
RFLPA: A Robust Federated Learning Framework
against Poisoning Attacks with Secure Aggregation

Peihua Mai Ran Yan
National University of Singapore

Yan Pang ∗

Abstract

Federated learning (FL) allows multiple devices to train a model collaboratively
without sharing their data. Despite its benefits, FL is vulnerable to privacy leakage
and poisoning attacks. To address the privacy concern, secure aggregation (SecAgg)
is often used to obtain the aggregation of gradients on sever without inspecting
individual user updates. Unfortunately, existing defense strategies against poisoning
attacks rely on the analysis of local updates in plaintext, making them incompatible
with SecAgg. To reconcile the conflicts, we propose a robust federated learning
framework against poisoning attacks (RFLPA) based on SecAgg protocol. Our
framework computes the cosine similarity between local updates and server updates
to conduct robust aggregation. Furthermore, we leverage verifiable packed Shamir
secret sharing to achieve reduced communication cost of O(M +N) per user, and
design a novel dot product aggregation algorithm to resolve the issue of increased
information leakage. Our experimental results show that RFLPA significantly
reduces communication and computation overhead by over 75% compared to
the state-of-the-art secret sharing method, BREA, while maintaining competitive
accuracy.

1 Introduction

Federated learning (FL) [1–5] is a promising machine learning technique that has been gaining
attention in recent years. It enables numerous devices to collaborate on building a machine learning
model without sharing their data with each other. Compared with traditional centralized machine
learning, FL preserves the data privacy by ensuring that sensitive data remain on local devices.

Despite its benefits, FL still has two key concerns to be addressed. Firstly, there is a threat of privacy
leakage from local update. Recent works have demonstrated that the individual updates could reveal
sensitive information, such as properties of the training data [6, 7], or even allows the server to
reconstruct the training data [8, 9]. The second issue is that FL is vulnerable to poisoning attacks.
Indeed, malicious users could send manipulated updates to corrupt the global model at their will [10].
The poisoning attacks may degrade the performance of the model, in the case of untargeted attacks,
or bias the model’s prediction towards a specific target labels, in the case of targeted attacks [11].

Secure aggregation (SecAgg) has become a potential solution to address the privacy concern. Under
SecAgg protocol, the server could obtain the sum of gradients without inspecting individual user
updates [12, 13]. However, this protocol poses a significant challenge in resisting poisoning attacks in
FL. Most defense strategies [14, 15] require the server to access local updates to detect the attackers,
which increases the risk of privacy leakage. The contradiction makes it difficult to develop a FL
framework that simultaneously resolves the privacy and robustness concerns.

To our best knowledge, BREA is the state-of-the-art FL framework that defends against poisoning
attacks using secret sharing-based SecAgg protocol [16]. Based on verifiable secret sharing, their

∗Correspondence to bizpyj@nus.edu.sg

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

104329 https://doi.org/10.52202/079017-3314

framework leverages pairwise distances to remove outliers. However, their work is limited by the
scaling concerns arising from computation and communication complexity. For a model with dimen-
sion M and N selected clients, the framework incurs O(MN +N) communication per user, and
O((N2 +MN) log2N log logN) computation for the server due to the costly aggregation rule. Fur-
thermore, BREA makes unrealistic assumptions that the users could establish direct communication
channels with other mobile devices.

To address the above challenge, we propose a robust federated learning framework against poisoning
attacks (RFLPA) based on SecAgg protocol. We leverage verifiable packed Shamir secret sharing to
compute the cosine similarity and aggregate gradients in a secure manner with reduced communication
cost of O(M +N) per user. To resolve the increased information leakage from packed secret sharing,
we design a dot product aggregation protocol that only reveals a single value of the dot product to the
server. Our framework requires the server to store a small and clean root dataset as the benchmark.
Each user relies on the server to communicate the secret with each other, and utilizes encryption and
signature techniques to ensure the secrecy and integrity of messages. The implementation is available
at https://github.com/NusIoraPrivacy/RFLPA.

Our main contributions involves the following:

(1) We propose a federated learning framework that overcomes privacy and robustness issues with
reduced communication cost, especially for high-dimensional models. The convergence analysis
and empirical results show that our framework maintains competitive accuracy while reducing
communication cost significantly.

(2) To protect the privacy of local gradients, we propose a novel dot product aggregation protocol.
Directly using packed Shamir secret sharing for dot product calculation can result in information
leakage. Our dot product aggregation algorithm addresses this issue by ensuring that the server
only learns the single value of the dot product and not other information about the local updates.
Furthermore, the proposed protocol enables degree reduction by converting the degree-2d partial dot
product shares into degree-d final product shares.

(3) Our framework guarantees the secrecy and integrity of secret shares for a server-mediated network
model using encryption and signature techniques.

2 Literature Review

2.1 Defense against Poisoning Attacks.

Various robust aggregation rules have been proposed to defend against poisoning attacks. KRUM
selects the benign updates based on the pairwise Euclidean distances between the gradients [14]. Yin et
al. [17] proposes two robust coordinate-wise aggregation rules that computes the median and trimmed
mean at each dimension, respectively. Bulyan [18] selects a set of gradients using Byzantine–resilient
algorithm such as KRUM, and then aggregates the updates with trimmed mean. RSA [19] adds a
regularization term to the objective function such that the local models are encouraged to be similar
to the global model. In FLTrust [15], the server maintains a model on its clean root dataset and
computes the cosine similarity to detect the malicious users. The aforementioned defense strategies
analyze the individual gradients in plaintext, and thus are susceptible to privacy leakage.

2.2 Robust Privacy-Preserving FL.

To enhance privacy and resist poisoning attacks, several frameworks have integrated homomorphic
encryption (HE) with existing defense techniques. Based on Paillier cryptosystem, PEFL [20]
calculates the Pearson correlation coefficient between coordinate-wise medians and local gradients
to detect malicious users. PBFL [21] uses cosine similarity to identify poisonous gradients and
adopted fully homomorphic encryption (FHE) to ensure security. ShieldFL [22] computes cosine
similarity between encrypted gradients with poisonous baseline for Byzantine-tolerance aggregation.
The above approaches inherit the costly computation overhead of HE. Furthermore, they rely two
non-colluding parties to perform secure computation and thus might be vulnerable to privacy leakage.
Secure Multi-party Computation (SMC) is an alternative to address the privacy concern. To the best
of our knowledge, BREA [16] is the first work that developed Byzantine robust FL framework using
verifiable Shamir secret sharing. However, their method suffers high communication complexity of

2

104330https://doi.org/10.52202/079017-3314

SMC and high computation complexity of KRUM aggregation protocol. Refer to Appendix K.4 for a
comprehensive comparison among existing protocols.

This paper explores the integration of SMC with defense strategy against poisoning attacks. We
develop a framework that reduces communication cost, employs a more efficient aggregation rule
and guarantees the security for a server-mediated model.

3 Problem Formulation and Background

3.1 Problem Statement

We assume that the server trains a model w with N mobile clients in a federated learning setting.
All parties are assumed to be computationally bounded. Each client holds a local dataset {Di}i∈[N],
and the server owns a small, clean root dataset D0. The objective is to optimize the expected risk
function:

F (w) = min
w

ED∼χL(D,w), (1)

where L(D,w) is a empirical loss function given dataset D.

In federated learning, the server aggregates local gradients gt
i to obtain global gradient gt for model

update:
gt =

∑
i∈S

ηtig
t
i , w

t = wt−1 − γtgt, (2)

where ηi is the weight of client i, γt is the learning rate, and S is the set of selected clients.

3.2 Adversary Model

We consider two types of users, i.e., honest users and malicious users. The definitions of honest and
malicious users are given as follows.

Definition 3.1 (Honest Users). A user u is honest if and only if u honestly submits its local gradient
gu, where gu is the true gradients trained on its local dataset Du.

Definition 3.2 (Malicious Users). A user u is malicious if and only if u is manipulated by an
adversary who launches model poisoning attack by submitting poisonous gradients g∗u.

Server aims to infer users’ information with two types of attacks, i.e., passive inference and active
inference attack. In passive inference attack, the server tries to infer users’ sensitive information
by the intermediate result it receives from the user or eardrops during communication. In active
inference attack, the server would manipulate certain users’ messages to obtain the private values of
targeted users.

3.3 Design Goals

We aim to design a federated learning system with three goals.

Privacy. Under federated learning, users might still be concerned about the information leakage from
individual gradients. To protect privacy, the server shouldn’t have access to local update of any user.
Instead, the server learns only the aggregation weights and global gradients, ensuring that individual
user data remains protected.

Robustness. We aim to design a method resilient to model poisonous attack, meaning that the model
accuracy should be within a reasonable range under malicious clients.

Efficiency. Our framework should maintain computation and communication efficiency even if it is
operated on high dimensional vectors.

3.4 Cryptographic Primitives

In this section we briefly describe cryptographic primitives for our framework. For more details refer
to Appendix B.

3

104331 https://doi.org/10.52202/079017-3314

Packed Shamir Secret Sharing. This study uses a generalization of Shamir secret sharing scheme
[23], known as "packed secret-sharing" that allows to represent multiple secrets by a single polynomial
[24]. A degree-d (d ≥ l − 1) packed Shamir sharing of s = (s1, s2, ..., sl) stores the l secrets
at a polynomial f(·) of degree at most d. The secret sharing scheme requires d + 1 shares for
reconstruction, and any d− l + 1 shares reveals no information of the secret.

Key Exchange. The framework relies on Diffie–Hellman key exchange protocol [25] that allows two
parties to establish a secret key securely.

Symmetric Encryption. Symmetric encryption guarantees the secrecy for communication between
two parties [26]. The encryption and decryption are conducted with the same key shared by both
communication partners.

Signature Scheme. To ensure the integrity and authenticity of message, we adopt a UF-CMA secure
signature scheme [27, 28].

4 Framework

4.1 Overview

Figure 1: Overall framework

Figure 1 depicts the overall framework of our robust federated learning algorithm. The algorithm
consists of four rounds:

Round 1: each client receives the server update g0, computes their updates normalized by g0, and
distributes the secret shares of their updates to other clients.

Round 2: each client computes the local shares of partial dot product for gradient norm and cosine
similarity, and conducts secret re-sharing on the local shares.

Round 3: each client obtains final shares of partial dot product for gradient norm and cosine similarity,
and transmits the shares to server. Then the server would verify the gradient norm, recover cosine
similarity, and compute the trust score for each client.

Round 4: on receiving the trust score from the server, each client conducts robust aggregation on the
secret shares locally, and transmits the secret shares of aggregated gradient to the server. The server
finally reconstructs the aggregation on the secret shares.

4

104332https://doi.org/10.52202/079017-3314

To address increased information leakage caused by packed secret sharing, we design a dot product
aggregation protocol to sum up the dot product over sub-groups of elements. Refer to Appendix D
for the algorithm to perform robust federated learning.

4.2 Normalization and Quantization

To limit the impact of attackers, we follow [15] to normalize each local gradient based on the server
model update:

ḡi =
∥g0∥
∥gi∥

· gi, (3)

where gi is the local gradient of the ith client, and g0 is the server gradient obtained from clean root
data.

Each client performs local gradient normalization, and the server validates if the updates are truly
normalized. The secret sharing scheme operates over finite field Fp for some large prime number
p, and thus the user should quantize their normalized update ḡi. The quantization poses challenge
on normalization verification, as ∥ḡi∥ might not be exactly equal to ∥g0∥ after being converted into
finite field.

To address this issue, we define the following rounding function:

Q(x) =

{
⌊qx⌋/q, x ≥ 0
(⌊qx⌋+ 1)/q, x < 0

, (4)

where ⌊qx⌋ is the largest integer less than or equal to qx.

Therefore, the server could verify that ∥ḡi∥ ≤ ∥g0∥, which is ensured by the quantization method.

4.3 Robust Aggregation Rule

Consistent with FLTrust[15], our framework conducts robust aggregation using the cosine similarity
between users’ and server’s updates. The trust score of user i is:

TSi = max

(
0,
⟨gi,g0⟩
∥gi∥∥g0∥

)
= max

(
0,
⟨ḡi,g0⟩
∥g0∥2

)
, (5)

where we clip the negative cosine similarity to zero to avoid the impact of malicious clients.

The global gradient is then aggregated by:

g =
1∑N

i=1 TSi

N∑
i=1

TSi · ḡi. (6)

Finally, we use the gradient to update the global model:

w← w − γg. (7)

Our framework leverages the robust aggregation rule consistent with FLTrust due to its advantages
including low computation cost, the absence of a requirement for prior knowledge about number
of poisoners, defend against majority number of poisoners, and compatibility with Shamir Secret
Sharing. Appendix C details the comparison between FLTrust and existing robust aggregation rules.

4.4 Verifiable Packed Secret Sharing

The core idea of packed secret sharing is to encode l secrets within a single polynomial. Consequently,
the secret shares of local updates generated by each user would reduce from NM to NM/l. By
selecting l = O(N), the per-user communication cost at secret sharing stage can be decreased to
O(M+N). We assume that the prime number P is large enough such that P > max{N∥g0∥, ∥g0∥2}
to avoid overflow.

One issue with secret sharing is that a malicious client may send invalid secret shares, i.e., shares
that are not evaluated at the same polynomial function, to break the training process. To address this

5

104333 https://doi.org/10.52202/079017-3314

issue, the framework utilizes the verifiable secret sharing scheme from [29], which generates constant
size commitment to improve communication efficiency. We construct the verifiable secret shares
for both local gradients and partial dot products described in Section 4.5. During verifiable packed
secret sharing, the user would send the secret shares s, commitment C, and witness wl to other users.
A commitment is a value binding to a polynomial function ϕ(x), i.e., the underlying generator of
the secret shares, without revealing it. A witness allows others to verify that the secret share sl is
generated at l of the polynomial (see Appendix E for more details).

4.5 Dot Product Aggregation

Directly applying packed secret sharing may increase the risk of information leakage when calculating
cosine similarity and gradient norm. In the example provided by Figure 2, the gradient vectors are
created as secret shares by packing l secret into a polynomial function. Following the local similarity
computations by each client, the server can reconstruct the element-wise product between the two
gradients, which makes it easy to recover the user’s gradient g̃i from the reconstructed metric. On
the other hand, our proposed protocol ensures that only the single value of dot product is released to
the server. Based on this, we introduce a term partial dot product, or partial cosine similarity (norm
square) depending on the input vectors, defined as follows:

Partial dot product represents the multiple dot products of several subgroups of elements from input
vectors rather than a single dot product value.

Another related concept is final dot product, referring to the single value of dot products between
two vectors. For example, given two vectors v1 = (2,−1, 4, 5, 6, 3) and v2 = (1, 2, 0, 3,−2, 1),
the reconstructed partial dot product could be (0, 15,−9) if we pack 2 elements into a secret share,
while the final dot product is 6. If each client directly uploads the shares from local dot product
computation, the server would reconstruct a vector of partial cosine similarity (norm square) and thus
learn more gradient information. To ensure that the server only has access to final cosine similarity

Figure 2: Cosine similarity computation on packed secret sharing

(norm square), we design a dot product aggregation algorithm based on secret re-sharing that allows
the users to sum up the dot products over subgroups.

Suppose that the user i creates a packed secret sharing Vi = {vijk}j∈[N],k∈[⌈m/l⌉] of g̃i =

(gi1, g
i
2, ..., g

i
M), by packing each l elements into a secret. On receiving the secret shares, each

user i can compute the vectors csi = (csi1, cs
i
2, ..., cs

i
N) and nri = (nri1, nr

i
2, ..., nr

i
N):

csij =
∑
l

vjil · v
0
il, nr

i
j =

∑
l

vjil · v
j
il, (8)

where csij and nrij denotes the ith share of partial cosine similarity and partial gradient norm square
for user j’s gradient.

The partial cosine similarity (or gradient norm square) could be further aggregated by the procedure
below in four steps.

Step 1: Secret resharing of partial dot product. Each user i could construct the verifiable packed
secret shares of csi (or nri) by representing p secrets on a polynomial:

Si =

 si11 . . . si1⌈N/p⌉
...

. . .
...

siN1 . . . siN⌈N/p⌉

 , (9)

6

104334https://doi.org/10.52202/079017-3314

where sijk denotes the share sent to user j for the kth group of elements in vector csi (or nri). By
choosing p = O(N), each user will generate O(N) secret shares.

Step 2: Disaggregation on re-combination vector. After distributing the secret shares, each user i
receives a re-combination vector sik = (s1ik, s

2
ik, ..., s

N
ik) for k ∈ [⌈N/p⌉]. Since we pack l elements

for the secret shares of partial dot product, this step aims to transform the sik into l vectors, with each
vector representing one element. For each j ∈ [l], user i locally computes:

h̃i
jk = sikB

−1
ej Chopd, (10)

where Bej is an n by n matrix whose (i, k) entry is (αk − ej)i−1, and Chopd is an n by n matrix
whose (i, k) entry is 1 if 1 ≤ i = k ≤ d and 0 otherwise. After this operation, the degree-2d partial
dot product shares are transformed into degree-d shares.

Step 3: Aggregation along packed index. The new secrets are summed up along j ∈ [l] at client
side:

hi
k =

l∑
j=1

h̃i
jk. (11)

Step 4: Decoding for final secret shares. User i can derive the final secret shares xik by recovering
from hi

k = (hik1, h
i
k2, ..., h

i
kN) using Reed-Solomon decoding. Noted that {xik}k∈[⌈N/p⌉] becomes

a packed secret share of dot products of degree d (see Appendix F). Therefore, the server could
recover the cosine similarity (or gradient norm square) for all users on receiving the final shares from
sufficient users.

4.6 Secret Sharing over Insecure Channel

This framework relies on a server-mediated communication channel for the following reasons: (1)
it’s challenging for mobile clients to establish direct communication with each other and authenticate
other devices; (2) a server could act as central coordinator to ensure that all clients have access to the
latest model. On the other hand, the secret sharing stage requires to maintain the privacy and integrity
of secret shares.

To protect the secrecy of message, we utilize key agreement and symmetric encryption protocol.
The clients establish the secret keys with each other through Diffie–Hellman key exchange protocol.
During secret sharing, each client u uses the common key kuv to encrypt the message sent to client v,
and client v could decrypt the cyphertext with the same key.

Another concern is that the server may falsify the messages transmitted between clients. Signature
scheme is adopted to prevent the active attack from server. We assume that all clients receive their
private signing key and public signing keys of all other clients from a trusted third party. Each client
i generates a signature σi along with the message m, and other clients verify the message using client
i’s public key dPK

i .

5 Theoretical Analysis

5.1 Complexity Analysis

In this section, we analyze the per iteration complexity forN selected clients, and model dimension of
M , and summarize the complexity in Table 1. Further details of the complexity analysis are available
in Appendix G. One important observation is that the communication complexity of our protocol
reduces from O(MN +N) to O(M +N). Furthermore, the server-side computation overhead is
reduced to O((M +N) log2N log logN), benefiting from the efficient aggregation rule and packed
secret sharing. It should be noted that while the BERA protocol has similar server communication
complexity, it makes an unrealistic assumption that users can share secrets directly with each other,
thereby saving the server’s overhead.

5.2 Security Analysis

The security analysis is conducted for Algorithm 3. Given a security parameter κ, a server S, and
any subsets of users U , let REALU,t,κ

C be a random variable representing the joint view of parties

7

104335 https://doi.org/10.52202/079017-3314

Table 1: Complexity summary of RFLPA and BERA

RFLPA BERA
Computation Communication Computation Communication

Server O((M + N) log2 N log logN) O((M + N)N) O((N2 + MN) log2 N log logN) O(MN + N2)
User O((M + N2) log2 N) O((M + N)) O(MN log2 N + MN2) O(MN + N)

in C ⊆ U ∪ S where the threshold is set to t, and Ui be the subset of respondents at round i such
that U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4. We show that the joint view of any group of parties from C with
users less than t can be simulated given the inputs of clients in that group, trust score {TSj}j∈U1

,
and global gradient g. In other words, the server learns no information about clients’ input except
the global gradient and trust score.
Theorem 5.1 (Security against active server and clients). There exists a PPT simulator SIM such
that for all t ≤ K −L, |C\{S}| < t, the output of SIM is computationally indistinguishable from the
output of REALU,t,κ

C :
REALU,t,κ

C (xU) ≡ SIMU,t,κ
C (xU) (12)

where "≡" represents computationally indistinguishable.

5.3 Correctness against Malicious Users

In this section, we show that our protocol executes correctly under the following attacks of malicious
users: (1) sending invalid secret shares; (2) sending shares from incorrect computation of 6, 8, 10, or
11. Note that adversaries may also create shares from arbitrary gradients, and we left the discussion
of such attack to Section 5.4.

The first attack arises when the user doesn’t generate shares from the same polynomial. Such attempt
is prevented by verifiable secret sharing that allows for the verification of share validity by testing 18.

The second attack could be addressed by Reed-Solomon codes. For a degree-d packed Shamir secret
sharing with n shares, the Reed-Solomon decoding algorithm could recover the correct result with E
errors and S erasures as long as S + 2E + d+ 1 ≤ n.

5.4 Convergence Analysis

Theorem 5.2. Suppose Assumption J.1, J.2, J.3 in Appendix J hold. For arbitrary number of
malicioius clients, the difference between the global model wt learnt by our algorithm and the
optimal w∗ is bounded. Formally, we have the following inequality with probability at least 1− δ:

∥wt −w∗∥ ≤ (1− ρ)t∥w0 −w∗∥+ 12γ∆1 +
γ
√
d

q
(13)

where ρ = 1 − (
√
1− µ2/(4L2

g) + 24γ∆2 + 2γL), ∆1 = ν1
√

2
|D0|

√
d log 6 + log(3/δ), ∆2 =

ν2
√

2
|D0|

√
d log 18L2

ν2
+ 1

2d log
|D0|
d + log

(
6ν2

2r
√
D0

α2ν1δ

)
, L2 = max{L,L1}.

Remark 5.3. γ
√
d/q is the noise caused by the quantization process in our algorithm.

6 Experiments

6.1 Experimental Setup

Dataset. We use three standard datasets to evaluation the performance of RFLPA: MNIST [30],
FashionMNIST (F-MNIST) [31], and CIFAR-10 [32]. MNIST and F-MNIST are trained on the
neural network classification model composed of two convolutional layers and two fully connected
layers, while CIFAR-10 is trained and evaluated with a ResNet-9 [33] model.

s Attacks. We simulate two types of poisoning attacks: gradient manipulation attack (untargeted)
and label flipping attack (targeted). Under gradient manipulation attack, the malicious users generate

8

104336https://doi.org/10.52202/079017-3314

arbitrary gradients from normal distribution of mean 0 and standard deviation 200. For label flipping
attack, the adversaries flip the label from l to P − l − 1, where P is the number of classes. We
consider the proportion of attackers from 0% to 30%.

6.2 Experiment Results

6.2.1 Accuracy Evaluation

We compare our proposed method with several FL frameworks: FedAvg [34], Bulyan [18], Trim-
mean [17], local differential privacy (LDP) [35], central differential privacy (CDP) [35], and BREA
[16]. Refer to Table 5 for the corse-grained comparison between RFLPA and the baselines. Noted
that several baselines are not included in the accuracy comparison because: (i) The security of the
some schemes relies on the assumption of two non-colluding parties, which is vulnerable in real life.
(ii) Some frameworks entail significant computation costs, rendering their implementation in real-life
scenarios impractical (see Appendix K.8.1). Table 2 summarizes the accuracies for different methods
under the two attacks.

When defense strategy is not implemented, the accuracies of FedAvg decrease as the proportion of
attackers increases, with a more significant performance drop observed under gradient manipulation
attacks. Benefited from the trust benchmark, our proposed framework, RFLPA, demonstrates more
stable performance for up to 30% adversaries compared to other baselines. In the absence of attackers,
our method achieves slightly lower accuracies than FedAvg, with an average decrease of 2.84%,
4.38%and 3.46%, respectively, for MNIST, F-MNIST, and CIFAR-10 dataset.

6.2.2 Overhead Analysis

To verify the effectiveness of our framework on reducing overhead, we compare the per-iteration
communication and computation cost for BREA and RFLPA in Figure 3. For each experiment we set
the degree as 0.4N and encode 0.1N elements within a polynomial.

The left-most graph presents the overhead with different participating client size using the 1.6M
parameter model described in Section 6.1. For M ≫ N , the per-client communication complexity
for RFLPA remains stable at around 82.5MB, regardless of user size. Conversely, BREA exhibits
linear scalability with the number of participating clients. Our framework reduces the communication
cost by over 75% compared with BREA.

The second left graph examines the communication overhead for varying model dimensions with
2,000 participating clients. RFLPA achieves a much lower per-client cost than BREA by leveraging
packed secret sharing, leading to a 99.3% reduction in overhead.

The right two figures presents the computation cost under varying client size using a MNIST classifier
with 1.6M parameters. Benefiting from the packed VSS, RFLPA reduces both the user and server
computation overhead by over 80% compared with BREA.

Table 2: Accuracy under different proportions of attackers. The values denote the mean ± standard
deviation of the performance.

Gradient Manipulation Label Flipping
Proportion of Attackers No 10% 20% 30% No 10% 20% 30%

FedAvg
MNIST 0.98±0.0 0.46 ±0.1 0.40 ±0.1 0.32 ±0.0 0.98±0.0 0.96±0.0 0.92 ±0.0 0.82 ±0.0
F-MNIST 0.88±0.0 0.55 ±0.0 0.51 ±0.0 0.45 ±0.1 0.88±0.0 0.82±0.0 0.73 ±0.0 0.69 ±0.0
CIFAR-10 0.76±0.3 0.14 ±0.2 0.13 ±0.8 0.13 ±0.2 0.76±0.3 0.72±1.1 0.68 ±2.7 0.59 ±0.8

Bulyan
MNIST 0.98±0.0 0.92 ±0.0 0.89 ±0.0 0.87 ±0.0 0.98±0.0 0.91±0.0 0.90 ±0.0 0.87 ±0.0
F-MNIST 0.86±0.0 0.73 ±0.0 0.71 ±0.1 0.69 ±0.0 0.86±0.0 0.76±0.0 0.70 ±0.1 0.68 ±0.0
CIFAR-10 0.77±1.0 0.73 ±0.8 0.45 ±1.2 0.27±0.6 0.77±1.0 0.72±0.2 0.62 ±1.8 0.40 ±0.9

Trim-
mean

MNIST 0.98±0.0 0.95 ±0.0 0.93 ±0.0 0.91 ±0.0 0.98±0.0 0.95±0.0 0.92 ±0.0 0.90 ±0.0
F-MNIST 0.86±0.0 0.81 ±0.0 0.74 ±0.0 0.71 ±0.0 0.86±0.0 0.78±0.0 0.74 ±0.0 0.73 ±0.0
CIFAR-10 0.76±1.0 0.57 ±2.1 0.51 ±1.1 0.47 ±2.2 0.76±1.0 0.71±1.3 0.68 ±0.7 0.56 ±1.1

LDP
MNIST 0.87±0.1 0.13 ±0.0 0.10 ±0.0 0.10 ±0.0 0.87±0.1 0.87±0.3 0.83 ±1.2 0.77 ±2.1
F-MNIST 0.74±0.1 0.59 ±0.4 0.53 ±1.2 0.12 ±0.0 0.74±0.1 0.63±0.5 0.62 ±0.2 0.59 ±1.2
CIFAR-10 0.14±0.2 0.14 ±0.2 0.12 ±0.3 0.12 ±0.1 0.14±0.2 0.14±0.2 0.14 ±0.3 0.13 ±0.1

CDP
MNIST 0.96±0.0 0.96 ±0.0 0.95 ±0.0 0.94 ±0.0 0.96±0.0 0.96±0.0 0.95 ±0.3 0.91 ±0.2
F-MNIST 0.83±0.1 0.51 ±0.1 0.41 ±0.0 0.34 ±0.1 0.83±0.1 0.81±0.5 0.79 ±0.0 0.78 ±0.7
CIFAR-10 0.71±1.2 0.12 ±0.5 0.12 ±0.3 0.12 ±0.3 0.71±1.2 0.68±0.7 0.66 ±1.5 0.63 ±1.3

BREA
MNIST 0.94±0.0 0.93 ±0.0 0.93 ±0.0 0.93 ±0.0 0.94±0.0 0.94±0.0 0.93 ±0.0 0.93 ±0.0
F-MNIST 0.84±0.0 0.83 ±0.0 0.82 ±0.0 0.81 ±0.0 0.84±0.0 0.84±0.0 0.82 ±0.0 0.81 ±0.0
CIFAR-10 0.70±1.0 0.69 ±1.1 0.68 ±1.9 0.68 ±0.7 0.70±1.0 0.70±2.2 0.67 ±0.9 0.65 ±2.7
MNIST 0.96±0.0 0.96 ±0.0 0.95 ±0.0 0.95 ±0.0 0.96±0.0 0.96±0.0 0.95 ±0.0 0.95 ±0.0
F-MNIST 0.84±0.0 0.84 ±0.0 0.83 ±0.0 0.82 ±0.0 0.84±0.0 0.83±0.0 0.83 ±0.0 0.82 ±0.0RFLPA
CIFAR-10 0.74±2.3 0.70 ±1.8 0.70 ±1.9 0.69 ±1.8 0.74±2.3 0.71±1.7 0.70 ±1.6 0.69 ±0.8

9

104337 https://doi.org/10.52202/079017-3314

Figure 3: Per-iteration communication (left two) and computation cost (right two).

6.2.3 Other studies

For other studies, we analyze the impact of iterations on accuracy (see Appendix K.5), evaluate our
protocol against additional attacks (see Appendix K.6), conduct further overhead analysis (see K.8),
and examine the performance under non-iid setting (see Appendix K.9).

7 Conclusion

This paper proposes RFLPA, a robust privacy-preserving FL framework with SecAgg. Our framework
leverages verifiable packed Shamir secret sharing to compute the cosine similarity between user and
server update and conduct robust aggregation. We design a secret re-sharing algorithm to address the
increased information leakage concern, and utilize encryption and signature techniques to ensure the
security over server-mediated channel. Our approach achieves the reduced per-user communication
overhead of O(M +N). The empirical study demonstrates that: (1) RFLPA achieves competitive
accuracies for up to 30% poisoning adversaries compared with state-of-the-art defense methods. (2)
The communication cost and computation cost for RFLPA is significantly lower than BERA by over
75% under the same FL settings.

8 Discussion and Future Work

Collection of server data. One important assumption is that the server is required to collect a small,
clean root dataset. Such collection is affordable for most organizations as the required dataset is
of small size, e.g., 200 samples. According to theoretical analysis, the convergence is guaranteed
when the root dataset is representative of the overall training data. Empirical evidence presented
in [15] suggests that the performance of the global model is robust even when the root dataset
diverges slightly from the overall training data distribution. Furthermore, Appendix K.10 proposes
several alternative robust aggregation modules, such as KRUM and comparison with global model, to
circumvent the assumption.

Compatibility with other defense strategies. RFLPA adopts a robust aggregation rule that computes
the cosine similarity with server update. The framework can be easily generalized to distance-based
method such as KRUM or multi-KRUM by substituting the robust aggregation module. However,
extending the framework to rank-based defense methods may be more challenging. Existing SMC
techniques for rank-based statistics requires logM rounds of communication, where M is the range
of input values [36]. We leave the problem of communication-efficient rank-based robust FL to future
work.

Differential privacy guarantee. Differential privacy (DP) [37, 38] provides formal privacy guaran-
tees to prevent information leakage. The combination of SMC and DP, also known as Distributed
DP [39], reduces the magnitude of noise added by each user compared with pure local DP. However,
adopting DP in the privacy-preserving robust FL framework is non-trivial, especially when bounding
the privacy leakage of robustness metrics such as cosine similarity may sacrifice utility. We leave the
problem of incorporating DP into the privacy-preserving robust FL framework to future work.

10

104338https://doi.org/10.52202/079017-3314

References
[1] H Brendan McMahan et al. “Federated learning of deep networks using model averaging”. In:

arXiv preprint arXiv:1602.05629 2 (2016).
[2] Rui Ye et al. “Feddisco: Federated learning with discrepancy-aware collaboration”. In: Inter-

national Conference on Machine Learning. PMLR. 2023, pp. 39879–39902.
[3] Rui Ye et al. “Openfedllm: Training large language models on decentralized private data via

federated learning”. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 2024, pp. 6137–6147.

[4] Jianyu Wang et al. “Tackling the objective inconsistency problem in heterogeneous federated
optimization”. In: Advances in neural information processing systems 33 (2020), pp. 7611–
7623.

[5] Rui Ye et al. “Fake It Till Make It: Federated Learning with Consensus-Oriented Generation”.
In: The Twelfth International Conference on Learning Representations.

[6] Luca Melis et al. “Exploiting unintended feature leakage in collaborative learning”. In: 2019
IEEE symposium on security and privacy (SP). IEEE. 2019, pp. 691–706.

[7] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model inversion attacks that exploit
confidence information and basic countermeasures”. In: Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security. 2015, pp. 1322–1333.

[8] Ligeng Zhu, Zhijian Liu, and Song Han. “Deep leakage from gradients”. In: Advances in
neural information processing systems 32 (2019).

[9] Di Chai et al. “Secure federated matrix factorization”. In: IEEE Intelligent Systems 36.5 (2020),
pp. 11–20.

[10] Eugene Bagdasaryan et al. “How to backdoor federated learning”. In: International Conference
on Artificial Intelligence and Statistics. PMLR. 2020, pp. 2938–2948.

[11] Ling Huang et al. “Adversarial machine learning”. In: Proceedings of the 4th ACM workshop
on Security and artificial intelligence. 2011, pp. 43–58.

[12] Keith Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning”.
In: proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2017, pp. 1175–1191.

[13] James Henry Bell et al. “Secure single-server aggregation with (poly) logarithmic overhead”.
In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 2020, pp. 1253–1269.

[14] Peva Blanchard et al. “Machine learning with adversaries: Byzantine tolerant gradient descent”.
In: Advances in neural information processing systems 30 (2017).

[15] Xiaoyu Cao et al. “FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping”.
In: ISOC Network and Distributed System Security Symposium (NDSS). 2021.

[16] Jinhyun So, Başak Güler, and A Salman Avestimehr. “Byzantine-resilient secure federated
learning”. In: IEEE Journal on Selected Areas in Communications 39.7 (2020), pp. 2168–2181.

[17] Dong Yin et al. “Byzantine-robust distributed learning: Towards optimal statistical rates”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 5650–5659.

[18] Rachid Guerraoui, Sébastien Rouault, et al. “The hidden vulnerability of distributed learning in
byzantium”. In: International Conference on Machine Learning. PMLR. 2018, pp. 3521–3530.

[19] Junyu Shi et al. “Challenges and approaches for mitigating byzantine attacks in federated learn-
ing”. In: 2022 IEEE International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE. 2022, pp. 139–146.

[20] Xiaoyuan Liu et al. “Privacy-enhanced federated learning against poisoning adversaries”. In:
IEEE Transactions on Information Forensics and Security 16 (2021), pp. 4574–4588.

[21] Yinbin Miao et al. “Privacy-preserving Byzantine-robust federated learning via blockchain
systems”. In: IEEE Transactions on Information Forensics and Security 17 (2022), pp. 2848–
2861.

[22] Zhuoran Ma et al. “ShieldFL: Mitigating model poisoning attacks in privacy-preserving
federated learning”. In: IEEE Transactions on Information Forensics and Security 17 (2022),
pp. 1639–1654.

[23] Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11 (1979), pp. 612–
613.

11

104339 https://doi.org/10.52202/079017-3314

[24] Matthew Franklin and Moti Yung. “Communication complexity of secure computation”. In:
Proceedings of the twenty-fourth annual ACM symposium on Theory of computing. 1992,
pp. 699–710.

[25] Whitfield Diffie and Martin E Hellman. “New directions in cryptography”. In: Democratizing
Cryptography: The Work of Whitfield Diffie and Martin Hellman. 2022, pp. 365–390.

[26] Hans Delfs et al. “Symmetric-key encryption”. In: Introduction to cryptography: principles
and applications (2007), pp. 11–31.

[27] Ravneet Kaur and Amandeep Kaur. “Digital signature”. In: 2012 International Conference on
Computing Sciences. IEEE. 2012, pp. 295–301.

[28] Jonathan Katz. Digital signatures. Vol. 1. Springer, 2010.
[29] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. “Constant-size commitments to poly-

nomials and their applications”. In: Advances in Cryptology-ASIACRYPT 2010: 16th Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings 16. Springer. 2010, pp. 177–194.

[30] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings
of the IEEE 86.11 (1998), pp. 2278–2324.

[31] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms”. In: arXiv preprint arXiv:1708.07747 (2017).

[32] Alex Krizhevsky et al. “Learning multiple layers of features from tiny images”. In: (2009).
[33] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2016, pp. 770–778.
[34] Jakub Konečnỳ et al. “Federated learning: Strategies for improving communication efficiency”.

In: arXiv preprint arXiv:1610.05492 (2016).
[35] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. “Local and central differential

privacy for robustness and privacy in federated learning”. In: arXiv preprint arXiv:2009.03561
(2020).

[36] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. “Secure computation of the k th-ranked
element”. In: Advances in Cryptology-EUROCRYPT 2004: International Conference on the
Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004.
Proceedings 23. Springer. 2004, pp. 40–55.

[37] Thông T Nguyên et al. “Collecting and analyzing data from smart device users with local
differential privacy”. In: arXiv preprint arXiv:1606.05053 (2016).

[38] Arnaud Berlioz et al. “Applying differential privacy to matrix factorization”. In: Proceedings
of the 9th ACM Conference on Recommender Systems. 2015, pp. 107–114.

[39] Peter Kairouz, Ziyu Liu, and Thomas Steinke. “The distributed discrete gaussian mechanism
for federated learning with secure aggregation”. In: International Conference on Machine
Learning. PMLR. 2021, pp. 5201–5212.

[40] Mihir Bellare and Chanathip Namprempre. “Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm”. In: Advances in Cryptol-
ogy—ASIACRYPT 2000: 6th International Conference on the Theory and Application of
Cryptology and Information Security Kyoto, Japan, December 3–7, 2000 Proceedings 6.
Springer. 2000, pp. 531–545.

[41] Menezes Alfred, Vanstone Scott, et al. Handbook of applied cryptography. 1997.
[42] Dan Boneh and Xavier Boyen. “Short signatures without random oracles”. In: Advances in

Cryptology-EUROCRYPT 2004: International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004. Proceedings 23. Springer.
2004, pp. 56–73.

[43] Hsiang-Tsung Kung. Fast evaluation and interpolation. Carnegie-Mellon University. Depart-
ment of Computer Science, 1973.

[44] Shuhong Gao. “A new algorithm for decoding Reed-Solomon codes”. In: Communications,
information and network security (2003), pp. 55–68.

[45] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. “Robust aggregation for federated
learning”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 1142–1154.

[46] Meng Hao et al. “Efficient, private and robust federated learning”. In: Proceedings of the 37th
Annual Computer Security Applications Conference. 2021, pp. 45–60.

12

104340https://doi.org/10.52202/079017-3314

[47] Hidde Lycklama et al. “Rofl: Robustness of secure federated learning”. In: 2023 IEEE Sympo-
sium on Security and Privacy (SP). IEEE. 2023, pp. 453–476.

[48] Mayank Rathee et al. “Elsa: Secure aggregation for federated learning with malicious actors”.
In: 2023 IEEE Symposium on Security and Privacy (SP). IEEE. 2023, pp. 1961–1979.

[49] Minghong Fang et al. “Local model poisoning attacks to {Byzantine-Robust} federated
learning”. In: 29th USENIX security symposium (USENIX Security 20). 2020, pp. 1605–1622.

[50] Tianyu Gu et al. “Badnets: Evaluating backdooring attacks on deep neural networks”. In: IEEE
Access 7 (2019), pp. 47230–47244.

[51] Luisa Bentivogli et al. “The Fifth PASCAL Recognizing Textual Entailment Challenge.” In:
TAC 7.8 (2009), p. 1.

[52] Hector Levesque, Ernest Davis, and Leora Morgenstern. “The winograd schema challenge”.
In: Thirteenth international conference on the principles of knowledge representation and
reasoning. 2012.

[53] V Sanh. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.” In:
Proceedings of Thirty-third Conference on Neural Information Processing Systems (NIPS2019).
2019.

[54] Brendan McMahan et al. “Communication-efficient learning of deep networks from decentral-
ized data”. In: Artificial intelligence and statistics. PMLR. 2017, pp. 1273–1282.

[55] Mi Luo et al. “No fear of heterogeneity: Classifier calibration for federated learning with
non-iid data”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 5972–
5984.

[56] Duygu Nur Yaldiz, Tuo Zhang, and Salman Avestimehr. “Secure Federated Learning against
Model Poisoning Attacks via Client Filtering”. In: ICLR 2023 Workshop on Backdoor Attacks
and Defenses in Machine Learning.

13

104341 https://doi.org/10.52202/079017-3314

A Notation Table

Table 3: Notation table.
NOTATION DESCRIPTION NOTATION DESCRIPTION
w Model parameter g Gradients
D, D0, Di Dataset ηi Aggregation weight
γt Learning rate S Set of participation clients
N Participating client size M Model dimension
Vi, vijk Packed secret shares for gradients TSi Trust score

l
of secrets packed at a polynomial
for gradient p

of secrets packed at a polynomial
for shares of partial dot product

csi, csij Shares of partial cosine similarity nri, nrij Shares of partial gradient norm square
Si, sijk Packed secret shares of csj or nrj h̃i

k Secret shares disaggregated along packed index
xi
k Packed secret share of dot product hi

k Secret shares aggregated along packed index
ei Pre-determined secret point αi Pre-selected elements for secret sharing

Bej

n by n matrix whose (i, k)
entry is (αk − ej)

i−1 Chopd
n by n matrix whose (i, k) entry is 1
if 1 ≤ i = k ≤ d and 0 otherwise

B Details of Cryptographic Primitives

B.1 Packed Shamir Secret Sharing

The operations of Packed Shamir Secret Sharing performed on a finite field FP for some prime
number P . Denote {ei}i∈[l] as the pre-determined secret point, and {αi}i∈[d] as the pre-selected
elements for secret sharing. To share the secrets g = (g1, g2, ..., gl), the user can generate a degree-d
polynomial function:

ϕ(x) = q(x)Πl
i=1(x− ei) +

l∑
i=1

g1Li(x), (14)

where q(x) is a random degree-d− l polynomial, and Li(x) is the Lagrange polynomial Πj ̸=i(x−ej)
Πj ̸=i(ei−ej)

.

The shares sent to player j is generated by:

sj = ϕ(αj). (15)

We use ⟨g⟩d to denote the degree-d packed secret shares of vector g. The following properties holds
for the packed sharing scheme:

• ⟨αx+ βy⟩d = α⟨x⟩d + β⟨y⟩d
• ⟨x ∗ y⟩d1+d2

= ⟨x⟩d1
∗ ⟨y⟩d2

B.2 Key Exchange

Diffie–Hellman key exchange protocol consists of the following algorithms:

• Generate parameters: pp = GenParam(sp) set up the parameters, including prime
number and primitive root, according to the security parameter.

• Key generation: (sSK
i , sPK

i) = KEGen(pp) generates the private-public key pairs for user
i.

• Key derivation: sij = KEAgree(sSK
i , sPK

j) outputs the shared secret key between user i
and j.

B.3 Symmetric Encryption

The smmetric encryption scheme consists of the following algorithms:

• Encryption: c = Enc(m, k) encrypts message m to cyphertext c using key k.
• Decryption: m = Dec(c, k) reverses cyphertext c to message m using key k.

14

104342https://doi.org/10.52202/079017-3314

To ensure correctness, we require that m = Dec(Enc(m, k), k). For security, the encryption
scheme should be indistinguishability under a chosen plaintext attack (IND-DPA) and integrity under
ciphertext-only attack (INT-CTXT) [40].

B.4 Signature Scheme

The UF-CMA secure signature scheme that consists of a tuple of algorithms (Gen,Sign,Verify):

• Key generation: Based on the security parameter sp, (dSK , dPK) = SigGen(sp) returns
the private-public key pairs.

• Signing algorithm: σ = Sign(dSK ,m) generates a signature σ with secret key and message
as input.

• Signature verification: Verify(dPK ,m, σ) takes as input the public key, a message and a
signature, and returns 1 if the signature is valid and 0 otherwise.

To proof the security of the signature scheme, we show that no adversary can forge a valid signature
on an arbitrary message. Denote a UF-CMA secure signature scheme as DS = (k,Sign,Verify),
where k is the security parameter. The UF-CMA advantage of an adversary A is defined as
AdvDS(A, k) = P(Expuf−cma

DS (A, k) = 1), where Expuf−cma
DS (A, k) represents the experiments

conducted by adversary A to produce a signature, and Expuf−cma
DS (A, k) = 1 means that A produced

a valid signature. In a UF-CMA secure signature scheme, no probabilistic polynomial time (PPT)
adversary is able to produce a valid signature on an arbitrary message with more than negligible
probability. In other words, for all PPT adversaries A, there exists a negligible function ϵ such that
AdvDS(A, k) ≤ ϵ(k).

C Comparison between Byzantine-robust aggregation rules

To provide justification for our algorithm’s utilization of FLTrust as the aggregation rule, we sum-
marize the existing Byzantine-robust aggregation rules along four dimensions: (i) computation
complexity, (ii) whether the algorithm needs prior knowledge about the number of poisoners, (iii)
maximum number of poisoners, (iv) whether the algorithm is compatible with Shamir Secret Sharing
(SSS).

Table 4: Comparison between Byzantine-robust aggregation rules.

Computation complexity Need prior knowledge
about # of poisoners # of poisoners Compatible

with SSS
KRUM O(N2(M + logN)) Yes < 50% Yes
Bulyan O(N2M) Yes < 25% No
Trim-mean O(MN logN) Yes < 50% No
FLTrust O(MN)) No < 100% Yes

Among these dimensions, FLTrust demonstrates clear advantages over other robust aggregation rules:

• Low computation cost: for a system with N users and M model size, the computation cost
of FLTrust is O(MN), lower than existing methods that grow quadratically with N .

• No need of prior knowledge about number of poisoners: the server does not need to know
the number of malicious clients in advance to conduct robust aggregation.

• Defend against majority number of poisoners: benefiting from the trusted root of clean
dataset at the server, the aggregation rule we adopted can return robust result even when the
number of poisoners is above 50%.

• Compatible with Shamir Secret Sharing (SSS): the method we adopted is compatible with
the SSS algorithm. While for Bulyan and Trim-mean, there are some non-linear operations
not supported by SSS.

15

104343 https://doi.org/10.52202/079017-3314

D Algorithm of RFLPA

This section presents the our algorithm to conduct robust federated learning with secure aggregation.

Algorithm 1 RFLPA
Input: Local dataset Di of clients i ∈ [N], root dataset D0 at server, number of iterations T ,
security parameter κ.
Output: Global model wT

Clients set up encryption and signature key pairs (cPK
i , cSK

i), (dPK
i , dSK

i)← SetupKeys(N , κ)
for i ∈ [N].
Server initialize global model w0

for t ∈ [1, T] do
Server conduct local update with root data, compute update norm ∥g0∥, and create packed secret
shares v0.
Each clients from Ut download global model wt−1, corresponding shares of v0, and ∥g0∥.
Server obtain gradients g← RobustSecAgg(Ut, wt−1, v0, ∥g0∥)
Server update global model wt ← wt−1 − γtg

end for

Algorithm 2 SetupKeys
Input: number of clients N , security parameter κ.
Output: key pairs {(dPK

i , dSK
i)}i∈[N];

secret keys {kij}i,j∈[N].
Each user i ∈ [N] receive their signing key dSK

i from the trusted third party, as well as the
verification keys dPK

j of all users j ∈ [N].
Each user i ∈ [N] generate key pairs (sSK

i , sPK
i) = KEGen(sp), and create signature σi =

Sign(dPK
i , sPK

i).
Users i ∈ [N] send (sPK

i ||σi), public key along with signature, to the server.
Server distribute {(sPK

i ||σi)}i∈[N] to all users.
Each user i asserts that Verify(dPK , sPK

j , σj) = 1, and compute kij = KEAgree(sSK
i , sPK

j)
for j ∈ [N]\i.

Suppose that user i create a packed secret shares s of g with polynomial ϕ(x). Providing κ security,
the user sets up generator ψ and secret key α, and also outputs the public key (ψ,ψα, ..., ψαd

) for a
degree d polynomial. To make the secret shares verifiable, the user broadcasts a commitment to the
function:

C = ψϕ(α). (16)

E Verifiable Packed Secret Sharing

For each secret sl, user i computes a witness sent to the corresponding client in a private channel:

wl = ψ(ϕ(α)−ϕ(l))/(α−l). (17)

After receiving the commitment and witness, user l can verify the secret by checking:

e(C, ψ) = e(wl, ψ
α/ψl)e(ψ,ψ)ϕ(l), (18)

where e(·) denotes a symmetric bilinear pairing.

The correctness and secrecy of the protocol are guarantee by the discrete logarithm (DL) [41], t-
polynomial Diffie-Hellman (t-polyDH) [29], and t-Strong Diffie-Hellman (t-SDH) [42] assumptions.

F Explanation of Secret Re-sharing

For m ∈ [⌈N/p⌉], the shares of secret csi(m−1)p+k for some k ∈ [p] can be represented as:(
si1m . . . siNm

)
=

(
csi(m−1)p+k θ1 . . . θd 0 . . . 0

)
×Bek , (19)

16

104344https://doi.org/10.52202/079017-3314

Algorithm 3 RobustSecAgg
Input: Set of active clients in current iteration U0, global parameters w downloaded from server,
packed secret shares of server update v0, norm of server update ∥g0∥.
Output: Global aggregated gradient g
Round 1:
Client i:
• Generate local gradient gi

• Generate packed secrets {vij}j∈U0
, commitments C and witness {ωij}j∈U0

for gi from 15,
16, and 17, encrypt cij = Enc(vij ||ωij , kij), and create signature σij = Sign(dSK

i , cij ||C) for
j ∈ [N]\i
• Send (C||{cij}j∈[N]\i||{σij}j∈[N]\i) to the server
Server:
• Collect messages from at least K clients (denote U1 the set of all respondents).
• Send (C||{cij}i∈U1\j ||{σij}i∈U1\j) to client j for j ∈ U1.
Round 2:
Client i:
• Receive (C||{cji}j∈U1\i||{σji}j∈U1\i) from server, and assert that Verify(dPK

j , cji||C, σji) =
1.
• Recover ({vji}j∈U1\i, {ωji}j∈U1\i) = Dec(cji, kji), and verify the secret shares {vji}j∈U1\i
by testing 18.
• Compute local shares of partial norm {nrij}j∈U1

and partial cosine similarity {csij}j∈U1
from 8.

• Construct packed secret shares {sik}k∈U1 , commitments C, and witness {ω′
ik}k∈U1 for

({nrij}j∈U1
, {csij}j∈U1

), encrypt c′ik = Enc(sik||ω′
ik, kik), and create signature σ′

ik =

Sign(dSK
i , c′ik||C) for k ∈ [N]\i

• Send (C||c′ij ||σ′
ij) for j ∈ [N]\i to the server

Server:
• Collect messages from at least K clients (denote U2 the set of all respondents).
• Send (C||{c′ij}i∈U2\j ||{σ′

ij}i∈U2\j) to client j for j ∈ U2.
Round 3:
Client i:
• Receive (C||{c′ji}j∈U2\i||{σ′

ji}j∈U2\i) from server, and assert that Verify(dPK
j , c′ji||C, σ′

ji) =
1.
• Recover ({sji}j∈U2\i, {ω′

ji}j∈U2\i) = Dec(c′ji, kji), and verify the secret shares {s′ji}j∈U2\i
by testing 18.
• Obtain the final share of norm {nrij}j∈|U1|/p and cosine similarity {csij}j∈|U1|/p from 10, 11,
and Reed-Solomon decoding.
• Send ({nrij}j∈|U1|/p, {csij}j∈|U1|/p to the server.
Server:
• Collect messages from at least K clients (denote U3 the set of all respondents).
• Recover {∥gj∥2}j∈U1

using Reed-Solomon decoding, and assert that ∥gj∥2 ≤ ∥g0∥2, ∀j ∈ U1.
• Recover {⟨ḡi,g0⟩}j∈U1

using Reed-Solomon decoding, and compute the trust score {TSj}j∈U1

from 5.
• Broadcast the trust score {TSj}j∈U1

to all users i ∈ U3.
Round 4:
Client i:
• Compute local aggregation ⟨g⟩i from 6, and send to the server.
Server:
• Collect messages from at least K clients.
• Recover g using Reed-Solomon decoding.

where {θj}j∈[d] are random integers.

17

104345 https://doi.org/10.52202/079017-3314

Hence, the user side computation of 10 is the same as:
s1Nm

...
s11m

. . .

. . .
. . .

sNNm

...
sN1m

B−1
ej ChopdBe′j

= BT
ek

×
(

...
cs1(m−1)p+k . . .

.
csN(m−1)p+k

)
B−1

ej Chopd.

(20)

The aggregation of new secret and reconstruction of {xjm} is equivalent to taking the first column of:

BT
ek

(
...

cs1(m−1)p+k . . .
.

csN(m−1)p+k

)
×
(
B−1

e1 + · · ·+B−1
el

)
Chopd.

(21)

Since csj is a packed secret share of the partial cosine similarity, it follows that:(
cs1h . . . cs

N
h

)
B−1

ej Chopd =
(∑

(j−1)l<i≤jl ḡhig0i . . .
)
, (22)

meaning that the first elements gives the partial cosine similarity.

Therefore, the final shares sent to server {xjm} can be formulated as:(
x1m . . . xNm

)
=

(∑
i ḡm(p−1)+h,ig0i θ1 . . . θd 0 . . .

)
Beh , (23)

for h ∈ (m(p − 1),mp]. Therefore, the server could retrieve the dot product by Reed-Solomon
decoding, which is equivalent to multiplying {B−1

eh
}h∈(m(p−1),mp] and obtaining the first element.

G Details of Complexity Analysis

User computation: User’s computation cost can be broken as: (1) generating packed secret shares of
update (O(M +N) log2N) complexity [43]); (2) computing shares of partial gradient norm square
and cosine similarity (O(M +N)) complexity); (3) creating packed secret shares of partial gradient
norm square and cosine similarity (O(N log2N) complexity); (4) deriving final secret shares of
gradient norm square and cosine similarity (O(N2 log2N) complexity). Therefore, each user’s
computation cost is O((M +N2) log2N).

User communication: User’s communication cost can be broken as: (1) downloading parameters
from server (O(M) messages); (2) sending and receiving secret shares of gradient (O((M,N))
messages); (3) sending and receiving secret shares of partial gradient norm square and cosine
similarity (O(N) messages); (4) sending final shares of gradient norm square and cosine similarity
(O(1) messages); (5) receiving trust scores from the server (O(N) messages); (6) sending shares of
aggregated update to the server (O(M/N + 1) messages). Hence, each user’s communication cost is
O(M +N).

Server computation: The server’s computation cost can be broken as: (1) recovering gradient norm
square and cosine similarity by Reed-Solomon decoding (O(N log2N log logN) complexity [44]);
(2) computing the trust score of each user (O(N) complexity); (3) decoding the aggregated global
gradient (O(M + N) log2N log logN) complexity). Therefore, the server’s computation cost is
O((M +N) log2N log logN).

Server communication: The server’s communication cost can be broken as: (1) distributing pa-
rameters to clients (O(MN) messages); (2) sending and receiving secret shares of user update
(O((M +N)N}) messages); (3) sending and receiving secret shares of partial gradient norm square
and cosine similarity (O(N2) messages); (4) receiving final shares of gradient norm square and
cosine similarity (O(N) messages); (5) broadcasting trust scores to clients (O(N2) messages); (6)
receiving shares of aggregated update from clients (O(M + N) messages). Overall, the server’s
communication cost is O((M +N)N).

18

104346https://doi.org/10.52202/079017-3314

H Proof of Theorem 5.1

Proof. We utilize the standard hybrid argument to prove the theorem. we define a PPT simulator SIM
through a series of (polynomially many) subsequent to REALU,t,κ

C , so that the view of C in SIM is
computationally indistinguishable from that in REALU,t,κ

C .

Hyb1: In the hybrid, each honest user from U1\C encrypts shares of a uniformly random vector,
instead of the raw gradients. The properties of Shamir’s secret sharing ensure that the distribution
of any |C\{S}| < t shares of raw gradients is identical to that of any equivalent length vector, and
IND-CPA security guarantees that the view of server is indistinguishable in both cases. Hence, this
hybrid is identical from the previous one.

Hyb2: In the hybrid, the simulator aborts if C provides any of the honest user i with a signature on
j’s message, cji, but the user couldn’t produce the same signature given the public key (in round
2). The security of the signature scheme guarantees that this hybrid is indistinguishable from the
previous one.

Hyb3: In this hybrid, SIM aborts if any of the honest user i fails to verify the secret shares sji from
user j by checking 18. The the DL, t-polyDH, and t-SDH assumptions guarantee that this hybrid is
identical from the previous one.

Hyb4: In the hybrid, each honest user from U2\C encrypts shares of a uniformly random vector rather
than partial norm and cosine similarity. The properties of Shamir’s secret and IND-CPA security
ensure that this hybrid is indistinguishable from the previous one.

Hyb5: In the hybrid, the simulator aborts if C provides any of the honest user i with a signature on
j’s message, c′ji, but the user couldn’t produce the same signature given the j’s key (in round 3).
Because of the security of the signature scheme, this hybrid is indistinguishable from the previous
one.

Hyb6: This hybrid is defined as Hyb3, with the only difference that SIM verify the secret shares s′ji
in round 3. This hybrid is indistinguishable from the previous one under DL, t-polyDH, and t-SDH
assumptions.

The above changes do not modify the views seen by the colluding parties, and the hybrid doesn’t make
use of the honest users’ input. Therefore, the output of SIM is computationally indistinguishable
from the output of REALU,t,κ

C , and this concludes the proof.

I Proof of Theorem 5.2

Denote ḡt =
∑

i ηiḡi be the aggregated gradients at iteration t.

Lemma I.1. For arbitrary number of adversarial clients, the distance between ḡt and∇F (wt) is
bounded by:

∥ḡt −∇F (wt)∥ ≤ 3∥gt
0 −∇F (wt)∥+ 2∥∇F (wt)∥+

√
d

q
. (24)

19

104347 https://doi.org/10.52202/079017-3314

Proof. It follows that:

∥ḡt −∇Lt(w)∥ = ∥
∑
i

ηiḡi −∇F t(w)∥

= ∥
∑
i

ηiḡi − ḡ0 + ḡ0 − g0 + g0 −∇F t(w)∥

≤ ∥
∑
i

ηiḡi − ḡ0∥+ ∥ḡ0 − g0∥+ ∥g0 −∇F t(w)∥

≤
∑
i

ηi∥ḡi∥+ ∥ḡ0∥+ ∥ḡ0 − g0∥+ ∥g0 −∇F t(w)∥

(a)

≤ 2∥g0∥+
√
d

q
+ ∥g0 −∇F t(w)∥

≤ 3∥g0 −∇F t(w)∥+ 2∥∇F t(w)∥+
√
d

q
,

(25)

where (a) is because
∑

i ηi = 1, ∥ḡi∥ ≤ ∥g0∥, and∥ḡ0∥ ≤ ∥g0∥.

Lemma I.2. Under Assumption J.1, we have the following bound at iteration t:

∥wt −w∗ − γ∇F (wt)∥ ≤
√

1− µ2/(4L2
g)∥wt −w∗∥. (26)

Proof. Refer to lemma 2 in [15] for the proof.

Lemma I.3. Suppose Assumption J.1, J.2, J.3 holds. For any δ ∈ (0, 1), if ∆1 ≤ ν21/α1, ∆2 ≤
ν22/α2, we have:

P {∥g0 −∇F (w)∥ ≤ 8∆2∥w −w∗ + 4∆1∥} ≥ 1− δ, (27)

for any w ∈ Θ ⊂
{
w : ∥w −w∗∥ ≤ r

√
d
}

given some positive number r.

Proof. Refer to lemma 4 in [15] for the proof.

Proof of Theorem 5.2: Given the lemmas above, we can proceed to prove Theorem 5.2. We have:

∥w −w∗∥ ≤ ∥wt−1 − γ∇F (wt−1)−w∗∥+ γ∥ḡt −∇F (wt)∥
≤ ∥wt−1 − γ∇F (wt−1)−w∗∥+ 3γ∥gt

0 −∇F (wt)∥

+2γ∥∇F (wt)∥+ γ
√
d

q

≤
(√

1− µ2/(4L2) + 24γ∆2 + 2γL
)
∥wt−1 −w∗∥

+12γ∆1 +
γ
√
d

q
.

(28)

Therefore, with probability at least 1− δ, it follows that:

∥wt −w∗∥ ≤ (1− ρ)t∥w0 −w∗∥++12γ∆1 +
γ
√
d

q
. (29)

J Assumptions for convergence analysis 5.4

Assumption J.1. The expected risk function F (w) is µ-strongly convex and L-smooth for any w,
w̄:

F (w̄) ≥ F (w) + ⟨∇F (w), w̄ −w⟩+ µ

2
∥w̄ −w∥2

∥∇F (w)−∇F (w̄)∥ ≤ L∥w̄ −w∥.
(30)

20

104348https://doi.org/10.52202/079017-3314

Moreover, the empirical loss function L(D,w) is L1-smooth probabilistically. For any δ ∈ (0, 1),
there exists an L1 such that:

P

{
sup
w ̸=w̄

∥∇L(D,w)−∇L(D, w̄)∥
∥w − w̄∥

≤ L1

}
≥ 1− δ

3
. (31)

Assumption J.2. The root dataset D0 and clients’ local dataset Di(i = 1, 2, ..., n) are sampled
independently from distribution χ.

Assumption J.3. The gradients of the empirical loss function ∇L(D,w∗) at the optimal model
w∗ is bounded. Furthermore, h(D,w) = ∇L(D,w)−∇L(D,w∗) is also bounded. Specifically,
⟨∇L(D,w∗),v⟩ and ⟨h(D,w)−E[h(D,w)],v⟩/∥w−w∗∥ are sub-exponential for any unit vector
v. Formally, for ∀|λ| ≤ 1/α1, ∀|λ| ≤ 1/α2, B = {v : ∥v∥ = 1}, it holds that:

sup
v∈B

E[exp(λ⟨∇L(D,w∗),v⟩)] ≤ eν
2
1λ

2/2

sup
v∈B,w

E
[
exp

(
⟨h(D,w)− E[h(D,w)],v⟩

∥w −w∗∥

)]
≤ eν

2
2λ

2/2.
(32)

K Experiments

The experiments are conducted on a 16-core Ubuntu Linux 20.04 server with 64GB RAM and A6000
driver, where the programming language is Python.

K.1 Datasets

MNIST is a collection of handwritten digits, including 60,000 training and 10,000 testing images of
28× 28 pixels. F-MNIST consists of 70,000 fashion images of size 28× 28 and is split into 60,000
training and 10,000 testing samples. CIFAR-10 is natural dataset that includes 60,000 32× 32 colour
images in 10 classes, splitting into 50,000 training and 10,000 testing images.

K.2 FL configuration

both datasets are split among 10,000 users and select 100 users in each iteration. The server stores
200 clean samples as benchmark. We allow up to 20% clients to drop out in each round, and a
maximum of 30% participating clients to collaborate with each other to reveal the secret. Therefore,
we construct a secret sharing of degree 40, considering the doubling of degree during dot product
computation, and pack each 10 elements into a secret.

K.3 Hyper-Parameters

The parameters are updated using Adaptive Moment Estimation (Adam) method with a learning
rate of 0.01. Each accuracy reported in the tables is an average of 5 experiments, and each round
of experiments runs for 200 iterations. Both LDP and CDP adopt privacy parameter ϵ = 3 and
δ = 0.0001.

K.4 Comparison among Aggregation Frameworks

In Table 5 we summarize the comparison among aggregation frameworks along four dimensions:

• Robustness against malicious users: most algorithms provide certain level of robustness
against malicious users. Local DP is not that effective in defending malicious users according
to our experiment results. Though Robust Federated Aggregation (RFA) [45] provides a
robust aggregation protocol based on geometric median, the malicious users could freely
manipulate the uploaded gradients for poisoning attacks.

• Privacy Protection against server: whether the framework protect user’s plaintext gradient
against server. Only PEFL, PBFL, ShieldFL, SecureFL [46], RoFL [47], ELSA [48], BREA,
and RFLPA achieves the goals of robustness and privacy simultaneously.

21

104349 https://doi.org/10.52202/079017-3314

• Collusion threshold during model training: the server could obtain users’ plaintext gradients
if it colludes with more than the given level of parties. PEFL, PBFL, ShieldFL, SecureFL,
and ELSA all rely on two non-colluding parties during model training to protect users’
message. The collaboration between the two non-colluding parties could compromise user’s
privacy.

• MPC techniques: the main multiparty computation techniques leveraged by the framework.
PEFL, PBFL, ShieldFL, SecureFL, and ELSA are based on multi-party computation (MPC)
or homomorphic encryption (HE), RoFL is based on zero-knowledge proof (ZKP), and
BREA and RFLPA are based on secret sharing.

Furthermore, although RoFL and ELSA could defend against malicious users, they are designed
specifically for a naive robust aggragation method, norm bounding. It’s completely impractical to
generalize these frameworks to more advance defense method such as Krum.

Table 5: Corse-grained comparison among Aggregation Frameworks. “/” denotes non-applicable.
ELSA improves on RoFL regarding the the efficiency.

Robustness against
malicious users

Privacy Protection
against server

Collusion threshold
during model training MPC techniques

FedAvg Yes No / /
Bulyan Yes No / /
Trim-mean Yes No / /
KRUM Yes No / /
Central DP Yes No / /
Local DP Not effective Yes / /
RFA No Yes / /
PEFL Yes Yes 1 HE (Paillier)
PBFL Yes Yes 1 HE (CKKS)
ShieldFL Yes Yes 1 HE (Paillier)
SecureFL Yes Yes 1 MPC & HE (BFV)
RoFL Yes Yes O(N) ZKP
ELSA Yes Yes 1 MPC
BREA Yes Yes O(N) Secret sharing
RFLPA Yes Yes O(N) Secret sharing

K.5 Accuracies over Iterations

Figure 4 demonstrates the impact of different iterations on test accuracies for RFLPA, BREA and
FedAvg using the MNIST dataset. The results reveal that the RFLPA algorithm displays comparable
convergence regardless of the existence of attackers, while FedAvg exhibits significantly inferior
convergence when 30% attackers are present.

K.6 Performance on Additional Attacks

K.6.1 Poisoning Attacks

We evaluate our protocol against several stealthier attacks: (1) KRUM attack [49], (2) BadNets [50],
and (3) Scaling attack [10]. KRUM attack is untarget attack, and BadNets as well as Scaling attack
are backdoor attacks that specifically degrade the performance on triggered samples. We follow the
same approach as in [50] and [10] to embed triggers in the targeted images.

Table 6 compares the performance of RFLPA and FedAvg against the above attacks. For KRUM
attack, RFLPA improves the accuracy on the general dataset over FedAvg by more than 1.6x. For the
two backdoor attacks, RFLPA show trivial performance loss on the general and triggered dataset, as
opposed to the significant degradation in accuracy for FedAvg.

K.6.2 Inference Attacks

We assess our RFLPA against passive inference attack using the Deep Leakage from Gradients (DLG)
[8]. It is important to note that experiments were not conducted for active inference attacks, where

22

104350https://doi.org/10.52202/079017-3314

Figure 4: Test accuracy of RFLPA and FedAvg for different proportions of malicious users on MNIST
dataset.

Table 6: Accuracies on CIFAR-10 under varying proportions of attackers. For backdoor attacks, the
values are presented as overall accuracy (backdoor accuracy).

FedAvg RFLPA
% of attackers 10% 20% 30% 10% 20% 30%
KRUM attack 0.27 0.12 0.11 0.71 0.70 0.70
BadNets 0.68 (0.54) 0.67 (0.54) 0.55 (0.28) 0.71 (0.68) 0.70 (0.68) 0.69 (0.66)
Scaling attack 0.70 (0.22) 0.68 (0.21) 0.54 (0.19) 0.70 (0.69) 0.70 (0.69) 0.69 (0.69)

the server might alter users’ messages, such as secret shares, to access private data. This omission
is due to the protection provided by the signature scheme, which safeguards message integrity and
prevents the server from forging any user’s messages.

DLG attempts to reconstruct the original image from the aggregated gradients. We conducted an
attack on the CIFAR-10 dataset, using the specifications in Appendix K.2. The average peak signal-
to-noise ratio (PSNR) of generated image with respect to original image is 11.27, much lower than
the value of 36.5 when no secure aggregation is involved. Figure 5 shows that the inferred images are
far from the raw images under DLG attack.

Figure 5: Original and inferred image under RFLPA.

23

104351 https://doi.org/10.52202/079017-3314

K.7 Performance on Diverse Dataset

K.7.1 Performance on Natural Language Processing (NLP) Dataset

We evaluate the accuracy of our framework on two NLP datasets, Recognizing Textual Entailment
(RTE) [51] and Winograd NLI (WNLI) [52], by finetuning a distillBERT model [53]. We present the
performance for gradient manipulation attack in Table 7. The result demonstrates that for the two
NLP datasets, RFLPA has robust accuracies in the presence of up to 30% attackers.

Table 7: Accuracies on NLP dataset under different proportions of attackers.
RTE WNLI

Proportion of Attackers No 10% 20% 30% No 10% 20% 30%
FedAvg 0.599 0.509 0.487 0.462 0.619 0.563 0.437 0.437
BREA 0.584 0.592 0.570 0.567 0.592 0.592 0.577 0.563
RFLPA 0.596 0.582 0.582 0.577 0.619 0.592 0.592 0.563

K.7.2 Performance on CIFAR-100 Dataset

To test a more complex CV dataset, we evaluate our frameworks on CIFAR-100 [32] dataset using a
ResNet-9 classifier. It can be observed in Figure 8 that RFLPA significantly enhances the accuracy
over FedAvg from 10% attackers, by an average of 3.94x. Furthermore, RFLPA experiences little
performance degradation in the presence of up to 30% attackers.

Table 8: Accuracy on CIFAR-100 dataset under gradient manipulation attack.
FedAvg RFLPA

% of attackers No 10% 20% 30% No 10% 20% 30%
Accuracy 0.55 ±0.2 0.11 ±0.5 0.10 ±0.0 0.10 ±0.0 0.55 ±0.2 0.54±0.1 0.50 ±0.1 0.49 ±0.2

K.8 Overhead Analysis

K.8.1 Computation Time between RFLPA and HE-based methods

To verify the practicability of RFLPA, we benchmark our framework with three HE-based methods,
PEFL [20], PBFL [21], and ShieldFL [22]. Table 9 presents the per-iteration computation time using
a MNIST classifier (1.6M parameters) for the three algorithms and RFLPA. It can be observed that it
takes 1.5 to 6.5 day to run the three HE-based algorithms for only a single iteration, which renders
them impractical for real-life deployment.

Table 9: Computation cost (in minutes) with varying client size.
Per-user Cost Server Cost

Client size 100 200 300 400 100 200 300 400
RFLPA 3.41 11.44 24.51 42.60 6.68 8.46 15.00 26.47
PEFL 111.51 109.27 109.44 110.13 2156.20 6056.98 6785.71 9365.46
PBFL 12.65 12.58 12.73 12.63 1806.05 3598.54 5386.97 7193.64
ShieldFL 111.73 109.43 109.25 109.84 2192.48 6093.05 6809.60 9384.11

K.8.2 Ablation Study

Considering that RFLPA and BREA leverage different robust aggregation rule, we conducted ablation
study to demonstrate that the reduction in overhead is attributed to the scheme design of RFLPA rather
than the inherent advantages of the underlying aggregation rule. In particular, we replace the aggrega-
tion module in RFLPA with KRUM, and presents the per-iteration communication and computation
cost, respectively, in Table 10 and 11. It can be observed that even with substituting the aggregation
module with KRUM in our framework, there’s still notable reduction in the communication cost
benefiting from the design of our secret sharing algorithm.

24

104352https://doi.org/10.52202/079017-3314

Table 10: Communication cost (in MB) per client with varying client size with MNIST classifier
(1.6M parameters). RFLPA (KRUM) replaces the aggregation rule with KRUM in RFLPA.

Client size 300 400 500 600
RFLPA 82.51 82.52 82.53 82.54
BREA 1909.92 2544.45 3178.98 3813.51
RFLPA (KRUM) 79.58 82.25 85.68 89.87

Table 11: Computation cost (in minutes) with varying client size with MNIST classifier (1.6M
parameters). RFLPA (KRUM) replaces the aggregation rule with KRUM in RFLPA.

Per-user Cost Server Cost
Client size 100 200 300 400 100 200 300 400
RFLPA 3.41 11.44 24.51 42.60 6.68 8.46 15.00 26.47
BREA 44.73 101.39 182.27 294.27 75.85 145.30 216.96 287.22
RFLPA (KRUM) 13.60 35.56 46.48 75.78 31.77 34.04 39.76 62.81

K.9 Non-IID Setting

K.9.1 Heterogenous Clients

The previous experiments were conducted under the assumption that the local data of clients are
independent and identically distributed (IID). To simulate the non-IID dataset, we adopted the setting
in [54] by sorting the data based on their labels and dividing them into 10,000 subsets. Consequently,
the local data owned by most clients consist of only one label.

Figure 6: Test accuracy on non-IID dataset. GM stands for gradient manipulation attack, and LF
stands for label flipping attack.

We compare the accuracy of RFLPA, BREA and FedAvg on non-IID dataset in Figure 6. The RFLPA
demonstrates resilient performance against poisoning attacks, even when the dataset is distributed
non-identically among clients.

K.9.2 Dynamic Data

For dynamic settings, we consider the case where the data of the clients change during the federated
training with the arrival of new data. To simulate the setting, we leverage Dirichlet Distribution
Allocation (DDA) [55] to sample non-iid dataset, and change the distribution for each client every 20
epochs. The parameter of the Dirichlet distribution is set to α = 0.1.

Table 12 presents the accuracy against gradient manipulation attack. Our RFLPA demonstrates robust
performance under the dynamic setting for up to 30% attackers. The improvement of RFLPA over
FedAvg is more than 2x when there are at least 20% attackers.

25

104353 https://doi.org/10.52202/079017-3314

Table 12: Accuracy under dynamic client data distribution against gradient manipulation attack.
MNIST F-MNIST

% of attackers No 10% 20% 30% No 10% 20% 30%
FedAvg 0.98 ±0.0 0.27 ±0.2 0.29 ±0.3 0.29 ±0.1 0.86 ±0.0 0.52±0.1 0.21 ±0.2 0.18 ±0.2

RFLPA 0.96 ±0.0 0.94 ±0.0 0.92±0.0 0.90±0.0 0.83±0.0 0.79±0.0 0.79±0.1 0.77±0.0

K.10 Integration with Other Aggregation Protocols

The robust aggregation rule of RFLPA is based on FLTrust, requiring a clean root data set on server
side. Suppose we cannot get any clean root dataset even if the required size is small, it is feasible
to replace the aggregation protocol with other robust aggregation algorithms to circumvent the
assumption.

First, our algorithm can be integrated with KRUM-based method by substituting the aggregation
module with KRUM. Though KRUM incurs greater cost than the original method, Appendix K.8.2
shows that there is a notable reduction in communication and computation cost compared with BREA,
benefiting from the design of our secret sharing algorithm. The accuracy of RFLPA (KRUM) is
expected to be the same as BREA, as both utilize the same aggregation rule.

Another alternative is to compute the cosine similarity with global weights. Specifically, we can
compute the cosine similarity between each local update and the global weights as follows [56]:

cos(wt
i ,w

t−1
G) =

⟨wt
i ,w

t−1
G ⟩

∥wt
i∥∥w

t−1
G ∥

(33)

, and filter out the clients with similarity smaller than a pre-specified threshold, which is set to 0 in
our evaluation.

From Table 13, we can observe that compared with FedAvg, RFLPA-GW effectively improves
the accuracy in the presence of attackers. Noted that the communication and computation cost of
RFLPA-GW is at the same scale of RFLPA’s original level, as both compute the cosine similarity
with a single baseline.

Table 13: Accuracy for defense based on global weight under different proportions of attackers.
RFLPA-GW replaces the robust aggregation rule in RFLPA with the method based on cosine similarity
with global weight.

MNIST F-MNIST
% of attackers No 10% 20% 30% No 10% 20% 30%
FedAvg 0.98 ±0.0 0.46 ±0.1 0.40 ±0.1 0.32 ±0.0 0.88 ±0.0 0.55 ±0.0 0.51 ±0.0 0.45 ±0.1

RFLPA-GW 0.98 ±0.0 0.95 ±0.1 0.92±0.0 0.91±0.1 0.90±0.0 0.80±0.1 0.77±0.0 0.75±0.0

L Impact Statement

Our work in developing a robust federated learning framework (RFLPA) addresses significant
challenges in privacy and security in federated learning (FL), presenting substantial benefits in data
protection and carrying broader societal implications. The advancements in safeguarding data privacy
bolster ethical standards in data handling, yet they may raise concerns in scenarios requiring data
transparency. Our efforts contribute to the technical evolution of FL but also underscore the need for
ongoing ethical considerations in the face of rapidly advancing machine learning technologies.

26

104354https://doi.org/10.52202/079017-3314

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 8 Discussion and Future Work.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification:

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification:

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

27

104355 https://doi.org/10.52202/079017-3314

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]
Justification:

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix L.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification:

28

104356https://doi.org/10.52202/079017-3314

