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Abstract

Trained transformer models have been found to implement interpretable procedures
for tasks like arithmetic and associative recall, but little is understood about how
the circuits that implement these procedures originate during training. To what
extent do they depend on the supervisory signal provided to models, and to what
extent are they attributable to behavior already present in models at the beginning
of training? To investigate these questions, we investigate what functions can be
learned by randomly initialized transformers in which only the embedding layers
are optimized, so that the only input–output mappings learnable from data are
those already implemented (up to a choice of encoding scheme) by the randomly
initialized model. We find that these random transformers can perform a wide
range of meaningful algorithmic tasks, including modular arithmetic, in-weights
and in-context associative recall, decimal addition, parenthesis balancing, and even
some aspects of natural language text generation. Our results indicate that some
algorithmic capabilities are present in transformers (and accessible via appropriately
structured inputs) even before these models are trained.1

1 Introduction

A large body of recent work has demonstrated the effectiveness of transformer language models
(LMs) [46] on general sequence-modeling tasks. Transformers seem to be especially well-suited
(relative to other flexible neural models) at problems involving numerical reasoning [41, 24, 30],
string manipulation [28], and various forms of in-context learning [7, 17, 1, 25]. Why is this the case?

One possibility is that some aspect of the transformer architecture makes these behaviors easy to
learn. Under this hypothesis, transformer models do not implement any useful functionality when
initialized; however, their loss landscape is structured such that they can be (computation- and
sample-) efficiently optimized for behaviors of interest. But another possibility is that—because
of intrinsic properties of the transformer architecture and parameter initialization schemes—these
capabilities are already implemented in some fashion even in randomly initialized models.

To disentangle these possibilities, we investigate the behavior of randomly initialized transformer
models in which only the embedding layers are optimized, leaving all other model-internal parameters
fixed. If such embedding-only training is successful, it implies that the randomly initialized model’s
behavior on some subspace already corresponds to the input–output mapping of interest, up to a
choice of encoding scheme—in other words, that the randomly initialized model can already perform
the target task, and it suffices to find an encoding of inputs and outputs that induces the target behavior.

In experiments on seven tasks, we find that embedding-only training yields accurate models for a
diverse set of problems spanning arithmetic, associative recall, and sequence generation—in some
cases substantially outperforming similarly trained recurrent models. Remarkably, transformer
language models trained in this fashion can even produce grammatical (though largely nonsensical)

1Code is available at https://github.com/fjzzq2002/random_transformers.
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Figure 1: Overview of problem setup. A: Modeling approach. We initialize transformers randomly,
then optimize only their input and output embedding layers on a dataset of interest. We find that
these random transformers can be successfully trained to perform a diverse set of human-meaningful
tasks. B: Task set. We evaluate the effectiveness of random transformers on a set of model problems
involving arithmetic and memorization, as well as modeling of natural language text.

natural language text. We explain these results by showing that embedding-only training steers
both inputs and model-internal representations into low-dimensional subspaces on which the model
implements the target computation, a phenomenon we call “subspace selection”. Embedding-only
training is most successful when the target computation can be performed in a subspace that is
low-dimensional relative to the ambient dimension of the model’s hidden representations.

These findings build on a long line of research aimed at understanding the effectiveness of deep
networks in terms of their behavior at initialization—e.g. showing that random convolutional networks
are high-quality feature extractors [3, 8], or that overparameterized networks can be pruned down
to sparse “lottery ticket” subnetworks that implement the correct behavior [16, 53, 39, 11]. But in
contrast to past work, the solutions found by embedding-only training involve algorithmic computation
rather than feature extraction, performed in low-dimensional subspaces but not by sparse sub-networks.
Even more generally, our results show that pruning and optimization are not always necessary to
surface useful capabilities—at least in transformers, some capabilities are available as soon as models
are initialized, requiring only a learned encoding of inputs. This in turn suggests that it may be
possible to partially understand the effectiveness of transformers simply by understanding their
behavior at initialization.

Our work also has implications for research on circuit-level interpretability of transformers and other
neural models: if even random models can perform structured, algorithmic tasks, then attempts to
understand models by directly inspecting parameter matrices—and not their behavior on natural data
distributions—may be fundamentally limited in their ability to characterize learned behaviors.

2 Background and Related Work

Random feature extractors Random deep convolutional networks are highly effective visual
feature extractors even without training. Jarrett et al. [23] first discovered that linearly combining fea-
tures from a randomly initialized one-layer convolutional network achieved comparable performance
to fully trained networks for downstream vision tasks. Saxe et al. [40] showed that performance
improvements from training is relatively minor comparing to architectural changes. In this work, we
expanded the discussion to language models and demonstrated that training embeddings alone is
sufficient to succeed in many tasks, highlighting the strong inductive bias of transformer architectures.

Neural reprogramming Neural reprogramming aims to repurpose existing neural networks for
novel tasks via simple transformation layers. This technique was first purposed by Elsayed et al.
[15] as a way to exploit trained neural network served by existing providers, and it was later
used as a resource-efficient domain-transfer technique [45, 49]. In our work, we showed that in
addition to neural networks trained for other tasks, even randomly initialized neural networks can be
reprogrammed to achieve non-trivial performance.
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Sparse sub-networks and lottery tickets The lottery ticket hypothesis was first proposed by
Frankle and Carbin [16]: a randomly-initialized dense neural network contains subnetworks, the
winning tickets, that when trained in isolation can match the performance of the original network.
Zhou et al. [53] and Ramanujan et al. [39] strengthened the hypothesis by discovering pruned
subnetworks that achieve comparable accuracy of the trained full network within untrained, randomly
initialized networks - winning tickets do not even need to be trained. The hypothesis also holds in
transformers [11, 44]. Similar to the hypothesis, our work also focuses on the models’ capabilities at
initialization, but we showed that these capabilities can be surfaced without any pruning.

Interpreting neural circuits Many efforts have been dedicated to the interpretation of neural
networks. On the arithmetic task we study in this paper, Nanda et al. [31] and Zhong et al. [52]
described two different mechanisms in transformers on modular addition; Quirke and Barez [37]
performed detailed mechanistic analysis for one-layer transformers trained on decimal addition.
These studies provide insights into possible mechanisms transformers might employ to solve these
tasks. With theoretical analysis, Wen et al. [47] proved that on the bounded Dyck task, the attention
patterns and weights of neural circuits could be quite arbitrary, which we confirm in this work.

Reservoir computing Reservoir computing is a framework for computation. In the diagram, a
blackbox reservoir receives data and updates its inner states there upon. A simple readout mechanism
is then trained to map its inner states to the desired output. The reservior is generally kept untrained
and only the readout part is trained. Under our notations, we can interpret the paradigm as training
only the unembedding part of random neural networks. See Benjamin et al. [42] for a general
overview for reservoir computing and Mantas et al. [29] for a survey on its applications on recurrent
neural networks.

3 Setup

Models We study the behavior of decoder-only transformer language models. In these models,
inputs x (represented as sequence of token IDs) are first assigned vector embeddings h(0) = E(x)
via an embedding layer E. These embeddings are then passed through a series of m intermediate
layers F (1), F (2), · · · , F (m) so that h(i) = F (i)(h(i−1)), with each F (i)(x) computing a hidden
representation h(i) via a transformation:

h(i) = F (i)(h(i−1)) = FFN(i)(SelfAtt(i)(h(i−1))) ,

where FFN, SelfAtt are feed-forward and causal self-attention modules as in Radford et al. [38]
(layer norms are omitted for simplicity). The final activation h(m) is mapped by a unembedding
layer U to a distribution over next tokens.

To encode information about the ordering of input tokens, we implement the embedding layer E
using two matrices: a token embedding matrix Etoken and a positional embedding matrix Epos. For an
input x = [x1, x2, · · · , xn], we first calculate the initial activations

h(0) = E([x1, x2, · · · , xn]) = [Etoken[x1]+Epos[1], Etoken[x2]+Epos[2], · · · , Etoken[xn]+Epos[n]].

Similarly, the unembedding layer is parameterized by a single matrix, and model predictions have the
form:

p(xn+1 | x1···n;E,F, U) ≜ softmax
(
Uh(m)

n

)
[xn+1],

where (in a slight abuse of notation) E, F and U denote embedding, intermediate, and unembedding
parameters respectively.

In terms of parameters, let the hidden dimension be d, the number of layers be m, the vocabulary size
be v and the maximum context length be n, the embedding layers have Ω((n+ v)d) parameters as
matrix Etoken and U have shape v × d and matrix Epos has shape n× d, while the full network has an
extra Ω(md2) parameters.

Initialization Models are trained via gradient descent from some random initial parameterization.
Following Radford et al. [38], parameters of feed-forward layers are initialized by sampling from
isotropic Gaussians with mean 0 and standard deviation 0.02/

√
2n. All the other weight matrices are

initialized with 0-mean Gaussians with standard deviation 0.02. The affine transformations in layer
normalizations are initialized as identity.
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Training In this work, we examine language models with frozen intermediate layers, which we call
random transformers. In these models, we fix the randomly chosen parameters intermediate layers,
and train only the embedding layer E and unembedding layer U . Our experiments thus compare:

Full Training: arg min
E,F,U

∑
x,n≥0

− log p(xn+1 | x1···n;E,F, U)

Embedding-Only Training: arg min
E,U

∑
x,n≥0

− log p(xn+1 | x1···n;E,F, U)

where the arg min is computed approximately via mini-batch stochastic gradient descent.

4 Random Transformers Can Perform Simple Algorithmic Tasks

Can random transformers be steered to perform meaningful tasks by optimizing only input and output
tokens’ embeddings? We begin by evaluating four widely-studied tasks that serve as toy models of
important behaviors in large-scale LMs.

4.1 Tasks

Modular Addition This task evaluates models’ ability to perform integer addition under a fixed
prime modulus p = 199. Models receive a sequence of input tokens [a, b] for a, b ∈ [0, p− 1] and
must compute (a + b) mod p. When over-parameterized models are trained to perform this task,
grokking (a long period of memorization followed by an abrupt transition to generalization [36]) is
typically observed [26, 18]. Neural sequence models of different kinds have been found to implement
two interpretable algorithms, sometimes referred to as the “Clock” [31] and “Pizza” [52], when
trained to perform this task.

Needle-in-a-Haystack This task evaluates models’ abilities to process long input sequences [4]. In
the variant we study, models receive as input a sequence of form [m1, c1,m2, c2, · · · ,mk, ck,mu].
Here, m1,m2, · · · ,mk are distinct markers (k ≤ 30) and ci’s are corresponding values. The input
ends with a marker mu (u ∈ [1, k]), and models must search for the previous occurrence of that
marker in the input sequence and output the corresponding cu. Specific circuits like induction heads
are often observed in models that perform this task [34].

Decimal Addition This task evaluates models’ ability to perform arithmetic operations distributed
over sequences of multiple input tokens—in this case, addition of two equal-length numbers repre-
sented as digit sequences in base 10. The order of digits of both numbers and the results are reversed
to simplify the task. For example, the task 39+71=110 is encoded as a pair with input 9 3 1 7 and
output 0 1 1. We use 10-digit numbers in our setup. Past work has found that fully trained models
can reliably learn some versions of this task [32, 51, 43].

Parenthesis Balancing (Dyck Recognition) In this task, models are presented with a sequence of
parentheses, and must predict whether they are balanced—i.e., whether the sequence contain an equal
number of opening and closing parentheses, and within every prefix, the number of closing parentheses
is no greater than the opening parentheses. Such sequences are also called Dyck sequences, and have
been widely studied in language models because of their connection to context-free models of natural
language syntax [50, 47]. Note that this task has a vocabulary of size 4 (two parentheses and two
labels), so only a very small number of parameters are optimized by embedding-only training. In our
setup, the input parenthesis sequences have lengths at most 60.

For the modular addition task, we partition the full set of well-formed input–output pairs into a
fixed train/test split; for the other problems, we pre-generate a fixed test set but randomly generate
new pairs for each training batch. Additional details may be found in Appendix D.1.

4.2 Results

Results are shown in Table 1. Here we compare random transformers with a hidden size of 1024 to
fully trained models with hidden sizes of 16 and 1024. For reference, we also compare to a (fully
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Task Random 1024 Random 16 Normal 1024 Normal 16 LSTM 1024

Modular Addition 100.0% 1.3% 100.0% 97.2% 100.0%
Needle-in-a-Haystack 100.0% 7.5% 100.0% 12.0% 99.5%
Decimal Addition 100.0% 26.6% 100.0% 67.5% 53.0%
Parenthesis Balancing 100.0% 87.3% 92.3% 100.0% 100.0%

Table 1: Test accuracy of fully trained and random transformers, as well as fully trained LSTMs,
on algorithmic tasks. Denoted numbers (1024 and 16) are hidden sizes; results are median over 10
random restarts. Random models with only trained embeddings reliably perform all four tasks, and
even outperform fully trained LSTMs. See Appendix E for the accuracy curve on multiple hidden
sizes.

Task U only E only Etoken & U only

Modular Addition (Train) 47.9% 68.3% 100.0%
Modular Addition (Test) 0.4% 1.2% 100.0%
Needle-in-a-Haystack 17.7% 100.0% 98.5%
Decimal Addition 27.3% 100.0% 48.5%
Parenthesis Balancing 92.3% 100.0% 100.0%

Table 2: Accuracy of embedding-only training with additional parameters fixed: optimizing only the
unembedding layer, only the embedding layer, or only non-positional embeddings. Hidden sizes are
all 1024; results are median over 10 random restarts. All three embedding matrices must be optimized
for models to reliably complete all tasks.

trained) LSTM, a recurrent neural sequence model [22]. All models have two hidden layers, and all
results are aggregated across ten random initializations.

Random transformers learn to perform all four tasks Random transformers with trained em-
beddings and unembeddings obtain perfect accuracy on all four tasks consistently across restarts—
sometimes outperforming fully trained recurrent networks (Table 1). These results thus point toward
the role of a transformer-specific inductive bias in the effectiveness of embedding-only training.

In general, embedding and unembedding parameters must both be trained To further identify
which model components must be optimized to obtain these results, we consider several variants
of embedding-only training: (a) leaving both token and positional embeddings fixed (so only the
unembedding is trained); (b) leaving the unembedding layer fixed (so only the embedding is trained);
and (c) leaving positional embeddings fixed (so token embeddings and the unembedding is trained).
Results are shown in Table 2. All variants fail to reach perfect accuracy on at least one task. Notably,
the variant that only trains the unembedding is unable to reach near-perfect accuracy on any task.

Random transformers exhibit interpretable attention patterns A closer examination of the
trained random models reveals similar mechanistic behaviors to their fully trained counterparts. For
example, we observe attention patterns similar to “induction heads” [34] previously described in fully
trained models for associative recall tasks (Figure 2).

Random transformers use structured embeddings In the modular addition task, learned em-
beddings form circles in low-dimensional subspaces, another phenomenon observed in fully trained
models for these tasks [26, 31] (Fig. 3). To better understand similarities between these models and
their fully trained counterparts, we also computed the distance irrelevance and gradient symmetricity
metrics described by Zhong et al. [52] for distinguishing between networks that perform modular
arithmetic via the “Clock” or “Pizza” algorithm. We find a gradient symmetricity of 0.88 and a
distance irrelevance of 0.88, consistent with a Clock-like solution.
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Figure 2: Attention patterns observed in a 2-layer 1024-width
random transformer trained on the needle-in-a-haystack task. The
input sequence is a 1 b 2 c 3 d 4 b. The layer-1 head is used
by values to attend to their markers, and the layer-2 head is used
by the query to attend to its associated value.

Figure 3: Circular embed-
ding observed in random trans-
former on modular addition.
We plot the projection of the
embedding matrix onto its first
and third principal compo-
nents, with tokens colored ac-
cording to their numeric value.

Transformer Accuracy Memorized bits Trainable parameters Bits per parameter

Normal 80.54% 1900177 659584 2.88
Random 4.53% 106876 262784 0.41

Table 3: Comparison of normal and random transformer in the memorization task.

5 Random Transformers Can Memorize and Generate Structured Sequences

The preceding experiments evaluated the ability of random transformers to implement single, highly
structured input–output mappings. Can these models scale to more challenging tasks, involving
memorization of arbitrary associations or even free-form text generation?

5.1 Memorization

Past work by Allen-Zhu and Li [2] has found that fully trained transformers can store roughly two bits
of input per parameter. We investigate whether a similar scaling trend holds for random transformers.
We study a simple memorization task in which we generate a random mapping from a two-integer
key to a one-integer value, with all integers ranging from 1 to 512. Such a function requires 9 bits per
input–output mapping to represent (log2 512 = 9), and may be defined for up to 262144 (= 5122)
values. Unlike the algorithmic tasks above, here the learned function must be fully specified by
embeddings rather than the pre-trained model, and these experiments mainly evaluate how efficiently
information can be stored in these embeddings.

We evaluate fully trained and random transformers of width 128 and 2 layers (Table 3). We mea-
sure success using an exact-match metric—an input–output pair is considered to be successfully
memorized if the output token assigned highest probability by the model matches the training data.
Fully trained transformers memorized 80% of training examples, stored 2.9 bits per parameter,
while random transformers memorized only 5% of examples, corresponding to 0.4 bits per trainable
parameter.

5.2 Language Modeling

Modeling natural language requires both memorization of arbitrary associations (e.g. between words
and their parts of speech, as in Section 5.1), and structured sequence generation procedures (e.g. to
enforce subject–verb agreement and close quotation marks, as in Section 4). Can random transformers
make any headway on this task?

We train models on the TinyStories dataset, a collection of easy-to-understand stories generated by
GPT-3.5 and GPT-4 [14] which have been shown to induce fluent text generation when used to train
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Figure 4: Language modeling performances (measured in cross-entropy loss or equivalently log
perplexity, lower is better) for fully trained and random transformers. Comparatively large hidden
sizes are needed for random models to match the performance of fully trained models.

Once upon a time, there was a little boy named Max. Max loved to play with his toy blocks. He had blocks
of all colors and shapes. Max liked to build tall towers and big castles. One day, Max was playing with his
blocks in his room. He built the tallest tower he had ever made. It was so tall that it almost touched the
ceiling! Max was very proud of his tower. Suddenly,

Reference (GPT-4o): ... Suddenly, Max’s cat, Whiskers, ran into the room. Whiskers saw the tall tower
and thought it was a fun thing to play with. He jumped up and knocked the tower over. The blocks fell all
over the floor. Max was very sad. He had worked so hard to build the tower, and now it was gone.

Fully Trained Transformer: ... Suddenly, Max’s little sister came into the room. She wanted to play with
Max’s blocks too. But Max didn’t want to share. He wanted to keep playing with his blocks. His sister
started to cry and Max didn’t understand why his sister was so upset. He thought he was just playing with
them. So, he went to his room and looked for the blocks. After a while, he found them under the bed. Max
was so happy that he hugged his sister and his sister. They played together and had a lot of fun. The end.

Random Transformer (Completion 1): ... Suddenly, Max started to blow. Max saw a loud noise coming
from the tower. Max’s tower was very high and strong. Max wanted to play with his blocks. Max was very
proud of himself for being so helpful. Max decided to take care of his tower and his tower. Max was so
happy that he had done. Max wanted to keep himself. He had to be so much fun and proud of himself.
Max was happy to be able to help. Max was able to save the tower and help his tower. Max was so proud
of himself. Max was happy to have such a good tower and could do it.

Random Transformer (Completion 2): ... Suddenly, Max’s tower fell down and landed on his floor. Max
fell down and hurt his knee. Max cried and came to him. Max was very sad and didn’t want to get hurt.
Max’s feelings. Max didn’t want to get away. Max just wanted to make it so badly! Max tried to take it
to break. Max put him back on the floor. Max tried to make up but Max didn’t know what to do. Max
was wrong. Max said, "Don’t worry, Max. Max are very bad and Max. Max didn’t want to share it with
Max. Max to play with Max and Max. Max was very sad. Max loved to play with his friends and Max
played together and had lots of fun. Max played together all day. Max were happy that Max learned that
sharing is caring. Max learned that being selfish and always had learned that sometimes things can share
and others can make others happy again.

Figure 5: Sample completion generated by fully trained and random 512-width 2-layer transformers.
While random models produce less coherent than fully trained models, they nonetheless generate text
that is largely grammatical topically appropriate.

smaller models. As in previous sections, we evaluate both embedding-only and full training with 2-
and 4-layer transformers with various hidden sizes. Scaling curves are shown in Fig. 4. Fully trained
models obtain a cross-entropy loss of 1.35, on par with the results reported by Eldan and Li [14]. Our
trained random transformer with 512 width and ~10M trainable parameters achieved a cross-entropy
loss of 2.64, roughly on par with the fully trained ones with 32 width and only ~0.7M trainable
parameters. Moreover, adding additional hidden layers does not appear to improve performance
performance—2-layer random transformers in fact achieve better losses than 4-layer models.

7

104363 https://doi.org/10.52202/079017-3315



Example outputs sampled from these models (on a newly generated prompt) are shown in Fig. 5.
Even though random models obtain significantly worse perplexity than fully trained models, they
could still perform several key sub-tasks needed for language generation: generated sentences are
generally grammatical, topically coherent with the prompt, correctly resolve some long-distance
dependencies (e.g. references to the name Max) and perhaps even high-level narrative structure.

6 Random Transformers Operate in Low-Dimensional Subspaces

Can we explain the success of random transformers in the tasks studied above? In this section,
we present evidence that embedding-only training steers the hidden computation in transformers
into low-dimensional subspaces in which target functions are already implemented. We term this
phenomenon subspace selection, and show that it is distinct from sparsification, as these subspaces
are distributed across neurons.

In Section 6.1, we measured fraction of activation variance explained by top principal components in
various tasks. For algorithmic tasks, we show that both normal and random transformers work in
low-dimensional subspaces, which are sufficient for solving these tasks (Appendix F). However, for
language modeling and memorization, the random transformers displayed more subspace selection
compared to the fully trained ones, and as a result, they attained lower performances. In Section 6.2
we constructed a task that explicitly requires operating on high-dimensional spaces, circuit imitation,
and indeed, the random transformers exhibit significant performance gap compared to normal
transformers.

6.1 Low-Dimensional Hidden Representations in Algorithmic and Memorization Tasks

To characterize the geometry of random transformers’ internal representations, we present models
(trained for all previously described tasks) with a set of randomly chosen inputs and collect their
embeddings and hidden representations of these inputs at different layers. Using these representations,
we perform two analyses: (1) the fraction of variance explained by the top principal components of
these hidden representations (which will be large if representations lie in a low-dimensional subspace),
and (2) the fraction of variance explained by the most variable entries in hidden state vectors, or
neurons (which will be large if computation is confined to a sparse sub-network).

Both fully trained and random transformers exhibit subspace selection but not sparsification (Table 4
top) in the four algorithmic tasks. In Appendix F, we show that this behavior is expected, insofar
as all four algorithmic tasks can be solved by shallow transformer-like circuits that operate in low-
dimensional subspaces. On memorization and language modeling tasks, random transformers become
much more concentrated on a small subspace than fully trained transformers, thus using a lower
effective dimension (Table 4 bottom and Table 5). In the language modeling task, more than 30% of
variance in hidden representations is explained by 10 components.

6.2 Subspace Selection in Circuit Imitation

To provide another window into these results, we characterize how large the hidden representations
of a random model must be for it to simulate a random circuit that operates in a low-dimensional
subspace.

To do so, we first generate a small, random target transformer associated with a distribution over
strings p̃, then perform embedding-only training in a different, randomly initialized transformer to
simulate its behavior on some domain of interest by minimizing:

arg min
E,U

Ex[KL(p̃(· | x) ∥ p(· | x;E,F, U)]

To construct target models, we begin with the same initialization scheme described in Section 3, then
we scale the query and key parameters in the attention mechanism by a factor of 10, and and the feed
forward weights and biases by a factor of 20. We also scale the final projection layer by 100/

√
width.

(This initialization scheme increases variability of attention patterns and target model predictions
across random restarts; see Appendix D.2.2 for additional discussion.)
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Task and Transformer Type Principal Component Basis Neuron Basis

Task Model Emb L1 L2 Emb L1 L2

Modular Addition Normal 42.0% 21.5% 13.8% 3.8% 1.6% 3.4%
Random 72.9% 63.6% 44.7% 2.8% 3.3% 2.9%

Multi-digit Addition Normal 45.3% 87.0% 87.3% 1.7% 3.3% 2.6%
Random 55.1% 72.7% 63.5% 2.0% 3.9% 2.8%

Needle-in-a-Haystack Normal 35.5% 83.5% 47.7% 1.5% 5.2% 2.8%
Random 31.3% 30.0% 21.5% 1.8% 1.8% 1.6%

Balanced Parentheses Normal 72.0% 99.4% 98.2% 2.9% 7.8% 18.0%
Random 74.9% 85.8% 80.9% 4.9% 4.0% 3.7%

Memorization Normal 15.0% 25.3% 23.4% 10.2% 12.2% 10.5%
Random 27.5% 27.5% 24.7% 9.9% 9.8% 9.7%

Table 4: Median explained variance from top 10 directions under principal and neuron basis. Ac-
tivations after embedding (Emb), layer 1 (L1) and layer 2 (L2) are collected from multiple trained
2-layer models of width 1024 and 128 (for memorization). Normal transformers are fully trained
while Random transformers have only embedding and unembedding layers trained, as in previous
experiments. Across tasks, a large fraction variance in models’ hidden representations is explained
by a small number of principal components, but these components do not appear to be aligned to
individual neurons or sparse sub-networks.

Task and Transformer Type Layer

Task Model Emb L1 L2 L3 L4

Language Modeling

Principal Component Basis
Normal 29.5% 27.3% 24.3% 23.2% 17.6%
Random 43.0% 30.2% 31.8% 32.1% 31.7%

Neuron Basis
Normal 8.6% 16.4% 14.7% 13.9% 5.9%
Random 3.3% 2.9% 2.8% 2.9% 2.9%

Table 5: Median explained variance from top 10 directions under principal and neuron basis for
language modeling task. Activations after embedding (Emb) and after every layer (L1, L2, L3, L4)
are collected from trained 4-layer models of width 512. As above, a substantial fraction of variance is
explained by a small number of principal components, especially in random transformers.

We evaluate fully trained and random transformers’ ability to fit the target distribution for target
models with a 512-token vocabulary, three layers, two attention heads, and varying hidden dimensions.
Training inputs x consist of 40-token sequences generated uniformly at random.

Results are shown in Fig. 6. In general, random transformers can only match the behavior of shallower
(3 vs 1) and or significantly narrower (512 vs 128) models, with a sharp increase in error moving
from 12 → 16 → 32-dimensional models, suggesting that random transformers may only be able to
learn computations that can be performed in lower-dimensional subspaces.

7 Discussion

We have shown that transformer sequence models can accomplish a variety of meaningful tasks when
only their embedding layers are optimized. For tasks involving memorization, these results show that
much of models’ “knowledge” can be encapsulated by input embeddings rather than models’ internal
parameters. For more algorithmic tasks like arithmetic and parenthesis balancing, which require
relatively sophisticated circuits to perform, our experiments show that versions of these circuits
can be accessed in random transformers (but not LSTM sequence models) simply by constructing
appropriate input and output embeddings that confine models’ internal states to low-dimensional
subspaces in which these tasks are performed.
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Figure 6: Kullback–Leibler divergence of circuit imitation with fully trained and random transformers
(the lower the better). Both plots show the same set of results with different scales (linear and log) on
the vertical axis.

However, our experiments have also highlighted several important differences between embedding-
only and fully trained models, especially with regard to their parameter efficiency and information
capacity. This paper leaves open the question of how computation in embedding-only models relates
to fully trained ones—e.g. whether, during full training, the mechanisms we have discovered here
evolve gradually into their fully trained forms, or whether fully trained models use entirely different
pathways [10].

We anticipate that these random transformers will also provide an interesting new test-bed for
interpretability research, and future work might investigate how learned feature codebooks [12, 6]
and automated neuron labeling procedures [21, 5, 33] behave when applied to these models. Even
more generally, these results motivate a closer study of the behavior of untrained models as a source
of insight into differences between, and improvements upon, existing neural model architectures.
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Supplementary material

A Limitations

Even within the class of transformers, the space of architectural decisions (both around model size
and implementation of attention mechanisms, normalization procedures, tokenization, etc.) is very
large; our experiments in this paper generally characterize a small part of this phase space. It is thus
possible that some of the described trends will change as models grow or differ in parameterization
details. Outside Section 4, our experiments have focused on standard transformer models, and do
not answer whether these trends hold in other related linear attention [9, 35] or state-space model
[19] families. Our discussion in Section 6 focused only on linear subspaces and used principal
component analysis as the primary tool, but it is also possible that subspaces or latent semantics
appear non-linearly which is not addressed by our current analysis.

B Impact statement

We do not anticipate any ethical concerns associated with these results and we believe understanding
AI systems is a crucial step in harnessing their power for good.

C Computational Resources

Roughly 154 GPU days of NVidia V100 were spent on this project.

D Setup details

D.1 Data Curation and Tokenization Details

D.1.1 Modular Addition

Fix modulus p = 199. We randomly shuffle all possible inputs (p2 of them) perform a 95%: 5% for
training and test set. The split is the same (generated with the same seed and procedure) for all runs
across all architectures.

D.1.2 Dynamically Generated Tasks

For these tasks, we used a stream of training data and a heldout test set. The test set is fixed for all
runs across all architectures. The training data is generated on the fly within the same distribution to
avoid overfitting.

Needle-in-a-Haystack The number of entities (marker-value pairs) is first uniformly generated
in [1, 30]. The values are generated as integers in [1, 127]. The markers are generated as distinct
integers in [127 + 1, 128 + 30]. The final query token is the asked marker (uniformly chosen) plus
30. For example, a 1 b 2 c 3 d 4 b in token ids would be [128, 1, 129, 2, 130, 3, 131, 4, 159] and
the expected output will be token 2.

Decimal Addition Fix the number of digits l = 10. The two numbers to be added are independently
uniformly generated within [109, 1010 − 1]. The added numbers and the results are reversed. The
addition sign has token id 10 and the equal sign has id 11. For example, 1111111112+2222222223 =
in token ids would be [2, 1, · · · , 1, 10, 3, 2, · · · , 2, 11]. The result uses [20, 29] to represent digits and
30 to signal the end of output. For the example, the expected output will be 3333333335 encoded as
[25, 23, · · · , 23, 30].

Parentheses Balancing

The opening parenthesis has token id 1, the closing parenthesis has token id 2, and the question mark
has token id 3. For the result, 2 signals balanced and 1 signals unbalanced. For example, (())()? in
token ids will be [1, 1, 2, 2, 1, 2, 3] and the expected output is balanced, token 2.
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As sequences of uniformly random parentheses are (a) likely unbalanced (b) easier to validate, we
performed a generate-then-mutate strategy to generate strong data for the task.

Generate With 1/3 probability, we generate a random sequence of at most 60 parentheses (length
uniformly chosen, then independently all the parentheses). With 2/3 probability, we generate a
balanced parentheses sequence. We first uniformly choose the number of pairs of parentheses t
in [1, 30]. We then generate recursively: when t ≥ 2, with 1/2 probability we generate a (t − 1)-
parentheses sequence recursively and add a pair of parentheses on the outside, with 1/2 probability
we uniformly sample u ∈ [1, t− 1] and output the concatenation of a u-parentheses and a (t− u)-
parentheses sequence generated recursively.

Mutate With 1/2 probability, we choose some random index pairs and swap the corresponding
parentheses. Independently with 1/2 probability, we (then) choose some random indices and flip the
corresponding parentheses. The number of pairs and indices are sampled according to a geometric
distribution.

Circuit Imitation The inputs are uniformly random 40-token sequences of integer tokens [0, 511].
The target output is the distribution from a target transformer generated as in Appendix D.2.2 below.
The width of the target transformer is chosen in [4, 128] (Figure 6).

D.1.3 Memorization

For every integer pair x ∈ [0, 511], y ∈ [512, 512 + 511], we generate one data point with input
[x, y] and output z uniform in [0, 511]. There is no “test split” as the goal is to memorize all the
associations.

D.1.4 Language Modeling

We used the original train-test split of the TinyStories dataset [14]. We trained a 10000-token BPE
tokenizer from the training split alone.

D.2 Model Details

D.2.1 Transformers

We use the GPT-2 [38] implementation of Huggingface [48]. Dropout and weight tying are disabled.
The activation function is kept as the default GeLU [20].

Specifically, all the weights of feed-forward layers are initialized by sampling from isotropic Gaus-
sians with mean 0 and standard deviation 0.02/

√
2n where n in the number of layers. All the bias

matrices are initialized with zeroes. All the other weight matrices (including key, value, query,
embedding, unembedding matrices) are initialized with 0-mean Gaussians with standard deviation
0.02. The affine transformations in layer normalizations are initialized as identity.

We used two layer transformers except for the language modeling and circuit imitation task. The
number of parameters for the algorithmic tasks can be found in Table 6.

Task Etoken Epos U Intermediate Layers F
Modular Addition 99,328 5,120 99,328 25,194,496
Needle-in-a-Haystack 262,144 102,400 262,144 25,194,496
Decimal Addition 31,744 40,960 31,744 25,194,496
Parenthesis Balancing 4,096 81,920 4,096 25,194,496

Table 6: Number of parameters of each type for the 2-layer 1024-width transformers in Section 4.

D.2.2 Target Transformer in Circuit Imitation

Based on the initialization in Appendix D.2.1, we make the following modifications.

Feed-forward Layers: Standard deviation scaled up by 20x: changed to 0.4/
√
2n.
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Task and Transformer Type Principal Component Basis Neuron Basis

Task Model Emb L1 L2 Emb L1 L2

Decimal Addition Normal 40.7% 91.6% 89.6% 3.3% 6.4% 6.8%
Random 73.3% 62.6% 51.4% 4.3% 4.0% 3.6%

Needle-in-a-Haystack Normal 31.4% 75.4% 42.5% 2.8% 5.6% 3.9%
Random 51.3% 42.6% 33.9% 4.4% 4.6% 3.9%

Balanced Parentheses Normal 47.5% 100.0% 99.9% 7.0% 11.1% 9.4%
Random 85.2% 89.1% 84.7% 9.7% 8.0% 6.7%

Table 7: Median explained variance from top 10 directions under principal and neuron basis collected
from width 512 transformers. Rounded to one decimal piece. See Table 4 for more details.

Attention Matrices (key, value, query): Standard deviation scaled up by 10x: changed to 0.4.

Unembedding Matrix: Standard deviation changed to 2/
√
n.

After such modifications, we measured the entropy of output distribution on two random inputs.
Across all the widths, the mean entropy stays within [2.89, 3.02]. We also measured similarity of
output distributions on different inputs to prevent mode-collapse-like results, and the mean KL
divergence of output distributions on random inputs is [0.8, 3.3] across all widths.

D.2.3 LSTM

We used textbook long short-term memory [22] with an encoding layer and an unembedding (projec-
tion) layer added.

D.3 Training Details

For synthetic experiments, we used AdamW optimizer [27] with a learning rate 10−3 and weight
decay 10−3. For LSTM a learning rate 5× 10−3 is used for faster convergence. For the language
modeling task, we used AdamW optimizer with a learning rate 6× 10−4 and weight decay 0.1. We
clip all gradient norms at 1.

For random transformer experiments, the intermediate (query, embedding, unembedding, feed-
forward) layers are kept as randomly initialized. We use a fixed number of training steps and no early
stopping.

Modular Addition: 5000 epoches. Batch size 4000.

Needle-in-a-Haystack, Decimal Addition, Parentheses Balancing, Circuit Imitation: 104 steps
of batch size 1000. Again, the training data is generated dynamically.

Memorization: 21000 epoches. Batch size 215.

Language Modeling: 5 epoches. Batch size 20 and context window 512.

E Performance on synthetic tasks across model scales

In Fig. 7 we provide the test accuracy of needle-in-a-haystack, decimal addition and parenthese
balancing for fully trained and random transformers across different model widths. Note that the
1024-width fully trained transformer had trouble reaching perfect accuracy in parentheses balancing,
likely due to imperfect hyperparameter choices.

We also include the explained variance measurements on 512-width models in these three tasks for
completeness (Table 7). Generally more variances are explained from the top directions as the models
are narrower.
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Figure 7: Box plot of test accuracy of synthetic tasks across model scales.

F Constant-dimensional subspaces are sufficient for many synthetic tasks

Definition F.1 (Intermediate complexity of tasks (informal)). For a family of neural networks with
varying intermediate width, we define the intermediate complexity of a task as the minimal width of
intermediate layers required to succeed in the task.

For example, a 2-layer transformer with intermediate width 2 starts by embed the tokens into the
2-dimensional hidden space, passes them through two transformer blocks of width 2, then linearly
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project the activation for the final output (unembedding). If one task could be solved with one such
transformer, its intermediate complexity for 2-layer transformers would be at most 2.

If we consider the activations as the working memory of the LLM, intuitively a task has low
intermediate complexity if it requires a low working memory per token. In the following, we show
that all the synthetic tasks we proposed indeed have constant intermediate complexity for 2-layer
transformers, thus they only require a constant-dimensional intermediate subspaces to work on.

Modular Addition We may use a transformer to implement three instances of the Pizza algorithm
described in Zhong et al. [52] (multiple copies are needed to avoid the “antipodal pairs” problem
described there). Each implementation of this algorithm requires intermediate representations of size
2, so the intermediate complexity for 2-layer transformers is ≤ 6.

Needle-in-a-Haystack We may use a transformer to implement induction heads [34] as follows:
We first store each token’s preceding token in its activations by attending to the previous position.
We then retrieve the answer by attending to the position storing the matching token in the previous
step. Both steps could be done by using attention to compute squares of differences and take the
minimum. The number of hidden states needed to distinguish each symbol scales only with the size
of the vocabulary, and is at most equal to the vocabulary size, so the intermediate complexity is at
most twice the vobaulary size.

Parentheses Balancing Let the given sequence of parentheses be p1, p2, · · · , pn. Let xi =
∑i

j=1 ci
where ci = 1 if pi is an open parenthesis and ci = −1 if pi is a closing parenthesis. The given
sequence is a valid parentheses sequence if and only if xn = 0 and minni=1 xi = 0. In a transformer,
we can first compute xi/i with a uniform attention. Then, we attend to the position with minimum
xi/i, breaking ties by position (let the attention on i pre-softmax be T (−xi/i+ ϵ · i) for large enough
T and small enough ϵ > 0). For valid parentheses sequences, the last position should only attend to
itself. We then check if the attended position is indeed the last one and has xi/i = 0 by computing
squares of differences. The intermediate complexity for 2-layer transformers is thereby again constant.
(note that a different construction for bounded-depth Dyck was given in [50])

Decimal Addition

Let the reversed list of digits of two numbers and their sum be a1, a2, · · · , an, b1, b2, · · · , bn, and
c1, c2, · · · . Let xi =

∑i
j=1 aj10

j−i, yi =
∑i

j=1 bj10
j−i, zi =

∑i−1
j=1 cj10

j−i, we have ci = (xi +

yi − zi) mod 10: a+ b ≡
∑i

j=1 10
j−1(aj + bj) (mod 10i), (a+ b) mod 10i−1 =

∑i−1
j=1 cj10

j−1,
and ci = ((a+ b) mod 10i − (a+ b) mod 10i−1)/10i−1.

Prepare: Take small ϵ > 0. For positions 1, 2, · · · , n, let the positional embedding of position i be
[1, 10i, 10−iϵ]. In the first head of the first layer, take the first dimension in the positional embedding
for both Q and K, so we get a uniform attention on the prefix from which αi =

1
i

∑i
j=1 aj can be

calculated. In the second head of the first layer, take the third dimension in the positional embedding
for Q and the second dimension in the positional embedding for K, so the contribution from the
j-th position to the i-th position is 1

Zi
eϵ10

j−i ≈ ϵ 1
Zi
(10j−i + 1) (ec ≈ 1 + c for 0 < c ≪ 1)

for normalizing constant Zi, we can then calculate βi = ϵ 1
Zi

∑i
j=1 aj(10

j−i + 1). We then have
xi =

Zi

ϵ βi − iαi which we will utilize in the next step. Similarly, we can have yi and zi ready in the
corresponding position (position of bi and ci−1).

Generate xi + yi − zi: In the second layer, attend from the position of ai and bi at the position of
ci−1. Specifically, set the attention from the ak’s position to the ci−1’s position be ϵi− Λcos((k −
i)/n) = ϵi − Λ(cos(k/n) cos(i/n) + sin(k/n) sin(i/n)) pre-softmax. This could be done using
three dimensions in the positional embeddings. We also set the attention from the plus sign to the
ci−1’s position be 1 pre-softmax. The attention from ak to ci−1 will be negligible if k ̸= i and will
be proportional to ϵi post-softmax for k = i. We can then calculate −iαi from it and similarly Zi

ϵ βi,
and thus xi, yi and zi.

Approximate the Answer: As xi + yi − zi is an integer from [0, 19] and we can also compute an
affine transform of it, we may now simply proceed with the universal approximation theorem. As an
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example, in ReLU networks we may check if xi + yi − zi = v by noticing

ReLU(xi+yi−zi−(v+1))+ReLU(xi+yi−zi−(v−1))−2ReLU(xi+yi−zi−v) = [xi+yi−zi = v],

So to create an indicator variable [xi + yi − zi = 1] we simply need to generate xi + yi − zi,
xi + yi − zi − 1, xi + yi − zi − 2, pre-ReLU.

The intermediate complexity for 2-layer transformers is thereby again constant. This approach is
quite crude so it is likely that the constant can be greatly improved.

G Difficulty of the synthetic tasks

Chomsky hierarchy has been found to be predictive of the neural architectures’ performances, and
especially length-generalization performances, in algorithmic setups [13]. We list the Chomsky
hierarchy of the synthetic tasks we picked in Table 8.

Task Chomsky Hierarchy
Needle-in-a-Haystack Regular
Decimal Addition Context Sensitive
Parenthesis Balancing Context Free

Table 8: Classification of tasks according to the Chomsky hierarchy. For the decimal addition task,
we consider the most flexible setting where all the strings representing decimal additions (does not
have to be equal-lengthed) are considered within the language.

We also examined a baseline with linearized transformer. In this variant of transformer, the attention
matrix (softmax(QKT )) is replaced with a lower diagonal matrix of 1s. In other words, the attention
is replaced by a simple token prefix sum mechanism. We tested such transformers with width 512
and 2 layers on the synthetic tasks as a baseline performance. The result is shown in Table 9. We can
see that such transformers have large performance gaps with normal transformers, confirming the
difficulty of our chosen tasks.

Task Accuracy (%)
Needle-in-a-haystack 17.67
Decimal Addition 26.39
Parenthesis Balancing 97.32

Table 9: Linearized transformer performance in terms of accuracy.

H Accuracy curve of the memorization task

The accuracy curve in the memorization task during training is shown in Fig. 8. Training of both
transformers has converged.
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Figure 8: During training, the accuracy curve from fully trained and random transformers in the
memorization task (Section 5.1). Note that the evaluation set is exactly the training set as the goal is
to memorize.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All our claims are based on empirical evidences.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The only theoretical result is included in Appendix F where the full proof is
given.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We tried our best to convey all the experiment details and we will also be
releasing code and data after some final cleanup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release code and data after finalizing.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are included in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include the 80% CI bars in Appendix E. Some experiments are not repeated
due to computational constraints.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the Code of Ethics and we believe our work will not cause
potential harms and negative societal impacts.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our results do not pose high risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the original papers for each asset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the code and trained models as well as documentation on how
to apply them.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human-subject research is involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human-subject research is involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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