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Abstract

In this paper we present a novel method for efficient and effective 3D surface
reconstruction in open scenes. Existing Neural Radiance Fields (NeRF) based
works typically require extensive training and rendering time due to the adopted
implicit representations. In contrast, 3D Gaussian splatting (3DGS) uses an explicit
and discrete representation, hence the reconstructed surface is built by the huge
number of Gaussian primitives, which leads to excessive memory consumption and
rough surface details in sparse Gaussian areas. To address these issues, we propose
Gaussian Voxel Kernel Functions (GVKF), which establish a continuous scene
representation based on discrete 3DGS through kernel regression. The GVKF
integrates fast 3DGS rasterization and highly effective scene implicit represen-
tations, achieving high-fidelity open scene surface reconstruction. Experiments
on challenging scene datasets demonstrate the efficiency and effectiveness of our
proposed GVKF, featuring with high reconstruction quality, real-time rendering
speed, significant savings in storage and training memory consumption. Project
page: https://3dagentworld.github.io/gvkf/.

1 Introduction

3D surface reconstruction in open scenes holds great significance in various practical applications,
such as autonomous driving, virtual reality, urban planning and etc. However, achieving high-fidelity
and efficient open scene reconstruction has been a longstanding challenge, due to the trade-off
between the rendering quality and the required resources for optimization.

In pursuit of this goal, two predominant approaches are Neural Radiance Fields (NeRF) [27, 40, 1,
11, 19] and 3D Gaussian Splatting (3DGS) [15, 4, 21, 41] based methods. On one hand, NeRF-based
implicit representations typically require extensive training and rendering time, which limits the
practical use in large-scale scene reconstruction [11, 38, 26, 36]. On the other hand, 3DGS [15] adopts
explicit representations, which enables high-quality novel view synthesis while achieving real-time
rendering. This makes 3DGS more feasible for efficient scene reconstruction in the applications such
as autonomous driving and virtual reality.

Recently, there are studies using 3DGS technology for novel view synthesis and surface reconstruction
in street scenes and urban environments [4, 21, 41, 23]. For instance, SuGaR [12] attempts to
reconstruct the 3D surfaces based on Gaussian points. However, it has been noted that overly
large and sparse Gaussian points can significantly affect the geometric representations of the scene,
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Table 1: Comparison of 3DGS rendering and volume rendering methods.

Method Math Expression Pros Cons

3DGS Rendering Discrete summation Fast rendering High Mem consumption, Hard
to fit 3D continuous surface

Volume Rendering Continuous integration Better 3D surface representation Low rendering speed due to con-
tinuous sampling

particularly in background areas. To overcome these challenges, the 2D Gaussian Splatting (2DGS)
[14] proposes to use Gaussian surfaces as surfels to represent complex geometries [30], thereby
improving the surface reconstruction quality. Particularly, 2DGS faces challenges when processing
large-scale scenes, as it requires the explicit representation of a large number of Gaussian primitives,
leading to significant GPU memory consumption. Therefore, 2DGS still exhibits limitations in novel
view synthesis capabilities and the geometric representation of large-scale scenes.

In Table 1, we summarize the comparison of 3DGS rendering and volume rendering. To fully leverage
the fast rendering advantages of Gaussian alpha blending while achieving effective implicit scene
representation, we propose a novel Gaussian Voxel Kernel Functions (GVKF) method. Firstly, GVKF
utilizes voxelization to implicitly represent 3DGS, managing the growth and pruning of Gaussian
splats. This approach retains the expressive power of explicit Gaussian splats while enabling efficient
management of these splats. Secondly, we carefully analyze the intrinsic connection between
Gaussian splatting alpha blending rendering and traditional volume rendering from a mathematical
perspective. We establish a 3DGS-based method to represent continuous scene opacity density fields
through kernel regression. This makes it possible for discrete Gaussians to represent continuous
scenes. By replacing the discrete opacity values in original 3DGS rendering pipeline (which can be
viewed as collapsed kernel functions) with Gaussian kernel functions, we maintain the advantages
of the original 3DGS alpha blending while optimizing the representation of continuous scenes.
Moreover, we demonstrate that our proposed rendering method is mathematically consistent with
traditional volume rendering. Thirdly, based on our constructed scene opacity representation, which
is also known as the scene opacity field, we derive the bidirectional mapping relationship between
opacity and the scene surface. This enables direct mesh extraction for scene surface. In summary, our
contributions are as follows:

• We propose GVKF, an implicit continuous scene reconstruction method that integrates the
effectiveness of implicit representation with the fast rasterization advantages of Gaussian
Splatting, without the need for computationally intensive volume rendering.

• Based on GVKF, we further propose implicit representation of the scene surface, achieving
efficient and high-quality scene surface reconstruction.

• Experiments demonstrate the usefulness of GVKF in open scenes, showcasing high-quality
surface reconstruction accuracy, real-time rendering speeds, and significant savings in
storage and memory consumption.

2 Related Works

2.1 Novel View Synthesis

The introduction of Neural Radiance Fields (NeRF) [27] has significantly advanced the development
of 3D reconstruction and novel view synthesis. NeRF employs volumetric rendering techniques
to intricately simulate the geometric structure of scenes and viewpoint-dependent characteristics,
thereby considerably enhancing the quality of image rendering. Following NeRF, variants such as
Mip-NeRF [1] and Zip-NeRF [2] have addressed the aliasing issues during rendering. Additionally,
UC-NeRF [6], designed for outdoor scenes, enhances image consistency through color correction
and pose refinement. InstantNGP [28] accelerates training and improves rendering efficiency by
optimizing subvolume processing with grid pyramid techniques. Meanwhile, other feature grid-based
scene representation methods [3, 22, 34, 5, 45] have been extensively explored to enhance the training
capability and expressiveness of models. Recently, 3D Gaussian Splatting (3DGS) [15] effectively
represents complex scenes using 3D Gaussian points, significantly boosting the efficiency of real-time
high-resolution image rendering while maintaining rendering quality. Further research efforts like
Scaffold-GS and Octree-GS [25, 32] have attempted more effective methods to organize and manage
Gaussian points, which helps reduce memory usage and speed up training.
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Figure 1: Framework of Gaussian Voxel Kernel Functions (GVKF) for scene representation. In this
framework, discrete Gaussian primitives G represent continuous opacity density ρ(t) on the ray via
kernel regression. After slightly modifying the rasterization pipeline, the kernel function can be
integrated into alpha blending rasterization without introducing dense points sampling. Additionally,
we directly define the mapping relationship between the neural opacity field and the implicit surface.

2.2 Surface Reconstruction

Traditional isosurface extraction, relying on density thresholds, often struggles with fine details due to
resolution and noise constraints. Recent studies propose more complex representation methods [48].
For instance, NeuS [37] uses MLP networks for occupancy grids or SDF, improving reconstruction
accuracy and noise reduction [29, 43, 20, 7, 42]. Techniques like BakedSDF [44] translate the
optimization of NeRF or neural SDFs into 3D meshes, enhancing features through high-resolution
grids but increasing computational load. NeuS2 [39] introduces a novel formula for second-order
derivatives with multi-resolution hash encoding and CUDA-based MLP technology, significantly
reducing training time. StreetSurf [11] optimizes SDF mappings in open scenes and decouples
static and dynamic objects. Despite advancements, NeRF-based methods still need optimization for
processing speed and real-time rendering.

3DGS has gained attention for its high-quality scene reconstruction and rapid processing capabilities
[15]. 3DGS uses multiple 3D Gaussian distributions with anisotropic covariance for precise control
over scene attributes [49, 18]. This technology enhances surface reconstruction methods like SuGaR
[12], which employs Poisson surface reconstruction for fast and accurate mesh extraction. However,
irregular Gaussian sphere distribution affects surface quality. To improve this, 2DGS [14] uses
2D Gaussian planes for better surface conformity and TSDF for accurate reconstruction, though it
may cause surface fragmentation. GOF [47] directly extracts surfaces using opacity thresholds and
tetrahedral mesh extraction but is limited by high VRAM requirements. GSDF [46] combines 3DGS
with a NeuS-like SDF branch for optimized rendering and reconstruction, increasing training time.
Despite their potential, 3DGS-based methods face challenges like managing Gaussian points, high
VRAM consumption, and degraded rendering quality.

3 Methods

As shown in Fig. 1, we first introduce the implicit neural 3DGS primitives representation based on a
sparse voxel grid, which offers highly efficient storage management and the fitting power of neural
networks. Secondly, we present our GVKF-based continuous scene representation, to explain its
rationale, we have analyzed its intrinsic connections with Gaussian alpha blending [15] and traditional
volume rendering [27] from a statistical analysis perspective. Finally, we describe the relationship
between the proposed continuous scene representation (a neural opacity field) and implicit surface,
and derive an explicit mapping function for mesh reconstruction.

3.1 Voxel Gaussian Representation

To achieve orderly 3DGS management while minimizing the explicit expression of them to save
training storage consumption, we use a spatial sparse voxel grid to manage Gaussian primitives.
During the initialization phase, the sparse grid is generated from the downsampled SfM point clouds
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and dynamically grows or being eliminated during training. Each sparse grid is allowed to generate
up to m Gaussian primitives, and all these primitives are limited to a small range of space centered at
the voxel grid.

Gaussian Generation For a particular 3D Gaussian expression, five attributes are required: p ∈ R3

(position), α ∈ R (opacity), R ∈ R3×3 (rotation matrix), s ∈ R3 (scaling), and c ∈ R3 (color). Then,
a Gaussian G(x) can be generated as:

G(x) = α · e− 1
2 (x−p)T

∑−1(x−p), (1)

where
∑

∈ R3×3 is covariance matrix defined as
∑

= RssTRT . c is calculated via SH coefficients
and camera direction. Different from traditional 3DGS[15] that treats them as explicit optimizable
tensors, we decode them from a feature vector F ∈ Rd via several MLPs:

α = MLPα(F , camera), R = MLPR(F), s = MLPs(F), c = MLPc(F , camera). (2)

For alpha and color MLPs, the view camera and feature vector F are inputs, facilitating view-
dependent fitting. Relative coordinates of Gaussians to the parent voxel center are stored with F ,
compressing explicit Gaussian components and leveraging the MLP’s fitting capacity. Gaussians are
dynamically generated each iteration and recycled post-update, reducing memory usage.

Voxel Registration. To control Gaussian numbers in large open scene, we eschew the traditional
adaptive density control strategy, adopting a method inspired by scaffold-Gaussian [25] and Octree-
Gaussian [32]. The voxel registration is based on gradient accumulation. After each iteration,
gradients from 3DGS are recorded and accumulated in their respective voxels, denoted as ∇. Voxels
where ∇ exceeds a set threshold are subdivided into eight subvoxels to increase grid resolution,
continuing until the maximum depth is reached. Additionally, less frequently used voxels are
discarded after a specified period.

3.2 Neural Opacity Field of 3DGS

Since 3DGS rasterization rendering and traditional volume rendering share some overlapping con-
cepts, in this section, we sort them out and introduce our method from a statistical perspective while
avoiding introducing redundant mathematical symbols.

Continuous Scene Description. We define ρ(t) : [0,+∞] → [0, 1] as the opacity density function,
which measures the probability of a ray encountering a particle at position t. We define T (t) :
[0,+∞] → [0, 1] as the transmission function, which measures the probability that a ray has not
encountered any particles from its origin to point t. Considering the probability that a ray does not
encounter any particles at time step t + dt, denoted as T (t + dt), it is evident that T (t + dt) =
T (t)(1− ρ(t)dt). Solving this differential equation, we obtain the relationship between T (t) and
ρ(t):

T (t) = exp(−
∫ t

0

ρ(t)dt). (3)

Therefore, we obtain the cumulative distribution function (CDF) of the probability that a ray hits a
particle over the interval [0, t]: Φ(t) = 1− T (t), with the corresponding probability density function
(PDF) being Φ′(t) = T (t) · ρ(t). From the perspective of volume rendering, this PDF is used as the
probability of the appearance of color along the ray, ultimately taking the mathematical expectation
of the color as the ray color:

C =

∫ B

0

T (t) · ρ(t) · c(t)dt+ T (B) · cbg. (4)

The discrete formulation of volume rendering Eq. 4 is:

C =

N∑
i=1

Ti · αi · ci, αi = (1− exp(−σiδi)), Ti =

i−1∏
j=1

(1− αj) (5)

where opacity αi represents the accumulated result in a sampling interval δi of volume density σi,
hence the value of N does not influence the result as long as αi is adapted enough. Based on the
similar idea of volume rendering, the PDF Φ′(t) = T (t) · ρ(t) can also be reasonably considered
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as the probability of the appearance of a surface along the ray, where the place with the highest
probability density is most likely to have a surface. Correspondingly, on the CDF Φ(t), this is the
place where the derivative is the largest. In this paper, we use the CDF Φ(t) to describe continuous
scenes based on the camera rays, to facilitate integration with the 3DGS rasterization rendering
pipeline. In section 3.3 , we will prove that under the 3DGS representation, the place where the
derivative of CDF is the largest is not actually the surface, so a method to locate the surface will be
introduced.

Surface

Ray

Volume
Rendering

Opacity
(GVKF)

Opacity
(3DGS)

Figure 2: Comparison of Volume Rendering, 3D
Gaussian Splatting with Alpha Blending, and
GVKF Rendering.

Kernel Regression of 3DGS.

In implicit scene representation methods based on
volume rendering, the continuous opacity density
function is directly predicted by a MLP[27]. In
our approach, the continuous opacity density func-
tion ρ(t) is fitted through kernel regression via
discrete Gaussian primitives after a differentiable
transformation: Gi(x, y, z) → Ki(t − ti) from
3D to 1D. The transformation consists of three
steps: (1). The Gaussian primitives that the ray
passes through are selected as kernel functions.
(2). According to the Ray-Gaussian Intersection
method [16], the ray is transformed into the local
coordinate system of each 3DGS to obtain the 1D
probability density alone the ray. Here, the peak of
the 1D probability density, denoted as ti, is defined
as the Ray-Gaussian Intersection [10, 16, 47], in-
dicating that the 3DGS has the greatest influence
at this point alone the ray. (3). To integrate with
regularization methods [14, 47], we assume that
each 3DGS fits the surface of the object. There-
fore, after ti, the probability density continues to remain at its maximum value, indicating that the
object is solid. Without loss of generality, the opacity density ρ(t) on camera ray can be expressed as:

ρ(t) =

N∑
i

αi · Ki(t− ti), Ki(t) =

{
exp(−ki · t2) t < 0

1 t ≥ 0,
(6)

where N represents the number of activated kernel functions along the ray, and ki represents the
summarized transform of Ray-Gaussian transform (See Appendix A.1 for details). αi represents the
coefficient for each kernel function.1

Rendering. As for traditional 3DGS rasterization, the pixel color is rendered through alpha blending
on N 3DGS being passed through by the ray:

C =

N∑
i=1

ci · αi · G2D
i

i−1∏
j=1

(1− αj · G2D
j ) (7)

In this scenario, αi is constant value representing the opacity of Gaussians. This point-based rendering
is coherent with Eq. 5, with extremely sparse sampling points to simulate dense volume rendering.
However, it is impossible to recover continuous opacity density alone the ray from such a rendering
equation, as illustrated in row-3 of Fig. 2. This is because the third row of the covariance matrix of
3DGS is discarded, and it is directly projected onto a 2D plane to evaluate the impact on the opacity
of points along the ray. From the perspective of Eq. 6, this means that along the ray, the influence
range of all N kernel functions that intersect with the ray collapses to an infinitesimally value, making
it impossible to recover a continuous opacity density field. To solve this, Eq. 7 can be modified to: 2

C =

N∑
i=1

ci · αi · Ki(0)

i−1∏
j=1

(1− αj · Kj(0)) (8)

1Specifically, αi = βi

√
ki√
π

, where βi is a constant value representing opacity related to Gaussian primitives.
2This rendering form is firstly proposed by GOF [47]
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This equation will not affect the goal of 3DGS rendering: to approximate traditional volume rendering
using sparse sampling points. And it allows for broadening the collapsed kernel functions to fit the
continuous opacity function of the scene.

Scene Representation. Based on the discussion at the beginning, the scene surface can be described
via CDF Φ(t) on the ray in a continuous way, which can be calculated like Eq. 8 (removing color):

Φ(t) =

N∑
i=1

αi · Ki(t− ti)

i−1∏
j=1

(1− αj · Kj(t− tj)) (9)

3.3 Implicit Surface Mapping

surface

Figure 3: Illustration of functions
Φ(u),Φ′(u), ρ(u).

This implicit opacity field (denoted as neural opacity field
since it is represented by neural Gaussians) measures the
CDF of the probability that a ray hits solid scene surface.
In the next section, we introduce the mapping of Φ(t) to
implicit surface.

We represent implicit surface with signed distance func-
tion (SDF), denoted as function D(t) on the camera ray.
To recover D(t) of given Φ(t) that is calculated from well
trained 3DGS, we firstly study the reverse mapping prob-
lem: ϕ : D(t) → Φ(t)

Opacity Density Near the Surface. To ensure that the
3DGS aligns with the object’s surface and thus reflects
the object’s shape, depth distortion regularization [14, 47]
is introduced during the Gaussian training process. This
encourages the distribution of 3DGS along the ray to ag-
gregate together, causing the peak of the kernel functions to coincide with the object’s surface. In
the next discussion, the coordinate of object surface on the ray is assumed as t∗ with D(t∗) = 0.
Considering ρ(t) at the interval t ∈ [0, t∗], we have:

ρ(t) = ρ(t∗ −D(t)) =

M∑
j=1

αj · exp(−kj ·D(t)2), 0 ≤ t ≤ t∗ (10)

Where M represents the number of Gaussian kernels concentrated on the surface. To facilitate
calculations, we convert the opacity density system to the SDF coordinate system, with t∗ as the
origin and letting u = −D(t), as illustrated in Fig. 3, we have:

Φ′(u) = T (u) · ρ(u) = exp(−
∫ u

−t∗
ρ(w)dw) · ρ(u) (11)

Φ′′(u) = −ρ2(u) · exp(−
∫ u

−t∗
ρ(w)dw) + ρ′(u) · exp(−

∫ u

−t∗
ρ(w)dw)

= [−ρ2(u) + ρ′(u)] exp(−
∫ u

−t∗
ρ(w)dw) (12)

where ρ(u) ∼ N (0, σ2), σ2 =
∑M

i=1
1

2πα2
i

, which can be directly derived from the additive property

of the normal distribution. Then letting h(u) = −ρ2(u) + ρ′(u), we have:

h(u) = −ρ2(u) + ρ′(u)

= −ρ(u)[ρ(u) +
u

σ2
] (13)

It is easy to prove that h(u) crosses a unique zero point u0 from top to bottom on the u-axis, and
u0 < 0. This means that the peak of Φ′(u) will appear before the surface, so it is not reasonable to
simply determine the actual intersection point of the light ray with the surface by directly evaluating
the peak of Φ′(u). To locate the accurate surface, a transcendental equation of u is needed to be
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Ours StreetSurf 2DGSGround Truth

PSNR: 31.68

PSNR: 31.09

PSNR: 29.87 PSNR: 27.50

PSNR: 23.87

PSNR: 23.20 PSNR: 29.36

PSNR: 25.14

PSNR: 28.84

Figure 5: Qualitative comparison of novel view synthesis and surface reconstruction on the Waymo
Open Dataset [35], with each subplot annotated with PSNR values to quantify image quality. Our
method shows higher geometric precision and detail, validating its efficiency and superiority in
processing open scenes, especially in geometric accuracy and detail reproduction.

solved to get u0:

ρ(u) = − u

σ2
, ρ(u) =

1√
2πσ

exp(− u2

2σ2
), σ2 =

M∑
i=1

1

2πα2
i

(14)

Figure 4: Illustration of opacity to SDF map-
ping.(Eq. 16)

It is impossible to directly get the analytical solution,
however, numerical computation methods can be ap-
plied to solve u0. This may require some extra time
for computation.

Mapping from Opacity to Surface.

Based on the analysis above, we can always have ex-
act number of u0 via numerical computation method.
However, it is hard to find out the inverse function
of Φ(u) for directly building the mapping of Φ(t) to
D(t). For the balance of surface smoothing while
reducing the indelible error, we represent mapping
relationship of u → Φ(u) via Logistic Function as
follows:

Φ(u) =
1

1 + exp(−µ(u− u0))
(15)

where µ represents the smooth factor. We choose Logistic Function because of its formal is concise
and shares similar shape of Φ(u). More importantly, it only has one inflection point at (0, 0.5), which
can be used to simulate the inflection point of Φ(u) after translation. Finally, we represent implicit
SDF function via Inverse function transformation of Logistic Function, as shown in Fig. 4:

D(t) = ln(
1

Φ(t)
− 1)/µ− u0 (16)
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Ours SuGaR 2DGSGround Truth

PSNR: 29.87 PSNR: 27.50

Figure 6: Qualitative comparison on the Tanks and Temples dataset [17] shows that our method
excels in reconstructing complex backgrounds with high geometric granularity. In contrast, 2DGS
often results in fragmented backgrounds, while SuGaR displays uneven spherical shapes, affecting
both visual and geometric quality.

Table 2: Quantitative evaluation of novel view synthesis and surface reconstruction on the Waymo
Open Scene dataset [35]. Using LiDAR data as ground truth, we calculated Chamfer Distance (C-D)
values for reconstruction accuracy. Our method performs excellently in both novel view synthesis
and surface reconstruction, outperforming other methods in Gaussian point usage, VRAM occupancy,
and real-time rendering.

Method PSNR ↑ C-D ↓ MB (Storage) ↓ GB (GPU) ↓ FPS ↑ Training Time ↓
NeuS 13.24 0.76 170 31 ∼ 0.1 5 h
F2-NeRF 24.70 886.77 130 24 ∼ 0.1 0.8 h
StreetSurf 27.12 1.02 540 22 ∼ 0.1 1.5 h
3DGS 27.99 3.57 230 23 63 0.75 h
SuGaR 23.71 3.08 228 33 56 1.5 h
2DGS 28.51 1.67 238 23 51 0.7 h
GVKF (Ours) 30.24 1.57 30 14 32 1.5 h

4 Experiments

4.1 Experimental Settings

Datasets. To assess our method’s performance against baseline methods in open scenes, we used
three datasets. We first experimented with the Waymo Open Scene dataset [35], using three cameras
per scene from five available, each scene containing about 600 images. We employed LiDAR point
clouds to evaluate reconstruction quality, although LiDAR data was not used as training input. We
also tested on the Tank and Temple dataset [17], which includes trajectories and ground truth for six
selected scenes. Lastly, we evaluated the Mip-NeRF 360 dataset [1]; due to the absence of ground
truth, our focus was on novel view synthesis to demonstrate our method’s efficacy in this aspect.

Baselines. In terms of surface reconstruction, we presented the results on the Waymo dataset [35] in
tables 2 and figures 5, comparing state-of-the-art implicit methods (such as NeuS [37], F2-NeRF [38],
StreetSurf [11]) and explicit methods (such as 3DGS [15], SuGaR [12], 2DGS [14]). We utilized
PSNR to evaluate the results of novel view synthesis and Chamfer distance to measure reconstruction
accuracy, while also recording training time, VRAM usage, and the size of the Gaussian point files
post-training. Additionally, as shown in Table 3 and Figure 6, we conducted comparisons on the Tank
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Table 3: Quantitative evaluation on the Tanks and Temples dataset [17] using F1 scores and training
time as metrics. Our method outperforms all existing explicit methods in F1 scores and is comparable
to implicit methods in reconstruction accuracy, with significantly reduced training time. These
results highlight our method’s efficiency and accuracy. Comparation of concurrent work GOF [47] is
presented in Appendix A.4.

Method Implicit Explicit

NeuS Geo-NeuS Neuralangelo SuGaR 3DGS 2DGS Ours

Barn 0.29 0.33 0.70 0.14 0.13 0.36 0.40
Caterpillar 0.29 0.26 0.36 0.16 0.08 0.23 0.34
Courthouse 0.17 0.12 0.28 0.08 0.09 0.13 0.25
Ignatius 0.83 0.72 0.89 0.33 0.04 0.44 0.51
Meetingroom 0.24 0.20 0.32 0.15 0.01 0.16 0.23
Truck 0.45 0.45 0.48 0.26 0.19 0.26 0.40
Mean 0.38 0.35 0.50 0.19 0.09 0.30 0.36
Time >24 h >24 h >24 h >1 h ∼15 min ∼30 min ∼1.5 h

and Temple dataset with implicit methods (such as NeuS [37], Geo-NeuS [9], Neuralangelo [20]) and
explicit methods (such as 3DGS [15], SuGaR [12], 2DGS [14]). We used official scripts to evaluate
F1 scores. For novel view synthesis, we compared various advanced methods on the Mip-NeRF 360
dataset, including NeRF [27], Deep Blending [13], Instant NGP [28], MERF [31], Mip-NeRF 360
[1], BakedSDF [44], 3DGS [15], SuGaR [12], and 2DGS [14]. We use evaluation metrics such as
PSNR, SSIM, and LPIPS.

Table 4: Quantitative evaluation on the Mip-NeRF
360 [1] outdoor scene dataset is presented. Since
the dataset lacks ground truth for surface recon-
struction, we assessed the results of novel view
synthesis.
Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 21.46 0.458 0.515
Deep Blending 21.54 0.524 0.364
Instant NGP 22.90 0.566 0.371
MERF 23.19 0.616 0.343
Mip-NeRF 360 24.47 0.691 0.283
BakedSDF 22.47 0.585 0.349
3DGS 24.24 0.705 0.283
SuGaR 22.76 0.631 0.349
2DGS 24.33 0.709 0.284
GVKF (Ours) 25.47 0.757 0.240

Implementation Details Our method modifies
the representation of 3DGS and slightly adjusts
the opacity weights in the rendering pipeline
using Gaussian kernel functions. This ensures
compatibility with other components of Gaus-
sian rasterization rendering. Similarly, we em-
ploy the same L1 loss and D-SSIM loss as 3DGS
to supervise color loss, and we use the same
Gaussian regularization term as 2DGS and GOF
to promote alignment between the Gaussians
and the surface. After training, the SDF field
of the scene can be directly extracted based
on Eq. 16 and exported to a mesh with the
MC[24]/MT[8, 33] algorithm. To export com-
plete sky and background, the modified MT al-
gorithm in GOF[47] is used.

4.2 Analysis

Figure 5 demonstrates the superiority of our method in capturing detailed features of roadside houses,
bushes, and other objects. In contrast, the 2DGS method produced more holes and fragmentation,
while the StreetSurf method lost some critical geometric features. The results in Table 2 indicate that
our method surpasses other methods in terms of view synthesis and reconstruction accuracy, and it
requires fewer Gaussian points and VRAM for large-scale scene reconstructions. Figure 6 highlights
our method’s excellent performance in scene restoration. The SuGaR method generated excessive
irregular protrusions, and 2DGS exhibited more fragmentation and floating debris. According
to the results in Table 3, our method outperforms all explicit methods and achieves comparable
reconstruction results to implicit methods, while maintaining equivalent GPU time usage. The results
in Table 4 confirm that our method leads in novel view synthesis across all compared methodologies.

4.3 Ablation Study

In this section, we evaluate the impact of varying voxel grid sizes on the neural Gaussians by
conducting experiments with the Waymo datasets. We selected voxel sizes of 1, 0.1, 0.01, 0.001, as
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Table 6: Further ablation study on voxel Gaussian representation and SDF mapping. w/o voxel: We
eliminate the using of MLPs and voxel grid, w/o sdf: we directly use linear assumption between
opacity function and SDF function.

Ablation PSNR F1 Mem (GB) Storage (MB) Training Time Meshing Time

Ours 26.31 0.36 ∼ 9 G 90 M ∼ 1.5 h ∼ 15 min
w/o voxel 23.60 (-2.71) 0.39 (+0.03) ∼ 16 G (× 1.6) 467 M (× 5.2) ∼ 1.4 h ∼ 15 min
w/o sdf 26.31 0.30 (-0.06) ∼ 9 G 90 M ∼ 1.5 h ∼15 min

presented in Table 5. When the voxel size is too large, the sparse neural Gaussians fail to learn the
scene representation and return NaN errors. As the number of voxels increases, more Gaussians are
generated for scene representation, thereby enhancing the quality of novel view synthesis. However,
the improvements plateau when the voxel size is reduced to 0.001, which also requires more training
time and becomes impractical. Therefore, we set the voxel size to 0.01 to balance training time and
rendering quality.

Table 5: Influence of different voxel size.
Voxel Size Initial voxels Final voxels PSNR Time

1 ∼ 2 k - - -
0.1 ∼ 80 k ∼ 110 k 29.34 1.2 h

0.01 ∼ 90 k ∼ 1100 k 30.24 1.5 h
0.001 ∼ 100 k ∼ 1100 k 30.29 4 h

We further conducted ablation study on the
Tanks and Temples dataset [17] to evaluate the
impact of voxel representation and SDF map-
ping. The results are presented in Tab. 6. It can
be observed that utilizing voxel representation
significantly improves the PSNR for NVS tasks
and reduces memory consumption dramatically
compared to naive 3DGS setup. Although there is a slight decrease in the geometric quality of surface
reconstruction, we consider this trade-off acceptable.

4.4 Limitation

Implicit methods, such as those based on NeRF [27, 37, 20], typically utilize a global fitting approach
for SDF, which allows them to fully leverage the universal approximation capabilities of MLPs. This
is advantageous even in areas with sparse viewpoints. However, our current method employs a local
line-of-sight-based SDF fitting, a compromise made to adapt to the 3DGS rendering style. This
means that regions not covered by the training viewpoints lack fitting capability, resulting in uneven
surfaces.

In addition, While our method advances 3D surface reconstruction in open scenes, it faces challenges
with dynamic objects and the decoupling of distant and near views, sometimes misrepresenting the
sky as a surface enveloping the model. The lack of sufficient prior knowledge for optimizing complex
scenes also poses limitations.

5 Conclusion

This paper introduces GVKF, combining Gaussian splatting’s rapid rasterization with the efficiency
of implicit expressions to enhance reconstruction quality and speed significantly. By employing a
voxelized implicit representation of 3DGS, GVKF retains the expressive power of explicit Gaussian
maps while managing them effectively. We have explored the relationship between Gaussian splat-
ting’s alpha blending and traditional volume rendering, developing a GS-based method to represent
continuous scene opacity density fields through kernel regression, addressing 3DGS’s limitations in
continuous scene representation.

Experimental results demonstrate GVKF’s effectiveness in open scenes, showing notable improve-
ments in reconstruction accuracy, real-time rendering speeds, and reductions in storage and memory
usage. These advancements support applications in fields like autonomous driving and virtual reality,
pushing forward surface reconstruction technology.
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A Appendix / Supplemental Material

A.1 Ray-Gaussian Intersection

Figure 7: Ray-Gaussian Intersection in local
3DGS coordinate.

Based on Eq. 1 in the main text, the influence of
3DGS in camera space on a one-dimensional ray can
be expressed as follows:

ρ(t) = exp(−1

2
(vt− p)Σ−1(vt− p)) (17)

Here, v represents the unit vector of the ray direction.
This formula converts the three-dimensional influ-
ence of 3DGS into a one-dimensional function along
a specific camera ray, which is a one-dimensional
Gaussian function. Fig. 7 demonstrates the rela-
tionship of this transform. For ease of notation, we
express it as:

ρ(t) = exp(−ki · (t− ti)
2) (18)

where ti denotes the point along the ray where 3DGS
has the maximum impact, also known as the "ray-
Gaussian intersection," which can be analytically
given by:

ti =
pTΣ−1v

vTΣ−1v
(19)

More proof details can be found in "Approximate Differentiable Rendering with Algebraic Surfaces."
[16]

A.2 More Implementation Details

As demonstrated in the ablation experiments, to balance quality and speed, we chose to downsample
the initial Gaussian point cloud using a voxel size of 0.01. Within each voxel, the dimension of F is
set to 32, and it stores the relative coordinates of 10 Gaussian points, indicating that the maximum
number of Gaussians generated per voxel grid is 10. Gaussians with an opacity less than 0 will be
hidden during each iteration. In each scene, all voxel grids share a total of four MLPs, which decode
different Gaussian attributes from the corresponding voxels.

Regarding voxel registration, the gradient threshold is empirically set to 2 × 10−4, meaning that
voxel grids with an average gradient exceeding this value after each iteration will be subdivided using
an octree method. The maximum recursion depth is set to 3 to control the number of Gaussians in
the scene, ensuring it does not exceed a certain threshold. Voxel evaluation is performed every 500
iterations to determine which voxels should be subdivided or reclaimed. For other settings, we strive
to remain consistent with the original 3DGS settings.

A.3 More Results

Our method focuses on the challenging task of open scene reconstruction. Here, we provide a
comprehensive quantitative comparison with other related methods on the Mip360 dataset, as shown
in Table 7. Additionally, we have included more experimental results on the Mip360 and Tank and
Temple datasets, as shown in Figures 8 and 9. For more qualitative results, please visit the project
page.

Discussion on indoor scene. We observe that current methods based on 3DGS perform adequately for
indoor scenes, where there is typically 360-degree viewpoint coverage. However, they underperform
in outdoor scenes due to limited viewpoint coverage. Heuristic splitting and pruning strategies in
original 3DGS tend to fit the training viewpoints rather than distributing evenly across the space.
This leads to poorer novel view synthesis results in outdoor environments. As illustrated in Fig. 10,
without a voxel grid, heuristic Gaussian growth strategies result in uneven spatial distribution of
GS, sometimes even creating holes. Conversely, using voxel grids to constrain Gaussians allows for
efficient management of their spatial distribution, supporting better novel view synthesis.
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Rendered Image Depth Map Normal MapGround Truth

Figure 8: Additional experimental results on the Mip-NeRF360 dataset [1]. From left to right: Ground
Truth, Novel View Synthesis, Rendered Depth Map, and Normal Map.

Table 7: Quantitative evaluation on the Mip-NeRF 360 [1]. All scene dataset is presented.

Method Outdoor Scene Indoor Scene Average

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 21.46 0.458 0.515 26.84 0.79 0.37 23.85 0.61 0.45

Deep Blending 21.54 0.524 0.364 26.4 0.844 0.261 23.70 0.67 0.32
Instant NGP 22.9 0.566 0.371 29.15 0.88 0.216 25.68 0.72 0.30

MERF 23.19 0.616 0.343 27.8 0.855 0.271 25.24 0.72 0.31
MipNeRF360 24.47 0.691 0.283 31.72 0.917 0.18 27.69 0.79 0.24

BakedSDF 22.47 0.585 0.349 27.06 0.836 0.258 24.51 0.70 0.30
Mobile-NeRF 21.95 0.470 0.470 12.19 0.26 0.26 17.07 0.36 0.37

3DGS 24.24 0.705 0.283 30.99 0.926 0.199 27.24 0.80 0.25
SuGaR 22.76 0.631 0.349 29.44 0.911 0.216 25.73 0.76 0.29
2DGS 24.33 0.709 0.284 30.39 0.924 0.182 27.02 0.80 0.24

GVKF (Ours) 25.47 0.757 0.240 30 0.915 0.2 27.48 0.83 0.22
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Rendered Image Depth Map Normal MapGround Truth

Figure 9: Additional experimental results on the Tanks and Temples dataset [17]. From left to right:
Ground Truth, Novel View Synthesis, Rendered Depth Map, and Normal Map.

Reference 3DGS Our

Figure 10: GVKF Gaussian point visualization compared to traditional Gaussian method.

Reference Normal Map Mesh 3D Gaussian Points

Figure 11: Failure case. The sparse view area with less Gaussians tends to appear uneven surface.
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Table 8: NVS and storage comparation to GOF on Mip-NeRF 360 Dataset [1].

Mip-NeRF 360 PSNR ↑ SSIM ↑ LPIPS ↓ Storage ↓
GOF 24.53 0.733 0.245 649 M

GVKF (ours) 25.47 0.757 0.240 68 M

Table 9: Mesh quality comparation (F1-score) to GOF on Tanks and Temples Dataset. [17]

TanT Barn Caterpillar Courthouse Ignatius Meetingroom Truck Mean

GOF 0.51 0.41 0.28 0.68 0.28 0.59 0.46
GVKF (ours) 0.40 0.34 0.25 0.51 0.23 0.40 0.36

Failure Case. As shown in Fig. 11, in areas with sparse viewpoint coverage, the distribution of
3DGS is sparse and irregular, which hinders the fitting of smooth planes. This sparsity compromises
the integrity of the surface reconstruction, resulting in models that are geometrically inaccurate. Our
method still struggles to effectively address these issues.

A.4 Comparation to Gaussian Opacity Field

The similar rendering equation is firstly proposed by GOF [47], while this work provides in-depth
analysis of the relationship among this rendering strategy, volume rendering and Gaussian alpha
blending. Different from GOF, our scene representation is implicit, addressing the common issue of
high memory consumption faced by 3D Gaussian splatting. Additionally, we developed a mapping
function from opacity to SDF to alleviate the influence of directly linear transform between these
fields.

As shown in Tab. 8, GOF uses explicit Gaussian management, still faces high storage consumption
issues, making training large scenes on a single card challenging. Our method achieves better
novel view synthesis results with less storage usage. However, as shown in Tab. 9, our current
implementation has some geometric precision gaps compared to GOF, the potential reasons may
include:

• GOF’s iterative optimization extraction method achieves more precise isosurfaces than ours.
(May require long meshing time ∼ 2 h)

• Further adaptation of regularization term to voxel grids might be needed in our method to
improve mesh quality.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the contributions of the paper,
including the development of a novel method for open scene surface reconstruction that
combines the strengths of explicit and implicit approaches, and its application to large-scale
scene reconstruction tasks (Sec. 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: "Limitations" section is included in the paper, discussing the constraints of the
proposed method (Sec. 4.4)
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Please see Sec. 3 for relevant proofs and assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed information on the datasets used, the experimental
setup and other relevant details necessary to reproduce the results. (Sections 4)
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data are available in a public repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant training and testing details, including data splits, hyperparameters,
optimizer types, and selection criteria, are clearly specified in the paper. (Sec. 4)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper reports PSNR, SSIM, F1 scores, LPIPS,and C-D values, which
are commonly used as a measure of performance in image processing experiments. This
approach is standard in the field and is sufficient to convey the performance of the methods
under investigation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: The type of compute resources used, including GPU specifications, memory,
and execution time for each experiment, is detailed in the paper. (Sec. 4)
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics, with considerations for
reproducibility, transparency, and societal impact addressed throughout the paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper includes a section discussing the broader impacts of the proposed
method, highlighting both potential positive applications and possible negative consequences.
(Sec. 5)
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any data or models that are considered to have a
high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets used in the paper are properly credited, and their licenses
and terms of use are explicitly respected. (Sec. 4)

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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