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Abstract

Mass transport problems arise in many areas of machine learning whereby one
wants to compute a map transporting one distribution to another. Generative
modeling techniques like Generative Adversarial Networks (GANs) and Denoising
Diffusion Models (DDMs) have been successfully adapted to solve such transport
problems, resulting in CycleGAN and Bridge Matching respectively. However,
these methods do not approximate Optimal Transport (OT) maps, which are known
to have desirable properties. Existing techniques approximating OT maps for
high-dimensional data-rich problems, such as DDM-based Rectified Flow and
Schrodinger Bridge procedures, require fully training a DDM-type model at each
iteration, or use mini-batch techniques which can introduce significant errors. We
propose a novel algorithm to compute the Schrodinger Bridge, a dynamic entropy-
regularised version of OT, that eliminates the need to train multiple DDM-like
models. This algorithm corresponds to a discretisation of a flow of path measures,
which we call the Schrodinger Bridge Flow, whose only stationary point is the
Schrodinger Bridge. We demonstrate the performance of our algorithm on a variety
of unpaired data translation tasks.

1 Introduction

The problem of finding a map to transport one probability distribution to another one has numerous
applications in machine learning. In particular, it is at the core of generative modeling where the idea
is to transform a noise distribution into the data distribution, and is also central to transfer learning
tasks such as image-to-image translation. For discrete probability distributions, it is possible to
compute the Optimal Transport (OT) map but this is computationally expensive (Peyré et al., 2019).
By showing that an entropy-regularised version of OT, the Entropic OT (EOT), could be computed
much more efficiently using the Sinkhorn algorithm, Cuturi (2013) has enabled transport ideas to
be used in numerous applications (Ge et al., 2021; Zhou et al., 2022). However, the computational
complexity of Sinkhorn algorithm is quadratic in the sample size, which makes its application to very
large datasets impractical. Mini-batch versions have been proposed, see e.g. (Genevay et al., 2018),
but tend to introduce significant errors in high dimensions (Sommerfeld et al., 2019).

In the context of generative modeling, Denoising Diffusion Models (DDMs) (Song et al., 2021a; Ho
et al., 2020) have shown impressive performance in a variety of domains. DDMs define a forward
process progressively noising the data, and sample generation is achieved by approximating the time-
reversal of this diffusion. In order to leverage the iterative refinement properties of DDMs in the OT
setting, methods exploiting the equivalence between the static versions of (E)OT and their dynamic
counterparts (Benamou and Brenier, 2000; Léonard, 2014) have been developed. A procedure to
approximate the dynamic OT is considered by Liu et al. (2023b), while techniques to approximate the
dynamic equivalent to EOT, the Schrodinger Bridge (SB), have been proposed in (De Bortoli et al.,
2021; Vargas et al., 2021; Chen et al., 2022; Peluchetti, 2023; Shi et al., 2023). These techniques are

*Equal contribution.

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024).

103384 https://doi.org/10.52202/079017-3285



expensive however, as they require training multiple DDM-type models. Mini-batch versions of OT
and Sinkhorn (Pooladian et al., 2023; Tong et al., 2024b) combined with bridge or flow matching
have also been proposed to approximate the OT path and SB, but they optimise a minibatch OT
objective that can introduce significant errors in high dimensions: the error in Wasserstein-1 distance
is of order O(B~1/(29)), where d is the dimension of the problem and B the minibatch size, see
(Sommerfeld et al., 2019, Corollary 1).

In this paper, we propose a novel approach to computing the SB. Similarly to Iterative Markovian
Fitting (IMF) and its practical implementation, Diffusion Schrédinger Bridge Matching (DSBM)
(Shi et al., 2023; Peluchetti, 2023), it leverages the fact that the SB is the only Markov process with
prescribed marginals at the endpoints which is in the reciprocal class of the Brownian motion, i.e. it
has the same bridge as the Brownian motion (Léonard, 2014); see Section 2 for more details on
Markov processes and the reciprocal class. Compared to DSBM, our approach is easier to implement
as it does not require caching samples, alternating between optimising two different losses, and,
optionally, uses one neural network instead of two. In Section 3, we start by introducing a flow of
path measures whose time-discretisation yields a family of algorithms called a-IMF and presented
in Section 4. Notably, we show that o-IMF converges to the Schrodinger Bridge for any « € (0, 1].
Additionally, for a special value of the discretisation stepsize a = 1, we recover the IMF procedure
(Peluchetti, 2023; Shi et al., 2023), while < 1 corresponds to online versions of IMF. We implement
a parametric version of the a-IMF as an online DSBM procedure, called a-DSBM. We illustrate the
efficiency of our approach in unpaired image-to-image translation settings in Section 6.

Notation. We denote the space of path measures by P(C), i.e. P(C) = P(C([0, 1],R%)), where
C([0, 1], R%) is the space of continuous functions from [0, 1] to R%. The subset of Markov path mea-
sures associated with a diffusion of the form dX; = v;(X;)dt 4+ 0,:dB, with o, v locally Lipschitz,
is denoted M. For Q induced by (1/eB¢);¢0,1], With € > 0 and (B¢);>0 a d-dimensional Brownian
motion, the reciprocal class of Q is denoted R(Q), see Definition 2.1. For any P € P(C), we denote
by P; its marginal distribution at time ¢, IP; 4 the joint distribution at times s, t, Ps|; the conditional
distribution at time s given the state at time ¢, and IP|o ; € P(C) the distribution of the path on time
interval (0, 1) given its endpoints; e.g. Qo ; is a scaled Brownian bridge. Unless specified otherwise,
all gradient operators V are w.r.t. the variable x; with time index ¢. Given probability spaces (X, X)
and (Y, )), aMarkov kernel K : X x Y — [0, 1], and a probability measure x defined on X', we write
K for the probability measure on ) such that for any A € Y we have uK(A) = [{ K(z, A)du(z).
In particular, for any joint distribution ITy ; over RY x R%, we denote the mixture of bridges mea-
sure as II = TIp1Pjg; € P(C), which is short for II(-) = [o4, pa Pjo1(-[zo, 21)dg 1 (z0, 21).
Finally, we define the Kullback—Leibler (KL) divergence between two probability measures
mo, M € P(X) as KL(m|m1) = fx log((dmo/dmy)(z))dmo(z) if mo is absolutely continuous w.r.t. 7y
and KL (7|71 ) = +oo otherwise.

2 Optimal Transport and Schrodinger Bridge

Unpaired Transfer and Optimal Transport. Given unpaired data samples from 7y and 71, where
7o, m1 are two distributions on R?, we are interested in designing a transport map from 7 to ;. This
corresponds to an unpaired data transfer task. We can formulate this problem as finding a distribution
IT on R? x RY with marginals ITy = 7 and IT; = 7y so that if Xy ~ m then XX ~ Iy 10(+1X0)
satisfies X1 ~ 1. Among an infinite number of such so-called coupling distributions II, we are here
interested in finding the Entropic Optimal Transport (EOT) coupling IT* defined as

. 1
II* = argmingep(ra xre) {/ 5”55 — y|?dll(z, y) — eH(IT) ; T = mo, IT; = 7T1} (D
R x R4

where H(IT) is the differential entropy of II and € > 0 is a regularisation hyperparameter (Peyré et al.,
2019). For € = 0, we recover the standard OT.

In order to leverage the recent advances in generative modeling, and in particular the concept of
iterative refinement central to DDMs, we turn to a dynamic formulation of EOT known as the
Schrédinger Bridge problem (Léonard, 2014). It is defined as follows: find P* € P(C) such that

P* = argmingcp () {KL(P|Q) ; Po = mo, P1 = m1}, 2)
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with Q@ € P(C) induced by a scaled d-dimensional Brownian motion (1/By¢)¢c[o,1). The term
dynamic here refers to the fact that (2) is defined on path measures, i.e. on (stochastic) processes, in
contrast to the static problem (1) which is defined on measures on the space R4 x R<, In Section 3,
we show that solving (2) is equivalent to optimising the vector field of a stochastic process using
objectives similar to the ones of bridge matching (Peluchetti, 2021; Albergo and Vanden-Eijnden,
2023; Lipman et al., 2023; Liu et al., 2023a). Under mild assumptions, it can be shown that P ; = II*,
see e.g. (Léonard, 2014; Pavon et al., 2021). Hence solving (1) reduces to solving (2). Once we have
found P* associated with (X});c0,1), we can sample from P* by first sampling X§ ~ 7o and then
sampling the trajectory (X7).e(o,1] Which yields (Xg, X7) ~ IT*.

Reciprocal and Markov projections. To introduce our methodology, it is necessary to recall the
notions of reciprocal and Markov projections. We refer to Shi et al. (2023) for more details. For
practitioners, a more intuitive explanation of these projections is given in Appendix E.

Definition 2.1 (Reciprocal projection): P € P(C) is in the reciprocal class R(Q) of Q if P =
IPo,1Qo,1. We define the reciprocal projection of P € P(C) as P* = Projr(q) (P) = Po,1Qo,1. We
will write projy instead of projg ) to simplify notation.

In other words, IP is in the reciprocal class of Q if the conditional distribution of a path given its
endpoints is identical under P and Q, see (Reelly, 2013). Sampling from the reciprocal projection of
IP can be achieved by sampling a path (X);c[o,1] from [P, keeping only the values of the endpoints,
say Xy, X, and then sampling a new value for the bridge (Xt)te(o,l) from Qg ;.

Definition 2.2 (Markov projection): Assume that Q is induced by (\/eBy).c[o,1) for € > 0. Then,
when it is well-defined, for any P € R(Q), the Markovian projection M = proj v, (P) € M is the
path measure induced by the diffusion (X} )c(0,1) with for any t € [0, 1]

dX; = U;(X:)dt—'— \/gdBt, U;(Zlit) = (E]pllt[xl | Xt = Ll?t] — IEt) /(1 —t), XS ~ ]P)(].

In practice, implementing a Markovian projection requires solving a regression problem to approx-
imate Ep, , [X; | X¢ = x4], similar to the one appearing in bridge matching and flow matching.
One key property of the Markovian projection is that M; = P; for all ¢ € [0, 1], i.e. the Markovian
projection preserves the marginals; see (Peluchetti, 2021) for instance.

Iterative Markovian Fitting. Leveraging the reciprocal and Markovian projections, Peluchetti

(2023) and Shi et al. (2023) concurrently introduced IMF. Starting from PO = (mo @ m1)Qo,1, @
measure where endpoints are sampled independently from 7y and 71 and then interpolated using
a (scaled) Brownian bridge, they define a sequence of path measures (P, ]f””)neN where P" =
proj o, (P") and P"*! = projz (P"). This ensures that P2 = m, P} = 7, for all n, and it
can be shown that the sequence (P"),cn converges to the SB, see (Peluchetti, 2023, Theorem
2). The practical implementation of this algorithm proposed by Shi et al. (2023) is called DSBM.
Implementing DSBM poses challenges, as each Markovian projection requires training a neural
network to approximate the relevant conditional expectations by minimising a bridge matching loss.
Furthermore, in practice, generated model samples are stored in a cache in order to train the next
iterations of DSBM. This introduces additional hyperparameters that require tuning. In Section 3 we
propose a-IMF, an algorithm which can be interpreted as the discretisation of a flow of path measures.
This leads to a-DSBM, an algorithm that is computationally much more efficient than DSBM as it
does not rely on a Markovian projection at each step.

3 Schrodinger Bridge flow

We will now introduce a flow of path measures (P*),>¢, and show that the time-discretisation of
this flow with an appropriate stepsize a € (0, 1] yields a family of procedures called o-IMF, which
all converge to the Schrédinger Bridge. While o = 1 yields the classical IMF, a € (0,1) yields
an incremental version of IMF. In Section 4 we show that a-IMF can be implemented as an online
version of DSBM.
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3.1 A flow of path measures

Let (Ps, I@)s)szo be a flow of path measures defined for any s > 0 by

PO = (mo ® m1)Qyo,1, 9, = prOjR(prOjM(I@’s)) — ]f”s, P® = proj ,((P*), 3)

T which we assume is well-defined. Note that for any

s > 0, P% is Markov while P is in the reciprocal
M class of Q. Crucially, the only fixed point of (3) is the
, SB. Indeed, let P be a fixed point of (P®)s>0 in (3).
+ Then, we have that P = projx(proj,,(P)). Hence,
L weget P = projg (proj (. - (proj (projac(P))) - . ).
4 Hence, under mild assumptions, P is a limit point of IMF
and therefore IP is the SB IP* given by (2), see (Peluchetti,

} 4 P 2023, Theorem 2).

P
Next, for any « € (0, 1], we define the following discreti-
R(Q) sation of (3) called a-IMF:

Figure 1: Illustration of the SB Flow P = (1 — a)P" + aprojg (proj o (P")),  (4)
and comparison with IMF. P* is the SB,

(P™) e the IMF sequence and (P*),>, and P = proj a(P™). Note that for any neNP"e
the flow we consider. See Appendix B R(Q). This recovers the IMF procedure (Shi et al., 2023;

for the analysis of this example. Peluchetti, 2023) when v = 1. Using the definition of the

sequence (P™),¢n, it is possible to analyse the sequence
(P™)en using the properties of the KL divergence as well as the Pythagorean identities derived in
(Shi et al., 2023; Peluchetti, 2023). We first introduce some assumptions on the Schrodinger Bridge
problem. We recall that the differential entropy of a probability measure 7 is given by

H(r) = — /R log((d/dLeb)(x))dn (z).

if 7 admits a density with respect to the Lebesgue measure and +oco otherwise. Recall that Q is
associated with (1/€By);c[0,1] and assume that Qp = Leb. Let mo, 7 € P(R9) such that

/ l|2||2dm; () < 400, H(m;) < 400,
Rd
for i € {0, 1}. Under these assumptions, we can use the characterisation of the SB as the only path

measure that preserves 7, 1, and is both Markov and in the reciprocal class of Q (see e.g. (Léonard,
2014, Theorem 2.12)). We get the following result.

Theorem 3.1 (Convergence of a-IMF): Let o € (0, 1] and (P™, ﬁ"”)neN defined by (4). Under
mild assumptions, we have that lim,,_, , .o P* = P*, where P* is the solution of the Schrodinger
Bridge problem (2).

3.2 Discretisation and non-parametric loss

We show here that o-IMF is associated with an incremental version of DSBM for a € (0, 1).

T — Tt
1-1¢

Iterative Markovian Fitting. For any v : [0, 1] x R? — R?, we introduce the loss function
2
H dPo,1 (20, 21)dQyo,1 (¢ |z, 21)dE,

1 1
z(U,P)Z/O £t(vt,IP)dt:/0 /(W
(5)

where we recall that Q is induced by (1/B¢)¢[o,1) for some & > 0. This loss was already considered
in (Peluchetti, 2021; Lipman et al., 2023; Liu et al., 2023a; Liu, 2022; Shi et al., 2023). We also
define the path measure IP,, € P(C) associated with

’Ut(ZEt) —

dX; = v (X;)dt 4+ v/edBy, Xo ~ . (6)
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Consider first the sequence (v"),en defined by

" = argmin, £(v, Pyn ). (7

Using Definition 2.2, we have that P n+1 = proj v (projx (P,=)), which corresponds to P in the
IMF sequence. Therefore we have that lim,,_, | o P,» = P* under mild assumptions (Peluchetti,
2023, Theorem 2).

Functional gradient descent. We now introduce a relaxation of (7), where, instead of considering
the argmin, we update the vector field with one gradient step. To define this relaxation, we recall
that for a functional F' : F — R, where F is an appropriate function space, its functional derivative
(Courant and Hilbert, 2008) with reference measure 11 is denoted V, F" and is given for any ¢ € F,
when it exists, by

limy o (F(f +7¢) = F(£)) /v = [(VuF()(2), ¢(x))dp(z).
Initialised with v{(z) = (E@?‘t[Xl | X, = 2] —2)/(1 —t), where P* = (7 ® 71)Q|o,1, We now

introduce a sequence of vector fields (v™),en. This corresponds to training a bridge matching model
(see e.g. Liu et al. (2023a); Albergo et al. (2023)), giving P,,0 = proj M(IF’O). Then for n € N, let

’U;fﬂ—i_l(x) = U?('x) - 6nvu"£t(va]}pv")(x)v (8)

with &, > 0 and u™ € P(C). The parameters (d,,, u"™)nen Will be made explicit in Proposition 3.2.
We emphasize that, in contrast to the IMF procedure, in the online update (8) we do not need to solve
a Markovian projection problem at every step; instead we simply take a gradient step on the loss (5).

Connection with o-IMF. The following proposition shows that (P,»),cn defined by (8) is
associated with a-IMF defined in (4).

Proposition 3.2 (Non-parametric updates are «-IMF): Ler « € (0, 1], (P, I@’”)neN as in (4),

6n = avand p"™ = (1 — &)P"™ 4 aprojp (P™). Then, under mild assumptions, we have Pyn = P"
foralln € N.

Combining Theorem 3.1 to Proposition 3.2, we get that lim,,_, 4 oo P,» = P*, i.e. the non-parametric
procedure converges to the SB.

4 «-Diffusion Schrodinger Bridge Matching

From DSBM to a-DSBM. In Section 3, we introduced o-IMF, a scheme which defines a sequence
of path measures converging to the SB for all « € (0, 1]. For a = 1, this corresponds to the IMF,
whose practical DSBM implementation (Shi et al., 2023) requires repeatedly solving an expensive
minimisation problem (7). In contrast, for « < 1 we are only required to take one (non-parametric)
gradient step to update the vector field, see (8). This suggests the following practical implementation
of a-IMF, called a-DSBM: First, pretrain a bridge matching model so that for ¢ € [0,1] and = € R4,

v (z) = (E]@’?u[xl | Xy = 2] —2)/(1 —t), where P° = (mp ® 71)Qjo,1. Then, perform the

parametric version of the update (8):

— 2
wi — ft dPo,1 (20, 21)dQo,1 (z¢|zo, 21)dt,

9)
where [P is a stop-gradient version of P,s. In Appendix D.2, we give a theoretical justification
for this parametric equivalent of (5) and (8) by showing that, as o — 0, the update on the velocity
fields v’ given by (9) corresponds to a direction of descent for the non-parametric loss (8) on
average. Once again, we emphasize that if we replace the gradient step in (9) with the minimisation
0 + argminyL(6, Pg), we recover DSBM.

Uf(ﬂft)—

1
0+ 9—0&V9L(9,P§); L(@,P) = / /
0 (]Rd)‘s

Bidirectional online procedure. As with DSBM, directly implementing (9) leads to error quickly
accumulating, see Appendix I for details. One way to circumvent this error accumulation is-
sue is to consider a bidirectional procedure, in which we train both a forward and a backward
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model. This is possible because the Markovian projection coincides for forward and back-
ward path measures, see (Shi et al., 2023, Proposition 9). This suggests considering the loss

L, v, P P¢) = fol Li(vy,vs, P2, P)dt, which is an extension of (5), where

T1 — Tt

vile) =

2
’ dP§ 1 (zo, £1)dQyo,1 (w¢|w0, 21) (10)

Li(vy,v5, P> P9 = /
(R4)3

o,
(]Rd)S»

Similarly to (6), we define P, P, associated with (X;);c[0,1) and (Y1 _¢)¢e[o,1) respectively, which
are defined by forward and backward SDEs

(de) de = ’UZ(Xf)dt+\/gdBt, XQ ~ T, (de) de = U:(Yf)dt“r\/gdBf, Yo ~ 7. (11)

2

o — T
' dPB,l(xO»xl)th|o,1(xt|$0,$1)~

Uiy (@) =

Similarly to (8), we define non-parametric updates for any n € N, ¢ € [0, 1] and z € R¢
(W (@), o T @) = (077 (@), 07 (@) = 6 Vjen Lo (077 (2), 07 (2), Py, Pne) (2).

We have the following proposition which ensures our bidirectional procedure is still valid and that
the results of Proposition 3.2 still hold.

Proposition 4.1 (Bidirectional updates): Ler o € (0, 1]. For any n € N, define (P",P"),,en by
(4). Then, under mild assumption and assuming that 6, = a and p™ = (1 — @)P" 4+ aprojr (P"),
we have that for any n € N, Pyn,» = Pyn.. = P™.

In Appendix I, we show that in the Gaussian setting the bidirectional procedure (4.1) does not
accumulate error when the vector field is approximated, while the unidirectional one (8) does.

Vector field parameterisation. Contrary to existing procedures (Shi et al., 2023; Peluchetti, 2023;
Liu, 2022), we do not parameterise v” and v¢ using two separate networks. Instead, we consider an
additional input s € {0, 1} such that vg(1,-) =~ v> and vy (0, -) ~ v¢. This allows us to substantially
reduce the number of parameters in the model. The conditioning on s in the network is detailed in
Appendix K. Before stating our full algorithm in Algorithm 1, we introduce a batched parametric
version of (10). For ease of notation, we write Interp, for the operation corresponding to sampling
from Qy 0,1, i.e.

IDteI‘pt(Xo,Xl,Z) = (1 —t)XO —|—tX1 + E(l —t)tZ (12)
We are now ready to introduce the batched parametric version of (10). For a given batch of inputs X5

and X}B, timesteps t ~ Unif([0, 1])®5, and X; = Interp,(Xg, X1, Z) with Z ~ N(0,1d)®5, we
compute the empirical forward and backward losses as

B
1 L ) ) )
C0;t,X,X;) = 5 § lve (1,¢",X}) — (X] — X)) /(1 — )], (13)
=1

2

B

1 o , o

(0:,X0,X1) = = > Hu@ (0,1 —#1,X7) — (X§ — Xi) /¢
=1

We present the resulting a-DSBM in Algorithm 1. Note that in this algorithm, we maintain an
Exponential Moving Average (EMA) of model parameters, as is common in diffusion models (Nichol
and Dhariwal, 2021). During the finetuning stage, when we generate samples to use as model’s
inputs, we then have a choice of sampling using the EMA or non-EMA parameters. At test time,
we always sample using the EMA parameters, as it is known to improve the visual quality (Song
and Ermon, 2020). In Algorithm 1, we specify o € (0, 1] as a stepsize parameter. In practice, we
use Adam (Kingma and Ba, 2015) for optimization, thus the choice of « is implicit and adaptive
throughout the training. To emphasize the importance of the parameter «, we sweep over its value
with an explicit solver SGD in a toy setting, see Appendix K.2. We refer to Appendix K for more
details on our experimental setup.
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Algorithm 1 a-Diffusion Schrodinger Bridge Matching

1: Input: datasets 7y and 71, entropic regularisation e, number of pretraining and finetuning steps
Npretraining and Nenetuning, batch size B and half batch size b = B /2, EMA decay ~, initial
parameters 6 and initial EMA parameters 6" = 0, o € (0, 1]

2: forn € {1,..., Npretraining } d0

3:  Sample (Xg, X;) ~ (1o ® 71)®5

4:  Sample t ~ Unif([0, 1])®? and Z ~ N(0,1d)®® and compute X; = Interp,(Xo, X1, Z)
5. Update 6 with a gradient step on § [¢> (#1:0, X1V, X}:b) + ¢« (¢p+1:B XEH1B X0T1P)]

6:  Update EMA parameters: 0°'* = y0™* + (1 — ~)0

7: end for

8: forn € {1,..., Nnctuning } do

9:  Sample (Xg, X1) ~ (1o @ m)®?

10:  Sample X, solving forward SDE (11)-(fwd) with vgema (1, ) or vg(1, -) starting from X

11:  Sample X, solving backward SDE (11)-(bwd) with vgeua (0, -) or vy (0, -) starting from X;
12: Sample £ ~ Unif([0,1])®" and Z> ~ A(0,1d)®® and compute X7 = Interp,.(Xo, X1, Z?)
13:  Sample t* ~ Unif([0,1])®" and Z¢ ~ A/(0,1d)#® and compute X¢ = Interp,. (X, X1, Z¢)
14:  Update ¢ with a gradient step on  [(*(t*, X1, X7) + £<(t¢, X, X§)] and stepsize o
15:  Update EMA parameters: ™* = v0™* + (1 — )6

16: end for

—
3

: Output: (0, 0™*) parameters of the finetuned model

5 Related work

Solving Schrodinger Bridge problems. Schrodinger Bridges (Schrodinger, 1932) have been
thoroughly studied through the lens of probability theory (Léonard, 2014) and stochastic control
(Dai Pra, 1991; Chen et al., 2021). They recently found applications in generative modeling and
related fields leveraging recent advances in diffusion models (De Bortoli et al., 2021; Vargas et al.,
2021; Chen et al., 2022). Extensions of these methods to other machine learning problems and
modalities were studied in (Shi et al., 2022; Thornton et al., 2022; Liu et al., 2022; Chen et al., 2023;
Tamir et al., 2023). Shi et al. (2023); Peluchetti (2023) concurrently introduced the DSBM algorithm
which relies on a new procedure called IMF, while the DSB algorithm introduced in (De Bortoli et al.,
2021) is based on the standard Iterative Proportional Fitting (IPF) scheme. Neklyudov et al. (2023a,b);
Liu et al. (2022) generalise DSBM to arbitrary cost functions, albeit at the expense of having to learn
the reciprocal projection which is no longer given by a Brownian bridge. These new methodologies
translate to improved numerics when compared to their IPF counterparts, but they remain reliant on
alternating between the optimisation of two losses. Finally, we note that the Schrodinger Bridge flow
and the a-IMF procedure can be linked to the Sinkhorn flow recently introduced by Karimi et al.
(2024), see Appendix H.1 for a detailed discussion.

Sampling-free methodologies. Sampling-free methodologies have been proposed to solve OT
related objectives. In (Liu et al., 2023a; Somnath et al., 2023; Diefenbacher et al., 2024; Cao et al.,
2024), the authors perform one step of DSBM, i.e. only consider the pretraining stage of our algorithm.
While the obtained bridge might enjoy transport properties, it does not solve an OT problem. In
another line of work, Pooladian et al. (2023); Tong et al. (2024a,b); Eyring et al. (2024) have proposed
simulation-free methods to minimise OT objectives. However, they target not the OT problem, but a
minibatch version of it which coincides with OT only in the limit of infinite batch size, see (Pooladian
et al., 2023, Theorem 4.2). Other sampling-free methods to solve the Schrodinger Bridge problem
include Kim et al. (2024); Gushchin et al. (2024b) both of which rely on adversarial losses to solve
the OT problem. In (De Bortoli et al., 2021; Vargas et al., 2021; Liu et al., 2022; Shi et al., 2023;
Peluchetti, 2023) the adversarial objective is dropped and instead the procedure requires alternating
objectives during training and is not sampling-free. We also highlight the line of work of Korotin
et al. (2024); Gushchin et al. (2024a) in which the Schrodinger Bridge potentials are parameterised
with mixtures of Gaussians, allowing for fast training in small dimensions. Finally, recently Deng
et al. (2024) introduced a variation on Schrédinger Bridge for generative modeling, which while still
not sampling-free, does not require learning a forward process.
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Figure 2: Evolution of the covariance during online and iterative DSBM finetuning for forward and
backward networks. The finetuning starts after 10K steps of training a bridge matching model. For
the iterative case, we alternate between forward and backward updates with varying frequencies,
i.e. changing after 1K, 2.5K and 5K steps. Left: Gaussian with scalar covariance matrix. Right:
Gaussian with full covariance matrix. We compute the normFrob between C, and its estimate using
Bridge Matching (Base), a-DSBM (Online), and DSBM (Iterative with @xK training steps per model
fit)

6 Experiments

In this section, we illustrate the efficiency of a-DSBM on different tasks. In Section 6.1, we compare
«-DSBM to DSBM in a Gaussian setting where the EOT coupling is tractable and show that «-DSBM
recovers the solution faster than DSBM. In Section 6.2, we illustrate the scalability of our method
through a range of unpaired image translation experiments.

6.1 Gaussian case

We compare a-DSBM to DSBM in the Gaussian setting where 79 = N(0, 021d), m; = N (0, 071d)
and Q is associated with (1/eB;)c[o,1) With /€ = 0.5. In this case, the EOT coupling is (0, X,.),
with X, given by

olld o?1d
e (U%Id a%Id) , where o} = (1/2)((o507 +2°)'/% —¢),

with Id being a d x d identity matrix. We consider d = 50, 09 = 07 = 1, resulting in af ~ 0.88. To
showcase the robustness of a-DSBM, we consider the initial coupling P 1, where (X, X1) ~ P 1,
Xo ~ N(0,1d), X; = —X, and let P* = IPo,1Qo,1. In this setting, the base model, i.e. bridge
matching, significantly underestimates the true covariance o2, as shown in Section 6.1. Additionally,
the figure illustrates that online finetuning approaches the true solution faster than the original iterative
DSBM finetuning. For the latter, we can set how often we alternate between updating the forward
and backward networks, and as this frequency increases, the behaviour approaches that of the online
finetuning.

Full covariance Gaussian case. Let 7o = N (1, %0), 71 = N (1, 51) with ¥, = Id + 37, Z;]
for i € {0,1} and Zy, Z; independent d x d matrices with unit Gaussian entries. We also set
o = w1 = 0. We consider the Entropic Optimal Transport (EOT) with regularization o = 0.5 and
d = 3, given by

— _ E0 C*
H - N(,u*vz*)a E* - (CI El) )
with C, = 1[2Y/*D, ;2 — 621d], with D, = (455/25,54/2 + ¢41d)1/2. Let normFrob =
1A — Bll#ro f ||A||Fr0 be the normalized Frobenius distance between matrices A and B. The results

are presented in Section 6.1 and confirm those presented in the original manuscript considering a
diagonal covariance.
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Figure 3: Left: FID and Mean Squared Distance (MSD) on EMNIST to MNIST translation before
and after finetuning with different values of €. Right: AFHQ-64 samples after the finetuning. For
both, we use a bidirectional model with online finetuning. More results are in Appendix K.3 and K 4.

6.2 Image datasets

Similarly to Shi et al. (2023), we apply our method to image translation problems, such as MNIST
digits to EMNIST letters (LeCun and Cortes, 2010; Cohen et al., 2017), Wild to Cat domains from
the Animal Faces-HQ (AFHQ) dataset (Choi et al., 2020), downsampled to 64 x 64 and 256 x 256
resolutions and CelebA 64 x 64.

The whole training procedure can be framed as a two-stage process: first, we train a base model on the
true data samples, performing bridge matching (Peluchetti, 2021; Albergo and Vanden-Eijnden, 2023;
Lipman et al., 2023; Liu et al., 2023a), and then we finetune this model. We compare models that
combine different vector field parameterisations (two networks vs. one bidirectional net), finetuning
methods (iterative vs. online), and sample generation strategies during the finetuning stage.

Following the established practice (Choi et al., 2020), we evaluate our models using FID (Heusel
et al., 2017) for visual quality, and mean squared distance (MSD) or LPIPS (Zhang et al., 2018) for
alignment. It is important to note that for image translation tasks at hand, FID scores are not ideal,
as FID was designed for natural RGB images, which is not the case for MNIST. It is also not well
suited for small sample sizes as it is the case with AFHQ, where the test set in each domain has fewer
than 500 examples. Thus quantitative results in Table 1 should be interpreted cautiously, and we
recommend a visual inspection of samples to complement these quantitative measures, especially for
the AFHQ models. Samples from the models along with the training and evaluation protocols are
given in Appendix K.

Compared to the iterative DSBM, our online finetuning a-DSBM reduces the number of tunable
hyperparameters, i.e. inner and outer iterations, refresh rate and the size of the cache for storing
generated samples. This simplifies implementation and makes the algorithm more practical. The
primary remaining hyperparameter, the variance of a Brownian motion ¢, requires careful tuning as it
influences the trade-off between the visual quality and alignment, as was also observed in Shi et al.
(2023). An appropriate € needs to balance the two: setting € too low results in poor visual quality,
while high values of € cause poorly aligned and oversmoothed samples. Figure 3 illustrates how FID
and MSD metrics vary with € for the case of MNIST. Additionally, it demonstrates the impact of € on
the generated samples for the AFHQ-64 model.

We run a-DSBM on CelebA with image size 64 x 64 with o = 2.0. We do not change the training
hyper-parameters compared to AFHQ. Visual results are reported in Figure 5 and Figure 6. In
Figure 5, we show the influence of ¢ during the pretraining. The visual quality of the transfer is much
lower for 0 = 0 than for 0 = 2.0. The case o = 0 corresponds to the first step of Rectified Flow (i.e.
Flow Matching). Given the poor quality of the samples, we do not perform finetuning with & = 0. In
Figure 6, we compare the visual quality and alignment of DSBM and a-DSBM after 4000 training
steps, corresponding to two outer DSBM iterations. In this case DSBM is trained with a bidirectional
network and both procedures consist of finetuning the pretrained model obtained with o = 2.0. We
note that the alignment is better in the case of a-DSBM.
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EMNIST — MNIST AFHQ-64 Wild — Cat

Method

FID MSD FID LPIPS
DSBM* 10.59 0.375 - -
Pretrained two-networks model 6.02 0.564 25.97 0.589
(a) iterative finetuning 5.25+015  0.345+0001  25.41+084 0.485+0.003
(b) online finetuning 4.28+007  0.368+0001 28.752+1.191  0.487+0.003
(c) online finetuning without EMA  4.23+0.171  0.36140.002 32.665+0.647  0.445+0.002
Pretrained bidirectional model 6.33 0.572 29.44 0.584
(d) online finetuning 4.39+009  0.387+0003 26.579+0434 0.482+0.001

(e) online finetuning without EMA  4.57+017  0.369+0003 30.638+1.023  0.451+0.002

Table 1: Results of image translation between EMNIST and MNIST, and AFHQ 64 x 64 between
Wild and Cat domains. DSBM* results are from Shi et al. (2023). Our reimplementation of DSBM
corresponds to row (a). For MNIST and AFHQ models, we used € = 1 and ¢ = 0.752, respectively.
Each finetuning run was done with 5 random seeds, and we report mean scores * standard deviation.

(a) Cat — Wild (b) Wild — Cat

Figure 4: Online DSBM transfer results on AFHQ 256 x 256 dataset between Cat and Wild domains.
Top row—initial samples, bottom row—transferred samples.

7 Discussion

In this paper we have introduced a-Diffusion Schrodinger Bridge Matching (o-DSBM), a new
methodology to solve Entropic Optimal Transport problems. «-DSBM is an improved version
of DSBM, which does not require training multiple DDM-type models. We have shown that a
non-parametric version of this method recovers the Schrodinger Bridge (SB). In addition, a-DSBM
is easier to implement than existing SB methodologies while exhibiting similar performance. We
illustrated the efficiency of our algorithm on a variety of unpaired transfer tasks.

While a-DSBM solves one of the most critical limitations of DBSM, namely the alternative optimisa-
tion, several issues remain to be addressed in order for the method to scale comparably to generative
DDMs. In particular, the method is not sampling-free, as during training it requires sampling from
the model from the previous iteration to obtain the training data for the current iteration. While it
seems difficult to derive a completely sampling-free method to solve SB problems without resorting
to the Minibatch OT approximation, there is still room for improvement.

s AB OISR el e QO
e ls Nellels eagﬁa@

Figure 5: Translation Female — Male on  Figure 6: Translation Female — Male on

CelebA. Left: pretraining with 0 = 0. Right:  CelebA. Left: output after finetuning with

pretraining with o = 2.0. DSBM. Right: output after a-DSBM finetun-
ing.
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A Appendix organisation

The supplementary material is organised as follows. First in Appendix B, we analyze an Euclidean
counterpart to the a-IMF sequence identified in Section 3 and the associated flow. In Appendix C, we
show that the Markovian projection can be recovered as the parameterisation of the vector field that
minimises the accumulation of errors, extending the results of Chen et al. (2024). Theoretical results
are gathered in Appendix D. In particular in Appendix D.1 we show that the proposed non-parametric
method coincides with the a-IMF and prove the convergence of the a-IMF. In Appendix D.2, we show
the connection between the non-parametric and the parametric updates. In Appendix E, we provide
more background on DSBM and propose an extension of the DSBM methodology. Consistency losses
similar to (Daras et al., 2023b; De Bortoli et al., 2024) are proposed in Appendix F. Model stitching
procedures are described in Appendix G. We comment on extended related work in Appendix H. In
particular we draw connections with Sinkhorn flows (Karimi et al., 2024), Reinforcement Learning
policies, Expectation-Maximisation schemes following (Brekelmans and Neklyudov, 2023) and
comment on finetuning of diffusion models. In Appendix I, we investigate the accumulation of bias
in a Gaussian setting and compare forward-forward and forward-backward methods. In Appendix J,
we derive the preconditioning of loss following the principles of (Karras et al., 2022) in the case of
bridge matching. Additional results and experimental details are presented in Appendix K.

B Euclidean flow and iterative procedure

In this section, we study a simplified counterpart of the Schrodinger flow and of DSBM in a Euclidean
setting. The goal of this section is to draw some conclusions in the Euclidean case which also remain
true empirically when analyzing the Schrodinger Bridge problem.

We consider the set Ay = {(z,y) € R? : y > x} and the set Ay = {(z,y) € R? : y < 0}.

Loosely speaking, one can identify A; with the reciprocal class R(Q) and A2 with the set of

Markov path measures proj . In that case, we have that for any (z,y) € R?, proja, ((z,y)) =

((x +9)/2,(x +y)/2) if (x,y) ¢ As and otherwise, proj,, ((z,y)) = (=, ) In addition, we
p

have that for any (z,y) € R?, proja, ((z,y)) = (,0) if (z,y) ¢ Az and rOJAz((a:,y)) = (z,y)
otherwise. We consider the following flow (x¢, y:)+>0 given by

Or(w¢, yt) = proja, (Proja, (we, yt))) — (T4, yt)-

Let (xo,yo) ¢ A1 and (xo,yo) ¢ As. Denote T the explosion time of (zy, y;), i.e. for any ¢t > T we
have that (z,;) = oo, where R? U {cc} is the one-point compactification of R?. Finally, denote
7 < T such that for any ¢ € [0, 7|, (zt,y:) & A1 and (x¢,y:) & A2. Then, we have

O(we,yr) = (—x4/2,24/2 — yr).

Hence, we have that x; = xzgexp[—t/2] for any ¢ € [0,7] and y: = =xpexp[—t/2] +
(wg exp[—t/2])?(yo — x0)/x3. Therefore, we get that 7 = T = +oc and we have that for any
t>0

xp = x0 exp[—t/2], ye = x4 + 22 (yo — w0) /T2

Hence, ((x+,y¢))t>0 converges exponentially fast to (0, 0) with rate 1/2.

We now investigate the rate of convergence of the alternate projection scheme, i.e. the Euclidean
equivalent of DSBM. We define ((«,, yn))nen such that for any n € N,

(#n+1,Ynt1) = Proja, (Proja, ((zn, yn))) = (zn/2,0).

Hence, we get that x,, = £o2~" and therefore ((z,,, yn))nen converges exponentially fast to (0, 0).
Note that this procedure corresponds to a discretisation of the flow ((x¢, y¢))nen With stepsize o = 1.

More generally, we define for any « € (0, 1], (%, y%))nen such that for any n € N,
(#5415 Yny1) = aproja, (proja, (27, y))) + (1 — a)(@7, ).

Hence, we get that x,, = £o2~" and therefore ((z,,, yn))nen converges exponentially fast to (0, 0).
It can be shown that for any n € N, z& = z§(1 — «/2)™ and in addition, we have that

yo=(1-a)"y —|—cwcoz F1—a/2)"
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Therefore, we get that
Yn=(1—-0a)"y5 +2(1 = (1 —a/(2—a))")(1 — a/2)"zj.

We now analyse the complexity of the different discretisations assuming that the cost of discretising
the flow with stepsize & € (0,1] is C*. In that case in order to reach the threshold value ¢,
ie. x| < e, we getatotal cost C2 = O(log(1/e)C*/log(1/(1 — «/2))), where we have neglected
the terms that do not depend on log(1/¢). Hence, if C'* is constant then the choice @ = 1 is the best
possible one in the range o € (0, 1]. Otherwise, one has to consider the ratio C*/log(1/(1 — a/2)),
where the lower is the better. The flow procedure and the iterative based one are presented in Figure 1.

Based on this simplified Euclidean experiment, we draw some conclusions which also remain true in
our setting, see Appendix K for more experimental details. First, we have that different discretisations
of the flow yield different convergence rates. Large stepsizes incur faster convergence. This suggests
to choose @ = 1. However, if the cost of choosing o = 1 is too high then one might turn to alternative
schemes with o € (0, 1) assuming that C“ < C' in that case. To draw a parallel with our setting,
in the case of DSBM (case o = 1), we need to solve the projection subproblem at each step which
incurs a great cost. On the other hand, one step of the online algorithm only requires sampling once
from the model and performing one gradient step.

C Minimisation of errors and Markovian projection

For a given non-Markovian (stochastic) interpolant process (see definition below), there exist an
infinite number of Markov processes admitting the same marginals (Albergo and Vanden-Eijnden,
2023). In this section, when it is well-defined, we show that the Markovian projection corresponds to
the process which minimises an error measure (defined further) in case one has access to the oracle
of xy — E[Xl | X; = LE’t].

Stochastic Interpolant. We first start by recalling the framework of Albergo and Vanden-Eijnden
(2023). Consider a coupling IT between 7y and 71, one builds a (stochastic) flow between 7y and 7y
using the following interpolation procedure

Xt = Interpt(XO, )(17 Z) = OétX() + ﬂtX1 + ’)/tZ, (Xo, Xl) ~ H, Z ~ N(O, Id),

where o = By = 70 = 71 = 0 and ap = 1 = 1. This defines a non-Markovian process. We denote
by m; the induced unconditional distribution of X;. Let us now consider the Markov process (X¢)
given by

dX; =E [tho + B Xy + (3 — e2/2v))Z | Xy = X5 | + £,dBy, X§ ~ 7o, (14)

where (B¢ )se[o,1 is a d-dimensional Brownian motion and ¢; is an additional hyperparameter. It can
then be shown that (X§).c[o,1] satisfies that X§ ~ 7; for all £ € [0, 1]; see e.g. (Albergo et al., 2023,
Theorem 2.8, Corollary 2.10). Hence (X§);c[o,1] is a (stochastic) flow mapping 7y onto 7;. Note
that (X§ )te[O,l] in (14) can be rewritten as

dX§ = (/o)X +E [(ﬁt — Bri /)Xy + (3 — vedue/ar — 7/ (20))Z | X = Xf} +edBy.
(15)
In the specific case where oy = 1 —t, 8; = t and v; = 0g+/t(1 — t) then (15) becomes

X; = Interp,(Xo, X1,Z) = (1 — )Xo + tX;1 + 0o/ t(1 — t)Z.

This corresponds to the marginal distribution of the bridge associated with (00B¢)sc[o,17- In this case,
(15) becomes

dXs = E[(X; — X,)/(1 — t)|X; = X5]dt + V200dB,

for 7 = (2v¢) (% — Vet /) = 203. In Proposition C.1, we will show that this choice of (e¢);[0,1]
is optimal in some sense.

Consider (Xf)te[o,l] given by

dX5 = (6 /o) X5+ (B —Brcue /o) E[Xy | Xy = X5+ (e —vece/au—eF [ (27)) Z(t, X5)+erdBy,
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with X5 ~ 7 and where Z(¢, x) is an approximation of E[Z|X,; = x]. We have the following result.

Proposition C.1 (Optimality and stochastic interpolant): Denote P¢, respectively P the path
measures associated with (X§);c(0,1) and (X;)icjo,1) respectively. Consider ((e) = KL(P¢|P¢).
Let ¢* = argmin_¢(¢). Then we have

(e1)* = 27 — 2770/ .
In particular, if oy = t, B; = 1 — t and v; = 00+/t(1 — t), then e, = \/20¢. The value (eF)tef0,1]

corresponds to Markovian projection when it is well defined.
Proof. We have that for any
1
A 1. .
KL(P) = [ 55 = e/ — /(200 PEIA AL
0 &t

where A, = ||Z(t,X5) — E[Z | X, = X5]||? and the expectation is w.r.t. PS. We have that
KL(PP¢|P?) = 0 if ¢ = &*, which concludes the proof. O

Proposition C.1 is related to (Chen et al., 2024, Section 3.4). Therein it is noticed that, in the case
of Augmented Bridge matching (De Bortoli et al., 2023), the choice of ¢, does not affect the joint
distribution of (X§, X5). The authors then select (&) so as to minimise an approximation error. They
show that, in that case, they recover the Follmer process.

We now show that Proposition C.1 can be further strengthened to establish that €* is also the optimal
value if we interpolate between 7 and 7y, or mg and 7, for any s € [0, 1] and 7 the distribution
of X;. Consider in this context for any s,¢ € [0,1] with t > s, v/vs > a4 > «, the following
interpolation model.

Xy = (ot/0s)Xs + (B — ufs /)Xy + /77 — afv2/alZ, (16)

where X ~ 75, X1 ~ w1 and Z ~ N(0,1d). Assume that oy = 1—¢, 8; = tand 1 = 0g+/t(1 — t)
for any ¢ € [0, 1] then (16) corresponds to the Brownian bridge associated with (UoBt)te[OJ] with
endpoints X at time s and X at time 1. We have the following proposition.

Proposition C.2 (Stochastic interpolant with intermediate time points): Define (X3 ,)ic|s,1]
given by

dXS | = (4y/on) X, + E [(Bt — Beisfar) X1 | Xy = x;s} a17)
+E [(%,s — Ve,s0 [0ty — Ef,s/@%,s))z | X; = X;S} +e1,sdBy, XS~ s,

with s = \/7F — aiv2/a2. Then for any t € [s, 1], X§ , and X, defined by (16) have the same
distribution.
Proof. Welet s € [0,1] and Xy, X, € R% From (16), we have directly that for any ¢ € [s, 1]
dXt = [(dt/as)Xs + (ﬁt - dtﬁs/as)xl + ’yt,sz}dtv
where Z ~ N(0,1d). In addition, rearranging (16), we also have that
X5 = (as/at)Xt - (O‘sﬁt/at - 5S)X1 - '-Yt,s(as/at)z-
Hence, by combining these two expressions, we get that
dX; = [(qe /o)X + (B — quBe/as) X + (32,8 — V2,5 (Gt /xy) ) Z]dt.
It follows that (X¢ s )¢cs,1) given by
dXy s = (du/o) Xy s + (/Bt — Bibu/a)E[Xy | Xy = Xy 5]
+ (Fes — Ye,s0u/a)E[Z | Xy = Xy 5], X5 ~ T,

is such that for any ¢ € [s, 1] the same distribution as X; defined by (16). Then, we conclude similarly
to (Albergo et al., 2023, Theorem 2.8, Corollary 2.10). O
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We now consider the following approximate version of (17)
A5, = (/@)X + (B — B /an)E [Xo | X, = Xi
+ (s = Vsl /= €10/ (27,5))Z(6, X ) +ersdBy, XS, ~
Similarly to Proposition C.1 we consider the best choice of € to minimise the interpolation cost.

Proposition C.3 (Optimality and stochastic interpolant): Let s € [0, 1]. Denote P=, respectively
IP¢, the path measure associated with (X3 ,):c[o,1), respectively (X s)icjo,1). Consider £(c) =
KL(P¢|P?). Let e* = argmin_{(). Then we have

(e0)? = 27 — 2720/ .

In particular, €* does not depend on s € [0, 1] and for every s, s3 € [0, 1] with s; < sa, we have
that (X5 5, )ie[ss,1) and (X5 g, )ee(s,,1) cOincide.

1,82

Proof. Similarly to Proposition C.1, we get first that for any s, ¢ € [0, 1] with s < ¢

€5 s = 2Vus,s — 277 G/ 0. (18)
Second, we have that for any s,¢ € [0,1] with s < ¢
0,575 = Vs = 200 — 20; . (19)
Third, we have that
’YtQ,SO'ét/Oét = ’det/at - dtat752/06§~ (20)
Combining (18), (19) and (20), we can conclude. L]

D Theoretical results

In this section, we prove the main theoretical results of the paper. In Appendix D.1, we first prove
the convergence of the a-IMF sequence, i.e. we prove Theorem 3.1. Second, we show that the
non-parametric updates (8) correspond to the a-IMF sequence, i.e. we prove Proposition 3.2. In
Appendix D.2, we link the non-parametric updates to the parametric updates.

D.1 Non-parametric sequence and convergence

Let Q € P(C) be associated with (\/eB¢)¢c[o,1]» Wwhere (B¢)¢c[o,1] is a d-dimensional Brownian
motion and £ > 0. In this section, we abuse notation and denote P(C) the set of path measures which
are not necessarily probability path measures. In particular, we will consider Q € P(C) associated
with (1/eB¢)¢ejo,1) With Qg = Leb. In that case, the Kullback-Leibler divergence is still well-defined
and we refer to (Léonard, 2014) for more details. We recall that we have defined (P, I@’”)neN for
any n € Nand a € (0,1] by
P" = proj, (P"), P = (1—a)P" + aprojg (proju (B"))-

In addition, for any n € N, ¢ € [0,1) and 2 € R? we have defined

v (@) = 0 () = 8V Lo (0] P ) (2),

where
1 T, — a2
Li(vg, P) = 5/ vg () — 1 I dPo,1 (o, 21)dQypo,1 (2|20, 21) (21)
(R4)3 —t
1 Tl — Ty H2 .
— — d Py ;.
24@3%@0 T || dproir (P

We define (P,» ), en associated with (27), where for any suitable vector field v, P, is associated with

dX; = v (X;)dt 4 v/edBy,
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where (By);c[0,1] is a d-dimensional Brownian motion.

In order to rigorously prove Proposition D.1 detailed further, we introduce P (C), such that P € P5(C)
if P € P(C) and for

| Aol + o1 |}, (o, 1) < +oc.
(Rd)?
Note that if P € P5(C) then we have that for any ¢ € [0, 1]
/ ||2¢||2dprojg (P); < +oc.
Rd
In addition, we recall that ¢ € L2(p) for p € P(RY) if ¢ : R? — R? and

[ 1ot Pduta) < +oc.
R4

Finally, we define
A2 ={(¢,P) : P€P2(C), ¢ € L*(P)}.
Then for any ¢ € [0,1), we define £; : Az — R given for any (v, P) € Az by (21).
Proposition D.1 (Non-parametric updates are o-IMF): Ler o € (0,1], (P, P"),.c as in (4),

0n = aand p™ = (1 — )P + aprojg (P"). Assume that for any n € N, Pyn is well-defined.
Then, for any n € N, Pyn = P".

Proof. First, we have that for any t € [0,1), v,IP € Ay and ¢ € L?(PP;) we have

Li(ve + ¢, P) = Li(vg,P) + 5/( . (p(xt), ve(xt) — B=F+)dPo 1 (w0, 21)dQy0,1 (¢] 0, 1)
R 3

+ (€2/2)/ l|¢(ze)[|?dPo,1 (w0, 21)dQy 0,1 (¢|0, 21)
(R%)3
— Lo )+ [ (ola). e

(Re)2
_ (/}Rd z1dprojg (P)y ¢ (z1]2e) — m)/(l — t))dprojx (P);(z¢)
/2 [ I6wlPproj (P

Hence, we have that

ViuLi(ve, o) (1) = (01(24) = (Eproj )X | Xi = 4] — 24) /(1 = 1))(dprojg (Py)e/dpe ) (1)

(22)
Assume that for some n € N we have that for any ¢ € [0,1) and z; € R%, we have vf(z;) =
(Epi[X1 | Xy = 2¢] — 2¢) /(1 — t). We are going to show that for any ¢ € [0,1) and z; € R?, we
have v}t (2) = (Epnsr [X1 | Xy = 4] — 2¢) /(1 —t). Forany ¢ € [0,1) and 2, € R, we denote

Of (1) = dn(dprojg (P"):/dpi’) (1)

Since we have that 8, = a and " = (1 — a)P" + aproj (P"), we obtain for any ¢ € [0,1] and
xs € R?

61! (x4) = a(dprojr (P")/d((1 — )Py + aprojg (B"))(z:), (23)
so that

1—0"(z) = (1 —a)(dP?/d((1 — )P + aprojr (P™)¢) (x). (24)
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Therefore, combining (8) with (23), (24), (22), we get that for any ¢ € [0,1) and x; € R4
v (@) = ( ( 1)) ()
(EpI‘OJR Pm) Xl | Xt - xt] - xt) /(1 - t)

=( ( 1) (B [Xy | Xy = 2] — ) /(1 - 1)
+ 67 (1) (Eproj, () [ X1 | Xy = @] — @) /(1 — 1)

1)) (/ 1B, (21]2,) — xt) /(1 —1)

(/ r1dprojg (P™) 1 (z1]2¢) — 2Et) /(1 —1)
= /Rd (21 = 20) /(1= )A[(1 = & ()P, + 57 (20)projr (B™)1js] (1]
= /Rd 21d[(1 — )P + aprojr (P™)]1je(21]2:).

Hence, we have that for any t € [0,1) and z; € R%, 0™ (24) = (B [Xo | Xe = 2] —24) /(1 —
t). Since, forany ¢t € [0,1) and z; € R%, v) () = (Epo[Xy | Xy = 2] — 24/ (1 — t) by definition,
we get that forany n € N, t € [0,1) and z; € R, v} (2;) = (Epn [X1 | Xe = 2] — ) /(1 — 1),
Using, Definition 2.2, we get that P,» = proj (]f”"), which concludes the proof. O

Before stating our convergence theorem, we show the following result which is a direct consequence
of (Léonard, 2014, Theorem 2.12) and (LLéonard et al., 2014, Theorem 2.14). We recall that the
differential entropy of a probability measure 7 is given by

H(r) = — / log((dr/dLeb) (z))dr (z),
Rd
if 7 admits a density with respect to the Lebesgue measure and 4-co otherwise.

Lemma D.2 (Characterisation of Schrodinger Bridge): Recall that Q is associated with
(VeBt)ie[o,1) and assume that Qo = Leb. Let mo,m € P(RY) such that

/ l|z||2dm; () < +o0, H(m;) < 400,
Rd

fori €{0,1}. Let P* such that P* is Markov, P* € R(Q), P§ = mo and P} = 1. Then P* is the
Schrodinger Bridge, i.e. the unique solution to (2).

Proof. First, we have that Qg ; is equivalent to Leb ® Leb. Indeed, we have that for any x¢,z, € R¢

(dQo,1/d(Leb ® Leb))(xq, 1) = (2me) ™42 exp|—||zo — 21 |?/(2¢)).
Similarly, we have that for any ¢ € (0,1) and z; € R, Qg 1/¢(-|z;) is equivalent to Leb ® Leb.
Indeed, we have that for any ¢ € (0,1) and zg, 2;, z; € R?
(dQo,11¢(+|w¢)/d(Leb ® Leb))(zo, 71) = (27T€t)_d/2 exp[—||zo — xtHQ/(Zet)]
x (2me(1 — 1)~ ¥2 expl~||lz, — 21]|?/(26(1 — 1))].
Hence, for any ¢ € (0,1) and z; € R%, Qg 1(|¢) is equivalent to Qg 1. Since P* is Markov and

P* € R(Q) we get that there exist ¢f and ¢} which are Lebesgue measurable such that for any
w € C we have that

(dP*/dQ)(w) = wp(wo)ei(wr)- (25)

Second we verify that the conditions (i)-(vii) of (Léonard, 2014, Theorem 2.12) are satisfied. First,
Q is Markov and hence (i) is satisfied. Then, (ii) is satisfied since for any ¢ € (0,1) and z; € R%,
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@071|t(~|xt) is equivalent to Qg ;. We have that Qy = Q; = Leb and (iii) is satisfied. We have that
for any x¢, z; € R?
(dQo,1/d(Leb @ Leb))(wo, 1) = (2m) =42 exp[—||zo — z1]|*/(2¢)]
> (2me) =2 exp[—|lo ||/ — [|=1]1* /e]-
Hence, (iv) is satisfied and we let A : R? — R be given for any x € R? by A(x) = ||z||*/e. In
addition, we have that for any zg, z; € R¢

. el = P/ea0n o, 1) < o0
Rd)2

Hence, (v) is satisfied and we let B : RY — R, given for any 2 € R? by B(z) = |z|*/e. By
assumption (vi) and (vii) are satisfied. We conclude the proof upon using (Léonard, 2014, Theorem
2.12-(b)) and (25). O

We are now ready to state our main convergence result.

Proposition D.3 (Convergence of «-IMF): Let o € (0, 1] and (P, I@’”)neN defined by (4). Under
mild assumptions, we have that lim,, _, { o P"* = P*, where P* is the solution of the Schrodinger
Bridge problem (2).

Proof. Using the convexity of the Kullback-Leibler divergence with respect to its first argument
(see e.g. (Dupuis and Ellis, 2011)), the data processing inequality (see e.g. (Ambrosio et al., 2008,
Lemma 9.4.5)), the fact that the Schrodinger Bridge is Markov and in the reciprocal class of Q (see
e.g. (Léonard, 2014, Theorem 2.12) and (Léonard et al., 2014, Theorem 3.2)), and the Pythagorean
theorem for the Markovian projection (Shi et al., 2023, Lemma 6), we have that for any n € N

KL(E"[P*) = KL((1 - @)™ + aprojg (proja (B™))[P*)

< (1 — a)KL(P"[P*) + aKL(projg (proj v, (")) [P*)

< (1 — a)KL(P"[P*) + aKL(proj v, (P")o,1 P51 )

< (1 = a)KL(B"|P*) + aKL(proj  (P")|P*)

< (1 = a)KL(P"[P*) + aKL(P" [P*) — aKL(B"|proj , (B")).  (26)

Therefore, we get that
aKL(P"|proj . (P")) < KL(P"|P*) — KL(P"*+!|P*).
Hence, it follows that
> KL(P"|proj  (P")) < 2KL(P°|P*) < +o0.
neN
So we obtain lim,, o KL(P"[proj,,(P?)) = 0. In addition, using (26) we have that
KL(P"|P*) < KL(P°|P*) < +oc for all n € N. Using (Shi et al., 2023, Lemma 6), we also
get that KL (proj v, (P")|P*) < KL(IP’OHP’*) < 400 for any n € N. Hence both the sequences
(P")en and (P") ey = (prOJM(P"))neN are relatively compact in P(C). Let P € P(C) be an
adherent point to the sequence (]P’")neN and ¢ : N — Nincreasing such that lim,,, 4 o Pe(n) = P
Similarly, let ¢ : N — N increasing such that (¢(n))nen is a subsequence of (¢(n))nen such that
lim,, s 4 o0 proj o (P") = P, with P’ and adherent point to the sequence (proj v, (P")),en. Using
the lower semi-continuity of the Kullback-Leibler divergence in both arguments (Dupuis and Ellis,
2011), we get that
KL(P[P') < lim JiranL(If”¢(”)|pr0j Mm(PP)y =0,

Since the set of Markov measures and the set of reciprocal measures w.r.t. Q are both closed, we have
that P is Markov and in the reciprocal class of Q. Since we also have that Py = 7 and P, = 71, we
get that P = P* using Appendix D.1. Since every adherent point of (IP’”)neN is P*, we have that
lim,, s oo P" = P*. Similarly, using that lim,, , oo KL(P"|proj v, (P")) = 0 and again the lower
semi-continuity of the Kullback—Leibler divergence in both arguments, we get that every adherent
point of (proj M(P"))neN is P*. Hence, we have that lim,, -, P" = P*, which concludes the
proof. O
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D.2 From parametric to non-parametric.

In this section, we show that the parametric updates considered in (9) are a preconditioned version of
the non-parametric updates considered in (8). We first recall the non-parametric loss

1 1 1
ﬁ('[},P) = / ,Ct(’l)h]P))dt = 5/ /
0 0 (R%)2

and the parametric loss

1 1
S 2 /0 /Rdled

The non-parametric sequence (v™),cn is given by (27), i.e. we have for any n € N, ¢ € [0, 1] and
r € R?

1 —
1—

(]P’)t,l(xh 1’1)dt

(o (.’bt) —

1 — T ||? .
! tH dprojg q) (P)e,1 (2, z1)dt.

’Uf(fft)* 1—1¢

v (@) = v (2) = 0V Lo(v7', Por) (). 27
Similarly the sequence of parametric updates is given for any n € N, ¢ € [0,1] and € R? by
Opsr = On — aVoL(6,,P7).
We recall that P is a stop gradient version of IP 5,. We are going to show that on average the
parametric algorithm yields a direction of descent for the non-parametric loss. We assume that the set
of parameters © is an open subset of R for some p € N. For any ¢ € [0, 1] and = € RY we assume

that @ — v?(z) is twice continuously differentiable and denote Dyv? () € R¥*P its Jacobian and
D2 (z) its Hessian. For any 0 € ©, we denote

hy = VoL(6,P?).

We show the following result.

Proposition D.4 (Velocity field parametric update): Assume that there exists C > 0 such that
forany 6 € © and x € R?¢

1
/ (1 — s)DZve=2% (1) (hg, hy)ds < C, (28)
0

where hy = VL (0,P?). We have that for anyn € N, t € [0,1) and & € R?

o (@) = v (@
— aDguf" / / Dy (&) TV n L£s(07, Pyon ) (&)du? (&)ds + o(a),
Rd
where " = (1 — a)P™ 4+ aP0,.
Proof. First, we have that for any . € P(C)

VoL(0 / /Rd Dov? (z) T (v () — (21 — 2s) /(1 — s))dprojR(]P’é)s’l(xs,g;l)ds‘

Therefore, using (22), we get that

VoL (6 // Dyv? () Tvﬂﬁs(vf,]P’g)(xs)d/is(xs)ds.
R4

Let 6 € © and denote ¢’ = 6 — aVyL(6, P?). Using a Taylor expansion, we get that for any 6 € ©,
we have that

1
(1) = 0 (x) — aDgv? (x v (x)T Sve,éxs o(xs)ds
(@) = of(@) = Dol @) [ [ Do) TOLL 08B )i )

+a2/0 (1 — $)D20=% () (g, ho)ds.
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Since the functional gradient is not applied on the second coordinate, we can drop the stop gradient
operator and therefore we have for any § € ©

1
vf/(az) = vf(x) - angf(x)/ / ngg(ms)—rv#ﬁs(vf,}P’ve)(xs)dus(xs)ds
0o Jra

1
+a? / (1 — $)D20"=" () (g, hg)ds.
0

Combining this result with (28), we conclude the proof.

The corresponding update on the velocity field is given for any n € N, ¢ € [0, 1] and = € R? by

1
4" (z) = —aDgul" (z) / / Dol () TV i L (07", Byon ) () dpi? (3) + o(a).
o Jrd
We immediately have the following corollary.

Proposition D.5 (Parametric direction of descent): For any n € N, if

1
| [ Do) V£ 6%, o) @) @) 0,
0o JRrd

then we have

1
i [ [ (V0 Li(0" B o), )il 2) < 0.
0 R4

a—0

E Background material on DSBM and extensions

In this section we recall some basics on Markovian and reciprocal projections in Appendix E.1. We
explain the link between the concept of iterative refinement and Schrodinger Bridges in Appendix E.2.
Then, we briefly present Diffusion Schrodinger Bridge Matching (DSBM) (Shi et al., 2023) in
Appendix E.3 and propose some new extensions in Appendix E.4.

E.1 Markov and reciprocal projections in practice

In this section, we recall the definition of the reciprocal and Markov projection. We provide more
details on how these different projections can be performed and illustrate them on simple examples.

Markov projection. First, we recall the definition of the Markovian projection.

Definition E.1 (Markov projection): Assume that Q is induced by (\/eBy);c0,1] for € > 0. Then,
when it is well-defined, for any P € R(Q), the Markovian projection M = proj v, (P) € M is the
path measure induced by the diffusion

dX: = ’U:(X:)dt—f—\/gdBt, ’U:(l‘t) = (EPut [X]_ | Xt = .’Et] — J}t) /(1 —t), XS " ]P)().

In Figure 7 and Figure 8, we illustrate the effect of the Markovian projection, following the example
of (Liu, 2022). We consider two distributions g and 7y such that

my = SN2, 20, 1d) + N[22, 1), = N2, 2], 1) + LN ([2,2) 1),

In Figure 7, we display samples from the distributions 7 and 7 as well as trajectories from the
path measure P = (7 ® 7T1)Q‘071. Practically, this means that we sample Xy ~ 7y and X; ~ 73
independently and then consider a Brownian bridge between X and X ;. The SDE associated with
the Brownian bridge with scale ¢ > 0 is given for any ¢ € [0, 1] by

dX; = (X1 — Xy)/(1 — t)dt + /zdB;. (29)
Note that the measure P = (7 ® 71)Q)g 1 is in the reciprocal class, i.e. P € R(Q).
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2 A 0 1 2

Figure 7: Samples from the original distributions 7 (left) and 71 (right) are shown in red, while
sample paths from P = (7 ® 71)Q)o,; are shown in blue.

Next in Figure 8, we display samples from the distributions 7y and 7; as well as trajectories from
the path measure P* = proj,,(P). Note that in Figure 8, contrary to Figure 7, we observe less
crossings between the trajectories. Indeed in the limit case where € — 0 the Markov measures P* is
an ODE with regular coefficients and therefore admits a unique solution for every starting point in
the space so no crossing is possible. In particular, note that most of the trajectories starting from the
upper-left Gaussian end at the upper-right Gaussian. Similarly, most of the trajectories starting from
the lower-left Gaussian end at the lower-right Gaussian.

&

-1

(o)

Figure 8: Samples from the original distributions are shown in red, while sample paths from
M = proj v, (P) are shown in blue.

In practice, computing the Markov projection involves finding the optimal drift v}. This optimal drift
is the minimizer of a regression problem, see (Shi et al., 2023) for more details. Hence, computing
the Markovian projection requires training a neural network to define a vector field.

Reciprocal projection. First, we recall the definition the reciprocal projection.

Definition E.2 (Reciprocal projection): P € P(C) is in the reciprocal class R(Q) of Q if P =
IPo,1Qjo,1. We define the reciprocal projection of P € P(C) as P* = Projr(g)(P) = Po,1Qo,1- We
will write projy instead of projr ) to simplify notation.

To sample from P* = proj (P), we only need to sample (X, X1) ~ Pg 1 and then to sample from
the Brownian bridge conditioned on (Xg, X;). This means that in order to sample X} ~ P}, we
only need to sample (X, X;) ~ Pg ; and then compute

X, = (1—t)Xo +tX, + /2t(1 - )Z, (30)
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with Z ~ N(0,1d). In particular, sampling from P* = proj (P) does not require training any neural
network. However, in practice, in order to obtain samples (Xg, X;) ~ IP, we have that I is associated
with an SDE and therefore obtaining (X, X;) requires unrolling the SDE associated with P. In
Algorithm 1, the measure P is associated with an SDE with parametric drift v?.

In Figure 9, we continue our study of the example of (Liu, 2022) that we used to explain the concept
of Markovian projection. We consider the path measure M obtained as the Markov projection of
P = (mo ® 71)Q|o,1. In Figure 9, we display samples from the distributions 7y and 7 as well as
trajectories from the path measure P* = Mg 1Q)o ;. In order to sample from P* we first sample
(X0, X1) ~ Mp,1. This involves unrolling the SDE associated with M. Once we have access to
samples (Xg, X1 ), we draw trajectories from the Brownian bridge following the SDE (29). We can
also sample from any time ¢ without having to unroll the SDE (29) by simply sampling from (30).
This is what is done in Algorithm 1.

Data

-1

-2

2 1 o 1 2

Figure 9: Samples from the original distributions are shown in red, while sample paths from
P* = projg (M) are shown in blue.

E.2 TIterative refinement and Schriodinger Bridge

The Schrodinger Bridge problem (2) can be solved leveraging techniques from diffusion models and
bridge matching. De Bortoli et al. (2021); Vargas et al. (2021) consider an alternating projection
algorithm, corresponding to a dynamic version of the celebrated Sinkhorn algorithm. Peluchetti
(2023); Shi et al. (2023) introduce the Iterative Markovian Fitting procedure which corresponds to
perform an alternating projection algorithm on the class of Markov processes and the reciprocal class
of the Brownian motion. It can be shown that the solution of this iterative algorithm converges to the
Schrodinger Bridge under mild assumptions, see (Peluchetti, 2023; Shi et al., 2023). We highlight that
in the case where ¢ — 0 then DSBM is equivalent to the Rectified Flow algorithm (Liu et al., 2023b).
One of the main limitation of those previously introduced procedures which provably converge to
the solution of the Schrédinger Bridge problem is that they rely on these expensive iterative solvers
and requires to consider two networks, one parameterising the forward process my — m; and one
parameterising the backward m; — 7.

E.3 Diffusion Schrodinger Bridge Matching

Diffusion Schrodinger Bridge Matching corresponds to the practical implementation of the Iterative
Markovian Fitting procedure proposed in Shi et al. (2023); Peluchetti (2023). The IMF procedure
alternates between projecting on the Markov class M and the reciprocal class Rg. In what follows,
we denote M" T = P27+ ¢ M and 1" = P?" € R(Q). We also recall that Q is a (rescaled)
Brownian motion associated with (00B¢).c[0,1] and that therefore sampling from Qg 1 (-0, 1)
corresponds to sampling from

dX; = (1‘1 — Xt)/(l — t)dt + 0pdBy, Xy = xp.

We recall that the main computational bottleneck of the DSBM lies in the approximation of the
Markovian projection. Indeed, using (Shi et al., 2023, Definition 1, Proposition 2), we have that
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M* = proj,,(II) is associated with the process
dX; = (En[X; | X¢] — X3)/(1 — t)dt + 09dB, X ~ 7.
We also have using (Shi et al., 2023, Proposition 2) that M* can be approximated using M?" given by
dX; = v« (t, Xy)dt + 0odBy, X ~ T, (31

1
" = argmingeo [ B, (11 = X0)/(1 - 1) = uo(t, X0) P, (2)
0

where {vg : 6 € ©} is a parametric family of functions, usually given by a neural network.

Hence, since we can approximate projz q) (M) and proj ,,(II) we can approximate the IMF proce-
dure. This is the DSBM algorithm introduced in Shi et al. (2023); Peluchetti (2023). We describe the
first few iterations. Let IT° = II ; Q|o,; where ITJ = 7o, IIY = 7. Learn M ~ proj ,(I1°) given
by (31) with vy given by (32). Next, sample from IT' = projp q)(M") = Mg ;Q|o,1 by sampling
from M}),l and reconstructing the bridge Q|o,;. Upon iterating the previous procedure, we obtain

a sequence (11", M"*1), cn. To mitigate the bias accumulation problem caused by approximating
only the forward process, we alternate between a forward Markovian projection and a backward
Markovian projection. We give more details on the advantage of using a forward-backward parame-
terisation instead of a forward-forward in Appendix I. This procedure is valid using (Shi et al., 2023,
Proposition 9). The optimal backward process is approximated with

dYt = Vg~ (1 — t,Yt)dt + O'()dBt, Y() ~ T, (33)

1
o* = argmin¢€¢,/ Em,, [[|(Xo — X¢)/t — v¢(t,Xt)||2]dt. (34)
0

We recall the full DSBM algorithm in Algorithm 2.

Algorithm 2 Diffusion Schrodinger Bridge Matching

1: Input: Joint distribution H8,1, tractable bridge Q)o,;, number of outer iterations N € N.
2: Let In° = H871Q|0’1.
3: forn e {0,...,N —1} do
4:  Learn vy« using (34) with IT = II*".
Let M2"*! be given by (33).
Let H27L+1 = M(z)jl{FlQm_’l.
Learn vg~ using (5) with II = I127+1,
Let M?"*2 be given by (31).
9: Let H2n+2 = ngll+2@|0’1.
10: end for
11: Output: vg«, vg=

E.4 A Reflection-projection extension

First, we consider a reflection-projection method similar to the one investigated in Bauschke and
Kruk (2004). We recall that the DSBM algorithm is associated with a sequence (IP"*),,cn such that
forany n € N

]P;n—i-l/Q — projM(IE””)7 ]P’"+1 — prOJR(Q) (Pn-l—l/Q).

In a reflection-projection scheme, one of the projection is replaced by a reflection. As noted in
Bauschke and Kruk (2004), this can yield faster convergence rates in practice. We consider the
sequence (P™),en such that for any n € N

P2 = proj v (P™), P! = projg g (2P /2 — P"). (35)

In what follows, we make the assumption that 2P"*1/2 — P" is a probability measure, even though it
is not clear if this path measure is non-negative. However, even by making this strong assumption,
we show that we can recover DSBM in Algorithm 4. By considering a relaxation of the reflection-
projection scheme.
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First, note that for any n € N, ]P"% is Markov, see De Bortoli et al. (2023) for instance. Hence, we

assume that P™ is associated with

dXy = UZO(Xtv Xo)dt + oodBy, Xy ~ mg. (36)
Estimating P" .  First, we compute v;'¢ ! assuming that we can sample from P and P"*1/2,

Since P"*! is in the reciprocal class, we have that P+l ig associated with

AX; = (Egpss [Xa | Xe, Xo] = X0)/(1 = 1) + 00dBy.

We refer to De Bortoli et al. (2023) for a proof of this fact. Hence, using (35), we have that

1
WP = argmin, / / o0t 21 20) — (1 — 0/ (1 — 1) PABEEY (2, 21, 20)
0 R4 xR4 x R4
1
= argminv2/ / llve,0(t, e, x0) — (21 — ) /(1 — t)||2dng1/2th‘0’1(xt|xo, x1)
0 R4 xRd x R4

1
- / / o ool 0) = (o1 = /(1 = O4BE1 0@ a1k, 0.
X X
(37)

Next, we turn to the estimation of P +3/2,

Estimating P7+3/2, Next, we assume that for anyn € N, P7+1/2 ig associated with
dX? = U?(Xt)dt + JodBt, XO ~ TQ.

Using (36), we have that vf“ is given by

1
o+ — argmin, / / lon(ts ) — 02 (1 0, 0) | PAPEH (2o, 21).
0 R4 xRd

We note also that using (Shi et al., 2023, Proposition 2) and the fact P" is in the reciprocal class of Q,
we also have that

1
op* = argmin,? / / loe(t,20) — (1 — 20) /(1 — £)|PABL T 2AQy 0. (4]0, 1)
0 R4 xR2 xRd

1
[ Tt = 1= )1 = PR Qs arloo. ).
X X
(38)
n+1 n+1

Hence, assuming that we can sample from P" and P"+1/2 then we can estimate v}'$ ' and v},

i.e. sample from P"*! and P"*3/2. Note that the losses (37) and (38) only differ by the conditioning
with respect to the initial condition x( and therefore the optimisation can be conducted in parallel.
We are now able to propose the following projection-reflection algorithm, see Algorithm 3.

https://doi.org/10.52202/079017-3285 103411



Algorithm 3 Reflection Diffusion Schrodinger Bridge Matching

1: Input: Vector field and conditional vector field v and v?’o, noise level o and associated bridge
Q|o,1, number of outer iterations N € N, batch size B
2: forn € {0,...,N —1} do

3:  while not converged do
4: Sample X% ~ 75P
5: Sample X1 using dX}*? = vp (X} ) dt + 0odBy
6 Sample X1 using dX}8 = vy (X8, XEP)dt + oodB,

1B xk-xk x X
T L= SR e XE) - X 1/2) P (X)X Ry

1B xk-—xk B xk-xk

Lo NP o (XE. X)X 2 (172) T (K XE) - K 2
9: vt = Gradientstep(L)
10: v?gl Gradientstep(Lo)
11:  end while
12: end for

13: Output: v, ™, v\

Note that in Algorithm 3 we only consider the optimisation of a forward process but similarly
to Algorithm 2, one can construct a forward backward extension to alleviate some of the bias
accumulation problems. Finally, we can interpolate between DSBM and this new reflection algorithm
and DSBM by introducing an hyperparameter o > 0 and consider the following extension given in
Algorithm 4

Algorithm 4 Reflection Diffusion Schrodinger Bridge Matching

1: Input: Vector field and conditional vector field v and v?’o, noise level oy and associated bridge
Q|0,1, number of outer iterations N € N, batch size B
2: forn € {0,...,N —1} do

3 while not converged do
4: Sample X2 ~ 758
5: Sample X158 using dX} B = v (X}B)dt + 09dBy
6 Sample X}*Z using dX} = o'y (X}P, X§P)dt + 00dB;

1B x x X X
7 L= [3 10 oe(XE) = H=2 2 — a0 [l (XE) — F=|[2)dt

1B xk-xF x x

8 Lo= [y i Hvt,o(Xff,Xﬁ) = P = a0 el Xf,X’g) £[[?]at

9: vt = Gradientstep(£)

10: vfa'l Gradientstep(Lo)
11:  end while
12: end for

13: Output: v’ ™, v,

Using different values of a > 0 in Algorithm 4, we recover different existing algorithms. If & = 1, we
recover DSBM Shi et al. (2023). Finally, if « = 1/2, we recover the reflection algorithm Algorithm 3.

F Consistency in Schrodinger Bridge

The idea of training both the forward and the backward jointly was mentioned in (Shi et al., 2023,
Section G). However, it was still assumed that, while being trained jointly, the forward and backward
vector fields were obtained using an argmin operation, see (Shi et al., 2023, Equation (43), (44)). In
addition, in (Shi et al., 2023, Section G) a consistency loss was proposed in order to enforce that
the forward and backward processes match, see (Shi et al., 2023, Equation (49)). In this section, we
leverage new results from Daras et al. (2023a); De Bortoli et al. (2024) in order to enforce the internal
consistency of the model.
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First, note that for any (X;);¢o,1] associated with P € R(Q) we have forany 0 <tq <t <t¢; <1

that
t—t t1 —t
X, = O Xy, + ——Xy + 0Ly, Z~ N(0,1d),
t1 —to t1 —to
where
t—1to)(t1 —t
oo, = (t—to)(tr — 1)

t1 —to '

Let p; be the density of X, with respect to the Lebesgue measure, we have that forany 0 < tp <t <
t1 <1and x; GRd

2 —d/2 [l — ttlitg)o Lty — ttll:tto xtOHZ
pt(-’L't) :/ (27T0t0,t,t1) exXp| — 2 pto(mto)ph (‘rh)dxtodxtl'
R4 xRd 20—t07t,t1

Using the change of variable x¢, — 7+, + x+ and z;, — x4+, + x+ we get that forany 0 < ¢y <t <
t; <land z; € RY

legpt(xt) = /d d{v logpto (xto) + VIngh (mtl)}pto,tﬂt(mto?xtl |xt)dxt' (39)
RIxR

This identity for the score has already been presented in a bridge matching context in (De Bortoli

et al., 2024, Section 3.3). Let P € R(Q) then we have that proj ,(P) is such that for any ¢ €

[0,1], proj(P); = Py, see (Shi et al., 2023, Proposition 2). We have that for any ¢ € [0, 1],

v7(x) + v{_,(z) = 02V logp,(z). Combining this result and (39), this suggests considering the

following consistency loss

écons,(to,t,tl)(o) = ]E[HU9<tv 1, Xt) + 119(1 - 1,0, Xt) (40)
- U@(t07 17Xt) - 1}9(1 - tOvoaxto) - ’l)g(tl, 1, Xt1) - U9(1 - t1?07Xt1)||2]'

Similarly to (13), we can consider an empirical version of (40).

G Model stitching

In Algorithm 1, the finetuning stage requires a pretrained bridge matching model interpolating
between o and 71 (lines 2-7). However, for large datasets with complex distributions my and 71, e.g.
ImageNet, training this bridge model from scratch can be computationally expensive. To improve
efficiency, we can leverage existing diffusion models targeting 7y and 7. Specifically, we assume
access to generative models transferring between A/ (0, Id) and 7, and between N (0, Id) and ;. In
the rest of this section, we show how one can adapt Algorithm 1 to this setting. We then comment on
the link between the proposed algorithm and Dual Diffusion Implicit Bridges (Su et al., 2023).

Setting. For simplicity, assume that we have two pretrained diffusion models for 7y and 7. We
describe our procedure for my. Consider a forward process of the form X, = Xy + 04Z, with
Z ~ N(0,1d), where o; is a hyperparameter. Note that we could have considered an interpolant of
the form X; = a4 X + 0+Z instead, see Song et al. (2021a) for instance.

We assume that the model X; = X + 0;Z is associated with the forward diffusion model
dXt = gtdBt, (41)

where we assume that g; > 0 forall ¢ € [0, 1]. Note that we have that for any ¢ € [0, 1], 07 = fg g2ds.
In particular, we have that for any s,¢ € [0,1] with s < ¢

X, =X, +1/0? —02Z,  Z~N(0,Id).

Our goal is to solve the following Entropic Optimal Transport problem

I = argminnep(RZd){/

(e, y)dM(z,y) = H(D); To = mo, Th =1}, (42)
R x R4

where € > 0 is some entropic regularisation. We assume that € > 0 is fixed and assume that there
exists ¢’ € [0, 1] such that 02 = /2. We now consider a dynamic version of (42) with

P* = argmingcp () {KL(P|Q) ; Po = mo, P = m1}, (43)
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where Q is associated with (Xt)te[o,t/] (41). Note that contrary to the setting presented in the main
paper, here we do not consider the integration between time 0 and 1 but between time 0 and ¢'. It can
be shown that for any ¢ € [0, ], (X¢)se[o,+] associated with Qyo .+ is given by

a; o} o}
X, = Interp,(Xo, Xy, Z) = <1 -t > Xy + o [1— “LZ,  Z~ N(0,1d).

Ut’ Ut' Ut/

Solving (43) is equivalent to solving (42). We now propose an algorithm to solve (43). It corresponds
to the finetuning stage of Algorithm 1 with a specific initialisation, similar to DSBM-IPF in Shi et al.
(2023).

By vg, we denote a DDM model associated with 7y :

dXt = U¢(t, Xt)dt + gtdBt, Xg ~ N(O, Id), Xy ~ . 44)

Similarly, vg denotes a diffusion model associated with 7y:

dY, = vg(t,Y,)dt + g,dBy, Yo ~N(0,1d), Y;~m (45)

In analogy to Equation (11), the two equations above correspond to the forward and backward SDE:s.

For a given batch of inputs X} and X1}:5, timesteps ¢t ~ Unif([0,#'])®?, and interpolations X§
and X7, we compute the empirical forward and backward losses as the following modification of
Equation (13):

2

Y

\vg (¢, X5") — (X — X§') /4 /o2 — 2>

Algorithm 5 corresponds to an online version of DSBM-IPF (Shi et al., 2023) with the initialisation
given by two generative models. In Algorithm 5, we finetune the trained vector fields to solve the
interpolation task. At inference time, the SDE associated with vector field vy interpolates between
m — o, while the SDE associated with the vector field v, interpolates between mg — 7.

O3, X1, X7) = H% (£, X37) — (X} — X77) /ol

U:J \

(651, X0, X¢) =

i

U:J \

Algorithm 5 «-Diffusion Schrodinger Bridge Matching for DDM finetuning

1: Input: datasets 7y and 71, number finetuning steps Nfinetuning, batch size B, DDM parameters
¢ and 6.
2: forn € {1, R Nﬁnetuning} do
Sample (X, X1) ~ (7o ® 71)®5, t ~ Unif([0, 1]), Z*Z ~ N(0,1d)®5
Sample }A(j; by solving (44) starting from X
Sample X7, by solving (45) starting from X4
Sample t€ ~ Unif([0,#'])®Z, Z¢ ~ N(0,1d)®5, and compute X§ = Interp,. (Xo, Xt, VA
Sample > ~ Unif([0,¢'])®5, Z> ~ N'(0,1d)®7, and compute X; = Interp,.(Xy, X3, Z”)
Update 6 with gradient step on £(0; t¢, X, X)
9:  Update ¢ with gradient step on £”(¢; t*, X4, Xf)
10: end for
11: Output: 6, ¢ parameters of the finetuned models

AN A

Our model stitching approach is related to Dual Diffusion Implicit Bridges (DDIB) (Su et al., 2023),
which uses pretrained diffusion models, but without further finetuning. As highlighted in Shi et al.
(2023), DDIB is inferior to DSBM in terms of quality and alignement of the samples.
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H Extended related work

We highlight links between our proposed flow and Sinkhorn flows in Appendix H.1. We draw
connection between our practical approach and Reinforcement Learning in Appendix H.2. We
discuss how a-IMF is related to (incremental) Expectation-Maximisation in Appendix H.3. Finally,
we discuss how our algorithm can be seen as an instance of continual learning in Appendix H.5.

H.1 Links with Sinkhorn flow

In this section, we discuss the links between our approach and the Sinkhorn flow introduced by
Karimi et al. (2024). We start by recalling how Sinkhorn flows are defined and then discuss how they
are related to our approach.

~-Sinkhorn and Sinkhorn flows. We first consider the static EOT problem and recall the Sinkhorn
procedure, also called Iterative Proportional Fitting. We define a sequence of coupling (11", II"),,¢n,
ie. forany n € N, II" € P(R? x R?). We let I1° = Qg ; and we consider for any n € N,

" = argmin{KL(IT | T") : I € P(R? x RY), TIy = 7o}, (46)
0" = argmin{KL(IT | TT") : T € P(R? x RY), TT; = 7},

In Karimi et al. (2024), the authors generalise (46) by introducing an extra hyperparameter v € (0, 1]
and defining

" = argmin{KL(IT | TI") : T € P(R? x RY), TT; =}, 47
" = argmin{yKL(IT | TI") 4 (1 — v)KL(II | TI") : II € P(R? x RY), Ty = 7o},

Using (Karimi et al., 2024, Lemma 2), we have that for any v € (0, 1], any n € N and any z¢, x; € R?

(dIT" /dQo,1) (20, x1) = explfy (o) + g&y (21)], (48)

with f9 = g9 = O and forany n € N, v € (0,1] and z; € R?
g5 (1) = g5 (1) — v log(dIl} /dmy) (7). (49)
In addition, using (Karimi et al., 2024, Equation (9)) we have that for any n € N, v € (0, 1] and

zo € RY
(o) = ~tog [ exsla(en) = (1/29) o~ Pam a) ).
When letting v — 0, (48) and (49) suggest to consider for any s > 0, g, z1 € R4
(dI1* /dQo 1) (w0, 21) = exp[f*(x0) + ¢°(21)], II* = argmin{KL(II | IT*) : TI, II; = m },

where for any s > 0, z; € R?
0s9°(z1) = — log(dII§ /dmy ) (1), O0sf%(x0) = /d log(dII5 /dmry ) (2 )dIT® (21| 20).
R

Comparison with Schrodinger Bridge flows. In order to compare our approach with the one of
Karimi et al. (2024), we start by rewriting the y-Sinkhorn algorithm defined by (47). To do so, we
introduce the projection on the measures with fixed marginal.

Definition H.1 (Projection on marginals): Let IT € P(R? x R?) and my € P(RY), we define
projg ., (II) as follows

projg ., (1) = argmin{KL(IT | IT) : II € P(R? x R?), Ty = mo}.
Similarly, for any I1 € P(R? x R?) and 71 € P(R), we define proj, ., (I) as follows

proj ., () = argmin{KL(IT | TT) : T € P(R? x RY), I, = 7, }.
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| [ ~-Sinkhorn [ ~-IMF |
Loss function | KL(II \projL7r1 (ﬁ)) fl ]EprOjR(Q)(]p)[”’Ut(Xt) — Xll%:(tﬂz]dt

0
regularisation KL(IT |IT) fol Jga Il fe(xe) — Fr(@e)]|?dpe () dt

Update Implicit Explicit
Table 2: Comparison between ~y-Sinkhorn and y-IMF.

With these definitions, we have that for any n € N, II"™! = proj, . (proj; ., (II")), with (II"),en
the original Sinkhorn sequence defined by (46). Similarly, we have that the original Iterative
Markovian Fitting (IMF) sequence (P"),,cn as defined in (4) with a = 1 satisfies for any n € N,

P+l = pro = (@) (Proja4(P™)). The analogy between the Sinkhorn iterates and the IMF sequence
was already highlighted in Shi et al. (2023); Peluchetti (2023) and further studied in Brekelmans and
Neklyudov (2023). We know show that similarly, we can draw an analogy between the sequences
defined in (4) with € (0,1) and the sequences obtained in y-Sinkhorn. To do so, we start by
introducing for any II, IT € P(R? x R%)

L£7F (I, 1) = KL(I |projy ,, (1)), R'F(IL1I) = KL(IT [1).

With this notation, we can now rewrite (47) for any n € N as
" = argmin{ £PF (IT, TI") + ((1 — 7) /7)) RFFIL ") : T € P(RY x RY), Ty = mp}.

Now, we are going to see that (50) is linked with the discretisation of the path measure flow described
in (4). Recall that for any suitable v, we define the path measure PP, associated with

dXt = ’Ut(Xt)dt + \/gdBt, XO ~ Q.
We define

L(v,P) = /01 L(ve, P)dt = /01 /Rded

Similarly, for any u € P(C), we define

2
’ dprojg q) (P)t,1 (s, 21)ds.

xl_xt‘
—t

’Ut(l't) — 1

1
Ru®oB) = [ [ ot = sanlPapelan

Next, we define the sequence of path measures (P™),,cy such that for any n € N
P! = argmin{L(P, P") + (1/a) R~ (II,P") : P =P, for some v}. (50)
Now, if we denote (v™),,¢cn the sequence such that for any n € N, P™ = P,» then we have that for
anyn € N, ¢t € [0,1] and z € R?
Pt () = v (@) — SV Lo (0" P (2). (1)

Recall that (P™),,ecn given by (4) is associated with (v™),,en such that for any n € N, ¢ € [0, 1] and
z € RY

Pt (z) = vl (z) — OV L (V" P") (), (52)
see Proposition 3.2. Therefore, the only difference between (52) and (51) is that (52) is an explicit

update whereas (51) is an implicit update. We summarise the differences between ~y-Sinkhorn and
the discretisation we introduce in Table 2.

H.2 Links with Reinforcement Learning

In this section, we draw some connection between Algorithm 1 and self-play in Reinforcement
Learning. In particular, we introduce a generalisation of Algorithm 1 which uses the concept of
replay buffer commonly used in Reinforcement learning, see Mnih et al. (2015) for instance.

We first present a generalisation of Algorithm 1 called Replay Buffer Diffusion Schrodinger Bridge
Matching Algorithm 6. We define a buffer B as a collection of samples {(X§,X¥)}_ |, where
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N € N is the size of the buffer equipped with two functions Add and Sample. We have that
Add : Qx| en(R2E x (RN — (R24)N | where (2 is a probability space. In practice Add
takes a random number (the function can be stochastic), any number of proposed samples as well
as the current buffer. As an output Add returns the updated buffer. We also define Sample :
Q x N x (R*)N — | ], cy(R??)*. This function takes a random number (the function can be
stochastic), a natural number k representing the number of samples to return as well as the current
buffer. As an output Sample returns a batch of k£ samples from the buffer.

Algorithm 6 Replay Buffer Diffusion Schrodinger Bridge Matching

1: Imput: 7, 71, € (entropic regularisation), Npretraining (number of pretraining steps), Nanctuning
(number of finetuning steps), B (batch size), v (EMA parameter),  (initial parameters), Bfwd
(forward buffer), "4 (backward buffer)

2: 6=10

3: for n € {0, ..., Npretraining } d0

4:  Sample (XFB, X1B) ~ (19 @ m1)®B, t ~ Unif([0,1]), ZV'E ~ N(0,1d)®5

5. Compute X}'? = Interp, (X4 P, X1:B, Z1:5) using (12)

6:  Update # with gradient step on ¢Z, 0 = (1 — )0 + 0

7: end for

8: forn € {0,. .., Nanetuning } d0

9:  if n = O[nyrefresn] then

10: Sample (X2, Y§B) ~ (mo @ m1)®B, t ~ Unif([0,1]), ZYB ~ N(0,1d)®B

11: Sample (X 1B, Y1:B) using (11) with initialisation (X472, Y}:5)

122 B = Add((X§P, XTP), Bv)

13: BPd = Add((YB,YLB), BPd)

14:  end if

15:  (X§P,X1B) = Sample(B, BY)

16:  (YLB,Y}B) = Sample(B, B”™9)

17:  Compute X}# = Interp, (X4 7, X1:B, Z'B) using (12)

18:  Compute Y18 = Interp, (Y18, Y}B, ZB) using (12)

19:  Update @ with gradient step on £2, 0 = (1 — )0 + 0

20: end for ~

21: Output: (6, 0) parameters of the finetuned model

In Algorithm 6, we allow for more flexibility than the online procedure by leveraging the concept of
replay buffer originally introduced in Reinforcement Learning Mnih et al. (2015). The concept of
replay buffer has been used previously in Schrédinger Bridge works, with the notion of cache where
eVery Nrefresh Steps a cache is emptied and filled with new samples. If N efresn = 1, N = B for both
B4 and B we have that for any w € Q and (X2, X1:8) € (R24)B

Add(w, (X(l):B7 X%:B)v B) = (X(l):B7 X%:B)7

Sample(w, B, (X5, X1P)) = (X¢?, X1P).
This means that the Add simply fills the buffer with the new samples while Sample just return the
whole current buffer. In that case we recover Algorithm 1. For more general update rules, the replay
buffers B4 and BP9 allow us to collect previous samples and therefore to keep a memory of the

past experiences. In future work, we plan to investigate popular choice in experience replay and their
impact on the performance of Algorithm 6.

H.3 Links with Expectation Maximisation

In this section, we make a connection between DSBM and the Expectation Maximisation (EM) algo-
rithm, and show that the discretisation of the Schrodinger Flow proposed in Algorithm 1 corresponds
to some incremental version of an idealised algorithm, as discussed in Neal and Hinton (1998). We
would like to emphasize that the link between the EM algorithm and Diffusion Schrédinger Bridge
based methodologies was already highlighted by Vargas et al. (2024); Brekelmans and Neklyudov
(2023). Below, we follow the framework of Brekelmans and Neklyudov (2023) and recall the
following definitions.
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Definition H.2 (Projections and maximisations): Ler A be a subset of P(C). Then, for any
P € P(C), when it is well-defined, we define its E-projection on A as P* = argming AKL(Q | P).
Similarly, for any P € P(C), when it is well-defined, we define its M-projection on A as P* =
argming AKL(P | Q).

In Brekelmans and Neklyudov (2023), the authors choose M-projection because this corresponds to
the Maximisation step in an EM algorithm while the E-projection corresponds to the expectation step
in the EM algorithm. In Brekelmans and Neklyudov (2023), the authors highlight that the Iterative
Proportional Fitting procedure is a Expectation-Expectation procedure, i.e. the alternating projections
are both E-projections. In contrast, the Iterative Markovian Fitting procedure is a Maximisation-
Maximisation procedure, i.e. the alternating projections are both M-projections. In particular, we can
define the following sequence of path measures (P"),,cn, where for any n € N we have

P2 = argminge,o;  KL(P" [P),  P"*' = argminger ) KL(P" /2 [P).
In addition, we have that

P2 =P i, vt = argmin, £(v, P"), P! = argminge g ) KL(P 1 | P),

since we have that P = PY% . Hence, our online procedure Algorithm 1, which corresponds to the
discretisation of the flow of path measures (3) can be rewritten as

prti/2 — P nt1, vt = Gradientstep(L(v, P"), Pt = argminpep ) KL(P n+1 | P).

Therefore, our proposed algorithm can be seen as an incremental version of the Maximisation-
Maximisation algorithm associated with DSBM instead of an incremental version of the Expectation-
Maximisation algorithm discussed in (Neal and Hinton, 1998).

H.4 Links with finetuning of diffusion models

Algorithm 1 can be seen as a method to finetune bridge matching. Finetuning of diffusion models and
flow matching procedures is an active research area. Most of the existing methodologies optimise for
an external cost after a pretraining phase. These procedures rely on Reinforcement Learning strategies
(Lee et al., 2023; Black et al., 2023; Fan et al., 2024). Recently Direct Preference optimisation (DPO)
(Rafailov et al., 2024) has been applied to the finetuning of diffusion models in (Yang et al., 2023;
Rafailov et al., 2024). Our approach departs from these works as the objective we minimise is
given by the EOT cost. However all of these approaches involve some level of self-play, i.e. are not
simulation free.

H.5 Links with continual learning

Continual learning develops techniques to train models when the dataset changes during the training,
usually to solve different tasks De Lange et al. (2021); Parisi et al. (2019); Zajac et al. (2023). In
the context of diffusion models, continual learning has been investigated in Masip et al. (2023);
Zajac et al. (2023); Smith et al. (2023). In (Masip et al., 2023), the authors consider a weighted loss
between a diffusion model loss and a distillation loss which ensures some consistency between the
model being trained and the previous task model. Similarly to our approach this distillation loss is not
simulation-free but, contrary to our loss, the clean samples are not obtained by unrolling the diffusion
model but by applying a one-step prediction operator. In (Zajac et al., 2023), consider different replay
buffer techniques to train continual diffusion models and observe that experience replay with a small
coefficient can bring improvements. Finally, in (Smith et al., 2023), the authors consider the continual
training of a text-to-image diffusion model with LoRA (Hu et al., 2021).

I Forward-Forward, Forward-Backward and accumulation of error

In this section, we investigate how error accumulates in the context of DSBM. In practice, we observe
similar conclusions in the case of the online version of DSBM. We compare two methods: one which
only trains a forward model and one which trains a forward and a backward model.
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In what follows, we assume that 7g = 71 = N (0,1d), we also assume that Q is associated with
(V2B4)te[o,1]- We recall that for any ¢ € [0, 1], we have that

X =(1-6)Xo+tX5 ++/2t(1 — t)Z, Z ~ N(0,1d).

We are going to consider to approximate schemes to implement IMF.

Forward-forward. First, we consider the following sequence of path measures (P"),,cn. We set
P = (mp ® 71)Q)p,1. For any n € N, we define P?"+2 = IP’%TIQ\OJ, i.e. P2"*2 = proj, (P27 1),

In addition, we define P*" 1 = proj;(P?") such that P>"*1 is associated with (X;),¢[o,1] Where
forany t € [0, 1]

dX; = {(Epzn [X1 | X¢] = X4) /(1 = 1) + eXo }dt + V2dB,, X~ m, (53)

with ¢ € R. Recall that if we define P2"*! = proj ,,(P2") we have that for any ¢ € [0, 1], P2"*1 is
associated with (X;);c[0,1) where for any ¢ € [0, 1]

Hence, proj‘j\’,? corresponds to making an error of order x — cx on the estimated velocity field.

Doing so, we now longer have that for any n € N, P} = m;. In what follows, we are going to show
how the error accumulates for the sequence Py ;.

Before stating Proposition I.1, we introduce f : R* — R such that for any ¢ o, ¢1,1,¢0,1 > 0 and
t€10,1)

f(co0sc11,¢01,t) = [—(1 —t)co0 +tern + (1 —2t)co 1 — 2t
/[(1 — LL)QCQ,O + t26171 + Qt(l - t)C()71 + 2t(1 — t)]

We define F'(co,0,¢1,1,C0,1,€,t) =2 f(f f(co,0,¢1,1,¢0,1,5)ds + 2¢t. Finally, we define
feov (€00, €1,1, C0,1,€) = exp[2 F(co0,c1,1,¢0,1,€, 1)),

as well as

1
Jear(co,05 €11, c0,1,€) = exp[3 F(co,0, 1,1, ¢0,1,6,1)](1 + 2/ exp[—F(co,0,¢1,1,C0,1,€, 5)|ds).
0

Proposition I.1 (Forward-Forward updates): For any n € N, we have that Pgﬁﬂ =
N (0, 2" +11d) where
yntl Id Cg,Jlrlld
cgjlld Cf"{lld ’

and for any n € N

0711,_'1_1 = fvar(17 C?,la 03717 6),
cg,Jlrl = feov(1, cilvcg,laf‘:)

Proof. LetP = (]P’OJ)QMJ where P ; is a Gaussian random variable with zero mean and covariance

matrix ¥ € R24%2d gych that
Y Id Co’lld
B 60711(1 61711d ’

where Id is the d-dimensional identity matrix and we assume that ¢ 1,c1,;7 > 0. We denote

P* = pro Ji\j(}P’) We have that P, |; is a Gaussian random variable with zero mean. We now compute
its covariance matrix. First, we have that

EX:X{] = (1 - EXoX{] +tEX,;X]] = [(1 —t)co1 + tera]Id.
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We also have that
EX:X,] = (1-#)’E[XoX]] +t(1 — t)(E[X1X] ]+ E[X:1Xg]) + *E[X: X, | + 2¢(1 — t)Id
=[(1—t)* +t3c1q +2t(1 — t)co1 + 2t(1 — t)]Id
=[1— 1% +t%c1 1 + 2t(1 — t)co 1]1d.
Therefore, we get that for any ¢ € [0, 1] and z; € R?
Ep,, [X1 | X¢ = a¢) = ([(1 — t)coq + tera] /[ — 8% + t2er1 + 26(1 — t)coa]) e
Hence, we have that for any ¢ € [0, 1] and 7; € R?
EIPUt[Xl | X = xt] — Ty = ([(1 - t)Co71 + tCLl]/[l — 2+ t20171 + 2t(1 — t)CO,l] — l)xt
= ([(1 =t)co1 +terg — L+ t2 —t2cpq — 2t(1 —t)coq]/[L — 2 + t2erq + 2t(1 — t)co 1)) me
= ([(1 — t)(]. — 2t)Co71 + t(l — t)Cl’l -1 + t2}/[1 — t2 + t261’1 + Zt(]. — t)c(],l])it
= (1 — t)([(l — 2t)0071 + tCl,l —1- t]/[l — t2 + tzcl,l + 2t(1 — t)COJDCEt.
So it follows that
(Ep,, [X1 | Xy = 2] — a4) /(1 = 1)
=([(1 =2t)coq +ters —1—t]/[1 =2 +t%c1 1+ 2t(1 — t)coa]) . (54)

Note that if we set cp1 = ¢® and c1,1 = 1, we recover (Shi et al., 2023, Lemma 13) with o = 2.
Denote P* = projf\’,?(IP’). Combining (54) and (53) we get that P* is associated with (X);c[o,1] such
that for any ¢ € [0, 1] we have

dXt = {([(1 — 215)6071 —|— tC1,1 — 1 — t]/[l — t2 —|— t26171 —|— 2t(1 — t)CQ71]) —|— €}Xtdt —|— \@dBt
Hence, we get that

t 1/2
X, = exp[%G(t,COJ,01,1,5)]X0+ (2/ exp[—G(s,co1,¢1,1,€)|ds exp[G(t,coyl,cLl,s)]) Z,
0

where Z ~ N (0,1d) is independent from X and for any ¢ € [0,1], ¢o,1,¢1,1,€ > 0 we have

t
G(t,COJ, 8171,&‘) = 2/ [(1 — Qt)CO’l + t01,1 —-1- t]/[l — 2 + t26171 + 2t(1 — t)C&ﬂdt + 2¢t.
0

In addition, we define
Geov(Co,15¢1,1,€) = exp[G(1,co1,c1,1,€)],
Gvar(co1,¢11,€) = explG(1,¢01,¢1,1,€)] (1 + 2/01 exp[—G(t,co1, 0171,5)}dt>.
Hence, we have that
E[XoX]] = geov(co1,c11,6)Id,  E[X1X]] = gear(co1, c11,)1d.

Therefore, since for any n € N, we have that p2ntl — proji\’,?(}P’Q”) and P2n+2 = Pﬁfﬁ“(@\o,l, we
define (cf 1, ¢{' 1 )nen such that for any n € N

Epen [XoX[ ] = ¢ 1d,  Epza[XiX]] = ¢}, 1d.
Note that for any n € N, we have that
Ep2n+1 [XOXI] = ng11d7 Ep2n+1 [X1X1T] = C?’J{lId.

Since P? = (mo ® m1)Qjo,1 e get that ¢ ; = 0 and ¢;; = 1. We have that for any n € N

n+1l __ n n n+l _ n n
€01 = gCOV(CO,lv C1,15 €), €11 = gvar(cl,lv C1,15 €),
which concludes the proof. O
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Forward-backward. Next, we consider the following sequences of path measures (P"),,cn and
(P™)nen. We set PU = PO¢ = (mo ®m1)Qyo,1. Forany n € N, we define P2" 2> = Pgﬁﬂ’*(@‘o’l
and P22 = PETPQ 4, ie. P22 = projg (P2+1¢) and P2"+2¢ = projg (P?"+1?). In
addition, we define P?" 1> = proj%; (P?™) such that for any ¢ € [0, 1], P?" is associated with
(X¢)te[0,1) Where

dX, = {(E 11],27“[);1 | X, — Xy)/(1 —t) + X, }dt + V2dBy, Xy ~ 7,

with € € R. Similarly, we define P?""1:¢ = proj5{(P?") such that for any ¢ € [0, 1], P?"*1< is
associated with (Y1_¢).e[0,1] Where

Y = {(Bpzn[Xo | Yi] = Y1) /(1 = t) + €Yo }dt + V2dB;, Yo~

Proposition 1.2 (Forward-Backward updates): For any n € N, we have that IE”M+1 ¥ =
N (0, 7121d) and Py = N (0, 7 F11d) where

o= (gl S, e (G )
o1 “Id ¢;;77Id o1 “Id Id
and for anyn € N
C?J{l 7= fvar(co 0s 1, €] 015€);
CSJ{I 7= fcov(co 011, €] Co1r6)s
03461 = fear(1,¢17, 6075 6);
CSJ{I = feav(l, 01 1»C0 1,5)

The proof is similar to the one of Proposition I.1.

Proof. LetP = (]P’OJ)QMJ where P ; is a Gaussian random variable with zero mean and covariance

matrix ¥ € R24%2d gych that
E o CO’OId 60711(31
B C()JId 1d ’

where Id is the d-dimensional identity matrix and cg,1,co,0 > 0. We denote P* = projj’j(]P’). We
have that Py, is a Gaussian random variable with zero mean. We now compute its covariance matrix.
First, we have that

EX:X{] = (1 - tE[XoX]] +tE[X;X{] = [(1 —t)co.1 + t]Id.
We also have that
EX,X,] = (1 - t)*E[XoXq ] +t(1 — t)(E[X1 X4 ] + E[X1 X, ]) + 2E[X; X ] + 2t(1 — t)Id
= [(1 —t)%co0 + 12+ 2t(1 — t)coq + 2t(1 — t)]Id
=[2t —t* + (1 — t)%co.0 + 2t(1 — t)co 1 ]1d.
Therefore, we get that for any ¢ € [0, 1] and z; € R?
Ep,,[X1 | Xy = a4] = ([(1 — t)coq + t]/[2t — 12 4+ (1 — t)co,0 + 2t(1 — t)co,1]) e
Hence, we have that for any ¢ € [0, 1] and z; € R?
Ep,, [ X1 | X¢ = 24] — 2 = ([(1 = t)coq +1]/[2t — 7 + (1 — t)%co,0 + 2¢(1 — t)co 1] — 1)ay
=([(1 =t)co1 +t—2t+1* — (1 —t)%co0 — 2t(1 — t)co 1]
J[2t — 2 4+ (1 — t)%co,0 + 2t(1 — t)co 1))z
= ([ —=t)(1 = 2t)coq — (1 —t)%co0 — t(1 — )] /[2t — 12 + (1 — t)2co,0 + 2t(1 — t)co 1)) 24
=(1=t)([(1 —2t)co1 — (1 —t)co,0 — t]/[2t — t* + (1 — t)%co,0 + 2t(1 — t)co1])s-
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Finally, we have that for any ¢ € [0,1] and z; € R?
(Ep, (X1 | Xt = 2] — ) /(1 - ¢)
= ([(1 — 215)00’1 — (1 — t)Co_’() — t]/[Qt — t2 + (]. - t)26010 + Qt(]. - t)Co_yl])l't. (55)

Note that if we set cg;1 = ¢? and co,0 = 1, we recover (Shi et al., 2023, Lemma 13) with o = 2.
Denote P* = projf(j(]P’). Combining (55) and (53) we get that P* is associated with (X);c[o,1] such
that for any ¢ € [0, 1] we have

dX; = {([A1—2t)co1 — (1 =t)co0—t]/[2t — 2+ (1 —t)2co.0+2t(1 —t)co1]) +} X dt +V2dBs.

Hence, we get that

X; = exp[%H(t, €0.1,€0,0,€)] X0+ (2 /Ot exp[—H (s,¢0,1,¢0,0,€)]dsexp[H (¢, co.1, €00, 5)])1/2Z,

where Z ~ N (0,1d) is independent from X and for any ¢ € [0,1], ¢o,1,¢1,1,€ > 0 we have

H(t,co1,c00,€) = 2/t[(l—Qt)cm—(1—t)coAVO—t]/[2t—t2—|—(1—t)20070+2t(1—t)co,l}dt—i—Qat.
0

In addition, we define

eov (C0,1, Co,0,€) = exp[5H (1, co,1, Co,0,€)],
1
Gvar(Co,1, 0,0, €) = exp[H (1, co,1, co,0,€)] (1 + 2/ exp[—H(t,co,1, 007075)]dt)-
0

Hence, we have that

E[XoX{ ] = geov(co,1, co,0,€)1d, E[X1X{] = gvar(co,1, 0,0, €)Id. (56)
Remember that P*> = PO = (my ® 71)Qo,1. In addition, for any n € N, we have
]P)2n+2,—> — ]}1%71-1-1,(—(@‘071 and P2n+2,(— _ P(Q)?ll+17_>Q|0,1’ ie. P2n+2,—> _ prOjR(P2n+1,<—) and
P2"F2¢ = projg (P?" 1), In addition, we also have P2" ™1 = proj; (P?*<) and P?" 1< =

projy; (P>™*). We also define (cy’7, €)'} )nen such that for any n € N

Epeno [XoX{ ] =c{7Id,  Epeno[Xi X[ ] = c71d.
Finally, we define (c{’1, ¢’} )nen such that for any n € N

Epene[XoX{ ] =cld,  Epen[XoX(] = cggld.
Using this definition and (56) we get that for any n € N

n+1l-> ne n,e n+1-> n,e n,e
€01 = gcov(Co,l ) 0070,5)7 €1 = gvar(co71 1 €0,09 €),
n+le no> N, n+le n,> n,>
€1 = gcov(co,hcl,l?g)? C,0 = gvar(cm,cm,a).
.. R O7 07 .
In addition, we have that ¢j’y = ¢;7 = 0 and ¢;"] = ¢’ = 1. This concludes the proof. O

Error accumulation. In Proposition I.1 and Proposition 1.2, we derive the sequences corresponding
to the evolution of the variance and the covariance throughout the DSBM iterations in forward-
forward mode or forward-backward mode. In what follows, we showcase the behavior of these
sequences for different values of ¢ > 0. We recall that € corresponds to the error made in the Markov
projection, i.e. proj,, is replaced by pro ji’z in the forward-forward mode and proj ,, is replaced
by proji’j and projj\’; in the forward-backward mode. First, if we consider the perfect scenario,
i.e. ¢ = 0, then we observe that both the forward-forward mode and the forward-backward mode
satisfy that Ep. [X; X[ ] = Id, see Figure 10 and Figure 11. Additionally, we can show that in the
perfect scenario, i.e. ¢ = 0, then both the forward-forward mode and the forward-backward mode
satisfy that lim,,_, oo Ep2n [X1 X ] = (v/2 — 1)1d, see Figure 10 and Figure 11. However, as ¢
increases the behavior between the forward-forward sequence and the forward-backward sequence
significantly differs. More precisely, the error explodes as € increases along the DSBM iteration
for the forward-forward mode. On the contrary, in the forward-backward mode, the error remains
bounded along the DSBM iterations, see Figure 10 and Figure 11.
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Figure 10: Evolution of (||Epz2n[X1X{ ] — Id||)nen in log-space along DSBM iterations (x-axis).
Different curves correspond to different values of ¢, i.e. the larger ¢ the larger the error in the
Markovian projection. Left: evolution in the forward-forward mode. Right: evolution in the forward-
backward mode.
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X

Figure 11: Evolution of (||Epzn[X;X]] — Id||)nen in log-space along DSBM iterations (x-axis).
Different curves correspond to different values of ¢, i.e. the larger ¢ the larger the error in the
Markovian projection. Left: evolution in the forward-forward mode. Right: evolution in the forward-
backward mode.

J Preconditioning of the loss function

In this section, we provide details on the scaling of the loss function we implement when training our
online version of DSBM. We adapt the method of (Karras et al., 2022, Appendix B.2) to the case of
bridge matching. We only present our derivations in the case of the forward training of the online
version of DSBM, i.e. (9). The preconditioning of the loss described in this setting can be readily
extended to the forward-backward loss we consider in practice, i.e. the parametric version of (10).

We consider the following objective function for any ¢ € [0, 1]

0 = MEp[|[efnnd (¢} Xy) + ;X — Z1=%e 2], (57)

We also define for any ¢ € [0,1] and z; € RY, v¥(x;) = c¢nnf(ciz;) + ciz;. Hence, ci is an
input scaling function, c{ is an output scaling function and c¢; is a skip-connection function. During
the training of the online version of DSBM, P will be given by P”, where P = P,0,, where
the sequence (0,,)nen is given by (9). Here, we apply the principles of Karras et al. (2022) to
the case where P = (1p ® wl)Q‘o’l, i.e. at initialisation of the sequence. In what follows, we

assume that E,, [|Xo]|?] = Er, [[|X1]|?] = d. Note that our considerations can be generalised to
E.,[|Xo0]/?] = 05d and E,, [||X1||?] = o3d. We also have that

Xy = (1 —t)Xo +tXy 4+ \/et(1 —1)Z,
Using (58), we have that for any ¢ € [0, 1]
Ep, [[Xel*) = (1 = £)°Eny [1Xo|] + t*En, [| X4 [|*] + t(1 — t)d
=[1—t)* +t* +et(1 —t)]d.
We set ¢t so that E[||ciX||?] = d for every ¢ € [0, 1]. Hence, we have that for any ¢ € [0, 1]
ch=1/\/(1 —t)2 + 12 +et(1 —t).

Z ~ N(0,1d). (58)
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Figure 12: From left to right ((¢{)?)sej0,1), (¢)teo,1] and ((¢f)?)iepo,1) for different values of
e € [0, 10].

Next, we rewrite (57). For any ¢ € [0, 1] we have that

= MEp(|lcjnnf (¢} X,) + X, — X=%e |2

— (¢0)>MEp[|nnd (ciX,) — [~ X, + X251 /0|17
o 7 X1— Ci: —t)) Xy o
= (¢0)>MEp (| (¢} X) — [Z=Utet o)Xy o)1)

X1 — (14l (1-1) X,
T—¢
regression loss. We are going to fix ¢? and ¢{ such that i) E[||T||?] = d, i) ¢ is as small as possible
in order not to minimise the error propagation made by the neural network. Using (58), we have that

for any ¢ € [0, 1]

Ep, [1X1 — (14 ¢ (L — )X]2] = (1 + ¢} (1 — ), X [2] + Ex, X1 |
— 21+ ¢} (1~ 1)Ep, , [(X1,X1)
= (1+ 61— ) B [IXe]?] +d - 21 + ¢} (1 - H)td

Hence, we get that for any ¢ € [0, 1], T; = | ]/¢ is the target of the network in the

Hence, we get that for any ¢ € [0, 1]
(€))? = (1 +cf (1= 1)’ Er, [IXe[*)/d +1 = 21+ cf (1 = 1))1) /(1 — ).
We now minimise (c{)? with respect to (1 + ¢; (1 — t)). We get that
L+ cf(1—t) = t/(Ee,[IXe]%)/d).
Hence, we get that ¢§ = t/[(1 —#)((1 —#)? +t> +et(1 —t))] — 1/(1 — t). With that choice, we get
that for any ¢ € [0, 1]
() = (1 =?/(1 =)+ +et(1—1)/(1 - 1)

In Karras et al. (2022), the weighting function ) is set so that the weight in front of the regression
loss is equal to one for all times ¢ € [0, 1]. Hence, Karras et al. (2022) suggests to set Ay = 1/(c¢)?.
However, in practice we observe better results by letting A\; = 1. This means that the effective weight
is given by 1/(c?)?. Therefore, for any ¢ € [0, 1] we have

()’ =1+ (E—2t(1—t) ",
i =((e—2)t=1)/(1+ (e —2)t(1 - 1)),
()2 =0+t+(e—-2)t(1—1)/(1—1).

K Experimental details

In this section, we delve deeper into the specifics of each experiment, implementation details, and
share additional results.

We consider two ways of parameterising the vector fields: as in DSBM, we can use two separate
neural networks to approximate the forward and backward vector fields, or we can use a single neural
network that is conditioned on the direction. In the latter case, we do the conditioning in a similar
fashion to how DDM’s neural networks, U-Nets or MLPs, are conditioned on time embeddings.
After all, if we work with continuous time variables ¢ € [0, 1], then the direction signal s € {0,1}
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can be thought of as a target time. Thus, we perform the same initial transformations on ¢ and s,
i.e. computing sinusoidal embeddings followed by a 2-layer MLP, and use the concatenated outputs
in adaptive group normalisation layers (Dhariwal and Nichol, 2021; Hudson et al., 2023; Perez et al.,
2018).

To optimise our networks, we use Adam (Kingma and Ba, 2015) with 8 = (0.9,0.999), and we
modify the gradients to keep their global norm below 1.0. We re-initialise the optimiser’s state when
the finetuning phase starts.

All image samples in the paper are generated using EMA parameters as it has been known to increase
the visual quality of resulting images (Song and Ermon, 2020). Sampling is also the integral part of
DSBM'’s finetuning stage, both iterative and online. Here, we have two options: sample with EMA or
non-EMA parameters. The non-EMA sampling might be easier to implement, while EMA sampling
results in a more stable training and slightly better quality, e.g. see AFHQ samples in Figure 23 and
Figure 24 for comparison.

For every model used in the paper, we provide hyperparameters in Table 3.

2D Gaussian MNIST AFHQ-64  AFHQ-256

Channels/hidden units 256 256 64 128 128
Depth 3 3 2 4 4
Channels multiple n/a n/a 1,2,2 1,2,3,4 1,1,2,2,3,4
Heads n/a n/a n/a 4 4
Heads channels n/a n/a n/a 64 64
Attention resolution n/a n/a n/a 32,16, 8 32,16, 8
Dropout 0.0 0.0 0.1 0.0 0.0
Batch size 128 256 128 128 128
Pretraining iterations 50K 10K 100K 100K 100K
Finetuning iterations 150K 40K 150K 20K 20K
Pretraining learning rate le-4 le-4 le-4 2e-4 2e-4
Finetuning learning rate le-5 le-4 le-4 2e-4 2e-4
Pretraining warmup steps n/a n/a n/a 5K 5K
EMA decay n/a n/a 0.999 0.999 0.999
Parameters count 133.4K 371K 8.8M 194.4M 226.7TM

Table 3: Hyper-parameters for each model. Note that for 2-networks models, the architectural
hyper-parameters describe only one of the two identical networks. Approximate parameters counts
are given for bidirectional networks, except for the Gaussian case, where we only experimented with
a 2-networks model.

K.1 2D Experiments

In addition to the experiments presented in the main text, we test our models in the simplest 2D data
settings used in Tong et al. (2024a) and Shi et al. (2023). Note, that low-dimensional datasets might
not be the ideal showcase for a-DSBM given that one can successfully employ less computationally
demanding techniques based on minibatch-OT methods (Tong et al., 2024b).

The results of our bidirectional model finetuned with online updates are given in Table 4. During
finetuning, we generate samples using 100 Euler—Maruyama steps to solve the forward and backward
SDEs. At test time, we solve the forward probability flow ODE (PF-ODE) given by:

1
dX, = [vs(1,6,X0) —ve(0,1 — £, X)]dt,  Xo ~ . (59)

To evaluate model fit, we compute 2-Wasserstein distance between the true and generated samples
(generated with 20 Euler steps). Additionally, we estimate path energy as a measure of trajectory
simplicity: Exnr,| fol l|lva(t, X;)||>dt] where vg(t,X;) is the drift of PF-ODE in (59), and the
integral is approximated using 100 steps. We have made a deliberate effort to closely replicate
the experimental setup of Shi et al. (2023) to ensure the comparability of our results. However, as
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illustrated in Figure 13, 2-Wasserstein distance can be very noisy even with 10K samples in the test
set. To mitigate this variance, we averaged the 2-Wasserstein distance across five random sets of 10K
samples per run, and then averaged these results across multiple runs. Despite these measures, we
recommend a future redesign of these 2D experiments to facilitate more robust comparisons between
methods.

Method 2-Wasserstein Path energy

N — moons N — scurve N — 8gaussians moons — 8gaussians N —moons A —scurve N i moons —
DSBM-IMF* 0.144+0.024  0.145+0.037  0.338+0.091 0.838+0.098 1.580+0.036  2.092+0.053  14.81+0.255 41.00+1.495
OT-CFM (Tong et al., 2024a)*  0.11120.005  0.102+0.013  0.253+0.040 0.716+0.187 1.178+0.020  1.577+0.036  15.10+0.215 30.50+0.626
a-DSBM 0.168 £0.011  0.213+0.031  0.292+0.047 1.374+0.286 1.439 £0.024  2.052 £0.025 15.038+0.150 37.626+0.590

Table 4: 2-Wasserstein distance and path energy for the 2D experiments. We report means +1
standard deviations across 5 random seeds. DSBM-IMF* and OT-CFM* results are copied from Shi
et al. (2023).

14 15 16 17 18 19 20
2-Wasserstein

Figure 13: A histogram of 2-Wasserstein distances for the ‘moons— 8gaussians’ task. These distances
are calculated between 10K samples from a finetuned a-DSBM model and 8gaussians distribution,
with both sets generated using 100 different random seeds. The wide spread of scores indicates that
2-Wasserstein distance, even computed on 10K samples, may not be an ideal metric for evaluating
model fit in this context.

K.2 Gaussian data

To parameterise the forward and backward drifts, we use a 2-layer MLP network with 256 hidden
units. To process time variables, we compute sinusoidal time embeddings, followed by a 2-layer MLP
with 256 hidden units and 50 output units. The resulting time embeddings are then concatenated with
X¢, so the drift networks receive 100-dimensional input vectors.

For iterative DSBM finetuning, we perform 40K steps with varying number of outer iterations, i.e.
when we switch between training the forward and the backward networks. Alternating every SK
steps, corresponds to 8 outer DSBM iteration. Similarly, changing the direction every 1K steps, leads
to 40 outer iterations.

We do not have a cache dataloader like in the original DSBM implementation”, thus we generate
training samples on the fly by sampling either from the forward or the backward network. For this
simple task, we also do not use EMA.

During training and evaluation, we use Euler—-Maruyama method with 100 equidistant time steps
between 0 and 1. The covariance is evaluated using 10K samples.

Additional comparison a-DSBM vs OT bridge-matching. We consider the scalar Gaussian
setting. We highlight the dependence of OT bridge matching (256/16/8) on the batch size, as the
mini-batch OT coupling can be far from the true OT coupling as the batch size decreases. All
experiments are run with similar compute and architecture/training hyperparameters, see Table 5.

Ablation of the hyperparameter o.. Instead of letting « be determined by Adam and adaptive for
a-DSBM, we explicitly set it by using Stochastic Gradient Descent (SGD) with learning parameter
«; see Figure 14. We also ran online «-DSBM with o = 10~! but the training diverges in this case.

https://github.com/yuyang-shi/dsbm-pytorch
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Table 5: Comparison of OT methods

Method Covariance
Optimal 0.882
a-DSBM 0.890
Bridge Matching 0.491
OT Bridge Matching (256) 0.853
Bridge Matching (16) 0.840
Bridge Matching (8) 0.824
1.5 Online @Adam — Online @1e-3
Online @le-5 Online @le-2

Online @le-4 — Base
1.01 i i @ 1 = =

Normalized Frobenius distance

10k 20k 30k 40k 50k 60k 70k 80k 90k100k

Training iterations

Figure 14: normFrob between C, and its estimate for a-DSBM with different values of «.

K.3 MNIST «+ EMNIST transfer

We closely follow the setup of Shi et al. (2023) and De Bortoli et al. (2021), and train the models to
transfer between 10 EMNIST letters, A-E and a-e, and 10 MNIST digits (CC BY-ND 4.0 license).
We use the same U-Net architecture with hyperparameters given in Table 3.

For DSBM finetuning, we perform 30 outer iterations, i.e. alternating between training the forward
and the backward networks, while at each outer iteration a network is trained for 5000 steps. We do
not have a cache dataloader and generate training samples on the fly by sampling either from the
forward or the backward network with EMA parameters.

During training and evaluation, we use Euler-Maruyama method with 30 equidistant time steps
between 0 and 1. For evaluation, we compute FID based on the whole MNIST training set of 60000
examples and a set of 4000 samples that were initialised from each test image in the EMNIST dataset.
MSD is computed between 4000 initial EMNIST test examples and their corresponding MNIST
samples.

In Figures 15-18, we provide forward and backward samples, i.e. EMNIST — MNIST and MNIST
— EMNIST, from models that differ in parameterisation, finetuning methods, and sampling strategy.
For all the models above, we used € = 1. Figure 19 illustrated the behaviour of the samples when we
sweep over the € hyperparameter.

Pretraining a bidirectional model on 4 v3 TPUs takes 1 hour, while the online finetuning stage
requires 4 hours on 16 v3 TPUs. The number of pretraining and finetuning steps is chosen to match
the experimental setup of Shi et al. (2023).

K.4 AFHQ: Cat < Wild

We consider the problem of image translation between Cat and Wild domains of AFHQ (Choi
et al. (2020); CC BY-NC 4.0 DEED licence) as introduced by Shi et al. (2023). Each domain has
approximately 5000 samples in the training set, and around 500 samples in the test set. We resize the
original 512 x 512 images to 64 x64 or 256 x 256 resolutions.
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Figure 17: MNIST to EMNIST transfer with a 2-networks model.
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Figure 18: MNIST to EMNIST transfer with a bidirectional model.

Our U-Net (Ronneberger et al., 2015) implementation is based on Ho et al. (2020) with a few im-
provements suggested in Dhariwal and Nichol (2021); Song et al. (2021b) such as rescaling of skip
connections by 1//2, using residual blocks from BigGAN (Brock et al., 2019), and convolution-based
up- and downsampling. Hyperparameters are given in Table 3. Compared to the straightforward
parameterisation of the vector fields, we obtained slightly better results using EDM precondition-
ing Karras et al. (2022), which we derive in Appendix J for the case of bridge matching. During
training, we use horizontal flips as a way to augment the data.

During training and evaluation, we use Euler—-Maruyama method with 100 equidistant time steps
between 0 and 1. When evaluating the quality of Cat — Wild transfer, we compute FID based on the
whole training set of 4576 examples in the Wild domain and a set of 480 samples that were initialised
from test images in the Cat domain. LPIPS and MSD are computed between 480 initial Cat images
and Wild samples from the model. The same procedure is followed when evaluating in the reverse
direction from Wild to Cat. Given that train, and especially the test sets are small, the quantitative
results for AFHQ are likely unreliable (Chong and Forsyth, 2020). In Figure 22 we provide samples
from the models finetuned either with an iterative or an online method. While their FID scores are
different, the samples look similar between the two models.

As we discussed in the main text, hyperparameter ¢ trades off the visual quality and alignment of
the samples in the resulting transfer models. In Figure 20, we provide AFHQ 64 x 64 samples for
pretrained and finetuned models with different values of €. In addition to its relation to EOT, from
a DDM perspective, € can be seen as the controlling factor of the noise schedule. As observed by
Hoogeboom et al. (2023), noise schedules should be adjusted for different image sizes by shifting the
noise schedule of some reference resolution where it is proven to be successful. In our case, if we find
a good value of € for 64 x 64 images, then a shifted ¢ for the 256 x 256 resolution can be computed

as £a56 = €64 (256) Thus, if we choose /¢ = 0.75 for AFHQ-64, then for AFHQ-256, we can

expect /¢ = 3.0 to also work well. Samples from an AFHQ-256 model trained with /¢ = 3.0 are
given in Figure 27.

On 16 v3 TPUs, the bidirectional base and finetuned AFHQ-64 models take 4 and 14 hours to train,
respectively. For AFHQ-256, the base model trains for 15 hours, and finetuning takes an additional 37
hours. While we did not experiment with varying pretraining and fine-tuning iterations, these training
times suggest that a longer pretraining stage followed by fewer fine-tuning steps may be desirable.
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Figure 19: MNIST samples transferred from EMNIST letter inputs (top row) using base (pretrained)
and fine-tuned models for different values of €. Low noise values result in poor sample quality,
particularly in the base model, which finetuning cannot fully rectify. Conversely, excessively high
restricts information passing from the inputs to the outputs, leading to poor alignment. Additionally,
high ¢ increases blurriness due to increased noise levels, thus requiring more denoising steps.
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(a) Base model (b) Finetuned model

Figure 20: AFHQ 64 x 64 Wild — Cat transfer results for different values of /¢ in a bidirectional
model before and after online finetuning. Low values of ¢ lead to poor sample quality in both base
and finetuned models. Excessively high € values impede information passing from the inputs to the
outputs, resulting in poor alignment. High values of ¢ also increase blurriness due to noisier SDE
trajectories, thus requiring more denoising steps during sampling.
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(b) Finetuned model

Figure 21: AFHQ 64 x 64 Wild — Cat transfer results for varying number of function evaluations
(equivalent to time discretisation steps in the Euler-Maruyama method) in a bidirectional model with
/€ = 0.75, both before and after online finetuning. Post-finetuning, clearer images are achievable
with fewer steps. This observation aligns with findings from Rectified Flows (Liu et al., 2023b).
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(b) Iterative finetuning: Wild — Cat.
FID=25.24, LPIPS=0.483, MSD=0.094

(c) Online finetuning: Cat — Wild. (d) Online finetuning: Wild — Cat.
FID=32.12, LPIPS=0.503, MSD=0.097 FID=27.32, LPIPS=0.485, MSD=0.116

Figure 22: Samples and metrics from a 2-networks model architecture finetuned with DSBM’s
iterative procedure vs online finetuning. Within each two rows, initial and transferred samples are on
the top and bottom respectively.
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(a) Forward: Cat — Wild

(b) Backward: Wild — Cat

Figure 23: Uncurated samples for AFHQ 64 x 64 transfer in a bidirectional model with online

finetuning with non-EMA sampling and 1/ = 0.75. Within each two rows, initial and transferred
samples are on the top and bottom respectively.
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(b) Backward: Wild — Cat

Figure 24: Uncurated samples for AFHQ 64 x 64 transfer in a bidirectional model with online
finetuning and 1/z = 0.75. Within each two rows, initial and transferred samples are on the top and
bottom respectively.
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(a) Forward: Cat — Wild with inputs from Wild. (b) Backward: Wild — Cat with inputs from Cat.

Figure 25: Samples for AFHQ 64 x 64 transfer in bidirectional models with online finetuning and
different values of €. The models are only trained on Cat and Wild domains, 7y and 7, respectively.
Thus, in the forward direction the models expect Cat samples as inputs at t = 0, and transfer them to
the Wild domain at ¢ = 1. The reverse transfer holds in the backward direction. Here, we test the
models’ behaviour when inputs do not come from the same distribution as during training: we feed
Wild samples in the forward direction, and Cat samples in the backward, which is the opposite from
what the models expect. Ideally, the model should leave these inputs unchanged, which it does to
varying degrees depending on ¢, variance of the Gaussian noise. As we increase ¢, less information
can pass from the input to the output, thus making them less alike.
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(a) Forward: Cat — Wild with inputs from Dog. (b) Backward: Wild — Cat with inputs from Dog.

Figure 26: Samples for AFHQ 64 x 64 transfer in a bidirectional model with online finetuning and
\/E = 2.0. The model is only trained on Cat and Wild domains, 7 and 7, respectively. Thus, in the
forward direction the model expects Cat samples as inputs at ¢ = 0, and transfers them to the Wild
domain at ¢ = 1. The reverse holds in the backward direction. Notably, the model generalises well to
the unseen AFHQ Dog domain, often producing high-quality translations. These results come from a
model with v/ = 2.0, which is higher than our chosen default value of \/z = 0.75. Higher noise
allows the model to better deal with out-of-distribution inputs.
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(a) Forward: Cat — Wild (b) Backward: Wild — Cat

Figure 27: Uncurated samples for AFHQ 256 x 256 transfer in a bidirectional model with online
finetuning and /¢ = 3. Within each two rows, initial and transferred samples are on the top and
bottom respectively.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: our main theoretical and experimental contributions are claimed in the abstract
and demonstrated in the paper. We summarize our main contributions hereafter. Theoreti-
cally, we identify a new family of sequence of path measures related to the IMF algorithm,
called a-IMF. We show that these sequences correspond to non-parametric updates. We then
introduce a parametric update that corresponds to an online version of the DSBM algorithm.
We show that our procedure retains the favorable properties of DSBM while not requiring
the expensive repeated inner minimisation procedure of DSBM.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are addressed in the discussion section. The main limitation of
our algorithm is that it is not a sampling free methodology. In future work, we would like to
see how to mitigate the fact that our algorithm depends on some self-play.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results are proven in the supplementary material, see Ap-
pendix D.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Full experimental details are provided in Appendix K.
5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to IP restrictions, we cannot share the codebase used for this paper.
However, we plan to release some notebooks in order to reproduce experiments in a small
scale setting.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimiser, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Full experimental details are provided in Appendix K.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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11.

12.

13.

14.

Justification: All metrics are computed using multiple random seeds and error bars are
provided.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Full details on the compute requirements are given in Appendix K.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: After careful review of the NeurIPS Code of Ethics, we can ensure that the
research presented in this paper conforms with the Code of Ethics in every respect. Indeed,
we see no immediate safety, security, discrimination, surveillance, deception, harassment,
environment, human rights or bias and fairness concerns to our work. In addition, we release
details and documentation regarding the datasets and models used. We disclose essential
details for reproducibility and have ensured that our work is legally compliant.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper addresses the problem of unpaired dataset translation and proposes
an improvement to the DSBM methodology. As the current paper is mostly theoretical
and methodological we do not see immediate societal impact of this work and therefore
do not discuss these issues. However, we acknowledge that large scale implementation of
our algorithm might suffer from the same societal biases as generative models. We hope to
address the limitations of such models when turning to more experimental work.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: The paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have referenced the license of the datasets we use and cite the original
papers that produced the code packages and datasets that we use in that paper.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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