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Abstract

Language models as intelligent agents push the boundaries of sequential decision-
making agents but struggle with limited knowledge of environmental dynamics
and exponentially huge action space. Recent efforts like GLAM and TWOSOME
manually constrain the action space to a restricted subset and employ reinforcement
learning to align agents’ knowledge with specific environments. However, they
overlook fine-grained credit assignments for intra-action tokens, which is essential
for efficient language agent optimization, and rely on human’s prior knowledge
to restrict action space. This paper proposes decomposing language agent opti-
mization from the action level to the token level, offering finer supervision for
each intra-action token and manageable optimization complexity in environments
with unrestricted action spaces. Beginning with the simplification of flattening
all actions, we theoretically explore the discrepancies between action-level op-
timization and this naive token-level optimization. We then derive the Bellman
backup with Action Decomposition (BAD) to integrate credit assignments for
both intra-action and inter-action tokens, effectively eliminating the discrepancies.
Implementing BAD within the PPO algorithm, we introduce Policy Optimization
with Action Decomposition (POAD). POAD benefits from a finer-grained credit as-
signment process and lower optimization complexity, leading to enhanced learning
efficiency and generalization abilities in aligning language agents with interactive
environments. We validate POAD across diverse testbeds, with results affirming
the advantages of our approach and the correctness of our theoretical analysis1.

1 Introduction

Large language models (LLMs) have demonstrated promising capabilities of solving various tasks,
from instructions following to complex reasoning and real-world interaction [1–3]. This growing task-
solving ability underscores their potential as intelligent language agents in interactive environments
[4, 5]. However, despite in-context language generation aiding comprehension of environmental
states and action spaces in sequential decision-making tasks, misalignment issues [4, 5] such as
generating invalid actions and lacking knowledge of environmental dynamics hinder these agents’
ability to complete decision-making tasks robustly and efficiently.

Recent advances [4–8] have showcased that the aforementioned challenges can be alleviated in a
trial-and-error learning style, namely Reinforcement Learning (RL) [9]. Representatively, GLAM
[4] and TWOSOME [5] treat the language actions, i.e. token sequences outputted by a language
model, as whole units, and optimize actions’ likelihood, calculated as the products of conditional
probabilities of intra-action tokens. Leveraging the chain rule of probability, they build the bridge
between optimizing actions and optimizing tokens, aligning the training process of language models as
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 Task Prompt
In order to take a coffee, your

next step is to _____
Walk to coffee table

kitchen

Reward/Advantage < 0,
coffee table is empty,
distinguished by alignment.

Enhance Action

Reward/Advantage > 0,
there is a coffee machine,
chosen option.

TV
Reward/Advantage < 0,
irrelevant option, distinguished 
by common sense.

"Walk" "to" "Walk" "kitchen" "Walk to"

"Walk to kitchen" "Walk" "to" "Walk" "kitchen" "Walk to''

Action Prompt
Walk to TV,

Walk to coffee table,
Walk to kitchen.

Enhance? Enhance? Enhance?
Enhance Token

Language
Agent

Figure 1: A Case to demonstrate: (a) the necessity of aligning language agents with environments to
exclude the wrong option, since the agent does not initially know that “coffee table is empty”. (b)
Action-level optimization is uncertain to what extent the key tokens, i.e. P(“kitchen”|p, “Walk to”),
will be enhanced when optimizing the joint probability P(“Walk to kitchen”|p).

next-token predictors with the RL objective of maximizing actions’ utilities. However, they still suffer
from limitations in optimization and exploration efficiency, due to the uncertainty of credit assignment
to intra-action tokens. As shown in Figure 1, when optimizing the distribution over three candidate
actions that only differ from the last token, action-level policy optimization strategies in previous
works cannot ensure that the probability of the key tokens, i.e. P(“kitchen”|p, “Walk to”) here, will
be enhanced precisely when optimizing the joint probability P(“Walk to kitchen”|p). Furthermore,
optimizing at the action level poses the challenge of overlarge optimization complexity due to
exponentially growing action spaces, leading GLAM and TWOSOME to manually constrain action
spaces. But they remain incapable in environments whose action spaces cannot be restricted.

A natural attempt to solve these problems is to incorporate the token generation process in each
decision step as part of the sequential decision-making process [10–12]. This approach resolves the
credit assignment problem and reduces the growth of optimization complexity from multiplicative to
additive as the number of intra-action tokens increases, by updating each token’s output distribution
separately with fine-grained signals from value backups. Empirical success in many single-step tasks,
e.g. question answering [13] and alignment [10, 11], have demonstrated its effectiveness. However,
the multi-step nature of sequential decision-making tasks leads to extra difficulties in coordinating the
credit assignment process across actions and their constituent tokens. In such scenarios, embedding
the intra-action token generation process into the original Markov Decision Process (MDP) [14]
results in a new MDP inconsistent with the original one. Intuitively speaking, it introduces an
undesired assumption of “in a sentence, tokens appearing later are more important for conveying
meaning than those appearing earlier.” This assumption, however, is unrealistic due to the nature of
linguistic actions. Such a significant discrepancy has been ignored in previous research and has not
been tackled properly for a long time.

In this paper, we provide a comprehensive theoretical analysis of the discrepancy and derive the
Bellman backup with Action Decomposition (BAD), which guarantees theoretical consistency with
optimizing the original MDP. While being possible to seamlessly integrate with a variety of traditional
RL methods, in this work, we apply BAD to Proximal Policy Optimization (PPO) [15], resulting in
the formulation of Policy Optimization with Action Decomposition (POAD). Benefiting from the
finer-grained supervision afforded by BAD, POAD mitigates the uncertainty in the credit assignment
process described in Figure 1, thereby enjoying better interpretability, lower optimization complexity,
and higher training efficiency. Meanwhile, it theoretically maintains consistency between the token-
level training process for language models and the RL objective of maximizing actions’ utilities. We
justify our claims by evaluating POAD in both classical sequential decision-making environments
with limited action space, i.e Overcooked and VirtualHome [5], and a self-constructed data science
coding environment featuring an unrestricted action space, i.e. DataSciCoding; results verify POAD’s
advantages in performance and efficiency over baseline methods, highlighting the significance of BAD.
Moreover, we empirically demonstrate that language agents trained with POAD exhibit excellent
generalization ability across unseen tasks, without compromising the inherent functionalities of
language models. Finally, ablation studies confirm the correctness of our theoretical insights.
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2 Related Works

Language-based Decision-Making Agents. Leveraging LLMs’ powerful capability and plenty of
common knowledge, recent efforts successfully adapt LLMs in decision-making tasks as a policy
model in interactive environments. In robotics, LLMs have been employed as high-level planners of
control policies [16–18]. Similarly, LLMs work particularly well in text-based environments [19, 20].
ReAct [21] combines chain-of-thought reasoning [2] with acting-based prompt, efficiently solving
hard decision-making tasks. Self-Refine [22] and Reflexion [23] further improve language agents’
efficiency and robustness via online adaptation through the self-reflection process. In this work, we
also apply language agents in sequential decision-making scenarios, i.e. interactive environments.

Fine-tuning Language Models with RL. A body of literature explores the prospects of leveraging
strategic planning methodologies to enhance the performance of language agents [7, 24, 25, 6].
Besides, RL has also been widely applied in fine-tuning LLMs [10, 11, 7, 24, 25, 6]. Particularly,
proximal policy optimization (PPO) [15] is the most commonly used RL method for reinforcement
learning from human feedback (RLHF), proposing a breakthrough in aligning LLMs with human
preference [10, 11]. In classical sequential decision-making scenarios, to align the objective of
token-level optimization with action-level optimization, GLAM [4] and TWOSOME [5] estimate the
probability of possible actions with the products of the conditional probability of tokens composing
the actions and update the action as a whole. In this work, instead of treating an action as a whole,
we attempt to decompose actions and explicitly assign precise credit to each intra-action token,
while ensuring that its optimality is consistent with updates at the action level. While a concurrent
work, ArCHer [26], also targets token-level supervision for LLMs in interactive environments, it
employs a hierarchical RL framework, using a Q-network for action-level credit approximation
and REINFORCE [27] for token-level backpropagation. However, ArCHer’s use of multiple value
networks (Q, V, and optional baseline networks) demands extensive manual tuning and can introduce
cumulative bias and variance, potentially affecting stability.

Sequential Decomposition in RL. Recent years have witnessed an increasing trend of decom-
posing high-dimension actions to leverage the powerful modeling abilities of sequential models
like Transformer [28] in RL problems [29–34]. While Kuba et al. [35, 36] proposing a sequential
decomposition method to provide finer-grained supervision for multi-agent joint actions, Multi-agent
Transformer [31] inherits this idea and solves multi-agent RL problems with Transformer. More
recently, Q-transformer [34] managed to decompose the Q-functions for high-dimensional actions by
representing each action dimension as separate tokens. For language agents, the language generation
process inherently conforms to the pattern of sequential decomposition, which offers a promising
avenue for providing finer-grained supervision to intra-action tokens.

3 Preliminaries

3.1 Language-augmented RL

In this work, we assume a textual RL setting that frames sequential decision-making problems
with linguistic inputs and outputs as a language-augmented Markov Decision Process (MDP)M =
(V,S,A, T , R, γ) [37, 4]. Given V the vocabulary and w ∈ V the tokens, A ⊂ VN , S ⊂ VN

are the action space and state space respectively, i.e. actions and states are sequences of tokens.
T : S × A 7→ S is the state transition function. R : S × A 7→ R is the reward function that only
responds to complete actions, and γ is the discounted factor that typically less than 1. At time step
t ∈ N, a language agent receives a textual state st ∈ S from an interactive environment as input
and generates an action at ∈ A in an auto-regressive manner, i.e. at = (w1

t , . . . , w
|at|
t ) where |at|

denotes the number of tokens in the action string and {wi
t}

|at|
i=1 are tokens in it. Then, textual action

at will be grounded to a specific API call or command in the environment [38]. After execution,
the language agent receives a reward rt = R(st, at) along with the next state st+1, based on the
transition function T . Following this process with trajectories of a maximum timestep T , the agents
earn a discounted cumulative return of Rγ =

∑T
t=0 γ

trt, which is aimed to be maximized by RL
algorithms.

3
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3.2 Action-level Policy Optimization

We begin by briefly reviewing the process of action-level policy optimization which is widely adopted
in several state-of-the-art methods that align language agents with environments via RL algorithms
[4, 5, 39]. It facilitates seamless integration between any textual environment and conventional RL
algorithms and thus is an ideal starting point for our analysis.

The possibly achieved episodic return following policy π given action and state is usually evaluated
by state-action value function Qπ(s, a) or state value function Vπ(s). Then, a language agent updates
its policy π according to credits calculated on the value functions, defined as

Qπ(s, a) ≜ Es1:T∼T ,a1:T∼π

[
Rγ |s0 = s, a0 = a

]
, (1)

Vπ(s) ≜ Es1:T∼T ,a0:T∼π

[
Rγ |s0 = s

]
, (2)

where a = (w1, . . . , w|at|) = w1:|a|. While Ahn et al. [16] builds the connection between the
likelihoods of actions and tokens through the chain rule of probability as

π(a|s) =
|a|∏
j=1

π(wj |s, w1:j−1), (3)

recent approaches like GLAM [4] and TWOSOME [5] leverage similar ideas and optimize
action-level likelihoods with RL methods directly. When considering optimizing for π(a|s), Equa-
tions 1 and 2 are aligned with the definition of the value function in traditional RL settings, allowing
them to be updated with traditional Bellman backup [9]

Qπ(st, at)← R(st, at) + γmax
at+1

Qπ(st+1, at+1), (4)

Vπ(st)← R(st, at) + γVπ(st+1). (5)

Moreover, it is noteworthy that Equation 3 calculates the likelihood of action a in an exponentially
growing language space as |a| increases, i.e. |A| = |V||a|. Exploration and optimization in such a
huge action space are typically intractable for RL methods. Therefore, in the settings of GLAM and
TWOSOME, the feasible action space is significantly restricted and smaller than the entire language
space, i.e. |A| ≪ |V||a|. Taking TWOSOME as an example, it optimizes the likelihood of action a
concerning the feasible action space with Equation 6 to mask out invalid outputs.

πTWOSOME(a|s) =
exp(log π(a|s)/L(a))∑

a′∈A exp(log π(a′|s)/L(a′))
. (6)

L(a) indicates the number of tokens or words in the action prompt, utilized as a normalization term
to mitigate the effects of varying action lengths.

Underpinned by Equation 3, GLAM and TWOSOME ensure the consistency between token-level
optimization for language models and action-level optimization in an RL manner, without the need
to explicitly assign credits for intra-action tokens. However, the jointness of the objective causes
difficulties associated with the uncertainty in the credit assignment process [40, 41]—as shown in
Figure 1, after assigning credit to an action, it’s unsure whether key tokens in this action have been
identified, and how much they are influenced. Thus, conducting RL training at the action level
introduces uncertainty, which may lead to an inefficient learning process for the language agent.

4 From Actions to Tokens: Naive Token-level Policy Optimization

4.1 Naive Token-level Policy Optimization

To address the unclear credit assignment issue described in Figure 1 and Section 3.2, our target is to
provide finer-grained supervision for each token during update while maintaining consistency in the
optimality with action-level optimization, i.e. maximizing agents’ cumulative returns. For arbitrary
subsets of actions w1:j with j ≤ |a|, we define token value functions for supervising policy update as

Qπ(s, w
1:j−1, wj) ≜ E

[
Rγ |s0 = s, w1:j−1

0 = w1:j−1, wj
0 = wj], (7)

Vπ(s, w
1:j−1) ≜ E

[
Rγ |s0 = s, w1:j−1

0 = w1:j−1]. (8)

A natural approach to approximate Qπ(s, w
1:j−1, wj) and Vπ(s, w

1:j−1) is conceptualizing the token
generation process as part of the MDP, where each token is treated as a micro action. This enables
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back-propagating credit among all tokens to furnish detailed supervision. Such an idea is borrowed
from the modeling process of RLHF in general language tasks[10, 42]. In this way, the token-level
Bellman backup corresponding to Equations 4 and 5 can be expressed as

Qπ(st, w
1:j−1
t , wj

t )←

{
0 + γw max

w
j+1
t

Qπ(st, w
1:j
t , wj+1

t ), if j < |at|
R(st, at) + γa maxw1

t+1
Qπ(st+1, w

1
t+1), if j = |at|

, (9)

Vπ(st, w
1:j
t )←

{
0 + γwVπ(st, w

1:j+1
t ), if j < |at|

R(st, at) + γaVπ(st+1, ∅), if j = |at|
. (10)

To facilitate subsequent theoretical analysis, we separate the discount factor γ into intra-action γw
and inter-action γa, despite their numerical equivalence here. The above backups can be interpreted
as applying RL algorithms on a modified reward function, which maintains action-level feedback
while introducing extra 0 feedback for tokens within an action, except for the last token. Intuitively,
this approach seems feasible and decomposes the action-level reward signal R(st, at) to intra-action
tokens, thus alleviating the uncertainty in credit assignment [31] and reducing optimization complexity.
However, it must be noted that the optimization of Equations 9 and 10 are inconsistent with those
of Equations 4 and 5 for sequential decision-making tasks since it introduces a new MDP M̄ that
diverges from the origin one. We will analyze this discrepancy in the following section.

4.2 The Discrepancy

To maintain the consistency between action-level updates and token-level updates, we should ensure
that optimizing over tokens gives the same optimality as optimizing the whole action, which is
analogous to the multi-dimensional action optimization setting in traditional RL[34]. That is, given
the deterministic nature of linguistic action generation, and an optimal polity π∗ after sufficient
training following the token-level Bellman backups, ideal optimal token value functions should
satisfy Qπ∗(st, w

1:j−1
t , wj

t ) = Qπ∗(st, at) and Vπ∗(st, w
1:j
t ) = Vπ∗(st) for ∀j < |at|. To quantify

the discrepancy between action-level optimization and token-level optimization with the shape of
Equations 9 and 10, we expand the value backup process over each token starting from arbitrary
j < |at| as the following equations (For derivation see Appendix A).

Qπ∗(st, w
1:j−1
t , wj

t ) = R(st, at) + γa max
at

Qπ∗(st+1, at+1)︸ ︷︷ ︸
Qπ∗ (st,at)

(11)

−
[
(1− γ|at|−j

w )R(st, at) + γa(1− γ
|at|+|at+1|−j−1
w )max

at+1

Qπ∗(st+1, at+1)

]
︸ ︷︷ ︸

Discrepancy between Equation 4 and 9

,

Vπ∗(st, w
1:j
t ) = R(st, at) + γaVπ∗(st+1)︸ ︷︷ ︸

Vπ∗ (st)

−
[
(1− γ|at|−j

w )R(st, at) + γa(1− γ|at|−j
w )Vπ∗(st+1)

]
︸ ︷︷ ︸

Discrepancy between Equation 5 and 10

, (12)

With Equation 11 and 12, we observe following significant insights:

(i) The discrepancy of the Bellman optimality between action-level optimization and token-level
optimization diminishes as γw ∈ [0, 1] increases, achieving consistency when γw = 1.

(ii) Given γw < 1, the discrepancy increases as the number of intra-action tokens, |at|, increases.

Based on the first insight, we will derive our main approach, namely the Bellman backup with
Action-Decomposition, in the next section. The second insight can be intuitively understood as
follows: The diverged MDP M̄ attaches the assumption that “words later in a sentence are more
expressive than earlier ones”, which is unrealistic for representing the semantics of linguistic actions.

5
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Figure 2: Visual comparison of the differences between action-level Bellman backup (left) and
our BAD (right), given the goal turn on the TV, where q is the action or token value estimations,
δt = qt − qt−1 or δj = qj − qj−1 represent the credit assigned to corresponding actions and tokens
respectively for policy update, e.g. the advantage value[43]. To facilitate understanding, a step-by-
step breakdown of the right figure is provided in Appendix L.

5 Action-Decomposition Reinforcement Learning

5.1 Bellman Backup with Action-Decomposition

According to the first insight, we can modify Equations 9 and 10, proposing the Bellman backup with
Action-Decomposition (BAD) as

Qπ(st, w
1:j−1
t , wj

t )←

{
max

w
j+1
t

Qπ(st, w
1:j
t , wj+1

t ), if j < |at|
R(st, at) + γmaxw1

t+1
Qπ(st+1, w

1
t+1), if j = |at|

, (13)

Vπ(st, w
1:j
t )←

{
Vπ(st, w

1:j+1
t ), if j < |at|

R(st, at) + γVπ(st+1, ∅), if j = |at|
. (14)

(For proof of optimization consistency see Appendix B.) Training language agents with BAD provides
finer-grained supervision for credit backpropagation, eliminating uncertainty in credit assignment
and thus enjoying better interpretability and efficiency of the RL training process. In addition, it
theoretically ensures consistency between the token-level training process for language models and
the RL objective of maximizing actions’ utilities. Figure 2 visually compares the differences between
action-level Bellman backup and our BAD and demonstrates how BAD precisely assigns credit to
each token.

Another advantage of BAD is the ability to decompose the optimization in an intractable action space
of size O(|V ||a|), into |a| times optimizations in token spaces of size O(|V |), reducing the complexity
of RL problem with language agent to O(|a| × |V |), thus rendering the problem more manageable.
Moreover, BAD can be seamlessly integrated into various existing RL methods, including off-policy
algorithms e.g. DQN[44], on-policy ones like Actor-Critic[45] and PPO[15]. Furthermore, we have
also provided a version of the Soft Q-function in Appendix B.3 to support various entropy-regularized
RL algorithms like SAC[46, 47].

5.2 Policy Optimization with Action Decomposition

In this section, we integrate the BAD into the widely used PPO and propose a specific method called
Policy Optimization with Action Decomposition (POAD), while the integration with other algorithms
will be reserved for future works. POAD sequentially decomposes the policy update granularity from
the action level to the token level. To approximate the token value function, we introduce a critic
network with parameters ϕ whose objective is to minimize the empirical Bellman error of tokens by

L(θ) = 1
T

T−1∑
t=0

[
1

|at|

([
R(st, at) + γVθ̄(st+1, ∅)− Vθ(st, w

1:|at|
t )

]2︸ ︷︷ ︸
Inter-action credit assignment

+

|at|−1∑
j=1

[
Vθ̄(st, w

1:j+1
t )− Vθ(st, w

1:j
t )

]2
︸ ︷︷ ︸

Intra-action credit assignment

)]
, (15)

6
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where θ̄ represents the non-differentiable parameter of the target network, updated at intervals. The
policy network’s parameters are denoted as ϕ, and optimization follows the clipping PPO objective.

L(ϕ) = − 1

T

T−1∑
t=0

1

|at|

|at|∑
j=1

[
min

(
ratioj

t(ϕ)Â
j
t , clip(ratioj

t(ϕ), 1± ϵ)Âj
t

)]
, (16)

ratioj
t(ϕ) =

πϕ(w
j
t |st, w

1:j−1
t )

πϕold(w
j
t |st, w

1:j−1
t )

, and Âj
t = Â(wj

t |st, w
1:j−1
t ),

where Âj
t is an estimate of the advantage value for each token with the generalized advantage

estimation (GAE) [48]. To capture more details about POAD, we draw a pseudo-code in Appendix D.

6 Experiments

In this section, we show the superiority of POAD in performance, efficiency, and generalization
abilities with different testbeds. Moreover, we conduct meaningful ablations on γa and γw to verify
the theoretical analysis in Section 4.2. Finally, we examine models trained with POAD and baseline
methods to investigate their impact on the model’s original language abilities. For in-depth analysis,
we conduct a case study in Appendix F to validate the effectiveness of BAD in terms of token-level
credit assignment. We deploy LLaMA2-7B [49] for Overcooked and VirtualHome, and CodeLLaMA-
7b [50] for DataSciCoding, fine-tuned with Low Rank Adaptation (LoRA) [51] with 1 Nvidia A100
GPU.

6.1 Environmental Setup

We first evaluate our method on two classical sequential decision-making environments with limited
action space: Overcooked [5] and VirtualHome [5], where the action space consists of approximately
10 possible actions per state, each includes 5-10 tokens. Then we evaluate our method in a data science
coding and debugging environment with unrestricted action space: DataSciCoding, where agents
generate actions (up to 128 tokens) freely. More detailed descriptions can be found in Appendix E.

Overcooked and VirtualHome. Overcooked challenges agents to prepare dishes such as tomato
salad and tomato-lettuce salad in a 7x7 grid kitchen using linguistic actions like Chop, Get-Tomato,
and Go-Cutting-Board, with rewards for correct deliveries and penalties for incorrect ones or time
wastage. Meanwhile, VirtualHome simulates household tasks like reheating pancakes in Food
Preparation and organizing an evening of Entertainment, with actions such as walk to the living room
and turn on the TV, rewarding agents only upon task completion in a partially observable setting.

DataSciCoding. We develop DataSciCoding to automate data science coding tasks with unrestricted
action space, currently adopting 3 Kaggle datasets and 3 OpenML datasets [52] with details in
Appendix E.1. In each task, agents aim to implement the most effective classifier with the scikit-learn
module, striving to achieve the highest possible ROC AUC score [53] on test sets. As the prompts
provided to the agents contain no detailed information about task datasets, agents are required to
interactively modify and debug their code based on feedback from the runtime environment until
it works, thus aligning the task datasets. Agents receive ROC AUC scores ∈ [0, 1] as rewards for
workable codes and −1 as penalties for run failed. Adopting the same evaluation metrics as CAAFE
[54], for each dataset and code, we evaluate 5 repetitions, each with a random 50%− 50% train-test
split [55], and record the average ROC AUC score across these splits.

6.2 Baseline Methods

For Overcooked and VirtualHome, we compare POAD’s performance with Naive Token-Level Policy
Optimization (NTPO) mentioned in Section 4.1, i.e. integrating Equation 10 with γw = γa into
PPO, and TWOSOME [5]—the current state-of-the-art method on Overcooked and VirtualHome.
Besides, we also incorporate ArCHer [26] as a baseline in VirtualHome with comparative analysis,
since it is positioned as an intermediate between NTPO and POAD for token-level credit assignment,
theoretically enjoying reduced discrepancy compared to NTPO. We demonstrate the difference in the
backup processes between POAD and these baselines as well as the optimality after convergence in
Appendix C

7
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Figure 3: Performance comparisons on Overcooked (first two) and VirtualHome (last two).

For the DataSciCoding environment, in case TWOSOME is inapplicable due to the unrestricted action
space, we examine POAD’s performance along with NTPO. Meanwhile, we also compare POAD
with CAAFE [54]—a novel AutoML framework in which humans collaborate with large language
models for data science. In CAAFE, humans implement machine learning models, e.g. classifiers,
while large language models generate the code for feature engineering. CAAFE represents the current
state-of-the-art performance with collaboration between humans and powerful closed-source LLMs
such as GPT-3.5 and GPT-4 on the given task datasets we used.

6.3 Main Results

6.3.1 Classical Sequential Decision-Making Tasks with Restricted Action Space

As shown in Figure 3, where curves are averaged over 3 seeds with the shadow showing their standard
deviation, the performance drop of NTPO when comparing with POAD verifies the existence and
negative impact of the discrepancy analyzed in Section 4.2. While POAD can achieve the same
(or even better) convergence performance compared to TWOSOME which further verifies the
consistency between token-level optimization with BAD and action-level optimization. In addition,
the training curves of POAD are more stable (enjoying smaller standard deviations) than TWOSOME
and converge much faster than all other baselines, indicating POAD’s stability and efficiency by
integrating our BAD. In complex Entertainment tasks, ArCHer is second only to POAD, aligning
with our theoretical expectations. However, in tasks such as Food Preparation where the methods’
performance gap was less pronounced, ArCHer performed poorly, potentially due to instability in its
system that involved multiple value networks.

6.3.2 Data Science Coding Tasks with Unrestricted Action Space

According to the training curves in Figure 4, our method POAD significantly outperforms NTPO
both in the convergence speed and the final score. Compared to the results on sequential decision-
making tasks in Section 6.3.1, the performance gap between POAD and NTPO on DataSciCoding is
consistently larger, due to the much longer action length |at|, at most 128 tokens for each action in
DataSciCoding. Such results are consistent with our second insights in Section 4.2 and empirically
highlight the importance of a proper intra-action credit assignment, which, our Bellman Backup with
Action Decomposition (BAD) is designed for.

In Figure 4, POAD-Best means the performance of the best code discovered during POAD’s training
process with CodeLLaMA-7B. We compare it with the best performance achieved by the state-of-the-
art AutoML framework CAAFE [54] with GPT-4 model. In this experiment, we aim to prove that
even small-scale language models can also provide better outcomes than large-scale models, what is
needed is just a stable and efficient training algorithm POAD and only 2-3 hours on Nvidia A100
(Details of wall-time on each task are shown in Appendix H). A more detailed Comparison between
POAD and CAAFE with both GPT-3.5 and GPT-4 can be found in Appendix G.

6.4 Open-Vocabulary Task Generalization

LLMs’ open-vocabulary feature enables language agents to transfer their learned skills into unseen
similar tasks, expanding the capabilities of decision-making agents. We compare the generalization
performance of language agents trained by POAD, TWOSOME and NTPO in the Food Preparation
task with the original base model LLaMA2-7B. Table 1 shows that token-level policy optimization
methods achieve better generalization performance in unseen tasks. And our POAD outperforms the
other baselines in seven of eight tasks.
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Figure 4: While TWOSOME does not support open action space tasks, we compare the average
performance between POAD and NTPO on the DataSciCoding benchmarks, as well as POAD-Best
the performance of best code explored by POAD during the training phase and CAAFE with GPT-4.

Table 1: Comparison of generalization performance on eight unseen tasks, with episodic returns
averaged over 100 episodes. In these tasks, we replace the pancake in the original Food Preparation
task with other foods like cheese, hamburger, apple pie and pizza, or replace the (pancake, microwave)
at the same time with (dishes, dishwasher) or (clothes, washing machine) for greater differences.

Methods Cheese Hamburger Apple Pie Pizza Washing Plate Laundry

LLaMA2-7B 0.1351 0.1342 0.1656 0.1409 0.0527 0.0344
TWOSOME 0.7119 0.7058 0.7304 0.7047 0.7031 0.6038

NTPO 0.7428 0.7476 0.7141 0.7355 0.7491 0.5687
POAD 0.7553 0.7602 0.7650 0.7625 0.7075 0.7014
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Figure 5: Ablation on γa ∈ {1.0, 0.95} for both TWOSOME and POAD (left), and γw ∈
{0.95, 0.9, 0.8, 0.5} for NTPO while keeping the γa = 0.95 unchanged (middle). In the left figure,
Setting γa = 1.0 led to decreased performance and convergence for TWOSOME and POAD, validat-
ing necessity of γa < 1.0. While in the right figure, the increasingly larger performance gap between
POAD and NTPO, as γw decreases, verifies the theoretical analysis in Section 4.2. The right one
shows the performance change after applying theoretical insights to enhance ArCHer’s performance,
i.e. ARCHER-BAD with γw = 1.0.

6.5 Ablations: the Impact of γa and γw to the Discrepancy

To verify our analysis in Section 4.2, we conduct ablations on γw to further investigate how large the
discrepancy would be by using different values of γw in NTPO. Therefore, we deploy NTPO on the
Food Preparation task with γw ∈ {0.95, 0.9, 0.8, 0.5}, while we keep γa = 0.95 which is consistent
with our main experiments. Besides, we also show the performance with γa ∈ {1.0, 0.95} to show
the necessity of setting γa strictly less than 1.0, and thus the necessity to separate inter-action tokens
and intra-action tokens. Further, our theoretical analysis is also compatible with ArCHer, motivating
us to apply insights in Section 4.2 to enhance ArCHer’s performance.
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The left side of Figure 5 demonstrates an increasingly larger performance gap between POAD
(γw = 1) and NTPO as γw decreases. These results empirically showcase the discrepancy between
naive token-level credit assignment and our BAD, which is consistent with our first theoretical insight
in Section 4.2. Moreover, in the middle of Figure 5, for both TWOSOME and our proposed method
POAD, setting γa = 1.0 performs much worse than γa = 0.95, indicating that the discrepancy
between NTPO and POAD can not be solved by simply setting γa = γw = 1.0. Furthermore, the
right one in Figure 2 shows improved results that validate the effectiveness of applying our insights
to ArCHer. However, due to the inherent challenges of excessive network complexity and difficult
hyper-parameter tuning, ArCHer-BAD still falls short of matching POAD’s performance.

6.6 Impact on Original Language Ability

Table 2: Zero-shot performance on Language Model
Evaluation Harness [56], with details in Appendix J.

Methods ARC_C HellaSwag PIQA MMLU

LLaMA2-7B 0.44 0.57 0.78 0.41
TWOSOME 0.44 0.58 0.78 0.41

NTPO 0.44 0.58 0.78 0.41
POAD 0.45 0.59 0.78 0.41

To investigate the impacts of online RL
fine-tuning on LLMs’ original capabilities,
we evaluate the models trained by POAD,
TWOSOME and NTPO on widely used
NLP benchmarks[56] which are also re-
ported in Tan et al. [5] and Touvron et al.
[49]. These models are trained in Food
Preparation. Table 2 demonstrates these
models’ zero-shot performance, compared
with the original LLaMA2-7B model. The results show no significant losses of general ability like
natural language understanding after aligning with the embodied environment, even sometimes
bringing minor improvements.

7 Conclusion

In this work, we propose the Bellman backup with Action Decomposition (BAD), theoretically
eliminating the discrepancy between naive token-level policy optimization and action-level policy
optimization for language agents. Integrating BAD with PPO, we propose our method of Policy
Optimization with Action Decomposition (POAD), providing finer-grained supervision for each
intra-action token and ensuring theoretical consistency between the token-level training nature of
language models and the RL objective of maximizing actions’ utilities. Empirical experiments and
thorough ablations showcase the effectiveness of BAD as well as the superiority of POAD in learning
efficiency and generalization abilities, over strong action-level baseline TWOSOME.

Limitation and Future Work. The existing limitation of POAD is on the requirement for a
quantitative reward function, which is not easily attainable in some environments. To mitigate this,
we envisage integrating POAD with self-rewarding [57, 58] or hindsight relabeling [59].

Social Impact. The advancements in RL for language agents can significantly enhance decision-
making processes in various domains such as healthcare, finance, and autonomous systems. Improved
decision-making can lead to better outcomes, increased efficiency, and reduced errors. However,
we acknowledge that when optimizing agents using our method, language agents may potentially
resort to unscrupulous means to maximize rewards, which could lead to potentially harmful results.
Thus, we advocate for a more comprehensive consideration when designing the reward function, or
combining it with safety-constrained RL methods to mitigate these risks.

Acknowledgment

The SJTU team is partially supported by National Key R&D Program of China (2022ZD0114804),
Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102) and National
Natural Science Foundation of China (62322603, 62076161, 62106141). Muning Wen is supported
by Wu Wen Jun Honorary Scholarship, AI Institute, Shanghai Jiao Tong University.

10

103783https://doi.org/10.52202/079017-3297



References
[1] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan

Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. Journal of Machine Learning Research, 25(70):1–53, 2024.

[2] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[3] Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David
Mguni, Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling.
Advances in Neural Information Processing Systems, 36, 2024.

[4] Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-
Yves Oudeyer. Grounding large language models in interactive environments with online
reinforcement learning. In International Conference on Machine Learning, pages 3676–3713.
PMLR, 2023.

[5] Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowl-
edge comes from practice: Aligning large language models with embodied environments via
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=hILVmJ4Uvu.

[6] Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-
like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179, 2023.

[7] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

[8] Fengshuo Bai, Hongming Zhang, Tianyang Tao, Zhiheng Wu, Yanna Wang, and Bo Xu. Picor:
Multi-task deep reinforcement learning with policy correction. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(6):6728–6736, Jun. 2023. doi: 10.1609/aaai.v37i6.
25825. URL https://ojs.aaai.org/index.php/AAAI/article/view/25825.

[9] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[10] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[11] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2024.

[12] Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q* : Your language model
is secretly a q-function. arXiv preprint arXiv:2404.12358, 2024.

[13] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhut-
dinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. arXiv preprint arXiv:1809.09600, 2018.

[14] Frédérick Garcia and Emmanuel Rachelson. Markov decision processes. Markov Decision
Processes in Artificial Intelligence, pages 1–38, 2013.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[16] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not
as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

11

103784 https://doi.org/10.52202/079017-3297

https://openreview.net/forum?id=hILVmJ4Uvu
https://ojs.aaai.org/index.php/AAAI/article/view/25825


[17] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied
reasoning through planning with language models. In 6th Annual Conference on Robot Learning,
2022.

[18] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

[19] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning. arXiv preprint arXiv:2010.03768, 2020.

[20] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In The Twelfth
International Conference on Learning Representations, 2023.

[21] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2022.

[22] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[23] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao.
Reflexion: language agents with verbal reinforcement learning. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[24] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

[25] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhit-
ing Hu. Reasoning with language model is planning with world model. arXiv preprint
arXiv:2305.14992, 2023.

[26] Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training
language model agents via hierarchical multi-turn rl. In Forty-first International Conference on
Machine Learning, 2024.

[27] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[29] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[30] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34:1273–
1286, 2021.

[31] Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong
Yang. Multi-agent reinforcement learning is a sequence modeling problem. Advances in Neural
Information Processing Systems, 35:16509–16521, 2022.

12

103785https://doi.org/10.52202/079017-3297



[32] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[33] Ying Wen, Ziyu Wan, Ming Zhou, Shufang Hou, Zhe Cao, Chenyang Le, Jingxiao Chen, Zheng
Tian, Weinan Zhang, and Jun Wang. On realization of intelligent decision-making in the real
world: A foundation decision model perspective. arXiv preprint arXiv:2212.12669, 2022.

[34] Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar,
Tianhe Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement
learning via autoregressive q-functions. In Conference on Robot Learning, pages 3909–3928.
PMLR, 2023.

[35] Jakub Grudzien Kuba, Muning Wen, Linghui Meng, Haifeng Zhang, David Mguni, Jun Wang,
Yaodong Yang, et al. Settling the variance of multi-agent policy gradients. Advances in Neural
Information Processing Systems, 34:13458–13470, 2021.

[36] Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and
Yaodong Yang. Trust region policy optimisation in multi-agent reinforcement learning. In
International Conference on Learning Representations, 2021.

[37] Martijn Van Otterlo and Marco Wiering. Reinforcement learning and markov decision processes.
In Reinforcement learning: State-of-the-art, pages 3–42. Springer, 2012.

[38] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

[39] Filippos Christianos, Georgios Papoudakis, Matthieu Zimmer, Thomas Coste, Zhihao Wu, Jingx-
uan Chen, Khyati Khandelwal, James Doran, Xidong Feng, Jiacheng Liu, et al. Pangu-agent: A
fine-tunable generalist agent with structured reasoning. arXiv preprint arXiv:2312.14878, 2023.

[40] Zhipeng Chen, Kun Zhou, Wayne Xin Zhao, Junchen Wan, Fuzheng Zhang, Di Zhang, and
Ji-Rong Wen. Improving large language models via fine-grained reinforcement learning with
minimum editing constraint. arXiv preprint arXiv:2401.06081, 2024.

[41] Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv
preprint arXiv:2403.06963, 2024.

[42] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[43] Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. Re-
inforcement learning through asynchronous advantage actor-critic on a gpu. arXiv preprint
arXiv:1611.06256, 2016.

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[45] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

[46] John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft
q-learning. arXiv preprint arXiv:1704.06440, 2017.

[47] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[48] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

13

103786 https://doi.org/10.52202/079017-3297



[49] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[50] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2023.

[51] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[52] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science
in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

[53] Sarang Narkhede. Understanding auc-roc curve. Towards data science, 26(1):220–227, 2018.

[54] Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[55] Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk,
Justin Szeto, Nazanin Mohammadi Sepahvand, Edward Raff, Kanika Madan, Vikram Voleti,
et al. Accounting for variance in machine learning benchmarks. Proceedings of Machine
Learning and Systems, 3:747–769, 2021.

[56] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, page 8, 2021.

[57] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

[58] Runze Liu, Fengshuo Bai, Yali Du, and Yaodong Yang. Meta-reward-net: Implicitly dif-
ferentiable reward learning for preference-based reinforcement learning. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 22270–22284. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
8be9c134bb193d8bd3827d4df8488228-Paper-Conference.pdf.

[59] Alexander Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning.
Advances in neural information processing systems, 33:7754–7767, 2020.

14

103787https://doi.org/10.52202/079017-3297

https://proceedings.neurips.cc/paper_files/paper/2022/file/8be9c134bb193d8bd3827d4df8488228-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8be9c134bb193d8bd3827d4df8488228-Paper-Conference.pdf


A Derivation for the Discrepancy

A.1 Q-Function

The optimization over each token following Equation 9, starting from arbitrary j < |at|, could be
expanded as

Qπ∗(st, w
1:j−1
t , wj

t ) = γw max
wj+1

t

Qπ∗(st, w
1:j
t , wj+1

t ) (17)

= γw max
wj+1

t

[
γw max

wj+2
t

Qπ∗(st, w
1:j
t , wj+1

t , wj+2
t )

]
= γ|at|−j

w R(st, at) + γaγ
|at|−j
w max

w1
t+1

Qπ∗(st+1, w
1
t+1)

= γ|at|−j
w

[
R(st, at) + γa max

w1
t+1

(
γw max

w2
t+1

Qπ∗(st+1, w
1
t+1, w

2
t+1)

)]
= γ|at|−j

w

[
R(st, at) + γaγw

(
max
w1:2

t+1

Qπ∗(st+1, w
1
t+1, w

2
t+1)

)]
= γ|at|−j

w

[
R(st, at) + γaγ

|at+1|−1
w max

w
1:|at+1|
t+1

Qπ∗(st+1, w
1:|at+1|
t+1 )

]

= γ|at|−j
w

[
R(st, at) + γaγ

|at+1|−1
w max

at+1

Qπ∗(st+1, at+1)

]
= R(st, at) + γa max

at+1

Qπ∗(st+1, at+1)︸ ︷︷ ︸
Qπ∗ (st,at)

−
[
(1− γ|at|−j

w )R(st, at) + γa(1− γ|at|+|at+1|−j−1
w )max

at+1

Qπ∗(st+1, at+1)

]
︸ ︷︷ ︸

Discrepancy between Equation 4 and 9

.

A.2 V-Function

Similar to Appendix A.1, the optimization over each token following Equation 10, starting from
arbitrary j < |at|, could be expanded as

Vπ∗(st, w
1:j−1
t ) = γwVπ∗(st, w

1:j
t ) (18)

= γw

[
γwVπ∗(st, w

1:j+1
t )

]
= γ|at|−j

w R(st, at) + γaγ
|at|−j
w Vπ∗(st+1)

= R(st, at) + γaVπ∗(st+1)︸ ︷︷ ︸
Vπ∗ (st)

−
[
(1− γ|at|−j

w )R(st, at) + γa(1− γ|at|−j
w )Vπ∗(st+1)

]
︸ ︷︷ ︸

Discrepancy between Equation 5 and 10

.

B Proof of Optimization Consistency

To show that optimizing value functions with BAD still ensures the same optimality with action-level
optimization, we show that optimizing the value functions for each token is equivalent to optimizing
for the full action.
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B.1 Q Function

The optimization over each token with the optimal policy π∗ following Equation 13, starting from
arbitrary j < |at|, could be expanded as

Qπ∗(st, w
1:j−1
t , wj

t ) = max
wj+1

t

Qπ∗(st, w
1:j
t , wj+1

t )

= max
wj+1

t

[
max
wj+2

t

Qπ∗(st, w
1:j
t , wj+1

t , wj+2
t )

]
= R(st, at) + γmax

w1
t+1

Qπ∗(st+1, w
1
t+1)

= R(st, at) + γmax
w1

t+1

(
max
w2

t+1

Qπ∗(st+1, w
1
t+1, w

2
t+1)

)
= R(st, at) + γ

(
max
w1:2

t+1

Qπ∗(st+1, w
1
t+1, w

2
t+1)

)
= R(st, at) + γ max

w
1:|at+1|
t+1

Qπ∗(st+1, w
1:|at+1|
t+1 )

= R(st, at) + γmax
at

Qπ∗(st+1, at+1)

= Qπ∗(st, at). (19)

B.2 V Function

The optimization over each token following Equation 14, starting from arbitrary j < |at|, could be
expanded as

Vπ∗(st, w
1:j−1
t ) = Vπ∗(st, w

1:j
t )

= Vπ∗(st, w
1:j+1
t )

= R(st, at) + γVπ∗(st+1).

= Vπ∗(st), (20)

where Vπ∗(st, w
1:j−1
t ) and Vπ∗(st, w

1:|at|
t ) are equivalent to Ewj

t∼π∗ [Q(st, w
1:j−1
t , wj

t )] and
Ew1

t+1∼π∗ [Q(st+1, w
1
t+1)].

B.3 Soft Q function in Entropy-Regularized RL

As an extension of BAD, we also provide the soft Bellman backup with Action-Decomposition
(sBAD), to support Entropy-Regularized methods like SAC (by setting the reference policy π̄ to a
uniform distribution), as

Qπ(st, w
1:j−1
t , wj

t ) =

{
E
w

j+1
t ∼π

[Qπ(st, w
1:j
t , wj+1

t )]− βDKL[π||π̄](st, w1:j
t ), if j < |at|

R(st, at) + γ(Ew1
t+1∼π[Qπ(st+1, w

1
t+1)]− βDKL[π||π̄](st+1)), if j = |at|

.

(21)

We show that optimizing the soft Q-function with sBAD at the token level is consistent with optimizing
for the full action. We adopt KL(a|s) = DKL[π

∗||π̄](s), where the KL(a|s) indicate it is a action
level KL divergence, KL(w|s) indicate a token level KL divergence. Given an optimal stochastic
policy π∗, the vanilla soft Bellman backup for full actions is:

Eat∼π∗ [Q(st, at)] = Eat∼π∗

[
R(st, at) + γ(Eat+1∼π∗ [Q(st, at)]− βKL(at+1|st+1))

]
(22)

= Eat∼π∗ [R(st, at)] + γEat,at+1∼π∗ [Q(st+1, at+1)]− γβEat∼π∗ [KL(at+1|st+1)].
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Following our sBAD, the update over each token within an action (j < |a|) is:

Ew1
t∼π∗ [Q(st, w

1
t )] = Ew1

t∼π∗ [Ew2
t∼π∗ [Q(st, w

1
t , w

2
t )]− βKL(w2

t |st, w1
t )]

= Ew1
t ,w

2
t∼π∗ [Q(st, w

1
t , w

2
t )]− βEw1

t∼π∗ [KL(w2
t |st, w1

t )]

= E
w1

t ,...,w
|a|
t ∼π∗ [Q(st, w

1:|at|−1
t , w

|at|
t )]

− βE
w1

t ,...,w
|at|−1
t ∼π∗ [

|at|−1∑
j=1

KL(wj+1
t |st, w1:j

t )]

= Eat∼π∗ [Q(st, at)]

− βE
w1

t ,...,w
|at|−1
t ∼π∗ [

|at|−1∑
j=1

KL(wj+1
t |st, w1:j

t )]

(23)

Minus βKL(w1
t |st) from both sides, we have:

Ew1
t∼π∗(st)[Q(st, w

1
t )]− βKL(w1

t |st) = Eat∼π∗ [Q(st, at)]− βKL(at|st), (24)

where KL(at|st) =
∑|at|

j=1 KL(wj
t |st, w

1:j−1
t ).

Then, the update across the current action at and the next action at+1 with our sBAD:

Eat∼π∗ [Q(st, at)] = Eat∼π∗ [R(st, at)] + γ(Eat∼π∗,w1
t+1∼π∗ [Q(st+1, w

1
t+1)]

− βEat∼π∗ [KL(w1
t+1|st+1)])

= Eat∼π∗ [R(st, at)] + γEat,at+1∼π∗ [Q(st+1, at+1)]

− γβEat∼π∗ [KL(at+1|st+1)]. (25)

Equation 25 enjoys the same shape as Equation 22, thus optimizing the soft Q function following
sBAD is equivalent to the action-level optimization. We prove the consistency between sBAD and
the traditional soft Bellman updates over full actions.

C Comparison of the Optimality between Three Backup Approaches

We provided a visual comparison of the differences between four different backup approaches with
the optimal policy after convergence in Figure 6.

Figure 6: Visual comparison of the differences between four different backup approaches with the
optimal policy after convergence. We show that optimizing the Q-function for each token with BAD
(POAD) is equivalent to backup for the full action (TWOSOME), while others are not.
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D Pseudo Code of POAD

Algorithm 1 Policy Optimization with Action Decomposition

1: Input: LLM ρ, Learning rate α, MDPM = (V,S,A, T , R, γ)
2: Initialize: πθ : {ρ, θ};Vϕ : {ρ, ϕ}; θ̄ ← θ
3: Initialize: Data buffer D ← ∅
4: for each epoch do
5: for t = 0 to T − 1 do
6: Collect st.
7: at ∼ πϕ(·|st).
8: st+1 ∼ T (·|st, at).
9: D ← D ∪ {(st, at, R(st, at), st+1)}.

10: end for
11: Sample a mini-batch B from D.
12: for each time step t in B do
13: for each token j in at do
14: if j < |at| then
15: vtarg ← Vθ̄(st, w

1:j+1
t )

16: else if j = |at| then
17: vtarg ← R(st, at) + γVθ̄(st+1, ∅)
18: end if
19: v ← Vθ(st, w

1:j
t )

20: Estimate Âj
t with GAE or vtarg − v

21: end for
22: end for
23: θ ← θ − α∇θEB[(v − vtarg)

2]
24: ϕ← ϕ− α∇ϕEB[L(ϕ)]
25: θ̄ ← θ
26: end for

E Detailed Description of Experimental Environments

Figure 7 visually shows the Overcooked and VirtualHome tasks.

Overcooked is proposed as a typical deicision-making environment in Tan et al. [5]. There are two
tasks in which a language agent is aiming to make and serve a tomato salad and tomato-lettuce salad
respectively, with the provided ingredients and tools in a 7×7 grid world as a kitchen. To solve
the tasks, the agent needs to explore and learn the correct order to cook the dish with the provided
macro-actions, such as Chop, Get-Tomato, and Go-Cutting-Board. The environment is partially
observable. The agent only observes the objects within 5×5 square centered on the agent. The reward
involves +0.2 for chopping a correct ingredient, +1 terminal reward for delivering the correct dish,
-0.1 for delivering any wrong item, and -0.001 for every time step.

VirtualHome is a simulated physical household environment proposed in Tan et al. [5]. In this
environment, an agent is placed in a fully-furnished household with various objects. There are two
tasks in the environment, the first one is to find the cold pancake on the table and heat it with the
microwave in the kitchen. In the generalization tasks, we replace the pancake with other foods like
hamburger and pizza, or replace the (pancake, microwave) at the same time with (dishes, dishwasher)
or (clothes, washing machine), to evaluate agents’ generalization abilities for similar but unseen tasks.
The second one is to plan to have some entertainment while watching TV, for example picking up
chips and milk in the kitchen, bringing them to the living room, turning on the TV, sitting on the sofa
and enjoying. In order to solve the tasks, the agent need to use macro-actions to interact with the
environment such as walk to the living room, turn on the TV and sit on the sofa. The environment is
partially observable. Both tasks adopt a sparse reward setting, only when the task is finished, will the
agent receive +1 reward.

DataSciCoding is an environment we developed for data science coding tasks with open action space.
We adopt 3 Kaggle datasets and 3 OpenML datasets [52] with details in Appendix E.1. In each task,
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Figure 7: Visual demonstrations of Overcooked and VirtualHome tasks [5].

agents aim to build the most effective classifier with the scikit-learn module, striving to achieve the
highest possible ROC AUC score [53] on test sets. As the prompts provided to the agents contain
no detailed information about task datasets, agents are required to align their knowledge to different
datasets, that is, they must continuously modify and debug their code based on feedback from the
runtime environment until it works. Therefore, it is a sequential decision-making process. Through
this interaction, they align their approach to the specific task dataset. When the codes are executed
successfully, a done signal will occur immediately, along with an ROC AUC score ∈ [0, 1]. If the
codes run wrong, the agent receives a constant −1.0 as a penalty. Adopting the same evaluation
metrics as Hollmann et al. [54], for each dataset, we evaluate 5 repetitions, each with a random
50%− 50% train-test split [55], and record the average ROC AUC score across these splits.

E.1 Details of Datasets Used in DataSciCoding Tasks

These datasets are collected from Kaggle and OpenML respectively, with pruning approaches
consistent with Hollmann et al. [54].

Table 3: Details of task datasets in DataSciCoding, where [K] denotes Kaggle.

Data set #Features #Samples #Classes

Pharyngitis [K] 19 512 2
Health Insurance [K] 13 2000 2
Spaceship Titanic [K] 13 2000 2

Airlines 7 2000 2
Balance Scale 4 125 3
Breast-w 9 69 2

F Case Study in Token-Level Credit Assignment

In this section, we conduct a case study for in-depth analysis to validate the effectiveness of BAD
in terms of token-level credit assignment. We selected the last three states from the Food Prepa-
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Figure 8: Case Study: Demonstration of the token-level credit assignment learned by the BAD at
two states (left two). And a comparison of the volume of credit assignment for key tokens between
different methods (right one), where TWOSOME indicates the credit assigned to entire actions
instead of specific tokens.

ration task, which form a complete subtask: Heat the Pancake with Microwave. This serves as
a simple yet practical case for our analysis, with transitions: T (s0, “open the microwave”) →
s1, T (s0, “close the microwave”) → s0, T (s1, “put the pancake into the microwave”) → s2,
T (s2, “open the microwave”)→ s2, T (s2, “close the microwave”)→ success with reward 1.0. Ac-
cording to these transitions, the optimal trajectory to complete this subtask is (open the microwave,
put the pancake into the microwave, close the microwave). Additionally, the maximum step length
for the task is 5; if the task is not completed within 5 steps, it is considered a failure, resulting in a
reward signal of -1.0.

Based on this, we first sample 1,000 examples using a random policy, then train a critic to convergence
with three different backups: action-level Bellman backup (TWOSOME), naive token-level Bellman
backup (NTPO), and BAD (POAD). In Figure 3, we recorded the credit assignment results with each
critic for each token in positive and negative actions under the first and last states.

The first two in Figure 8 show the credit assigned to each token in a symmetric (positive, negative)
action pair by the BAD-learned critic in two different states, results confirm that the BAD critic can
effectively assign most of the credit to the key tokens while rarely influencing other irrelevant tokens.
The right one illustrates the volume of credits assigned to key tokens by POAD and NTPO, compared
with the credit assigned to the entire action by TWOSOME, showing that POAD enjoys a far smaller
discrepancy than NTPO.

G Detailed Comparison between POAD and CAAFE

Table 4 shows the performance of the best code discovered during POAD’s training process with
CodeLLaMA-7B, comparing with CAAFE with GPT-3.5 and GPT-4.

Table 4: The performance of the best code discovered during POAD’s training process with
CodeLLaMA-7B, comparing with CAAFE with GPT-3.5 and GPT-4. [K] denotes that the dataset is
collected from Kaggle, while others are collected from OpenML.

Task POAD-Best CAAFE(GPT-3.5) CAAFE(GPT-4)

health-insurance[K] 0.5939±0.01 0.5745±0.02 0.5748±0.02
pharyngitis[K] 0.7282±0.01 0.6976±0.03 0.7078±0.04

spaceship-titanic[K] 0.8628±0.01 0.8383±0.02 0.8405±0.02

airlines 0.664±0.01 0.619±0.04 0.6203±0.04
balance-scale 0.9651±0.03 0.844±0.31 0.882±0.26

breast-w 0.9981±0.01 0.9809±0.02 0.9809±0.02

H Wall-time of POAD on DataSciCoding Environment

Table 5 shows the average wall-time of training LLaMA2-7b with LoRA and POAD on all DataSci-
Doing tasks.
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Table 5: Average wall-time for POAD training with each dataset with 1 * Nvidia A100.
Task Wall-Time Environmental Steps

health-insurance[K] 2h 34m 10k
pharyngitis[K] 2h 11m 10k

spaceship-titanic[K] 3h 5m 10k

airlines 2h 56m 10k
balance-scale 1h 43m 10k

breast-w 2h 6m 10k

I Details in Generalization Experiments

Table 6: Comparison of generalization performance on eight unseen tasks, with episodic returns
averaged over 100 episodes (The fewer timesteps consumed, the higher the returns). In these tasks,
we replace the pancake in the original Food Preparation task with other foods like cheese, hamburger,
apple pie and pizza, or replace the (pancake, microwave) at the same time with (dishes, dishwasher)
or (clothes, washing machine) for greater differences. In parentheses is the success rate of completing
the task within 50 timesteps.

Methods Cheese Hamburger Apple Pie Pizza Washing Plate Laundry

LLaMA2-7B 0.1351(0.55) 0.1342(0.55) 0.1656(0.61) 0.1409(0.55) 0.0527(0.27) 0.0344(0.15)
TWOSOME 0.7119(1.0) 0.7058(1.0) 0.7304(1.0) 0.7047(1.0) 0.7031(1.0) 0.6038(1.0)

NTPO 0.7428(1.0) 0.7476(1.0) 0.7141(1.0) 0.7355(1.0) 0.7491(1.0) 0.5687(1.0)
POAD 0.7553(1.0) 0.7602(1.0) 0.7650(1.0) 0.7625(1.0) 0.7075(1.0) 0.7014(1.0)

J Evaluation on NLP Benchmarks

Table 7: Zero-shot performance on Common Sense
Reasoning tasks

Methods ARC_C HellaSwag PIQA

LLaMA2-7B 0.4352 0.5713 0.7807
TWOSOME 0.4445 0.5819 0.7786

NTPO 0.4428 0.5825 0.7824
POAD 0.4471 0.5856 0.7797

To investigate the impacts of fine-tuning
different RL methods on the LLM’s origi-
nal abilities, we evaluate the models trained
by POAD, NTPO and TWOSOME on
widely used NLP benchmarks[56]. All
models are trained in the Food Prepa-
ration task. The four benchmarks are
ARC_Challenge, HellaSwag, PIQA and
MMLU, with results on ARC_Challenge,
HellaSwag and PIQA are displayed in Ta-
ble 7 and the results of MMLU are dis-
played in Table 8. All results are calculated following the default configurations in Gao et al. [56].
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Table 8: Details of Zero-shot performance on Massive Multitask Language Understanding tasks
Tasks LLaMA2-7B TWOSOME NTPO POAD

abstract_algebra 0.3100 0.2900 0.3300 0.2900
anatomy 0.4296 0.4296 0.4444 0.4593

astronomy 0.4474 0.4145 0.4342 0.4079
business_ethics 0.4300 0.4300 0.4400 0.4500

clinical_knowledge 0.4868 0.4566 0.4792 0.4604
college_biology 0.4236 0.4097 0.4236 0.4306

college_chemistry 0.2900 0.3000 0.2700 0.2700
college_computer_science 0.2900 0.3000 0.3100 0.3000

college_mathematics 0.3700 0.3900 0.4000 0.3900
college_medicine 0.4451 0.4104 0.4220 0.4393
college_physics 0.2451 0.1961 0.2157 0.2157

computer_security 0.5400 0.5100 0.5300 0.5100
conceptual_physics 0.3532 0.3660 0.3489 0.3489

econometrics 0.2193 0.2105 0.2018 0.1930
electrical_engineering 0.3724 0.3586 0.3931 0.3655

elementary_mathematics 0.2460 0.2619 0.2672 0.2593
formal_logic 0.3413 0.3571 0.3175 0.3175
global_facts 0.3100 0.2900 0.3400 0.2800

high_school_biology 0.4516 0.4548 0.4452 0.4548
high_school_chemistry 0.3300 0.3054 0.3350 0.3153

high_school_computer_science 0.3800 0.4000 0.4100 0.4100
high_school_european_history 0.6000 0.5879 0.5636 0.5879

high_school_geography 0.4343 0.4545 0.4444 0.4495
high_school_government_and_politics 0.5389 0.5181 0.5233 0.5181

high_school_macroeconomics 0.3769 0.3718 0.3821 0.3821
high_school_mathematics 0.2704 0.2593 0.2481 0.2630

high_school_microeconomics 0.3739 0.3739 0.3655 0.3487
high_school_physics 0.2781 0.3179 0.2848 0.2914

high_school_psychology 0.5248 0.5376 0.5138 0.5174
high_school_statistics 0.2731 0.2824 0.2778 0.2546

high_school_us_history 0.5196 0.5441 0.5343 0.5049
high_school_world_history 0.5612 0.5823 0.5696 0.5696

human_aging 0.4350 0.4484 0.4395 0.4260
human_sexuality 0.5649 0.5267 0.5344 0.5191
international_law 0.5620 0.5785 0.5620 0.5702

jurisprudence 0.4722 0.4722 0.4630 0.4537
logical_fallacies 0.4785 0.4663 0.4663 0.4847

machine_learning 0.3929 0.3839 0.3571 0.3571
management 0.4466 0.4272 0.4272 0.4175

marketing 0.6026 0.6282 0.6239 0.5940
medical_genetics 0.4900 0.5000 0.5000 0.4800

miscellaneous 0.5428 0.5428 0.5581 0.5504
moral_disputes 0.4480 0.4249 0.4451 0.4364
moral_scenarios 0.2402 0.2413 0.2559 0.2425

nutrition 0.4771 0.4869 0.4739 0.4739
philosophy 0.4887 0.4695 0.4952 0.4823
prehistory 0.4660 0.4568 0.4784 0.4691

professional_accounting 0.3546 0.3511 0.3617 0.3511
professional_law 0.3096 0.3181 0.3136 0.3123

professional_medicine 0.4118 0.4228 0.3713 0.4044
professional_psychology 0.4199 0.4248 0.4167 0.4085

public_relations 0.4182 0.4636 0.4273 0.4364
security_studies 0.4735 0.4694 0.4571 0.4857

sociology 0.6020 0.6119 0.6269 0.6169
us_foreign_policy 0.6700 0.6400 0.6500 0.6400

virology 0.4217 0.4337 0.4157 0.4036
world_religions 0.6140 0.6023 0.5965 0.5965
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K Hyper-Parameters Settings of Experiments

During experiments, the implementations of TWOSOME are consistent with their official repositories,
reproducing the original best-performing status. We first list the hyper-parameter candidates used for
grid search in Table 9. Then, we show the hyper-parameters that achieve the best performance for
each method and environment in Table 10-17.

Table 9: Hyper-Parameters candidates for grid search in Overcooked, VirtualHome, and DataSciCod-
ing environments.

hyper-parameters candidates

critic lr 1e-3,5e-4,1e-4,5e-5,1e-5,
actor lr 5e-4,1e-4,5e-5,1e-5,5e-6,1e-6,5e-7

ppo epochs 1,5
num mini batch 2,4,8,16,32

gamma 0.99,0.95
entropy coef 0.01,0.001,0.0001

max grad norm 10,0.5

Table 10: Hyper-parameters used for POAD in Overcooked tasks.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 1e-5 actor lr 5e-7 ppo epochs 5
batch size 128 num mini batch 2 gamma 0.99

rollout threads 4 entropy coef 0.01 max grad norm 0.5
PPO clip 0.2 value coef 0.5 KL threshold 0.02

Table 11: Hyper-parameters used for NTPO in Overcooked tasks.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 1e-5 actor lr 5e-7 ppo epochs 5
batch size 128 num mini batch 4 gamma 0.99

rollout threads 4 entropy coef 0.01 max grad norm 0.5
PPO clip 0.2 value coef 0.5 KL threshold 0.02

Table 12: Hyper-parameters used for TWOSOME in Overcooked tasks.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 1e-5 actor lr 5e-7 ppo epochs 1
batch size 128 num mini batch 4 gamma 0.99

rollout threads 4 entropy coef 0.01 max grad norm 0.5
PPO clip 0.2 value coef 0.5 KL threshold 0.02
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Table 13: Hyper-parameters used for POAD in VirtualHome tasks.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 5e-5 actor lr 1e-6 ppo epochs 5
batch size 128 num mini batch 2 gamma 0.95

rollout threads 4 entropy coef 0.0001 max grad norm 0.5
PPO clip 0.2 value coef 0.5 KL threshold 0.02

Table 14: Hyper-parameters used for NTPO in VirtualHome tasks.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 5e-5 actor lr 1e-6 ppo epochs 5
batch size 128 num mini batch 2 gamma 0.95

rollout threads 4 entropy coef 0.01 max grad norm 0.5
PPO clip 0.2 value coef 0.5 KL threshold 0.02

Table 15: Hyper-parameters used for TWOSOME in VirtualHome tasks.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 5e-5 actor lr 1e-6 ppo epochs 1
batch size 128 num mini batch 4 gamma 0.95

rollout threads 4 entropy coef 0.01 max grad norm 0.5
PPO clip 0.2 value coef 0.5 KL threshold 0.02

Table 16: Hyper-parameters used for POAD in DataSciCoding tasks.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 5e-5 actor lr 1e-6 ppo epochs 1
batch size 128 num mini batch 4 gamma 0.95

rollout threads 4 entropy coef 0.01 max grad norm 0.5
PPO clip 0.2 value coef 0.5 KL threshold 0.02

Table 17: Hyper-parameters used for NTPO in DataSciCoding tasks.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 5e-5 actor lr 1e-6 ppo epochs 1
batch size 128 num mini batch 4 gamma 0.95

rollout threads 4 entropy coef 0.01 max grad norm 0.5
PPO clip 0.2 value coef 0.5 KL threshold 0.02
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L Step-by-Step Breakdown of BAD

In this section, to facilitate the understanding of how BAD precisely assigns credit to each token, a
step-by-step breakdown of the credit assignment process with BAD is shown in Figures 9-13

(a) Step 1 (b) Step 2

Figure 9: Step 1: Receiving feedback r+t and r−t′ for positive and negative trajectories. Step 2:
Propagating r+t and r−t′ to Q(“TV”|ot, “Turn on”) and Q(“TV”|ot, “Turn off”).

(a) Step 3 (b) Step 4

Figure 10: Step 3 and 4: Back-propagating r+t and r−t′ to Q(“on”|ot, “Turn”) and Q(“off”|ot, “Turn”),
and then to Q(“Turn”|ot) in both trajectories continuously.

(a) Step 5 (b) Step 6

Figure 11: Step 5: Back-propagating to the previous action with q
|at−1|
t−1 = Mean{γ × q0t , γ × q0t′}

since both trajectories share the same pre-action. Step 6: Similarly, Q(“Turn”|ot) is also shared
among two trajectories, thus Q(“Turn”|ot) = Mean{q0t , q0t′} = 0 as well.
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(a) Step 7 (b) Step 8

Figure 12: Step 7: Modifying q̄0t and q̄0t′ in both trajectories with the same Q(“Turn”|ot). Step
8: Starting to back-propagate again for credits assigned to each token for optimization with δj =
qj − qj−1 for j > 0; this process is similar to the calculation for advantage values.

(a) Step 9 (b) Step 10

Figure 13: Step 9: Calculating the credits for key tokens, where δ1t = q1t − q0t and δ1t′ = q1t′ − q0t′ .
Step 10: Calculating the credits for tokens j = 0 with δ0t = q̄0t − q

|at−1|
t−1 and δ0t′ = q̄0t′ − q

|at−1|
t−1 . Till

now, we precisely emphasized key tokens while keeping irrelevant tokens with 0 credits.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 7

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Section 3.1, 4, 5 and Appendix A, B
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 6.1 and Appendix K
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is included in the zip file with hyper-parameters in Appendix K
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 6.1 and Appendix E
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Secton 6
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 6
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work has no ethical violation.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work has no societal impact since it is theoretical research.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section 6.1
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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