooling losses.

linear. Compared to the Proxy liner, a further improvement can be observed in the table. The results
suggest that a closer simulation of the base dataset distribution enhances the transferability of the
UAP to the novel dataset.

Alleviation of the semantic shift. While utilizing the base dataset proves effective, the attacker can
only utilize the proxy dataset. As discussed in [46], when the proxy dataset is fed into the encoder, its
output distribution tends to shift towards the base dataset, which is exactly what we need.

However, the previously mentioned proxy linear method introduces a supervisory signal that corrects
the distribution, as shown in Figure 5 (a). The output distribution, initially altered by the encoder, is
adjusted by the constructed proxy classifier.

This causes the UAP to lose its connection with the base dataset during training, thereby diminishing
its ability to generalize to downstream tasks. Consequently, we abandon the proxy linear classifier
and adopt a metric-based evaluation to mitigate the influence of labels from the proxy dataset. For
each task sampled from the proxy dataset, we extract the output features from the support set and
compute the mean of each class (i.e., class prototypes). The prototype for class k in support set Sp is
calculated using the equation:

ck =
1

Nk

∑
y=k

fe(x). (6)

(x, y) is sampled from Sp and Nk represents the number of samples for class k in the support set. We
then employ a distance metric D(·, ·) to quantify the distance between the query feature and each
class prototype. The classification probability for a query sample x in class k is then determined by:

p(y = k|x) = eD(fe(x),ck)∑
k′ eD(fe(x),ck′ )

, (7)

where k′ represents a class in the task. In accordance with prior work [36], we utilize cosine similarity
as the distance metric.

The proxy protos strategy facilitates a closer approximation to the novel dataset, regardless of the
specific proxy dataset used. The efficacy of this approach is documented in the final row of Figure 4
(b), which presents the most favorable results among all methods tested.

A further improvement. As suggested by [30], an alternative formulation for the fooling loss is as
follows:

Lfool = − logH(fproto(fe(x+ g(z))), y), (8)

where fproto denotes the predicted classification computed using the prototype-based approach previ-
ously described. Furthermore, to avoid reliance on the proxy query label and enhance transferability,
we can supervise the perturbation generator with smoothed labels, denoted as ŷ. The fooling loss is
redefined as:

Lfool = − logH(fproto(fe(x+ g(z))), ŷ). (9)
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Table 1: 5-way 1-shot ASR results of our framework in different FSL victim models.
Victim Proxy Backbone Baseline Baseline++ ANIL-1 R2D2-1 ProtoNet DN4

Mini

Cifar RN12 81.56±0.29 58.94±0.43 77.84±0.28 70.34±0.29 69.03±0.36 73.31±0.32

RN18 71.55±0.35 74.67±0.28 72.11±0.29 70.00±0.31 60.02±0.34 67.66±0.30

Mini RN12 81.63±0.28 68.55±0.46 78.08±0.28 77.22±0.28 68.54±0.36 74.91±0.33

RN18 72.32±0.36 80.01±0.26 76.87±0.30 77.42±0.30 76.09±0.31 69.36±0.32

Tiered RN12 79.68±0.30 67.51±0.43 77.81±0.28 77.09±0.27 72.87±0.34 75.23±0.33

RN18 72.11±0.36 79.45±0.27 76.36±0.30 77.11±0.30 74.80±0.32 73.31±0.31

Tiered

Cifar RN12 76.03±0.32 62.56±0.29 68.26±0.28 76.49±0.27 76.73±0.32 78.47±0.34

RN18 69.27±0.32 73.82±0.27 69.27±0.29 70.31±0.30 67.60±0.31 63.66±0.39

Mini RN12 78.91±0.30 75.67±0.29 75.02±0.31 77.68±0.28 76.71±0.32 78.80±0.34

RN18 74.74±0.33 80.03±0.24 75.68±0.32 78.08±0.29 71.65±0.33 70.58±0.43

Tiered RN12 78.84±0.30 75.99±0.28 75.48±0.31 77.64±0.28 76.83±0.32 78.94±0.35

RN18 73.51±0.32 80.44±0.25 75.33±0.33 78.25±0.28 71.45±0.34 69.15±0.43

Table 2: 5-way 5-shot ASR results of our framework in different FSL victim models.
Victim Proxy Backbone Baseline Baseline++ ANIL-1 R2D2-1 ProtoNet DN4

Mini

Cifar RN12 79.00±0.18 63.41±0.27 78.31±0.21 70.42±0.22 67.96±0.28 74.88±0.22

RN18 71.82±0.21 73.87±0.24 71.37±0.25 69.74±0.23 59.94±0.31 69.75±0.22

Mini RN12 79.05±0.19 75.01±0.22 78.40±0.21 79.14±0.18 70.09±0.27 76.90±0.20

RN18 73.89±0.21 79.31±0.20 77.46±0.21 79.09±0.17 76.34±0.19 68.70±0.24

Tiered RN12 76.78±0.21 74.03±0.23 78.43±0.20 79.02±0.18 74.26±0.22 76.91±0.21

RN18 73.14±0.23 78.99±0.20 77.42±0.21 78.92±0.17 74.75±0.21 75.93±0.21

Tiered

Cifar RN12 75.09±0.21 59.40±0.30 68.96±0.23 76.94±0.19 78.33±0.17 75.91±0.21

RN18 70.32±0.24 71.30±0.25 70.73±0.23 71.55±0.22 70.87±0.22 66.09±0.28

Mini RN12 78.43±0.17 78.07±0.17 76.05±0.22 78.72±0.16 78.34±0.17 76.42±0.22

RN18 78.01±0.16 79.41±0.18 77.90±0.21 79.25±0.15 76.65±0.17 74.85±0.26

Tiered RN12 78.48±0.16 78.09±0.18 76.61±0.22 78.79±0.16 78.37±0.17 77.09±0.23

RN18 76.60±0.18 79.83±0.18 77.88±0.21 79.14±0.16 75.43±0.19 73.06±0.27

The adoption of this revised fooling loss yields further performance enhancements, as evidenced in
Figure 5 (b). Consequently, we have adopted equation 9 as the final formulation for our fooling loss.

5.4 Conclusion and Discussion

Through a thorough comparison of the traditional scenario and the FSL scenario, we point out two
critical shifts that reduce the attack performance on FSL tasks. To address the task shift, we sample
proxy tasks to mirror the shape of the downstream tasks. To handle the semantic shift, we employ
class prototypes to train UAPs, circumventing the introduction of the proxy labels. Moreover, the
application of smoothed labels yields additional enhancements in attack performance.

Our final method can be summarized in the following steps: (1) Sample 5-way 1-shot tasks from
the proxy dataset. (2) Calculate prototypes for each class in the proxy tasks. (3) Compute the
fooling loss based on the distance between the query sample and class prototypes. (4) Optimize the
perturbation generator to produce a highly transferable UAP in FSL. By following these steps, our
method systematically generates universal adversarial perturbations that are robust and generalizable
across different tasks.

6 Experiments

6.1 Implementation Details

Datasets. We utilize three widely used datasets in Few-Shot Learning (FSL) as the proxy dataset:
CIFAR-FS[4], mini-ImageNet[43], and Tiered-ImageNet[34]. Both CIFAR-FS and mini-ImageNet
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Table 3: Comparison of different attack methods on ASR for 5-way 1-shot tasks.
Victim Method Mark Baseline Baseline++ ANIL-1 R2D2-1 ProtoNet DN4

Mini

UAN SPW-18 52.27±0.33 47.68±0.42 43.64±0.26 - - -
GAP CVPR-18 47.71±0.31 49.40±0.35 66.47±0.32 - - -

AdvEncoder ICCV-23 76.68±0.31 57.37±0.38 68.51±0.31 59.10±0.29 66.63±0.34 72.85±0.31

FSAFW Ours 81.56±0.29 58.94±0.43 77.84±0.28 70.34±0.29 69.03±0.36 73.31±0.32

Tiered

UAN SPW-18 40.34±0.31 33.00±0.27 51.91±0.28 - - -
GAP CVPR-18 49.72±0.33 58.23±0.28 61.19±0.30 - - -

AdvEncoder ICCV-23 75.99±0.32 62.16±0.29 53.82±0.30 71.01±0.31 60.23±0.33 68.86±0.32

FSAFW Ours 76.03±0.32 62.56±0.29 68.26±0.28 76.49±0.27 76.73±0.32 78.47±0.34

Table 4: Comparison of different attack methods on ASR for 5-way 5-shot tasks.
Victim Method Mark Baseline Baseline++ ANIL-1 R2D2-1 ProtoNet DN4

Mini

UAN SPW-18 46.09±0.30 45.42±0.30 42.23±0.26 - - -
GAP CVPR-18 40.94±0.28 45.71±0.29 64.23±0.29 - - -

AdvEncoder ICCV-23 74.19±0.23 55.12±0.28 67.34±0.26 59.47±0.25 67.76±0.26 74.72±0.21

FSAFW Ours 79.00±0.18 63.41±0.27 78.31±0.21 70.42±0.22 67.96±0.28 74.88±0.22

Tiered

UAN SPW-18 32.97±0.29 23.45±0.23 51.75±0.27 - - -
GAP CVPR-18 44.90±0.30 52.40±0.28 59.52±0.28 - - -

AdvEncoder ICCV-23 75.03±0.23 58.23±0.28 53.25±0.28 70.93±0.25 60.40±0.30 69.55±0.22

FSAFW Ours 75.09±0.21 59.40±0.30 68.96±0.23 76.94±0.19 78.33±0.17 75.91±0.21

datasets comprise images from 100 categories, divided into 64 classes for training, 16 for validation,
and 20 for testing. Tiered-ImageNet, a more extensive subset of ImageNet [9], consists of 608 classes
(779,165 images) organized into 34 high-level categories, which are further split into 351 training
classes, 97 validation classes, and 160 testing classes. To prevent the attacker from gaining knowledge
of the downstream images, only the training portions of these datasets are utilized for the generation
of UAPs.

Training Details. All the victim models are downloaded from the Libfewshot[21], a comprehensive
Library for FSL. In line with the library’s classification of FSL training paradigms, we selected
Baseline and Baseline++ [10] as representatives of the finetuning-based paradigm, ANIL [31] and
R2D2 [3] for the meta-based paradigm, and ProtoNet [36] along with DN4 [20] for the metric-based
paradigm. For each paradigm, we adopted ResNet12 and ResNet18[16] as the backbone of the
victim models, following the previous works[8, 48]. All these victim models are pre-trained on the
mini-ImageNet and Tiered-ImageNet.

We adopt the Attack Success Rate (ASR) to evaluate the attack performance of UAPs on 2000
FSL tasks. The generator network, following the approach described in [52], was optimized using
the Adam optimizer with an initial learning rate of 0.0002. The perturbation was kept within an
ℓ∞-norm bound of ϵ = 10, considering pixel values in the range of 0 to 255. Additional FSL testing
configurations follow the details provided in Libfewshot.

6.2 Results

Effectiveness of our attacking framework. Our investigation into the effectiveness of our attacking
framework (FSAFW) across different FSL models on different tasks is demonstrated in 1 and 2. For
each FSL paradigm, we targeted four models pre-trained on mini-ImageNet and TieredImageNet,
utilizing ResNet12 and ResNet18 as backbone architectures. We report the mean Attack Success Rate
(ASR, %, top-1) alongside 95% confidence intervals. For the meta-based methods ANIL and R2D2,
we chose the victim models trained by 5-way 1-shot episodes denoted as ANIL-1 and R2D2-1 in the
table (ANIL-5 and R2D2-5 are present in Section A). Notably, when the victim’s dataset is consistent
with the proxy dataset, attack performance generally improves. Our proposed attacking framework
can achieve comparable ASR even when the proxy dataset is different from the victim one.
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Table 5: Comparison of different contrastive losses on ASR.
Tasks Ours InfoNCE SimCLR MSE Cosine SupCon feature scatter

5-way 1-shot 81.56±0.29 77.67±0.31 77.26±0.31 64.19±0.33 79.32±0.30 77.48±0.31 75.85±0.31

5-way 5-shot 79.00±0.18 75.40±0.23 74.69±0.23 60.38±0.29 76.87±0.22 74.94±0.23 72.90±0.23
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Figure 6: An illustration of the ASR that different forms of proxy tasks bring.

Comparison with other attacking methods. We compare the ASR of our attacking framework with
the classic generator-based adversarial methods, such as UAN [15], GAP [30], and AdvEncoder [52],
against the aforementioned FSL victim models. For this comparison, we utilized ResNet12 as the
backbone and CIFAR-FS as the proxy dataset. ASR results for both 5-way 1-shot and 5-way 5-shot
tasks are detailed in 3 and 4, respectively. Our framework consistently outperforms the other methods
across victim models trained under various configurations. Note that some attacking methods rely on
a fixed classifier in testing to generate UAPs, while models like R2D2, ProtoNet, and DN4 do not have
one. These methods are not applicable to such models, and we have indicated this incompatibility
with a dash (’-’) in the relevant table cells.

6.3 Ablation Study

The attack performance of contrastive losses. To generalize the attack ability to the downstream
tasks, a simple way is to adopt the contrastive losses[52]. In this section, we probe the effectiveness of
various contrastive losses in crafting generalizable UAPs. We adopt the InfoNCE loss[29], SimCLR
loss[6], MSE loss, Cosine similarity loss, SupCon loss[18] and feature scatter loss[51] to train the
generator. We use a victim model trained on mini-ImageNet and with a backbone of ResNet12. The
model is trained and tested under the Baseline[10] paradigm. We compare their ASR performance
with that of our method in Table 5. The results suggest that contrastive losses in attacking FSL tasks
are inferior to our FSAFW.

The influence of different forms of proxy tasks. We evaluate how different shapes of the proxy
tasks affect the attack performance of the generated UAP. For the proxy tasks, we keep the number
of shots constant at 1 while varying the number of ways, and vice versa, maintaining 5 ways while
changing the number of shots. We utilize 5-way 5-shot and 5-way 1-shot as the shapes for downstream
tasks. The attack results are displayed in the left and right panels of Figure 6. It can be observed
that when the shapes of the proxy tasks do not deviate too much from the downstream tasks, the
attack performance can be maintained. This suggests that when constructing the proxy tasks, a rough
estimation of the downstream tasks’ shape is enough.

7 Conclusion

In this work, we propose a unifying Few-Shot Attacking FrameWork (FSAFW) to generate transfer-
able UAPs on the FSL scenario. We identify and analyze two major challenges in FSL: the task shift
and the semantic shift. We adopt proxy tasks to handle the task shift and proxy prototypes to address
the semantic shift. Our framework significantly outperforms existing methods, establishing a new
benchmark for launching attacks on FSL tasks.
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Table 6: 5-way 1-shot ASR results of our framework in different FSL victim models.
Victim Proxy Backbone ANIL-5 R2D2-5 ProtoNet-5 DN4-5

Mini

Cifar RN12 67.80±0.45 74.77±0.34 61.10±0.39 66.70±0.37

RN18 59.42±0.45 65.95±0.32 70.11±0.34 63.99±0.32

Mini RN12 69.48±0.45 74.76±0.34 68.80±0.41 68.77±0.35

RN18 60.14±0.45 79.12±0.28 70.45±0.35 65.36±0.32

Tiered RN12 69.31±0.43 74.66±0.35 68.34±0.41 70.22±0.35

RN18 60.06±0.47 78.68±0.28 65.11±0.32 65.32±0.32

Table 7: 5-way 5-shot ASR results of our framework in different FSL victim models.
Victim Proxy Backbone ANIL-5 R2D2-5 ProtoNet-5 DN4-5

Mini

Cifar RN12 72.75±0.28 79.39±0.17 63.65±0.31 69.05±0.26

RN18 67.93±0.26 65.90±0.25 76.06±0.18 64.32±0.27

Mini RN12 74.96±0.25 79.40±0.17 75.84±0.20 74.30±0.23

RN18 71.93±0.25 79.48±0.16 75.53±0.18 66.28±0.27

Tiered RN12 74.51±0.26 79.38±0.17 75.80±0.19 74.44±0.23

RN18 69.07±0.26 79.33±0.16 68.52±0.24 66.18±0.27

A More Victim Models

Due to page limitations, we present the Attack Success Rate (ASR) of our method on more victim
models trained under different paradigms in this section. Specifically, we selected the victim models
trained by 5-way 5-shot episodes under the four paradigms: ANIL [31], R2D2 [3], ProtoNet [36],
and DN4 [20]. These models are referred to as ANIL-5, R2D2-5, ProtoNet-5, and DN4-5 in the table.
The victim dataset we chose is mini-ImageNet, while CIFAR-FS, mini-ImageNet, and tieredImageNet
were used as proxy datasets. The corresponding results can be found in Table 6 and Table 7. As
observed, our method consistently maintains a high Attack Success Rate (ASR) across all victim
models, across different Few-Shot Learning (FSL) settings. This demonstrates the effectiveness of
our method on models trained with 5-way 5-shot episodes.

B Compared with An Additional UAP Method

We have incorporated the PAP[1] method under the few-shot learning scenario and made a compara-
tive analysis. The results in Table 8 show that our proposed method demonstrates effectiveness not
only on the base dataset but also exhibits superior cross-dataset performance without necessitating
access to the base dataset.

Table 8: The ASR results compared with the PAP method.

Proxy Method 1-shot 5-shot

Baseline ANIL-1 ProtoNet-1 Baseline ANIL-1 ProtoNet-1

Cifar PAP 44.39±0.30 44.52±0.29 37.70±0.29 36.58±0.26 42.34±0.28 35.69±0.26

Ours 81.56±0.29 77.84±0.28 69.03±0.36 79.00±0.18 78.31±0.21 67.96±0.28

CUB PAP 45.59±0.30 44.73±0.29 37.92±0.30 37.86±0.26 42.65±0.27 36.21±0.26

Ours 81.17±0.30 77.83±0.28 71.22±0.36 78.29±0.21 78.25±0.20 72.24±0.28

Omniglot PAP 47.91±0.31 45.88±0.28 38.52±0.29 40.69±0.27 43.92±0.27 36.63±0.26

Ours 76.32±0.31 77.81±0.28 67.70±0.35 74.46±0.21 77.87±0.21 69.05±0.26

GTSRB PAP 42.62±0.29 44.54±0.29 37.96±0.29 34.67±0.26 42.39±0.27 49.44±0.26

Ours 79.99±0.30 78.13±0.20 69.17±0.38 77.55±0.20 77.93±0.28 69.98±0.30
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Table 9: 5-way 1-shot ASR results of cross domain datasets.
Proxy Downstream Method Baseline ANIL-1 ProtoNet-1

CUB Mini

UAN 52.47±0.31 62.85±0.27 -
GAP 68.47±0.31 67.47±0.28 -

AdvEncoder 76.57±0.31 72.86±0.27 70.80±0.36

Ours 81.17±0.30 77.83±0.28 71.22±0.36

Omniglot Mini

UAN 44.90±0.30 37.58±0.26 -
GAP 60.95±0.33 63.82±0.35 -

AdvEncoder 74.16±0.33 47.97±0.34 54.72±0.31

Ours 76.32±0.31 77.81±0.28 67.70±0.35

GTSRB Mini

UAN 54.45±0.32 50.17±0.26 -
GAP 54.09±0.33 68.22±0.31 -

AdvEncoder 67.24±0.32 62.86±0.30 67.16±0.34

Ours 79.99±0.30 78.13±0.20 69.17±0.38

Mini CUB

UAN 76.82±0.36 73.75±0.48 -
GAP 69.70±0.35 75.08±0.45 -

AdvEncoder 76.21±0.35 76.82±0.56 71.40±0.40

Ours 79.22±0.35 78.09±0.58 71.60±0.40

Mini Omniglot

UAN 36.20±0.40 56.63±0.59 -
GAP 20.09±0.32 25.40±0.33 -

AdvEncoder 64.41±0.41 66.27±0.65 71.80±0.38

Ours 76.44±0.27 69.64±0.64 75.27±0.36

Mini GTSRB

UAN 74.86±0.34 79.82±0.33 -
GAP 73.30±0.34 79.04±0.36 -

AdvEncoder 77.18±0.33 78.27±0.37 76.71±0.37

Ours 80.29±0.30 80.31±0.36 78.41±0.35

C Cross Domain Experiments

To better validate the generalizability of our attack approach, we conducted experiments on various
cross-domain datasets. We used CUB [45], [44], and GTSRB [37] as cross-domain datasets,
employing them both as proxy datasets and downstream datasets to implement the attacks. We
selected one victim model each from the fine-tuning, meta-based, and metric-based FSL paradigms
for our experiments, comparing our approach with previous attack methods. The results are shown in
Table 9 and Table 10, demonstrating that our attacking framework exhibits broader generalizability.

D Datasets

The CIFAR-FS [4] dataset is randomly sampled from CIFAR-100 [19] which contains 100 classes
with 600 images of 32×32 size per class. The 100 classes are split into 64 classes for training, 16
classes for validation and 20 classes for testing. The average inter-class similarity is sufficiently high
to represent a challenge for the current state of the art. Moreover, the limited original resolution of
32×32 makes the task harder and at the same time allows fast prototyping. The samples of this dataset
are listed in Figure 7.

The mini-ImageNet dataset was proposed by [43] for few-shot learning evaluation. Its complexity is
high due to the use of ImageNet images but requires fewer resources and infrastructure than running
on the full ImageNet dataset. In total, there are 100 classes with 600 samples of 84×84 color images
per class. These 100 classes are divided into 64, 16, and 20 classes respectively for sampling tasks
for meta-training, meta-validation, and meta-test. The samples of this dataset are listed in Figure 8

The tieredImageNet dataset [34] is a larger subset of ILSVRC-12 with 608 classes (779,165 images)
grouped into 34 higher-level nodes in the ImageNet human-curated hierarchy. This set of nodes
is partitioned into 20, 6, and 8 disjoint sets of training, validation, and testing nodes, and the
corresponding classes form the respective meta-sets. As argued in Ren et al., this split near the root
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Table 10: 5-way 5-shot ASR results of cross domain datasets.
Proxy Downstream Method Baseline ANIL-1 ProtoNet-1

CUB Mini

UAN 45.93±0.28 63.53±0.24 -
GAP 65.91±0.24 67.58±0.25 -

AdvEncoder 73.67±0.23 72.67±0.22 71.99±0.26

Ours 78.29±0.21 78.25±0.20 72.24±0.28

Omniglot Mini

UAN 37.34±0.27 35.05±0.26 -
GAP 57.22±0.29 61.09±0.31 -

AdvEncoder 72.07±0.23 44.73±0.31 57.38±0.26

Ours 74.46±0.21 77.87±0.21 69.05±0.26

GTSRB Mini

UAN 48.46±0.29 48.73±0.26 -
GAP 48.68±0.29 65.94±0.28 -

AdvEncoder 63.99±0.27 60.51±0.27 68.96±0.24

Ours 77.55±0.20 77.93±0.28 69.98±0.30

Mini CUB

UAN 77.42±0.20 64.42±0.58 -
GAP 68.90±0.27 68.89±0.52 -

AdvEncoder 75.29±0.22 67.31±0.68 72.80±0.27

Ours 77.46±0.21 69.43±0.71 72.86±0.27

Mini Omniglot

UAN 26.15±0.39 52.25±0.60 -
GAP 10.14±0.23 21.69±0.32 -

AdvEncoder 60.57±0.44 62.99±0.66 68.25±0.34

Ours 75.04±0.25 67.52±0.67 73.15±0.30

Mini GTSRB

UAN 74.27±0.23 78.31±0.28 -
GAP 68.57±0.29 77.77±0.29 -

AdvEncoder 73.96±0.26 77.50±0.29 78.38±0.23

Ours 77.22±0.24 78.50±0.28 78.77±0.23

Figure 7: Samples of CIFAR-FS.

of the ImageNet hierarchy results in a more challenging, yet realistic regime with test classes that are
less similar to training classes. The samples of this dataset are listed in Figure 9

E Broader Impact
We point out the security problem in a widely used open-set setting, i.e. Few-Shot Learning (FSL).
Under this setting, we propose a unified attack framework to generate the UAP, which can fool all
kinds of FSL models. The attack method can be used in many vision-based real-world scenarios, as

Figure 8: Samples of mini-ImageNet.
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Figure 9: Samples of tieredImageNet.

it doesn’t need to acquire the pre-training and downstream data. Also, the attack method can draw
attention to the development of a defense method in FSL.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not have theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have reported the detailed settings and hyper-parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the confidence interval in our ablation studies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have reported the computer resources in the implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impact in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not have the risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have respected the license of assets used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not have new assets in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include human subjects information.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not include human subjects information.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

102695https://doi.org/10.52202/079017-3261




