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Abstract

Designing computationally efficient network architectures remains an ongoing
necessity in computer vision. In this paper, we adapt Mamba, a state-space language
model, into VMamba, a vision backbone with linear time complexity. At the core of
VMamba is a stack of Visual State-Space (VSS) blocks with the 2D Selective Scan
(SS2D) module. By traversing along four scanning routes, SS2D bridges the gap
between the ordered nature of 1D selective scan and the non-sequential structure
of 2D vision data, which facilitates the collection of contextual information from
various sources and perspectives. Based on the VSS blocks, we develop a family of
VMamba architectures and accelerate them through a succession of architectural
and implementation enhancements. Extensive experiments demonstrate VMamba’s
promising performance across diverse visual perception tasks, highlighting its
superior input scaling efficiency compared to existing benchmark models. Source
code is available at https://github.com/MzeroMiko/VMamba

1 Introduction

Visual representation learning remains as a fundamental research area in computer vision that has
witnessed remarkable progress in the era of deep learning. To represent complex patterns in vision
data, two primary categories of backbone networks, i.e., Convolutional Neural Networks (CNNs) [49,
27, 29, 53, 37] and Vision Transformers (ViTs) [13, 36, 57, 66], have been proposed and extensively
utilized in a variety of visual tasks. Compared to CNNs, ViTs generally demonstrate superior learning
capabilities on large-scale data due to their integration of the self-attention mechanism [58, 13].
However, the quadratic complexity of self-attention w.r.t. the number of tokens imposes substantial
computational overhead in downstream tasks involving large spatial resolutions.

To address this challenge, significant efforts have been made to improve the efficiency of attention
computation [54, 36, 12]. However, existing approaches either restrict the size of the effective
receptive field [36] or suffer from notable performance degradation across various tasks [30, 60].
This motivates us to develop a novel architecture for vision data, while maintaining the inherent
advantages of the vanilla self-attention mechanism, i.e., global receptive fields and dynamic weighting
parameters [23].

Recently, Mamba [17], a innovative State Space Model (SSM) [17, 43, 59, 71, 48], in the field
of natural language processing (NLP), has emerged as a promising approach for long-sequence
modeling with linear complexity. Drawing inspiration from this advancement, we introduce VMamba,
a vision backbone that integrates SSM-based blocks to enable efficient visual representation learning.
However, the core algorithm of Mamba, i.e., the parallelized selective scan operation, is essentially
designed for processing one-dimensional sequential data. This presents a challenge when adapting it
for processing vision data, which lacks an inherent sequential arrangement of visual components. To
address this issue, we propose 2D Selective Scan (SS2D), a four-way scanning mechanism designed
for spatial domain traversal. In contrast to the self-attention mechanism (Figure 1 (a)), SS2D ensures
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(a) Self-Attention (b) 2D-Selective-Scan (SS2D)

Figure 1: Comparison of the establishment of correlations between image patches through (a) self-
attention and (b) the proposed 2D-Selective-Scan (SS2D). The red boxes indicate the query image
patch, with its opacity representing the degree of information loss.

that each image patch acquires contextual knowledge exclusively through a compressed hidden state
computed along its corresponding scanning path (Figure 1 (b)), thereby reducing the computational
complexity from quadratic to linear.

Building on the VSS blocks, we develop a family of VMamba architectures (i.e., VMamba-
Tiny/Small/Base) and enhance their performance through architectural improvements and imple-
mentation optimizations. Compared to benchmark vision models built on CNNs (ConvNeXt [37]),
ViTs (Swin [36], HiViT [66]), and SSMs (S4ND [44], Vim [69]), VMamba consistently achieves
higher image classification accuracy on ImageNet-1K [9] across various model scales. Specifically,
VMamba-Base achieves a top-1 accuracy of 83.9%, surpassing Swin by +0.4%, with a throughput ex-
ceeding Swin’s by a substantial margin over 40% (646 vs. 458). VMamba’s superiority extends across
multiple downstream tasks, with VMamba-Tiny/Small/Base achieving 47.3%/48.7%/49.2% mAP in
object detection on COCO [33] (1× training schedule). This outperforms Swin by 4.6%/3.9%/2.3%
and ConvNeXt by 3.1%/3.3%/2.2%, respectively. As for single-scale semantic segmentation on
ADE20K [68], VMamba-Tiny/Small/Base achieves 47.9%/50.6%/51.0% mIoU, which surpasses
Swin by 3.4%/3.0%/2.9% and ConvNeXt by 1.9%/1.9%/1.9%, respectively. Furthermore, unlike
ViT-based models, which experience quadratic growth in computational complexity with the number
of input tokens, VMamba exhibits linear growth in FLOPs while maintaining comparable performance.
This demonstrates its state-of-the-art input scalability.

The contributions of this study are summarized as follows:

• We propose VMamba, an SSM-based vision backbone for visual representation learning
with linear time complexity. A series of architectural and implementation improvements are
adopted to enhance the inference speed of VMamba.

• We introduce 2D Selective Scan (SS2D) to bridge 1D array scanning and 2D plane traversal,
enabling the extension of selective SSMs to process vision data.

• VMamba achieves promising performance across various visual tasks, including image
classification, object detection, and semantic segmentation. It also exhibits remarkable
adaptability w.r.t. the length of the input sequence, showcasing linear growth in computa-
tional complexity.

2 Related Work

Convolutional Neural Networks (CNNs). Since AlexNet [31], considerable efforts have been
devoted to enhancing the modeling capabilities [49, 52, 27, 29] and computational efficiency [28, 53,
64, 46] of CNN-based models across various visual tasks. Sophisticated operators like depth-wise
convolution [28] and deformable convolution [5, 70] have been introduced to increase the flexibility
and efficacy of CNNs. Recently, inspired by the success of Transformers [58], modern CNNs [37]
have shown promising performance by integrating long-range dependencies [11, 47, 34] and dynamic
weights [23] into their designs.

Vision Transformers (ViTs). As a pioneering work, ViT [13] explores the effectiveness of vi-
sion models based on vanilla Transformer architecture, highlighting the importance of large-scale
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pre-training for image classification performance. To reduce ViT’s dependence on large datasets,
DeiT [57] introduces a teacher-student distillation strategy, transferring knowledge from CNNs to
ViTs and emphasizing the importance of inductive bias in visual perception. Following this approach,
subsequent studies propose hierarchical ViTs [36, 12, 61, 39, 66, 55, 6, 10, 67, 1].

Another research direction focuses on improving the computational efficiency of self-attention, which
serves as the cornerstone of ViTs. Linear Attention [30] reformulates self-attention as a linear
dot-product of kernel feature maps, using the associativity property of matrix products to reduce
computational complexity from quadratic to linear. GLA [65] introduces a hardware-efficient variant
of linear attention that balances memory movement with parallelizability. RWKV [45] also leverages
the linear attention mechanism to combine parallelizable transformer training with the efficient
inference of recurrent neural networks (RNNs). RetNet [51] adds a gating mechanism to enable a
parallelizable computation path, offering an alternative to recurrence. RMT [15] further extends this
for visual representation learning by applying the temporal decay mechanism to the spatial domain.

State Space Models (SSMs). Despite their widespread adoption in vision tasks, ViT architectures
face significant challenges due to the quadratic complexity of self-attention, especially when handling
long input sequences (e.g., high-resolution images). In efforts to improve scaling efficiency [8, 7,
45, 51, 41], SSMs have emerged as compelling alternatives to Transformers, attracting significant
research attention. Gu et al. [21] demonstrate the potential of SSM-based models in handling the
long-range dependencies using the HiPPO initialization [18]. To improve practical feasibility, S4 [20]
proposes normalizing the parameter matrices into a diagonal structure. Various structured SSM
models have since emerged, each offering distinct architectural enhancements, such as complex-
diagonal structures [22, 19], support for multiple-input multiple-output [50], diagonal plus low-rank
decomposition [24], and selection mechanisms [17]. These advancements have also been integrated
into larger representation models [43, 41, 16], further highlighting the versatility and scalability of
structured state space models in various applications. While these models primarily target long-range
and sequential data such as text and speech, limited research has explored applying SSMs to vision
data with two-dimensional structures.

3 Preliminaries

Formulation of SSMs. Originating from the Kalman filter [32], SSMs are linear time-invariant
(LTI) systems that map the input signal u(t) ∈ R to the output response y(t) ∈ R via the hidden
state h(t) ∈ RN . Specifically, continuous-time SSMs can be expressed as linear ordinary differential
equations (ODEs) as follows,

h′(t) = Ah(t) +Bu(t),

y(t) = Ch(t) +Du(t),
(1)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N , and D ∈ R1 are the weighting parameters.

Discretization of SSM. To be integrated into deep models, continuous-time SSMs must undergo
discretization in advance. Concretely, for the time interval [ta, tb], the analytic solution of the hidden
state variable h(t) at t = tb can be expressed as

h(tb) = eA(tb−ta)h(ta) + eA(tb−ta)

∫ tb

ta

B(τ)u(τ)e−A(τ−ta) dτ. (2)

By sampling with the time-scale parameter ∆ (i.e., dτ |ti+1

ti = ∆i), h(tb) can be discretized by

hb = eA(∆a+...+∆b−1)

(
ha +

b−1∑
i=a

Biuie
−A(∆a+...+∆i)∆i

)
, (3)

where [a, b] is the corresponding discrete step interval. Notably, this formulation approximates the
result obtained by the zero-order hold (ZOH) method, which is frequently utilized in the literature of
SSM-based models (please refer to Appendix A for detailed proof).
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Figure 2: Illustration of 2D-Selective-Scan (SS2D). Input patches are traversed along four different
scanning paths (Cross-Scan), with each sequence independently processed by separate S6 blocks.
The results are then merged to construct a 2D feature map as the final output (Cross-Merge).

Selective Scan Mechanism. To address the limitation of LTI SSMs (Eq. 1) in capturing the
contextual information, Gu et al. [17] propose a novel parameterization method for SSMs, which in-
corporates an input-dependent selection mechanism (referred to as S6). However, for selective SSMs,
the time-varying weighting parameters pose a challenge for efficient computation of hidden states, as
convolutions cannot accommodate dynamic weights, making them inapplicable. Nevertheless, since
the recurrence relation of hb in Eq. 3 can be derived, the response yb can still be efficiently computed
using associative scan algorithms [2, 42, 50], which has linear complexity (see Appendix B for a
detailed explanation).

4 VMamba: Visual State Space Model

4.1 Network Architecture

We develop VMamba in three scales: Tiny, Small, and Base (referred to as VMamba-T, VMamba-S,
and VMamba-B, respectively). An overview of the architecture of VMamba-T is illustrated in
Figure 3 (a), and detailed configurations are provided in Appendix E. The input image I ∈ RH×W×3

is first partitioned into patches by a stem module, resulting in a 2D feature map with spatial dimension
of H/4×W/4. Without incorporating additional positional embeddings, multiple network stages
are employed to create hierarchical representations with resolutions of H/8×W/8, H/16×W/16,
and H/32×W/32. Specifically, each stage comprises a down-sampling layer (except for the first
stage), followed by a stack of Visual State Space (VSS) blocks.

The VSS blocks serve as the visual counterparts to Mamba blocks [17] (Figure 3 (b)) for representation
learning. The initial architecture of VSS blocks (referred to as the ‘vanilla VSS Block’ in Figure 3
(c)) is formulated by replacing the S6 module. S6 is the core of Mamba and achieves global receptive
fields, dynamic weights (i.e., selectivity), and linear complexity. We substitute it with the newly
proposed 2D-Selective-Scan (SS2D) module, and more details will be introduced in the following
subsection. To further enhance computational efficiency, we remove the entire multiplicative branch
(highlighted by the red box in Figure 3 (c)), as the effect of the gating mechanism has already been
achieved by the selectivity of SS2D. As a result, the improved VSS block (shown in Figure 3 (d))
consists of a single network branch with two residual modules, mimicking the architecture of a vanilla
Transformer block [58]. All results in this paper are obtained using VMamba models built with VSS
blocks in this architecture.

4.2 2D-Selective-Scan for Vision Data (SS2D)

While the sequential nature of the scanning operation in S6 aligns well with NLP tasks involving
temporal data, it poses a significant challenge when applied to vision data, which is inherently non-
sequential and encompasses spatial information (e.g., local texture and global structure). To address
this issue, S4ND [44] reformulates SSM with convolutional operations, directly extending the kernel
from 1D to 2D through the outer-product. However, such modification restricts the weights from
being input-dependent, resulting in a limited capacity for capturing contextual information. Therefore,
we adhere to the selective scan approach [17] for input processing and propose the 2D-Selective-Scan
(SS2D) module to adapt S6 to vision data without compromising its advantages.
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Figure 3: Left: Illustration of (a) the overall architecture of VMamba, and (b) - (d) the structure of
Mamba and VSS blocks. Right: Comparison of VMamba variants and benchmark methods in terms
of classification accuracy and computational efficiency.

Figure 2 illustrates that data forwarding in SS2D consists of three steps: cross-scan, selective scanning
with S6 blocks, and cross-merge. Specifically, SS2D first unfolds the input patches into sequences
along four distinct traversal paths (i.e., Cross-Scan). Each patch sequence is then processed in parallel
using a separate S6 block, and the resultant sequences are reshaped and merged to form the output
map (i.e., Cross-Merge). Through the use of complementary 1D traversal paths, SS2D allows each
pixel in the image to integrate information from all other pixels across different directions. This
integration facilitates the establishment of global receptive fields in the 2D space.

4.3 Accelerating VMamba

As shown in Figure 3 (e), the VMamba-T model with vanilla VSS blocks (referred to as ‘Vanilla
VMamba’) achieves a throughput of 426 images/s and contains 22.9M parameters with 5.6G FLOPs.
Despite achieving a state-of-the-art classification accuracy of 82.2% (outperforming Swin-T [36] by
0.9% at the tiny level), the low throughput and high memory overhead present significant challenges
for the practical deployment of VMamba.

In this subsection, we outline our efforts to enhance its inference speed, primarily focusing on
improvements in both implementation details and architectural design. We evaluate the models with
image classification on ImageNet-1K. The impact of each progressive improvement is summarized
as follows, where (%, img/s) denote the gains in top-1 accuracy on ImageNet-1K and inference
throughput, respectively. Further discussion is provided in Appendix E.

Step (a) (+0.0%, +41 img/s) by re-implementing Cross-Scan and Cross-Merge in Triton.

Step (b) (+0.0%, −3 img/s) by adjusting the CUDA implementation of selective scan to accommo-
date float16 input and float32 output. This remarkably enhances the training efficiency
(throughput from 165 to 184), despite slight speed fluctuation at test time.

Step (c) (+0.0%, +174 img/s) by substituting the relatively slow einsum in selective scan with a
linear transformation (i.e., torch.nn.functional.linear). We also adopt the tensor
layout of (B, C, H, W) to eliminate unnecessary data permutations.
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Table 1: Performance comparison on ImageNet-1K. Throughput values are measured with an A100
GPU and an AMD EPYC 7542 CPU, using the toolkit released by [62], following the protocol
proposed in [36]. All images are of size 224× 224.

Model Params FLOPs TP. Top-1
(M) (G) (img/s) (%)

Transformer-Based
DeiT-S [57] 22M 4.6G 1761 79.8
DeiT-B [57] 86M 17.5G 503 81.8
HiViT-T [66] 19M 4.6G 1393 82.1
HiViT-S [66] 38M 9.1G 712 83.5
HiViT-B [66] 66M 15.9G 456 83.8
Swin-T [36] 28M 4.5G 1244 81.3
Swin-S [36] 50M 8.7G 718 83.0
Swin-B [36] 88M 15.4G 458 83.5
XCiT-S24 [1] 48M 9.2G 671 82.6
XCiT-M24 [1] 84M 16.2G 423 82.7

Model Params FLOPs TP. Top-1
(M) (G) (img/s) (%)

ConvNet-Based
ConvNeXt-T [37] 29M 4.5G 1198 82.1
ConvNeXt-S [37] 50M 8.7G 684 83.1
ConvNeXt-B [37] 89M 15.4G 436 83.8

SSM-Based
S4ND-Conv-T [44] 30M 5.2G 683 82.2
S4ND-ViT-B [44] 89M 17.1G 397 80.4
Vim-S [69] 26M 5.3G 811 80.5
VMamba-T 30M 4.9G 1686 82.6
VMamba-S 50M 8.7G 877 83.6
VMamba-B 89M 15.4G 646 83.9

Step (d) (−0.6%, +175 img/s) by introducing MLP into VMamba due to its computational efficiency.
We also discard the DWConv (depth-wise convolutional [23]) layers and change the layer
configuration from [2,2,9,2] to [2,2,2,2] to lower FLOPs.

Step (e) (+0.6%, +366 img/s) by reducing the parameter ssm-ratio (the feature expansion factor)
from 2.0 to 1.0 (also referred to as Step (d.1)), raising the layer numbers to [2,2,5,2]
(also referred to as Step (d.2)), and discarding the entire multiplicative branch as illustrated
in Figure 3 (c).

Step (f) (+0.3%, +161 img/s) by introducing the DWConv layers (also referred to as Step (e.1)) and
reducing the parameter d_state (the SSM state dimension) from 16.0 to 1.0 (also referred
to as Step (e.2)), together with raising ssm-ratio back to 2.0.

Step (g) (+0.1%, +346 img/s) by reducing the ssm-ratio to 1.0 while changing the layer configu-
ration from [2,2,5,2] to [2,2,8,2].

5 Experiments

In this section, we present a series of experiments to evaluate the performance of VMamba and
compare it to popular benchmark models across various visual tasks. We also validate the effectiveness
of the proposed 2D feature map traversal method by comparing it with alternative approaches.
Additionally, we analyze the characteristics of VMamba by visualizing its effective receptive field
(ERF) and activation map, and examining its scalability with longer input sequences. We primarily
follow the hyperparameter settings and experimental configurations used in Swin [36]. For detailed
experiment settings, please refer to Appendix E and F, and for additional ablations, see Appendix H.
All experiments were conducted on a server with 8 × NVIDIA Tesla-A100 GPUs.

5.1 Image Classification

We evaluate VMamba’s performance in image classification on ImageNet-1K [9], with comparison
results against benchmark methods summarized in Table 1. With similar FLOPs, VMamba-T achieves
a top-1 accuracy of 82.6%, outperforming DeiT-S by 2.8% and Swin-T by 1.3%. Notably, VMamba
maintains its performance advantage at both Small and Base scales. For example, VMamba-B
achieves a top-1 accuracy of 83.9%, surpassing DeiT-B by 2.1% and Swin-B by 0.4%.

In terms of computational efficiency, VMamba-T achieves a throughput of 1,686 images/s, which is
either superior or comparable to state-of-the-art methods. This advantage continues with VMamba-S
and VMamba-B, achieving throughputs of 877 images/s and 646 images/s, respectively. Compared
to SSM-based models, the throughput of VMamba-T is 1.47× higher than S4ND-Conv-T [44] and
1.08× higher than Vim-S [69], while maintaining a clear performance lead of 0.4% and 2.1% over
these models, respectively.

6

103036https://doi.org/10.52202/079017-3273



Table 2: Left: Results for object detection and instance segmentation on MSCOCO. AP b and APm

denote box AP and mask AP, respectively. FLOPs are calculated with an input size of 1280×800. The
notation ‘1×’ indicates models fine-tuned for 12 epochs, while ‘3×MS’ denotes multi-scale training
for 36 epochs. Right: Results for semantic segmentation on ADE20K. FLOPs are calculated with an
input size of 512× 2048. ‘SS’ and ‘MS’ denote single-scale and multi-scale testing, respectively.

Mask R-CNN 1× schedule
Backbone APb APm Params FLOPs
Swin-T 42.7 39.3 48M 267G
ConvNeXt-T 44.2 40.1 48M 262G
VMamba-T 47.3 42.7 50M 271G
Swin-S 44.8 40.9 69M 354G
ConvNeXt-S 45.4 41.8 70M 348G
VMamba-S 48.7 43.7 70M 349G
Swin-B 46.9 42.3 107M 496G
ConvNeXt-B 47.0 42.7 108M 486G
VMamba-B 49.2 44.1 108M 485G

Mask R-CNN 3× MS schedule
Swin-T 46.0 41.6 48M 267G
ConvNeXt-T 46.2 41.7 48M 262G
NAT-T 47.7 42.6 48M 258G
VMamba-T 48.8 43.7 50M 271G
Swin-S 48.2 43.2 69M 354G
ConvNeXt-S 47.9 42.9 70M 348G
NAT-S 48.4 43.2 70M 330G
VMamba-S 49.9 44.2 70M 349G

ADE20K with crop size 512

Backbone
mIOU
(SS)

mIOU
(MS)

Params FLOPs

ResNet-50 42.1 42.8 67M 953G
DeiT-S + MLN 43.8 45.1 58M 1217G
Swin-T 44.5 45.8 60M 945G
ConvNeXt-T 46.0 46.7 60M 939G
NAT-T 47.1 48.4 58M 934G
Vim-S 44.9 - 46M -
VMamba-T 47.9 48.8 62M 949G
ResNet-101 43.8 44.9 86M 1030G
DeiT-B + MLN 45.5 47.2 144M 2007G
Swin-S 47.6 49.5 81M 1039G
ConvNeXt-S 48.7 49.6 82M 1027G
NAT-S 48.0 49.5 82M 1010G
VMamba-S 50.6 51.2 82M 1028G
Swin-B 48.1 49.7 121M 1188G
ConvNeXt-B 49.1 49.9 122M 1170G
NAT-B 48.5 49.7 123M 1137G
RepLKNet-31B 49.9 50.6 112M 1170G
VMamba-B 51.0 51.6 122M 1170G

5.2 Downstream Tasks

In this sub-section, we evaluate the performance of VMamba on downstream tasks, including
object detection and instance segmentation on MSCOCO2017 [33], and semantic segmentation on
ADE20K [68]. The training framework is based on the MMDetection [3] and MMSegmenation [4]
libraries, following [35] in utilizing Mask R-CNN [26] and UperNet [63] as the detection and
segmentation networks, respectively.

Object Detection and Instance Segmentation. The results on MSCOCO are presented in Table 2.
VMamba demonstrates superior performance in both box and mask Average Precision (APb and
APm) across different training schedules. Under the 12-epoch fine-tuning schedule, VMamba-
T/S/B achieves object detection mAPs of 47.3%/48.7%/49.2%, outperforming Swin-T/S/B by
4.6%/3.9%/2.3% mAP and ConvNeXt-T/S/B by 3.1%/3.3%/2.2% mAP, respectively. VMamba-
T/S/B achieves instance segmentation mAPs that exceed Swin-T/S/B by 3.4%/2.8%/1.8% mAP
and ConvNeXt-T/S/B by 2.6%/1.9%/1.4% mAP, respectively. Furthermore, VMamba’s advantages
persist with the 36-epoch fine-tuning schedule using multi-scale training, highlighting its strong
potential in downstream tasks requiring dense predictions.

Semantic Segmentation. Consistent with previous experiments, VMamba demonstrates superior
performance in semantic segmentation on ADE20K with a comparable amount of parameters. As
shown in Table 2, VMamba-T achieves 3.4% higher mIoU than Swin-T and 1.9% higher than
ConvNeXt-T in the Single-Scale (SS) setting, and the advantage persists with Multi-Scale (MS) input.
For models at the Small and Base levels, VMamba-S/B outperforms NAT-S/B [25] by 2.6%/2.5%
mIoU in the SS setting, and 1.7%/1.9% mIoU in the MS setting.

Discussion The experimental results in this subsection demonstrate VMamba’s adaptability to object
detection, instance segmentation, and semantic segmentation. In Figure 4 (a), we compare VMamba’s
performance with Swin and ConvNeXt, highlighting its advantages in handling downstream tasks
with comparable classification accuracy on ImageNet-1K. This result aligns with Figure 4 (b), where
VMamba shows the most stable performance (i.e., modest performance drop) across different input
image sizes, achieving a top-1 classification accuracy of 74.7% without fine-tuning (79.2% with
linear tuning) at an input resolution of 768× 768. While exhibiting greater tolerance to changes
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Figure 4: Illustration of VMamba’s adaptability to (a) downstream tasks and (b) input images with
progressively increasing resolutions. Swin-T∗ denotes Swin-T tested with scaled window sizes.
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Figure 5: Illustration of VMamba’s resource consumption with progressively increasing resolutions.
Swin-T∗ denotes Swin-T tested with scaled window sizes.

in input resolution, VMamba also maintains linear growth in FLOPs and memory-consumption
(see Figure 5 (a) and (c)) and maintains high throughput ( Figure 5 (b)), making it more effective
and efficient compared to ViT-based methods when adapting to downstream tasks with inputs of
larger spatial resolutions. This aligns with Mamba’s advanced capability in efficient long sequence
modeling [17].

5.3 Analysis

Relationship between SS2D and Self-Attention. To formulate the response Y within the time
interval [a, b] of length T , we denote the corresponding SSM-related variables ui ⊙∆i ∈ R1×Dv ,
Bi ∈ R1×Dk , and Ci ∈ R1×Dk as V ∈ RT×Dv , K ∈ RT×Dk , and Q ∈ RT×Dk , respectively.
Therefore, the j-th slice along dimension Dv of yb, denoted as yb

(j) ∈ R can be written as

yb
(j) =

(
QT ⊙wT

(j)
)
ha

(j) +QT

T∑
i=1

(
wT

(j)

wi
(j)

⊙Ki

)⊤

⊙
(
Vi

(j)
)
. (4)

(b) Activation map of(a) Input Image (c) Activation map of
(𝑸⨀𝒘)(𝑲/𝒘)𝑻

(d) Activation map of (𝑸⨀𝒘)(𝑲/𝒘)𝑻 for individual scanning path
𝑸𝑲𝑻

Figure 6: Illustration of the activation map for query patches indicated by red stars. The visualization
results in (b) and (c) are obtained by combining the activation maps from each scanning path in
SS2D.
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where ha ∈ RDk is the hidden state at step a, ⊙ denotes element-wise product. Particularly,
Vi

(j) is only a scalar. The formulation of each element in w := [w1; . . . ;wT ] ∈ RT×Dk×Dv , i.e.,
wi ∈ RDk×Dv , can be written as wi =

∏i
j=1 e

A∆⊤
a−1+j , representing the cumulative attention

weight at step i computed along the scanning path.

Consequently, the j-th dimension of Y, i.e., Y(j) ∈ RT×1, can be expressed as

Y(j) =
[
Q⊙w(j)

]
ha

(j) +

[(
Q⊙w(j)

)( K

w(j)

)⊤

⊙M

]
V(j), (5)

where M denotes the temporal mask matrix of size T × T with the lower triangular part set to 1 and
elsewhere 0. Please refer to Appendix C for more detailed derivations.

In Eq. 5, the matrix multiplication process involving Q, K, and V closely resembles the self-attention
mechanism, despite the inclusion of w.

Visualization of Activation Maps. To gain an intuitive and in-depth understanding of SS2D, we
further visualize the attention values in QK⊤ and (Q⊙w) (K/w)

⊤ corresponding to a specific
query patch within foreground objects (referred to as the ‘activation map’). As shown in Figure 6
(b), the activation map of QK⊤ demonstrates the effectiveness of SS2D in capturing and retaining
traversed information, with all previously scanned tokens in the foreground region being activated.
Furthermore, the inclusion of w results in activation maps that are more focused on the neighborhood
of query patches (Figure 6 (c)), which is consistent with the temporal weighting effect inherent in
the formulation of w. Nevertheless, the selective scan mechanism allows VMamba to accumulate
history along the scanning path, facilitating the establishment of long-term dependencies across
image patches. This is evident in the sub-figure encircled by a red box (Figure 6 (d)), where patches
of the sheep far to the left (scanned in earlier steps) remain activated. For more visualizations and
further discussion, please refer to Appendix D.

Visualization of Effective Receptive Fields. The Effective Receptive Field (ERF) [40, 11] refers
to the region in the input space that contributes to the activation of a specific output unit. We conduct
a comparative analysis of the central pixel’s ERF across various visual backbones, both before and
after training. The results presented in Figure 7 illustrate that among the models examined, only DeiT,
HiViT, Vim and VMamba demonstrate global ERFs, while the others exhibit local ERFs despite their
theoretical potential for global coverage. Moreover, VMamba’s linear time complexity enhances its
computational efficiency compared to DeiT and HiViT, which incur quadratic costs w.r.t. the number
of input patches. While both VMamba and Vim are based on the Mamba architecture, VMamba’s
ERF is more uniform and 2D-aware than that of Vim, which may intuitively explain its superior
performance.

Diagnostic Study on Selective Scan Patterns. We compare the proposed scanning pattern (i.e.
Cross-Scan) to three benchmark patterns: unidirectional scanning (Unidi-Scan), bidirectional scan-
ning (Bidi-Scan), and cascade scanning (Cascade-Scan, scanning the data row-wise and column-wise
successively). Feature dimensions are adjusted to maintain similar architectural parameters and
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Figure 8: Performance comparison of different scanning patterns. The proposed Cross-Scan achieves
superior performance in speed while maintaining the same number of parameters and FLOPs.

FLOPs for a fair comparison. As illustrated in Figure 8, Cross-Scan outperforms the other scanning
patterns in both computational efficiency and classification accuracy, highlighting its effectiveness in
achieving 2D-Selective-Scan. Removing the DWConv layer, which has been shown to aid the model
in learning 2D spatial information, further enhances this advantage. This underscores the inherent
strength of Cross-Scan in capturing 2D contextual information through its adoption of four-way
scanning.

6 Conclusion

This paper presents VMamba, an efficient vision backbone model built with State Space Models
(SSMs). VMamba integrates the advantages of selective SSMs from NLP tasks into visual data
processing, bridging the gap between ordered 1D scanning and non-sequential 2D traversal through
the novel SS2D module. Furthermore, we have significantly improved the inference speed of VMamba
through a series of architectural and implementation refinements. The effectiveness of the VMamba
family has been demonstrated through extensive experiments, and its linear time complexity makes
VMamba advantageous for downstream tasks with large-resolution inputs.

Limitations. While VMamba demonstrates promising experimental results, there is still room for
improvement in this study. Previous research has validated the efficacy of unsupervised pre-training
on large-scale datasets (e.g., ImageNet-21K). However, the compatibility of existing pre-training
methods with SSM-based architectures like VMamba, as well as the identification of pre-training
techniques specifically tailored for such models, remain unexplored. Investigating these aspects
could serve as a promising avenue for future research in architectural design. Additionally, limited
computational resources have prevented us from exploring VMamba’s architecture at the Large scale
and conducting a fine-grained hyperparameter search to further enhance experimental performance.
Although SS2D, the core component of VMamba, does not make specific assumptions about the
layout or modality of the input data, allowing it to generalize across various tasks, the potential of
VMamba for integration into more generalized tasks remains unexplored. Bridging the gap between
SS2D and these tasks, along with proposing a more generalized scanning pattern for vision tasks,
represents a promising research direction.
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A Discretization of State Space Models (SSMs)

In this section, we explore the correlation between the discretized formulations of State Space Models
(SSMs) obtained in Sec. 3 and those derived from the zero-order hold (ZOH) method [17], which is
frequently used in studies related to SSMs.

Recall the discretized formulation of SSMs derived in Sec. 3 as follows,

hb = eA(∆a+...+∆b−1)

(
ha +

b−1∑
i=a

Biuie
−A(∆a+...+∆i)∆i

)
. (6)

Let b = a+ 1, then the above equation can be re-written as

ha+1 = eA∆aha +Ba∆aua, (7)

where Aa := eA∆a is the exact discretized form of the evolution matrix A obtained by ZOH, and
Ba := Ba∆a represents the first-order Taylor expansion of the discretized B acquired through ZOH.

B Derivation of the Recurrence Relation of Selective SSMs

In this section, we derive the recurrence relation of the hidden state in selective SSMs. Given the
expression of hb shown in Eq. 6, let us denote eA(∆a+...+∆i−1) as pi

A,a. Then, its recurrence relation
can be directly written as

pi
A,a = eA∆i−1pi−1

A,a. (8)

For the second term of Eq. 6, we have

pb
B,a = eA(∆a+...+∆b−1)

b−1∑
i=a

Biuie
−A(∆a+...+∆i)∆i (9)

= eA∆b−1pb−1
B,a +Bb−1ub−1∆b−1. (10)

Therefore, with the associations derived in Eq. 8 and Eq. 9, hb = pb
A,aha + pb

B,a can be efficiently
computed in parallel using associative scan algorithms [2, 42, 50], which are supported by numerous
modern programming libraries. This approach effectively reduces the overall computational com-
plexity to linear, and VMamba further accelerates the computation by adopting a hardware-aware
implementation [17].

C Details of the relationship between SS2D and Self-attention

In this section, we clarify the relationship between SS2D and the self-attention mechanism commonly
employed in existing vision backbone models. Subsequently, visualization results are provided to
substantiate our explanation.

Let T denote the length of the sequence with indices from a to b, we define the following variables

V := [V1; . . . ;VT] ∈ RT×Dv , where Vi := ua+i−1 ⊙∆a+i−1 ∈ R1×Dv (11)

K := [K1; . . . ;KT] ∈ RT×Dk , where Ki := Ba+i−1 ∈ R1×Dk (12)

Q := [Q1; . . . ;QT] ∈ RT×Dk , where Qi := Ca+i−1 ∈ R1×Dk (13)

w := [w1; . . . ;wT] ∈ RT×Dk×Dv , where wi :=

i∏
j=1

eA∆⊤
a−1+j ∈ RDk×Dv (14)

H := [ha+1; . . . ;hb] ∈ RT×Dk×Dv , where hi ∈ RDk×Dv (15)

Y := [ya+1; . . . ;yb] ∈ RT×Dv , where yi ∈ RDv (16)

Note that in practice, the parameter A in Eq. 1 is simplified to R1×Dk . Consequently, h′(t) =
Ah(t) +Bu(t) is simplified to h′(t) = A⊙ h(t) +Bu(t), which is the reason why wi ∈ RDk×Dv .
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Based on these notations, the discretized solution of time-varying SSMs (Eq. 6) can be written as

hb = wT ⊙ ha +

T∑
i=1

wT

wi
⊙
(
Ki

⊤Vi

)
, (17)

where ⊙ denotes the element-wise product between matrices, and the division is also elements-wise.

Based on the expression of the hidden state hb, the first term of the output of SSM, i.e., yb, can be
computed by

yb = QThb (18)

= QT (wT ⊙ ha) +QT

T∑
i=1

wT

wi
⊙
(
Ki

⊤Vi

)
. (19)

Here, we drop the skip connection between the input and the response for simplicity. Particularly, the
j-th slice along dimension Dv of yb, denoted as yb

(j) ∈ R can be written as

yb
(j) =

(
QT ⊙wT

(j)
)
ha

(j) +

T∑
i=1

(
QT ⊙wT

(j)

wi
(j)

Ki
⊤
)
⊙Vi

(j). (20)

Similarly, the j-th slice along dimension Dv of the overall response Y, denoted as Y(j) ∈ RT×1,
can be expressed as

Y(j) =
(
Q⊙w(j)

)
ha

(j) +

[(
Q⊙w(j)

)( K

w(j)

)⊤

⊙M

]
V(j), (21)

where M := tril(T, T ) ∈ {0, 1}T×T denotes the temporal mask matrix with the lower triangular
portion of a T × T matrix set to 1 and elsewhere 0. It is evident that how matrices Q, K, and V are
multiplied in Eq. 21 closely resembles the process in the self-attention module of Vision Transformers.
Moreover, if w is in shape (T,Dk) rather than (T,Dk, Dv), then Eq. 18 and Eq. 21 reduce to the
form of Gated Linear Attention (GLA) [65], indicating that GLA is also a special case of Mamba.

D Visualization of Attention and Activation Maps

In the preceding subsection, we illustrated how the computational process of selective SSMs shares
similarities with self-attention mechanisms, allowing us to delve into the internal mechanism of SS2D
through the visualization of its weight matrices.

Given the input image shown in Figure 9 (a), illustrations of four scanning paths in SS2D are presented
in Figure 9 (d). The visualizations of the corresponding attention maps, calculated using QK⊤ and
(Q⊙w) (K/w)

⊤ are shown in Figure 9 (e) and Figure 9 (g) respectively. These results underscore
the effectiveness of the proposed scanning approach (i.e., Cross-Scan) in capturing and retaining the
traversed information, as each row in a single attention map corresponds to the attention between the
current patch and all previously scanned foreground tokens impartially. Additionally, in Figure 9 (f),
we showcase the transformed activation maps, where the pixel order corresponds to that of the first
route, traversing the image row-wise from the upper-left to the bottom-right.

By rearranging the diagonal elements of the obtained attention map in the image space, we de-
rive the visualization results shown in Figure 9 (b) and Figure 9 (c) corresponding to QK⊤ and
(Q⊙w) (K/w)

⊤ respectively. These maps illustrate the effectiveness of VMamba in accurately
distinguishing between foreground and background pixels within an image.

Moreover, given a selected patch as the query, we visualize the corresponding activation map by
reshaping the associated row in the attention map (computed by QK⊤ or (Q⊙w) (K/w)

⊤) This
reflects the attention score between the query patch and all previously scanned patches. To obtain
the complete visualization for a query patch, we collect and combine the activation maps from all
four scanning paths in SS2D. The visualization results of the activation map for both QK⊤ and
(Q⊙w) (K/w)

⊤ are shown in Figure 10. We also visualize the diagonal elements of attention
maps computed by (Q⊙w) (K/w)

⊤, where all foreground objects are effectively highlighted and
separated from the background.
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Figure 9: Illustration of the attention maps obtained by SS2D.
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Figure 10: Illustration of activation maps for the query patch (marked with a red star).
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Figure 11: Illustration of ERF maps throughout the training process of Vanilla-VMamba-T (with
EMA).

E Detailed Experiment Settings

Network Architecture. The architectural specifications of Vanilla-VMamba are outlined in Table 3,
while detailed configurations of the VMamba series are provided in Table 4. The Vanilla-VMamba
series is constructed using the vanilla VSS Block, which includes a multiplicative branch and does
not have feed-forward network (FFN) layers. In contrast, the VSS Block in the VMamba series
removes the multiplicative branch and introduces FFN layers. Additionally, we provide alternative
architectures for VMamba at Small and Base scales, referred to as VMamba-S[s1l20] and VMamba-
B[s1l20], respectively. The notation ‘sxly’ indicates that the ssm-ratio is set to x and the number
of layers in stage 3 is set to y. Consequently, the versions presented in Table 1 can also be referred to
as VMamba-S[s2l15] and VMamba-B[s2l15].

Experiment Setting. The hyper-parameters for training VMamba on ImageNet are inherited from
Swin [36], except for the parameters related to drop_path_rate and the exponential moving average
(EMA) technique. Specifically, VMamba-T/S/B models are trained from scratch for 300 epochs, with
a 20-epoch warm-up period, using a batch size of 1024. The training process utilizes the AdamW
optimizer [38] with betas set to (0.9, 0.999), an initial learning rate of 1× 10−3, a weight decay of
0.05, and a cosine decay learning rate scheduler. It is noteworthy that this is not the optimal setting
for VMamba. With a learning rate of 2× 10−3, the Top-1 accuracy of VMamba-T can reach 80.7%.

Additional techniques such as label smoothing (0.1) and EMA (decay ratio of 0.9999) are also
applied. The drop_path_ratio is set to 0.2 for Vanilla-VMamba-T and VMamba-T, 0.3 for
Vanilla-VMamba-S, VMamba-S[s2l15] and VMamba-S[s1l20], 0.6 for Vanilla-VMamba-B and
VMamba-B[s2l15], and 0.5 for VMamba-B[s1l20]. No additional training techniques are employed.

Throughput Evaluation. Detailed performance comparisons with various models are presented in
Table 6. Throughput (referred to as TP.) was assessed on an A100 GPU paired with an AMD EPYC
7542 CPU, utilizing the toolkit provided by [62]. Following the protocol outlined in [36], we set the
batch size to 128. The training throughput (referred to as Train TP.) is tested on the same device
with mix-resolution, excluding the time consumption of optimizers. The batch size for measuring
the training throughput is also set to 128.

Accelerating VMamba. Table 5 provides detailed configurations of the intermediate variants in
the acceleration process from Vanilla-VMamba-T to VMamba-T.

Evolution of ERF. We further generate the effective receptive field (ERF) maps throughout the
training process for Vanilla-VMamba-T. These maps intuitively illustrate how VMamba’s pattern of
ERF evolves from being predominantly local to predominantly global, epoch by epoch.

F Performance of the VMamba Family on Downstream Tasks

In this section, we present the experimental results of Vanilla-VMamba and VMamba on the
MSCOCO and ADE20k datasets. The results are summarized in Table 7 and Table 8, respectively.

For object detection and instance segmentation, we adhere to the protocol outlined by Swin [36] and
construct our models using the mmdetection framework [3]. Specifically, we utilize the AdamW
optimizer [38] and fine-tune the classification models pre-trained on ImageNet-1K for both 12 and
36 epochs. The learning rate is initialized at 1 × 10−4 and decreased by a factor of 10 at the 9-th
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Table 3: Architectural overview of the Vanilla-VMamba series. Down-sampling is performed
through patch merging [36] operations in stages 1, 2, and 3. The term Linear refers to a linear layer,
while DWConv denotes a depth-wise convolution [23] operation. The proposed 2D-selective-scan is
labeled as SS2D.

layer name output size Vanilla-VMamba-T Vanilla-VMamba-S Vanilla-VMamba-B

stem 112×112 conv 4×4, 96, stride 4 conv 4×4, 96, stride 4 conv 4×4, 128, stride 4

stage 1 56×56

vanilla VSSBLock vanilla VSSBLock vanilla VSSBLock
Linear 96 → 2×96
DWConv 3×3, 2×96
SS2D, dim 2×96

Linear 2×96 → 96
Multiplicative
Linear 2×96 → 96

×2


Linear 96 → 2×96
DWConv 3×3, 2×96
SS2D, dim 2×96

Linear 2×96 → 96
Multiplicative
Linear 2×96 → 96

×2


Linear 128 → 2×128
DWConv 3×3, 2×128
SS2D, dim 2×128

Linear 2×128 → 128
Multiplicative

Linear 2×128 → 128

×2

patch merging → 192 patch merging → 192 patch merging → 256

stage 2 28×28

vanilla VSSBLock vanilla VSSBLock vanilla VSSBLock
Linear 192 → 2×192
DWConv 3×3, 2×192
SS2D, dim 2×192

Linear 2×192 → 192
Multiplicative

Linear 2×192 → 192

×2


Linear 192 → 2×192
DWConv 3×3, 2×192
SS2D, dim 2×192

Linear 2×192 → 192
Multiplicative

Linear 2×192 → 192

×2


Linear 256 → 2×256
DWConv 3×3, 2×256
SS2D, dim 2×256

Linear 2×256 → 256
Multiplicative

Linear 2×256 → 256

×2

patch merging → 384 patch merging → 384 patch merging → 512

stage 3 14×14

vanilla VSSBLock vanilla VSSBLock vanilla VSSBLock
Linear 384 → 2×384
DWConv 3×3, 2×384
SS2D, dim 2×384

Linear 2×384 → 384
Multiplicative

Linear 2×384 → 384

×9


Linear 384 → 2×384
DWConv 3×3, 2×384
SS2D, dim 2×384

Linear 2×384 → 384
Multiplicative

Linear 2×384 → 384

×27


Linear 512 → 2×512
DWConv 3×3, 2×512
SS2D, dim 2×512

Linear 2×512 → 512
Multiplicative

Linear 2×512 → 512

×27

patch merging → 768 patch merging → 768 patch merging → 1024

stage 4 7×7

vanilla VSSBLock vanilla VSSBLock vanilla VSSBLock
Linear 768 → 2×768
DWConv 3×3, 2×768
SS2D, dim 2×768

Linear 2×768 → 768
Multiplicative

Linear 2×768 → 768

×2


Linear 768 → 2×768
DWConv 3×3, 2×768
SS2D, dim 2×768

Linear 2×768 → 768
Multiplicative

Linear 2×768 → 768

×2


Linear 1024 → 2×1024
DWConv 3×3, 2×1024
SS2D, dim 2×1024

Linear 2×1024 → 1024
Multiplicative

Linear 2×1024 → 1024

×2

1×1 average pool, 1000-d fc, softmax

Param. (M) 22.9 44.4 76.3

FLOPs 5.63×109 11.23×109 18.02×109

and 11-th epoch. We incorporate multi-scale training and random flipping with a batch size of 16,
following established practices for object detection evaluations.

For semantic segmentation, we follow Swin [36] and construct a UperHead [63] network on top of
the pre-trained model using the MMSegmentation library [4]. We employ the AdamW optimizer [38]
and set the learning rate to 6× 10−5. The fine-tuning process spans a total of 160k iterations with a
batch size of 16. The default input resolution is 512× 512.

G Details of VMamba’s Scale-Up Experiments

Given Mamba’s exceptional ability in efficient long sequence modeling, we conduct experiments to
assess whether VMamba inherits this characteristic. We evaluate the computational efficiency and
classification accuracy of VMamba with progressively larger input spatial resolutions. Specifically,
following the protocol in XCiT [1], we apply VMamba, trained on 224 × 224 inputs, to images
with resolutions ranging from 288× 288 to 768× 768. We measure the generalization performance
in terms of the number of parameters, FLOPs, throughput during both training and inference, and
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Table 4: Architectural overview of the VMamba series.

layer name output size VMamba-T VMamba-S VMamba-B

stem 112×112 conv 3×3 stride 2, LayerNorm, GeLU, conv 3×3 stride 2, LayerNorm

stage 1 56×56

VSSBLock(ssm-ratio=1, mlp-ratio=4) VSSBlock(ssm-ratio=2, mlp-ratio=4) VSSBLock(ssm-ratio=2, mlp-ratio=4)
Linear 96 → ssm-ratio ×96
DWConv 3×3, ssm-ratio ×96
SS2D, dim ssm-ratio ×96

Linear ssm-ratio ×96 → 96
FFN mlp-ratio ×96

×2


Linear 96 → ssm-ratio ×96
DWConv 3×3, ssm-ratio ×96
SS2D, dim ssm-ratio ×96

Linear ssm-ratio ×96 → 96
FFN mlp-ratio ×96

×2


Linear 128 → ssm-ratio ×128
DWConv 3×3, ssm-ratio ×128
SS2D, dim ssm-ratio ×128

Linear ssm-ratio ×128 → 128
FFN mlp-ratio ×128

×2

conv 3×3 stride 2, LayerNorm

stage 2 28×28

VSSBLock(ssm-ratio=1, mlp-ratio=4) VSSBlock(ssm-ratio=2, mlp-ratio=4) VSSBLock(ssm-ratio=2, mlp-ratio=4)
Linear 192 → ssm-ratio ×192
DWConv 3×3, ssm-ratio ×192
SS2D, dim ssm-ratio ×192

Linear ssm-ratio ×192 → 192
FFN mlp-ratio ×192

×2


Linear 192 → ssm-ratio ×192
DWConv 3×3, ssm-ratio ×192
SS2D, dim ssm-ratio ×192

Linear ssm-ratio ×192 → 192
FFN mlp-ratio ×192

×2


Linear 256 → ssm-ratio ×256
DWConv 3×3, ssm-ratio ×256
SS2D, dim ssm-ratio ×256

Linear ssm-ratio ×256 → 256
FFN mlp-ratio ×256

×2

conv 3×3 stride 2, LayerNorm

stage 3 14×14

VSSBLock(ssm-ratio=1, mlp-ratio=4) VSSBlock(ssm-ratio=2, mlp-ratio=4) VSSBLock(ssm-ratio=2, mlp-ratio=4)
Linear 384 → ssm-ratio ×384
DWConv 3×3, ssm-ratio ×384
SS2D, dim ssm-ratio ×384

Linear ssm-ratio ×384 → 384
FFN mlp-ratio ×384

×8


Linear 384 → ssm-ratio ×384
DWConv 3×3, ssm-ratio ×384
SS2D, dim ssm-ratio ×384

Linear ssm-ratio ×384 → 384
FFN mlp-ratio ×384

×15


Linear 512 → ssm-ratio ×512
DWConv 3×3, ssm-ratio ×512
SS2D, dim ssm-ratio ×512

Linear ssm-ratio ×512 → 512
FFN mlp-ratio ×512

×15

conv 3×3 stride 2, LayerNorm

stage 4 7×7

VSSBLock(ssm-ratio=1, mlp-ratio=4) VSSBlock(ssm-ratio=2, mlp-ratio=4) VSSBLock(ssm-ratio=2, mlp-ratio=4)
Linear 768 → ssm-ratio ×768
DWConv 3×3, ssm-ratio ×768
SS2D, dim ssm-ratio ×768

Linear ssm-ratio ×768 → 768
FFN mlp-ratio ×768

×2


Linear 768 → ssm-ratio ×768
DWConv 3×3, ssm-ratio ×768
SS2D, dim ssm-ratio ×768

Linear ssm-ratio ×768 → 768
FFN mlp-ratio ×768

×2


Linear 1024 → ssm-ratio ×1024
DWConv 3×3, ssm-ratio ×1024
SS2D, dim ssm-ratio ×1024

Linear ssm-ratio ×1024 → 1024
FFN mlp-ratio ×1024

×2

1×1 average pool, 1000-d fc, softmax

Param. (M) 30.2 50.1 88.6

FLOPs 4.91×109 8.72×109 15.36×109

Table 5: Details of accelerating VMamba.

Model d_state ssm-ratio DWConv multiculative layers FFN Params FLOPs TP. Train TP. Top-1
branch numbers (M) (G) (img/s) (img/s) (%)

Vanilla-VMamba-T 16 2.0 ✓ ✓ [2,2,9,2] 22.9M 5.63G 426 138 82.17
Step(a) 16 2.0 ✓ ✓ [2,2,9,2] 22.9M 5.63G 467 165 82.17
Step(b) 16 2.0 ✓ ✓ [2,2,9,2] 22.9M 5.63G 464 184 82.17
Step(c) 16 2.0 ✓ ✓ [2,2,9,2] 22.9M 5.63G 638 195 82.17
Step(d) 16 2.0 ✓ [2,2,2,2] ✓ 29.0M 5.63G 813 248 81.65
Step(d.1) 16 1.0 ✓ [2,2,2,2] ✓ 22.9M 4.02G 1336 405 81.05
Step(d.2) 16 1.0 ✓ [2,2,5,2] ✓ 28.2M 5.18G 1137 348 82.24
Step(e) 16 1.0 [2,2,5,2] ✓ 26.2M 4.86G 1179 360 82.17
Step(e.1) 16 1.0 ✓ [2,2,5,2] ✓ 26.3M 4.87G 1164 358 82.31
Step(e.2) 1 1.0 ✓ [2,2,5,2] ✓ 25.6M 3.98G 1942 647 81.87
Step(f) 1 2.0 ✓ [2,2,5,2] ✓ 30.7M 4.86G 1340 464 82.49
Step(g) 1 1.0 ✓ [2,2,8,2] ✓ 30.2M 4.91G 1686 571 82.60

the top-1 classification accuracy on ImageNet-1K. We also conduct experiments under the ‘linear
tuning’ setting, where only the header network, consisting of a single linear module, is fine-tuned
from random initialization using features extracted by the backbone models.

According to the results summarized in Table 9, VMamba demonstrates the most stable performance
across (i.e., modest performance drop) different input image sizes, achieving a top-1 classification
accuracy of 74.7% without fine-tuning (79.2% with linear tuning), while maintaining a relatively
high throughput of 149 images per second at an input resolution of 768 × 768. In comparison,
Swin [36] achieves the second-highest performance with a top-1 accuracy of 73.1% without fine-
tuning (77.5% under linear tuning) at the same input size, using scaled window sizes (set as
the resolution divided by 32). However, its throughput significantly drops to 53 images per second.
Furthermore, ConvNeXt [37] maintains a relatively high inference speed (i.e., a throughput of 103
images per second) at the largest input resolution. However, its classification accuracy drops to
69.5% when directly tested on images of size 768× 768, indicating its limited adaptability to images
with large spatial resolutions. Deit-S also shows a dramatic performance drop, primarily due to the
interpolation used in the absolute positional embedding.
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Table 6: Performance comparison on ImageNet-1K with an image size of 224. † indicates that Vim is
trained solely in float32 in practice, with a training throughput of 232. [69].

Model Image Params FLOPs TP. Train TP. Top-1
Size (M) (G) (img/s) (img/s) (%)

DeiT-S [57] 2242 22M 4.6G 1761 2404 79.8
DeiT-B [57] 2242 86M 17.5G 503 1032 81.8
ConvNeXt-T [37] 2242 29M 4.5G 1198 702 82.1
ConvNeXt-S [37] 2242 50M 8.7G 684 445 83.1
ConvNeXt-B [37] 2242 89M 15.4G 436 334 83.8
HiViT-T [66] 2242 19M 4.6G 1393 1304 82.1
HiViT-S [66] 2242 38M 9.1G 712 698 83.5
HiViT-B [66] 2242 66M 15.8G 456 544 83.8
Swin-T [36] 2242 28M 4.5G 1244 987 81.3
Swin-S [36] 2242 50M 8.7G 718 642 83.0
Swin-B [36] 2242 88M 15.5G 458 496 83.5
XCiT-S12/16 2242 26M 4.9G 1283 935 82.0
XCiT-S24/16 2242 48M 9.2G 671 509 82.6
XCiT-M24/16 2242 84M 16.2G 423 385 82.7
S4ND-ConvNeXt-T [44] 2242 30M 5.2G 683 369 82.2
S4ND-ViT-B [44] 2242 89M 17.1G 398 400 80.4
Vim-S [69] 2242 26M 5.3G 811 344† 80.5
Vanilla-VMamba-T 2242 23M 5.6G 638 195 82.2
Vanilla-VMamba-S 2242 44M 11.2G 359 111 83.5
Vanilla-VMamba-B 2242 76M 18.0G 268 84 83.7
VMamba-T 2242 30M 4.9G 1686 571 82.6
VMamba-S[s2l15] 2242 50M 8.7G 877 314 83.6
VMamba-B[s2l15] 2242 89M 15.4G 646 247 83.9
VMamba-S[s1l20] 2242 49M 8.6G 1106 390 83.3
VMamba-B[s1l20] 2242 87M 15.2G 827 313 83.8

Notably, VMamba displays a linear increase in computational complexity, as measured by FLOPs,
which is comparable to CNN-based architectures. This finding aligns with the theoretical conclusions
drawn from selective SSMs [17].

H Ablation Study

H.1 Influence of the Scanning Pattern

In the main submission, we validate the effectiveness of the proposed scanning pattern (referred to as
Cross-Scan) in SS2D by comparing it to three alternative image traversal approaches, i.e., Unidi-Scan,
Bidi-Scan, and Cascade-Scan (Figure 12). Notably, since Unidi-Scan, Bidi-Scan, and Cross-Scan are
all implemented in Triton, they exhibit minimal differences in throughput. The results in Table 10
indicate that Cross-Scan demonstrates superior data modeling capacity, as reflected by its higher
classification accuracy. This advantage likely stems from the two-dimensional prior introduced
by the four-way scanning design. Nevertheless, the practical implementation of Cascade-Scan is
significantly constrained by its relatively slow computational pace, primarily due to the inadequate
compatibility between selective scanning and high-dimensional data, which is further affected by the
multi-step scanning procedure.

Figure 13 indirectly demonstrates that among the analyzed scanning methods, only Bidi-Scan,
Cascade-Scan, and Cross-Scan showcase global ERFs. Moreover, only Cross-Scan and Cascade-Scan
exhibit two-dimensional (2D) priors. It is also worth noting that DWConv [23] plays a critical role in
establishing 2D priors, thereby contributing to the formation of global ERFs.

H.2 Influence of the Initialization Approach

In our study, we adopted the initialization scheme originally proposed for the SS2D block in S4D [19].
Therefore, it is necessary to investigate the contribution of this initialization method to the effective-
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Table 7: Object detection and instance segmentation results on COCO dataset. FLOPs are calculated
using inputs of size 1280 × 800. Here, AP b and APm denote box AP and mask AP, respectively.
"1×" indicates models fine-tuned for 12 epochs, while "3×MS" signifies the utilization of multi-scale
training for 36 epochs.

Mask R-CNN 1× schedule

Backbone APb APb
50 APb

75 APm APm
50 APm

75 Params FLOPs

Swin-T 42.7 65.2 46.8 39.3 62.2 42.2 48M 267G
ConvNeXt-T 44.2 66.6 48.3 40.1 63.3 42.8 48M 262G
Vanilla-VMamba-T 46.5 68.5 50.7 42.1 65.5 45.3 42M 286G
VMamba-T 47.3 69.3 52.0 42.7 66.4 45.9 50M 271G

Swin-S 44.8 66.6 48.9 40.9 63.4 44.2 69M 354G
ConvNeXt-S 45.4 67.9 50.0 41.8 65.2 45.1 70M 348G
Vanilla-VMamba-S 48.2 69.7 52.5 43.0 66.6 46.4 64M 400G
VMamba-S 48.7 70.0 53.4 43.7 67.3 47.0 70M 349G

Swin-B 46.9 – – 42.3 – – 107M 496G
ConvNeXt-B 47.0 69.4 51.7 42.7 66.3 46.0 108M 486G
Vanilla-VMamba-B 48.6 70.0 53.1 43.3 67.1 46.7 96M 540G
VMamba-B 49.2 71.4 54.0 44.1 68.3 47.7 108M 485G

Mask R-CNN 3× MS schedule

Swin-T 46.0 68.1 50.3 41.6 65.1 44.9 48M 267G
ConvNeXt-T 46.2 67.9 50.8 41.7 65.0 44.9 48M 262G
Vanilla-VMamba-T 48.5 70.0 52.7 43.2 66.9 46.4 42M 286G
VMamba-T 48.8 70.4 53.5 43.7 67.4 47.0 50M 271G

Swin-S 48.2 69.8 52.8 43.2 67.0 46.1 69M 354G
ConvNeXt-S 47.9 70.0 52.7 42.9 66.9 46.2 70M 348G
Vanilla-VMamba-S 49.7 70.4 54.2 44.0 67.6 47.3 64M 400G
VMamba-S 49.9 70.9 54.7 44.2 68.2 47.7 70M 349G

Unidi-Scan

Bidi-Scan

Cascade-Scan Row and Col

×

Cross Scan

+

Figure 12: Illustration of different scanning patterns for selective scan.

ness of VMamba. To explore this further, we replaced the default initialization with two alternative
methods: random initialization and zero initialization.

For both initialization methods, we set the parameter D in equation 1 to a vector of all ones, mimicking
a basic skip connection (thus we have y = Ch+Du). Additionally, the weights and biases associated
with the transformation to the dimension Dv (which matches the input size), are initialized as random
vectors. In contrast, Mamba [17] employs a more sophisticated initialization.
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Table 8: Semantic segmentation results on ADE20K using UperNet [63]. We evaluate the performance
of semantic segmentation on the ADE20K dataset with UperNet [63]. FLOPs are calculated with
input sizes of 512× 2048. "SS" and "MS" denote single-scale and multi-scale testing, respectively.

method crop size mIoU (SS) mIoU (MS) Params FLOPs

Swin-T 5122 44.5 45.8 60M 945G
ConvNeXt-T 5122 46.0 46.7 60M 939G

Vanilla-VMamba-T 5122 47.3 48.3 55M 964G
VMamba-T 5122 48.0 48.8 62M 949G

Swin-S 5122 47.6 49.5 81M 1039G
ConvNeXt-S 5122 48.7 49.6 82M 1027G

Vanilla-VMamba-S 5122 49.5 50.5 76M 1081G
VMamba-S 5122 50.6 51.2 82M 1028G

Swin-B 5122 48.1 49.7 121M 1188G
ConvNeXt-B 5122 49.1 49.9 122M 1170G

Vanilla-VMamba-B 5122 50.0 51.3 110M 1226G
VMamba-B 5122 51.0 51.6 122M 1170G
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Figure 13: The visualization of ERF for models with different scanning patterns.

The main distinction between random and zero initialization lies in the parameter A in equation 6,
which is typically initialized as a HiPPO matrix in both Mamba [17, 19] and our implementation of
VMamba. Given that we selected the hyper-parameter d_state to be 1, the Mamba initialization
for log(A) can be simplified to all zeros, which aligns with zero initialization. In contrast, random
initialization assigns a random vector to log(A). We choose to initialize log(A) rather than A directly
to keep A near the all-ones matrix when the network parameters are close to zero, which empirically
enhances the training stability.

The experimental results in Table 11 indicate that, at least for image classification with SS2D blocks,
the model’s performance is not significantly affected by the initialization method. Therefore, within
this context, the sophisticated initialization method employed in Mamba [17] can be substituted with
a simpler, more straightforward approach. We also visualize the ERF maps of models trained with
different initialization methods (see Figure 14), which intuitively reflect SS2D’s robustness across
various initialization schemes.

H.3 Influence of the d_state Parameter

Throughout this study, we primarily set the value of d_state to 1 to optimize VMamba’s computa-
tional speed. To further explore the impact of d_state on the model’s performance, we conduct a
series of experiments.

As shown in Table 12, with all other hyper-parameters fixed, we increase d_state from 1 to 4. This
results in a slight improvement in performance but a substantial decrease in throughput, indicating a
significant negative impact on the VMamba’s computational efficiency. However, increasing d_state
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Figure 14: The visualization of ERF of VMamba with different initialization.

to 8, while reducing ssm-ratio to maintain computational complexity, leads to improved accuracy.
Moreover, when d_state is further increased to 16, with ssm-ratio set to 1, performance declines.

These findings suggest that modest increases in d_state may not necessarily lead to better per-
formance. Instead, selecting the optimal combination of d_state and ssm-ratio is crucial for
achieving a good trade-off between inference speed and performance.

H.4 Influence of ssm-ratio, mlp-ratio, and layer numbers

In this section, we investigate the trade-offs among ssm-ratio, layer numbers, and mlp-ratio.

Experimental results shown in Table 13 indicate that reducing ssm-ratio significantly decreases
performance but substantially improves inference speed. Conversely, increasing layer numbers
enhances the performance while slowing down the model.

As the hyper-parameter ssm-ratio represents the dimension used by the SS2D module, the trade-off
between ssm-ratio and layer numbers can be interpreted as a balance between channel-mixing
and token-mixing [56]. Furthermore, we reduce mlp-ratio from 4.0 to 2.0 and progressively
increase ssm-ratio to maintain constant FLOPs, as shown in Table 14. The results presented in
Tables 13 and 14 highlight the importance of an optimal combination of ssm-ratio, mlp-ratio,
and layer numbers for constructing a model that balances effectiveness and efficiency.

H.5 Influence of the Activation Function

In VMamba, the SiLU [14] activation function is utilized to build the SS2D block. However,
experimental results in Table 15 show that VMamba maintains robustness across different activation
functions. This implies that the choice of activation function does not substantially affect the model’s
performance. Therefore, there is flexibility to choose an appropriate activation function based on
computational constraints or other preferences.
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Table 9: Comparison of generalizability to inputs with increased spatial resolutions. The throughput
and training throughput are measured with a batch size of 32 using PyTorch 2.0 on an A100 GPU
paired with an AMD EPYC 7542 CPU. Unlike throughput, the model’s forward pass, loss calculation,
and backward pass are included in calculating the training throughput, with mixed precision. We
re-implemented the HiViT-T, as the checkpoint for HiViT-T has not been released. † denotes that the
batch size ≤ 16 due to out-of-memory (OOM) issues.

Model Image Param. FLOPs TP. Train TP. Top-1 Top-1 acc. (%)
Size (M) (G) (img/s) (img/s) acc. (%) (w/ linear tuning)

SSM-Based

VMamba-Tiny

2242 30M 4.91G 1490 418 82.60 82.64
2882 30M 8.11G 947 303 82.95 83.03
3842 30M 14.41G 566 187 82.41 82.77
5122 30M 25.63G 340 121 80.92 81.88
6402 30M 40.04G 214 75 78.60 80.62
7682 30M 57.66G 149 53 74.66 79.22

VMamba-Tiny[s2l5]

2242 31M 4.86G 1227 399 82.49 82.52
2882 31M 8.03G 761 255 82.81 82.93
3842 31M 14.27G 452 155 82.51 82.74
5122 31M 25.38G 272 100 81.07 82.02
6402 31M 39.65G 170 60 79.30 81.02
7682 31M 57.09G 117 42 76.06 79.69

Vanilla-VMamba-Tiny

2242 23M 5.63G 628 189 82.17 82.09
2882 23M 9.30G 390 117 82.74 82.76
3842 23M 16.53G 212 65 82.40 82.72
5122 23M 29.39G 138 53 81.05 81.97
6402 23M 45.93G 87 27 78.79 80.71
7682 23M 66.14G 52 18 75.09 79.12

Transformer-Based

Swin-Tiny

2242 28M 4.51G 1142 769 81.19 81.18
2882 28M 7.60G 638 489 81.46 81.62
3842 28M 14.05G 316 268 80.67 81.12
5122 28M 26.65G 176 131 78.97 80.21
6402 28M 45.00G 88 68 76.55 78.89
7682 29M 70.72G 53 38 73.06 77.54

XCiT-S12/16

2242 26M 4.87G 1127 505 81.87 81.89
2882 26M 8.05G 724 462 82.44 82.44
3842 26M 14.31G 425 308 81.84 82.21
5122 26M 25.44G 244 185 79.80 80.92
6402 26M 39.75G 158 122 76.84 79.00
7682 26M 57.24G 111 87 72.52 76.92

HiViT-Tiny

2242 19M 4.60G 1261 1041 81.92 81.85
2882 19M 7.93G 750 614 82.45 82.42
3842 19M 15.21G 388 333 81.51 81.91
5122 20M 30.56G 186 150 79.30 80.49
6402 20M 54.83G 93 71 76.09 78.58
7682 20M 91.41G 55 37† 71.38 76.47

DeiT-Small

2242 22M 4.61G 1573 1306 80.69 80.40
2882 22M 7.99G 914 1124 80.80 80.63
3842 22M 15.52G 502 697 78.87 79.54
5122 22M 31.80G 261 387 74.21 76.91
6402 23M 58.17G 149 244 68.04 73.31
7682 23M 98.70G 90 156 60.98 69.62

ConvNet-Based

ConvNeXt-Tiny

2242 29M 4.47G 1107 614 82.05 81.95
2882 29M 7.38G 696 403 82.23 82.30
3842 29M 13.12G 402 240 81.05 81.78
5122 29M 23.33G 226 140 78.03 80.37
6402 29M 36.45G 147 90 74.27 78.77
7682 29M 52.49G 103 63 69.50 76.89
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Table 10: The performance of VMamba-T with different scanning patterns.

Model Params FLOPs TP. Train TP. Top-1
(M) (G) (img/s) (img/s) (%)
VMamba w/ dwconv

Unidi-Scan 30.2M 4.91G 1682 571 82.26
Bidi-Scan 30.2M 4.91G 1687 572 82.49
Cascade-Scan 30.2M 4.91G 998 308 82.42
Cross-Scan 30.2M 4.91G 1686 571 82.60

VMamba w/o dwconv
Unidi-Scan 30.2M 4.89G 1716 578 80.88
Bidi-Scan 30.2M 4.89G 1719 578 81.80
Cascade-Scan 30.2M 4.90G 1007 309 81.71
Cross-Scan 30.2M 4.89G 1717 577 82.25

Table 11: The performance of VMamba-T with different initialization.

initialization Params FLOPs TP. Train TP. Top-1
(M) (G) (img/s) (img/s) acc. (%)

mamba 30.2 4.91 1686 571 82.60
rand 30.2 4.91 1682 570 82.58
zero 30.2 4.91 1683 570 82.67

Table 12: The performance of VMamba-T with different d_state.

d_state ssm-ratio Params FLOPs TP. Train TP. Top-1
(M) (G) (img/s) (img/s) acc. (%)

1 2.0 30.7 4.86 1340 464 82.49
2 2.0 30.8 4.98 1269 432 82.50
4 2.0 31.0 5.22 1147 382 82.51
8 1.5 28.6 5.04 1148 365 82.69
16 1.0 26.3 4.87 1164 358 82.31

Table 13: The performance of VMamba-T under different combination of ssm-ratio and layer
numbers.

ssm-ratio layer Params FLOPs TP. Train TP. Top-1
numbers (M) (G) (img/s) (img/s) acc. (%)

2.0 [2,2,5,2] 30.7 4.86 1340 464 82.49
1.0 [2,2,5,2] 25.6 3.98 1942 647 81.87
1.0 [2,2,8,2] 30.2 4.91 1686 571 82.60

Table 14: The performance of VMamba under different combination of ssm-ratio and mlp-ratio.

mlp-ratio ssm-ratio Params FLOPs TP. Train TP. Top-1
(M) (G) (img/s) (img/s) acc. (%)

4.0 1.0 30.2 4.91 1686 571 82.60
3.0 1.5 28.5 4.65 1419 473 82.75
2.0 2.5 29.9 4.95 1075 361 82.86

Table 15: The performance of VMamba-T with different activation functions in SS2D.

activation Params FLOPs TP. Train TP. Top-1
(M) (G) (img/s) (img/s) acc. (%)

SiLU 30.2 4.91 1686 571 82.60
GELU 30.2 4.91 1680 570 82.53
ReLU 30.2 4.91 1684 577 82.65
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction provide a comprehensive overview of the
background and motivation of this study, effectively outlining its main contributions point-
by-point, thus accurately reflecting the paper’s scope and significance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We primarily focused on discussing the limitations associated with this study
in section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper includes the full set of assumptions and correct proofs for each
theoretical result, primarily presented in the appendix. Notably, it covers the formulation of
State Space Models, the discretization process, the derivation of recurrence relationships, and
explanations concerning self-attention computations, ensuring completeness and accuracy
in theoretical presentation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information regarding the key contribution of this paper, i.e., the intro-
duction of selective SSMs (or S6) to processing vision data, as well as architectural and
experimental configurations, have been fully disclosed (to the extent that it affects the
main claims and/or conclusions of the paper). Furthermore, the implementation of other
components within the proposed VMamba framework, such as Vision Transformers and the
parallelized Selective Scan operation, is facilitated by the plenty of support available from
existing open-source resources within the community.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
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the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplementary material submitted with the manuscript includes open
access to all source code and scripts necessary to faithfully reproduce the main experimental
results. Instructions for running the code are also provided within the scripts.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies detailed experimental configurations in Section E in
Appendix, providing readers with essential information to comprehend the results. Following
established conventions in the field of vision backbone models, the evaluation protocol
encompasses standard practices commonly found in the relevant literature, ensuring readers
can refer to established methodologies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not include an analysis of the statistical significance of the experiments
mainly due to the prohibitively expensive training cost of vision backbone models and our
limited computing resources. However, we have provided the code, hyperparameters, and
random seeds used in our experiments to facilitate the reproducibility of our findings. We
would like to point out that, due to the extensive amount of training data, the statistical
patterns of the experiment results are likely to remain consistent across different trials.
Consequently, reporting error bars or other information about statistical significance is not a
common practice in studies developing deep vision backbones.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were carried out on an 8 × A100 GPU server, as detailed at
the beginning of the experiment section (Section 5).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: After carefully reviewing the referenced document, we certify that the research
conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper primarily focuses on vision backbones trained using publicly
available datasets that have undergone thorough validation. While the vision backbone itself
is not directly applicable to everyday scenarios, it serves as a neutral and valuable toolkit for
further development and research.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The proposed models are vision backbone networks trained on benchmark
datasets such as ImageNet-1K, MSCOCO, and ADE20K. These datasets have been exten-
sively used in the computer vision community and have undergone comprehensive safety
risk assessments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the paper, we specified the datasets and code sources used (e.g., mmdet),
and provided appropriate citations in the reference section. Additionally, we ensured
transparency by including the sources of any modified code files, making the changes
traceable.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have included the code, along with detailed usage instructions, in the
supplementary materials. After the review process is completed, we will make the code
publicly available to the community.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: This study does not involve any crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing experiments or research with human subjects were involved
in this study. All experiments were conducted using code and GPU servers.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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