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Abstract

Machine unlearning is motivated by desire for data autonomy: a person can
request to have their data’s influence removed from deployed models, and those
models should be updated as if they were retrained without the person’s data. We
show that, counter-intuitively, these updates expose individuals to high-accuracy
reconstruction attacks which allow the attacker to recover their data in its entirety,
even when the original models are so simple that privacy risk might not otherwise
have been a concern. We show how to mount a near-perfect attack on the deleted
data point from linear regression models. We then generalize our attack to other
loss functions and architectures, and empirically demonstrate the effectiveness
of our attacks across a wide range of datasets (capturing both tabular and image
data). Our work highlights that privacy risk is significant even for extremely simple
model classes when individuals can request deletion of their data from the model.

1 Introduction

As model training on personal data becomes commonplace, there has been a growing literature on
data protection in machine learning (ML), which includes at least two aspects:

Data Privacy The primary concern regarding data privacy in machine learning (ML) applications
is that models might inadvertently reveal details about the individual data points used in their
training. This type of privacy risk can manifest in various ways, ranging from membership inference
attacks (Shokri et al., 2017)—which only seek to confirm whether a specific individual’s data was used
in the training—to more severe reconstruction attacks (Dick et al., 2023) that attempt to recover entire
data records of numerous individuals. To address these risks, algorithms that adhere to differential
privacy standards (Dwork et al.,[2006) provide proven safeguards, specifically limiting the ability to
infer information about individual training data.

Machine Unlearning Proponents of data autonomy have advocated for individuals to have the right to
decide how their data is used, including the right to retroactively ask that their data and its influences
be removed from any model trained on it. Data deletion, or machine unlearning, refer to technical
approaches which allow such removal of influence (Ginart et al.l 2019; |Cao & Yang| 2015). The idea
is that, after an individual’s data is deleted, the resulting model should be in the state it would have
been had the model originally been trained without the individual in question’s data. The primary
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Figure 2: CIFAR10 samples reconstructed from a logistic regression model over a random Fourier
feature embedding (4096) of the raw input. We randomly chose one deleted sample per label (Row
1) and compared them against the reconstructed sample using our method (HRec, Row 2) and
a perturbation baseline (MaxDiff, Row 3) which searches for the public sample with the largest
prediction difference before and after sample deletion. HRec produces reconstructions similar to the
deleted images both visually and quantitatively measured by cosine similarity.

HRec (ours)

HRec (ours)

MaxDiff
MaxDiff

focus of this literature has been on achieving or approximating this condition for complex models in

ways that are more computationally efficient than full retraining (see e.g. [Golatkar et al.| (2020);
et al| (2021));/Gao et al.| (2022)); Neel et al.| (2021)); Bourtoule et al.| (2021)); (Gupta et al.| (2021).)

Practical work on both privacy attacks (like membership inference and reconstruction attacks) and
machine unlearning has generally focused on large, complex models like deep neural networks. This
is because (1) these models are the ones that are (perceived as) most susceptible to privacy attacks,
since they have the greatest capacity to memorize data, and (2) they provide the most technically
challenging case for machine unlearning (since for simple models, the baseline of just retraining
the model is feasible). For simple (e.g., linear) models, the common wisdom has been that the risk
of privacy attacks is low, and indeed, we verify in Appendix [A] that state-of-the-art membership
inference attacks fail to achieve non-trivial performance when attacking linear models trained on
tabular data, and an example is shown in Figure [T}

The main message of our paper is that the situation
changes starkly when we consider privacy risks in the
presence of machine unlearning. As we show, absent .
additional protections like differential privacy, request- 10— Ny
ing that your data be removed—even from a linear — CA
regression model—can expose you to a complete re- Sl U
construction attack. Informally, this is because it gives
the adversary two models that differ in whether your
data was used in training, which allows them to attempt
a differencing attack. We show that the parameter dif-
ference between the two models can be approximately
(or exactly, for linear models) expressed as a function
of the gradient of the deleted sample and the expected L

Hessian of the model w.r.t. public data. This allows us

to equate model unlearning to releasing the gradient of 10 107 107?10 10°
the unlearned samples, and leverage existing literature False Positive Rate

on reconstruction from sample gradients to achieve our

results. Figure 1: We conduct membership infer-
ence attacks on a ridge regression on ACS
Income task; the attack performance is poor
(close to random guessing).

Model = ACS Income Regression - Ridge

True Positive Rate
>

Our Contributions We consider the following threat
model: An attacker has access to the parameters of
some model both before and after a deletion request is
made. The attacker also has sampling access to the un-
derlying data distribution, but no access to the training
set of the models. In this setting, we first study exact reconstruction attacks on linear regression. We
give an attack that accurately recovers the deleted sample given the pair of linear models before and
after sample deletion. This is made possible by leveraging the closed-form single-sample training
algorithm for linear regression as well as the ability to accurately estimate the covariance matrix of the
training data from a modestly sized disjoint sample of public data drawn from the same distribution.
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We then extend our attack to the setting where the model consists of a (fixed and known) embedding
function, followed by a trained linear layer. Our goal remains to recover the original data point (not
only its embedding). This is a natural class of simple models, and also captures last-layer fine-tuning
on top of a pre-trained model - a common setting in which machine unlearning guarantees are offered.

Finally, we give a second-order unlearning approximation via Newton’s method which extends
our attack to generic loss functions and model architectures. This provides a way to approximate
the gradient of a deleted sample with respect to the model parameters, and later the sample itself.
We remark that Newton’s update approximation has itself been proposed as a way to approximate
unlearning (Izzo et al.; 2021} |Gao et al.,|2022), and is naturally related to the literature on influence
functions (Hampel, [1974; |Koh & Liang}, 2017;|Zhang & Zhang| 2022), which examines the effect any
(set of) samples has on the final trained model.

We experimentally demonstrate the effectiveness of our attack on a variety of simple tabular and
image classification and regression tasks. The success of our attack highlights the privacy risks of
retraining models to remove the influence of individual’s data, without additional protections like
differential privacy (as advocated by e.g. [Chourasia et al.[(2022) in another context). Figure [2] shows
several deleted samples from a model trained on CIFAR10 (Krizhevsky et al.,|2009) alongside the
recovered reconstructions for our method and a baseline based on public data.

1.1 Additional Related Work

We elaborate on our threat model and related work to position our approach within the existing
literature. Our model involves a scenario where a model maintainer trains a model on a private
dataset, X, € R™*4 and Ypriv € R™, to minimize a loss function ¢, yielding parameters 8t.
Upon a user’s request for data deletion, the maintainer re-trains the model excluding the user’s data,
resulting in new parameters 3~ . Our adversary, equipped with both model parameters before and
after the deletion 31, 3~ and access to public samples (Xpubs Ypup) from the same distribution, aims
to reconstruct the deleted sample (z,y) using the algorithm A(3", 37, Xpub, Ypu) — (Z, 7).

Extensive literature exists on membership inference and reconstruction attacks against static models,
with notable references including |Shokri et al.| (2017); |Carlini et al.| (2021} [2022)); Bertran et al.
(2023)); |Carlini et al.| (2023). These studies primarily address attacks on large-scale models, whereas
our work focuses on simpler models and explores the changes induced by deletion operations.

Pioneering work in model inversion attacks on linear models by |[Fredrikson et al.[(2014); Wu et al.
(2015) demonstrates that partial information about a data sample can be inferred from model outputs.
However, these attacks do not directly utilize model parameters.

The concept of privacy risks in machine unlearning was first outlined by (Chen et al.| (2021}, who
introduced a membership inference attack based on shadow models applicable to updates in machine
learning models. This attack’s efficacy increases with model complexity. In contrast, our approach
targets the reconstruction of the exact data point, extending beyond mere membership inference.

Further research by Salem et al.| (2020) explored reconstruction attacks using single-gradient updates
on complex models. Unlike their approach, which relies solely on API access to the model, our
method utilizes direct access to model parameters, allowing for efficient reconstruction of data points
even in fully retrained simple models.

Recent works have also examined gradient-based reconstruction attacks, typically focusing on
untrained models (Zhu et al}2019; |Zhao et al., [ 2020; Wang et al.,[2023). Our contribution extends
these techniques to the context of machine unlearning, highlighting the utility of analyzing updates
for data reconstruction.

Balle et al.|(2022) present a scenario where the adversary possesses almost complete knowledge of
the training dataset, aiming to reconstruct the missing sample. This represents a distinct model from
ours, where the adversary’s knowledge is limited to model parameters and public samples.

Overall, our work contributes to the understanding of privacy vulnerabilities in machine learning,
particularly in scenarios involving model updates and unlearning, where adversaries exploit the slight
yet informative differences between model parameters. Most work on machine unlearning asks that
they “unlearned” models be indistinguishable from what would have been obtained had the model
been retrained without the deleted points — the baseline that we attack in this paper. However
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there are several exceptions (Cohen et al.|(2023)); |Garg et al.|(2020) that ask for stronger conditions
(satisfied, e.g. by requiring that the entire sequence of models released satisfy differential privacy like
conditions) that can preclude such attacks. The concurrent work in|{Hu et al.|(2024) shares thematic
similarities by attacking specific (linearized) approximations to model unlearning.

2 Method

We develop an attack aimed at reconstructing the features of a deleted user from a (regularized) linear
regression model. Specifically, our focus is on reconstructing a sample (z, y), previously part of the
private training dataset Xpyy, Ypriv, using models trained before and after the deletion of this sample.

The parameters of these models, 31 and 5, are solutions to a regularized linear regression problem.
The model including the deleted sample yields:

B :argmgnHXprivﬂ*yprivH%JF/\”ﬂH; M

with a closed-form solution ST = C’lXpTrivypriv. Here, C = Xl;;VXpriv + Al represents the
regularized covariance matrix.

For the model post-deletion, 5~ can be described similarly, but adjusted for the absence of (x, y):
87 =(C—az") (X lpriv — 7' 9). 0
Using the Sherman-Morrison formula, we can relate 5 and 3~ via:

T o—
_ -z _
Bt =6+ 7&&0/311:50 L, 3)

This equation leads to an expression for the change in parameters due to the deletion of (z, y):

C(B* = B7) = alz,y), ©)

where a(x,y) is a scalar function dependent on the sample. This representation shows that the
difference between 31 and 5, scaled by C, is proportional to x, which suggests a potential avenue
for reconstructing x.

However, when we do not have access to X,y or A, we must rely on publicly available data X,up, Ypub-

We approximate C' using public data as C= XpTubXpub, considering that C' and C are both empirical

estimates of the underlying statistical covariance E[z¢x]. For a rigorous analysis on bounding the
errors in this approximation, see Tropp et al.[(2015).

Linear models are often learned with bias terms, which can be interpreted as a feature with value 1.
To simply the notation, we assume that the d-th dimension of a sample x is 1, noted as x4 = 1. Given
our assumption, the scaling factor «(x, y) is adjusted by normalizing the reconstructed feature vector
to ensure the scale of = is maintained. We then estimate the reconstructed sample (Z, y) as follows:

T=2%/%q, where ;=0T -p67) 5)

where 2, is the d-th element of Z, ensuring £4 = 1. This method offers a systematic approach to
estimate deleted user features from differential changes in model parameters, employing public data
to approximate necessary statistics and regularization impacts.

3 Beyond Linear Regression

Our attack is derived for the simple models used in linear regression. However, the same ideas can
be generalised beyond linear regression. The attack generalises immediately to any model which
performs linear regression on top of a fixed embedding: our attack recovers the embedding of the
deleted point, and reduces the problem to inverting the embedding. We can also generalise to other
loss functions—The primary challenge is that we no longer have closed-form expressions for an
“update”, but we can approximate this, as we describe in Section 3.2}
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3.1 Fixed Embedding Functions

Our attack is built upon the analytical update of adding or deleting a sample to a linear regression
model, therefore, it also generalises to linear models trained on top of embeddings of the original
features. Suppose that both parameter vectors 3 and 3~ along with the embedding function

¢: R4 — RY are publicly known (and the embedding function has a bias term). Our attack first
reconstructs the embeddings as in Eq. (5)), and then reconstructs features by finding a data point
whose embedding best matches the reconstructed transformed features as follows:

T =argminl|Z/Zy — ¢(2)l|,  where 2= p(Xpun) " A(Xpun) (7~ 57) (6)

Here, we assume that the embedding ¢ is fixed—that is, it doesn’t change after deleting a sample.
This is the case when e.g. performing last-layer fine-tuning on top of a pre-trained model, and for
data-independent embeddings like random Fourier features.

3.2 Arbitrary Loss Functions and Architectures

Our foundational equation, Eq. (@), specifically addresses linear models minimized under the
mean squared error. When broadening this scope to include alternative loss functions and model
architectures, the luxury of closed-form solutions vanishes. However, we can utilize Newton’s method
for approximating the "update function" necessary after data deletion. Consider a model maintainer
optimizing an empirical risk function represented as:

1
é(ﬁ, Xpriw ypriv) = EZ(w,y)E{Xp,mypm}é(ﬁ; €, y)7 @)

where 87 and 3™ are the optimal parameters before and after excluding a specific data point, (z,y),
respectively. By adopting a second-order Taylor approximation via Newton’s method, we estimate:

B~ ~pt—H VL, ®)
where H = V3_ 51 (85 Xpriv\ &, Ypriv\Y),
Vi = vB:ﬁ‘*E(ﬁ; Xpriv\l'v ypriv\y>~

Using the first-order optimality conditions, we deduce that the aggregate gradient over the remaining
samples inversely equals that of the removed sample:

V5=[3+£(6; Xpriva ypriv) =0, )
NVl = —Vg_gil(f;2,y). (10)

Integrating Eq. (T0) into Eq. (8), we derive:

H*l
B~ BT+ - Vis—p+l(B;2,y), (11)
nH(BT — B7) = —V_p+{(B;z,y). (12)

In linear regression, this method precisely recovers the known Eq (@). In the general case, the Hessian
matrix, analogous to the covariance matrix in linear regression, is estimated using public data sharing
the same distribution as the private data:

& 1 2 o

H = EEm’,y’E{Xpub,ypub}v,B:ﬁ#—g(ﬂ;x Y ) (13)
For linear models under attack, the gradients at the removed loss sample, particularly for certain
model layers, correlate directly with the data of the removed sample. Efficiently approximated
through influence matrices such as the Fisher information matrix, these gradients serve as crucial
elements in reconstructive attacks on model privacy.

For non-linear models and more intricate architectures, the materialization of the Hessian may become
impractical due to its size, prompting the use of efficient Hessian-vector product computations.
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Algorithm 1 Generalized Attack

Require: Public data X, € R™*%, 4, € R™
Require: Parameter vectors 51, 3~ € R¢
Require: Loss function ¢(53)
Require: Embedding function ¢
Ensure: Reconstructed sample
Estimate the Hessian H using Eq.
Reconstruct the embedding Z using Eq. (I2)
if ¢(z) = = then
Directly recover & = 2
else
Reconstruct the input & using Eq. (6)
end if
Return

3.3 Multiclass Classification and Label Inference

In a multiclass classification setting, our approach described in Eq. (T2)) facilitates an estimation
of parameter gradients with respect to the deleted sample. Employing Eq. (@), initially defined in
Section[3.1} allows for reconstructing the deleted data point. In models using linear layers directly
post-embedding, recovery becomes straightforward. However, for models with multiple class-specific
parameters, label inference requires additional steps.

Employing a softmax nonlinearity for outputting probability vectors, we observe that the derivative
of the loss with respect to the bias for the correct label is distinctively negative, setting it apart from
the other biases which demonstrate positive derivatives under typical loss functions:

Vi, [=1n fy(a; 87)] = fi(z: 87) = 1[j = y. (14)

The deleted label y can then be inferred as:
g:argmjnvbjﬁ(ﬁ;x,y)’ﬁ:ﬁ+. (15)

J

This approach significantly extends the capabilities of privacy attacks to encompass a wider array of
multiclass classification models.

4 Experiments

We assess our attack across diverse datasets, including tabular and image data, and for both classifi-
cation and regression tasks. Initially, we train a model on the complete dataset Xy, 9priv to derive
parameters 371, and then retrain it—excluding a single sample (z, 4)—to obtain 3~. We note that
B~ is achieved through full retraining, not approximate unlearning methods—our attack does not
depend on imperfect unlearning to be effective.

Our attack leverages public data samples from the same distribution as the training data but does not
require knowledge of the deleted sample’s features or label. We evaluate our approach against two
baselines that utilize public data:

“Avg”: Predicts the deleted sample as & = % Yo X, > N average of the public samples.

“MaxDiff”: Identifies the public sample that maximizes the prediction discrepancy between 5T and
B~ as & = argmaxzex,, |[#7 (8T — B7)]|.

These baselines exploit similarities between public and private data, with “MaxDiff”” additionally
considering the change in model parameters. Our threat model differs significantly from that of
Salem et al.| (2020), who assume black-box access and a simpler model update scenario; details and
comparisons are found in Appendix [B]

For practical simulations, each dataset is split into two: one for private training and the other for
public samples. We simulate the deletion of each sample in the private set, retrain the model, and
attempt its reconstruction using our method and the baselines.
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Figure 3: Cumulative distribution function of cosine similarity between deleted and reconstructed
sample via the average, MaxDiff, and HRec (our) attack on MNIST, Fashion MNIST and CIFAR10 for
three model architectures (linear cross-entropy, ridge regression over 4096 random Fourier features,
and cross-entropy over 4096 random Fourier features). Lower curves correspond to more effective
attacks than higher curves. Our attack achieves better cosine similarity with the deleted sample
across all settings; the effect is especially apparent in the denser CIFAR10 dataset.

Hyperparameters, specifically the ¢5 regularization strength A, are optimized on the private set and
remain constant when recalculating 5. We explore attacks on unregularized models in Appendix

We quatify the efficacy of our attacks and baselines with the cosine similarity between deleted and
reconstructed samples, aggregated into a Cumulative Distribution Function (CDF) of these similarity
scores; a sharp peak near 1 indicates precise reconstruction. CDFs which are “below' others
correspond to more effective attacks, which have a higher fraction of reconstructed points with very
high similarity to the original data. The performance of target models is evaluated in Appendix

4.1 Image Data

We evaluate our generalized attack methodology, outlined in Algorithm|I] across three distinct model
configurations on Fashion MNIST (FMNIST), MNIST, and CIFAR10 datasets. Fashion MNIST and
MNIST consist of 28 x 28 grayscale images, whereas CIFAR10 includes 32 x 32 x 3 RGB images,
with all datasets aimed at 10-way classification (Xiao et al., 2017 [LeCun et al.| |1998; Krizhevsky:
et al.| 2009). Each dataset undergoes a normalization process where input features are scaled to the
range [—1,1].
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Figure 4: Sample reconstructions on Fashion MNIST/ MNIST for a 40K parameter model (cross-
entropy over random Fourier features of the raw input). We randomly chose one deleted sample per
label (Rows 1, 4) and compared them against the reconstructed sample using our method (HRec,
Rows 2, 5) and a perturbation baseline (MaxDiff, Rows 3, 6) which searches for the public sample
with the largest prediction difference before and after sample deletion. HRec produces reconstructions
that are highly similar to the deleted images.

Cross-entropy Loss for Multiclass Classification: We first consider a linear model with a softmax
output, trained to minimize the cross-entropy loss o (3, ,y) = —logoy,(z T B) + A||B||3. This
model facilitates direct gradient estimation with respect to the parameters 37 proportional to the raw
input 2, negating the need for Eq. (6)

Ridge Regression with Random Fourier Features: The second model incorporates an embedding
function ¢, generating random Fourier features (Rahimi & Recht, |2007). The associated loss function,
CRidge(B,0(2),y) = ||o(x) T B — y||3 + || 3|3, admits an analytical solution for the Hessian matrix
H = ¢(X) " ¢(X) concerning ¢(z), but requires embedding inversion via Eq. (6)).

Cross-entropy Loss with Random Fourier Features: This model merges the complexities of the
first two: it lacks a closed-form update solution and necessitates embedding inversion, addressing
scenarios with both softmax nonlinearity and random Fourier embeddings.

Figure 3] illustrates the efficacy of our attack across all three model types on MNIST, FMNIST and
CIFAR10, demonstrating the capability to consistently recover samples highly similar to the original,
deleted samples. Figures 2] [a] and #b]depict randomly sampled deletions and their nearest recovered
samples using HRec and MaxDiff techniques, particularly under the challenging conditions of cross-
entropy loss over random Fourier features. Further results for additional model configurations can be
found in Section [E] expanding upon the robustness and versatility of our attack methodology across
varied settings and data modalities.

4.2 Tabular Data

Ridge Regression for Income Prediction We perform an attack on ridge regression models using
American Community Survey (ACS) income data from 2018 (Ding et al., 2021). Our approach
involves direct application of Eq. () along with an intercept normalization technique. Figure [3]
(first row) illustrates the attack performance. If the covariance matrix of the private data and the
regularization parameter A were known, our approach could perfectly recover the deleted sample.
However, our approximation assumes A = 0 and estimates the covariance matrix from public samples,
which introduces some estimation error. Despite these approximations, we achieve near-perfect
reconstruction of the deleted sample.

Ridge Regression with Random Features In a variation of the previous attack, we target a ridge
regression model trained with random Fourier features (Rahimi & Recht, 2007)). Assuming access
to both the random Fourier features and the model weights, we reconstruct the embedding z of
the deleted sample and then solve an inverse problem to recover the original features. The results,
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Figure 5: ACS Income Regression. Target models are ridge regression with tuned hyperparameters on
original features (first row), and over random Fourier features (second row). ACS Income data from
three states are used to demonstrate the effectiveness of our attack. Given the analytical single-sample
update rules of linear regression, our attack (HRec) reconstructs the deleted sample almost perfectly
on all datasets and different embedding functions.

depicted in the second row of Figure [5] demonstrate significant improvement over the baselines,
achieving almost perfect reconstruction accuracy.

Binary Classification for Income Level Prediction We extend our analysis to binary classification
tasks using logistic regression and support vector machines (SVMs) with squared hinge loss. Both
models allow analytical computation of their Hessian matrices:

H= X ub D Xpub,

where D € RM*M jg a diagonal matrix. For logistic regression, the diagonal terms are defined
as D;; = o(x] BT)(1 — o(x] BT)), with o being the sigmoid function. For SVMs, the terms are
D;; = 1(1 — ylsclT BT > 0). The reconstruction of the deleted sample’s features is obtained via
H (BT — 57), enhanced by the intercept normalization trick. The performance of these attacks is
showcased in Figure @ where our method, HRec, consistently outperforms the baselines across all
datasets and model classes.

Binary Classification with Random Features Lastly, we attack binary classification models trained
on an enriched set of random Fourier features. Figure [6b|presents the performance curves for our
attack compared to various baselines. Our method outperforms all baselines in attacks on logistic
regression models and performs competitively with the MaxDiff baseline in attacks on SVM models,
highlighting the efficacy of our approach.

Our comprehensive attack strategies on regression and binary classification models demonstrate the
potential vulnerabilities in these machine learning setups, especially when certain model parameters
or features are accessible to an adversary. These findings underscore the need for robust privacy-
preserving mechanisms in machine learning applications.

5 Conclusion

We present a strong reconstruction attack that targets data points that are deleted from simple models.
Our reconstructions are nearly perfect for linear regression models, and still achieve high-quality
reconstructions for linear models constructed on top of embeddings, and for models which optimize
various objective functions. This shines a light on the privacy risk inherent in even very simple
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(b) Random Fourier Features.

Figure 6: ACS Income Level Prediction. Target models are logistic regression (first row) and SVM
(second row) for binary classification tasks. These methods do not have analytical forms of the
single-sample update; however, our approximation using Newton’s update facilitates the outstanding
performance of HRec among all attacks. While this reconstruction is imperfect due to approximation
errors, a large number of deleted samples can still be reconstructed with high similarity scores.

models in the context of data deletion or “machine unlearning”, and motivates using technologies
like differential privacy to mitigate reconstruction risk.

https://doi.org/10.52202/079017-3334 105004



References

Balle, B., Cherubin, G., and Hayes, J. Reconstructing training data with informed adversaries. In
2022 IEEE Symposium on Security and Privacy (SP), pp. 1138-1156. IEEE, 2022.

Bertran, M., Tang, S., Kearns, M., Morgenstern, J., Roth, A., and Wu, Z. S. Scalable membership
inference attacks via quantile regression. arXiv preprint arXiv:2307.03694, 2023.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A., Jia, H., Travers, A., Zhang, B., Lie, D.,
and Papernot, N. Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP), pp.
141-159. IEEE, 2021.

Cao, Y. and Yang, J. Towards making systems forget with machine unlearning. In 2015 IEEE
symposium on security and privacy, pp. 463—480. IEEE, 2015.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown,
T., Song, D., Erlingsson, U., et al. Extracting training data from large language models. In 30th
USENIX Security Symposium (USENIX Security 21), pp. 2633-2650, 2021.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and Tramer, F. Membership inference attacks
from first principles. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1897-1914.
1IEEE, 2022.

Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag, V., Tramer, F., Balle, B., Ippolito, D., and
Wallace, E. Extracting training data from diffusion models. In 32nd USENIX Security Symposium
(USENIX Security 23), pp. 5253-5270, 2023.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., and Zhang, Y. When machine unlearning
jeopardizes privacy. In Proceedings of the 2021 ACM SIGSAC conference on computer and
communications security, pp. 896-911, 2021.

Chourasia, R., Shah, N., and Shokri, R. Forget unlearning: Towards true data-deletion in machine
learning. arXiv preprint arXiv:2210.08911, 2022.

Cohen, A., Smith, A., Swanberg, M., and Vasudevan, P. N. Control, confidentiality, and the right to be
forgotten. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pp. 3358-3372, 2023.

Dick, T., Dwork, C., Kearns, M., Liu, T., Roth, A., Vietri, G., and Wu, Z. S. Confidence-ranked
reconstruction of census microdata from published statistics. Proceedings of the National Academy
of Sciences, 120(8):e2218605120, 2023. doi: 10.1073/pnas.2218605120. URL https://www,
pnas.org/doi/abs/10.1073/pnas.2218605120,

Ding, F., Hardt, M., Miller, J., and Schmidt, L. Retiring adult: New datasets for fair machine learning.
Advances in Neural Information Processing Systems, 34, 2021.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265-284. Springer, 2006.

Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., and Ristenpart, T. Privacy in pharmacogenetics:
An {End-to-End} case study of personalized warfarin dosing. In 23rd USENIX security symposium
(USENIX Security 14), pp. 17-32, 2014.

Gao, J., Garg, S., Mahmoody, M., and Vasudevan, P. N. Deletion inference, reconstruction, and
compliance in machine (un) learning. arXiv preprint arXiv:2202.03460, 2022.

Garg, S., Goldwasser, S., and Vasudevan, P. N. Formalizing data deletion in the context of the right to
be forgotten. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 373—402. Springer, 2020.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making ai forget you: Data deletion in machine
learning. Advances in neural information processing systems, 32, 2019.

105005 https://doi.org/10.52202/079017-3334


https://www.pnas.org/doi/abs/10.1073/pnas.2218605120
https://www.pnas.org/doi/abs/10.1073/pnas.2218605120

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine of the spotless net: Selective forgetting
in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9304-9312, 2020.

Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi, S., and Waites, C. Adaptive machine
unlearning. Advances in Neural Information Processing Systems, 34:16319-16330, 2021.

Hampel, F. R. The influence curve and its role in robust estimation. Journal of the american statistical
association, 69(346):383-393, 1974.

Hu, H., Wang, S., Dong, T., and Xue, M. Learn what you want to unlearn: Unlearning inversion
attacks against machine unlearning. arXiv preprint arXiv:2404.03233, 2024.

1zzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. Approximate data deletion from machine learning
models. In International Conference on Artificial Intelligence and Statistics, pp. 2008-2016.
PMLR, 2021.

Koh, P. W. and Liang, P. Understanding black-box predictions via influence functions. In International
conference on machine learning, pp. 1885-1894. PMLR, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-delete: Gradient-based methods for machine
unlearning. In Algorithmic Learning Theory, pp. 931-962. PMLR, 2021.

Rahimi, A. and Recht, B. Random features for large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

Salem, A., Bhattacharya, A., Backes, M., Fritz, M., and Zhang, Y. {Updates-Leak}: Data set
inference and reconstruction attacks in online learning. In 29th USENIX security symposium
(USENIX Security 20), pp. 1291-1308, 2020.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Membership inference attacks against machine
learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3—18. IEEE, 2017.

Tropp, J. A. et al. An introduction to matrix concentration inequalities. Foundations and Trends® in
Machine Learning, 8(1-2):1-230, 2015.

Wang, Z., Lee, J., and Lei, Q. Reconstructing training data from model gradient, provably. In
International Conference on Artificial Intelligence and Statistics, pp. 6595-6612. PMLR, 2023.

Wu, X., Fredrikson, M., Wu, W., Jha, S., and Naughton, J. F. Revisiting differentially private
regression: Lessons from learning theory and their consequences. arXiv preprint arXiv:1512.06388,
2015.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zhang, R. and Zhang, S. Rethinking influence functions of neural networks in the over-parameterized
regime. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 9082—
9090, 2022.

Zhao, B., Mopuri, K. R., and Bilen, H. idlg: Improved deep leakage from gradients. arXiv preprint
arXiv:2001.02610, 2020.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients. Advances in neural information processing
systems, 32, 2019.

https://doi.org/10.52202/079017-3334 105006



A Membership Inference Attacks on Linear Models

Linear models usually have lower privacy risks compared to neural networks because the parameters
of a linear model are significantly fewer. To demonstrate the low privacy risks, we conduct a state-of-
the-art membership inference attack (MIA) proposed by [Carlini et al.|(2022) — Likelihood Ratio
Attack (LiRA) — on the same tabular tasks. The goal of MIA is to determine whether a sample is in
the training set of the target model.

On each task, we split the dataset into three splits, including 40% for training the target model,
another 40% as the public samples for learning shadow models, and the rest 20% as the holdout set
for evaluation. After training the target model on the private training set, we train 64 shadow models
using the same optimization algorithm on the public samples with Bootstrap. Then, we use the joint
set of the private samples and the holdout samples as samples under attack, and evaluate the attack
performance.

As shown in Figure[7] the attack performance is close to random guessing, which implies that it is
already challenging to determine which sample has been used in training when the target model is
linear.

Model = ACS Income Regression - Ridge Model = ACS Income Level Prediction - LogReg Model = ACS Income Level Prediction - SVM

10°  — Ny
-1 CA
— T

True Positive Rate

-1 1 -1

0t 100 107 10 10° 10 10° 107 10 10° 0t 10 107 10 10°
False Positive Rate False Positive Rate False Positive Rate

Figure 7: Membership inference attacks on ACS tasks.

B Additional Comparisons

Here we provide a limited comparison of Updates-leak Salem et al.|(2020) against our method and
baselines for the same simple model architecture (cross-entropy loss over a linear model on top of
4096 random Fourier features). We stress that the threat model for Updates-Leak differs from our
own in two important ways. First, they assume query access to the model, while we assume access to
the parameters. Second, we carry out our attack on two models, fully trained to convergence on two
different datasets, ((Xpriv, Ypriv) and (Xpriv \ Z, Ypriv \ ¥)). In contrast, Updates-leak instead attacks
the difference between a model trained on (Xpry \ 2, Ypriv \ ¥) and an updated model where in the
update, only a single gradient descent step is taken on the ‘update’ sample (x,y) (single sample
attack version). The Updates-Leak approach also incurs a significantly higher computational cost due
to its shadow model and encoder learning approach. For these reasons, we limit the comparison to
a single model architecture on CIFAR10 while stressing this comparison is not ‘apples to apples’.
In particular, even though we plot the reconstrution cosine similarity curves on the same axis (and
see that ours improves), our technique and UpdatesLeak are attacking different pairs of models (we
attack the model that results from full retraining, whereas they attack the model that results from a
single gradient update).

Figure [ shows the cosine similarity comparison, and Figure [9]show some example reconstructions
for Updates-Leak in this scenario. We leveraged their publicly available code to produce these
comparisons, using their default configuration (10, 000 shadow models are used for training, and
their DC-GAN generator is trained for 10, 000 epochs on the shadow model dataset).
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Figure 8: Cumulative distribution function of cosine similarity between the target (deleted) sample
and the reconstructed sample via the average, MaxDiff, Updates-Leak, and HRec (our) attack on
CIFAR10 on a simple model (cross-entropy loss over a linear model on top of 4096 random Fourier
features). All attacks save for Updates-Leak operate against the full retraining baseline, that
is the comparison between two models trained from scratch until convergence in a dataset
with and without the ‘deleted’ sample ((Xpriv, Ypriv) and (Xpriv \ 2, Ypriv \ ¥)), Updates-Leak
instead attacks two models, one trained until convergence on the dataset without the sample
((Xpriv \ 2, Ypriv \ ¥)), and one that took a single gradient descent step on the loss of the updated
sample x, y. Here lower curves dominate higher curves. Our attack achieves better cosine similarity
with the deleted sample.
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Figure 9: Sample reconstructions for Updates-Leak on CIFAR10. Original images and their corre-
sponding reconstruction are shown side by side in an alternating fashion. The model architecture is
cross-entropy loss over a linear model on top of 4096 random Fourier features. The models before
and after the update differ in a single gradient descent step being taken on the update sample (z, y).
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C Attacking Unregularized Models

In our main experiments, we emulate the more realistic situation where the model maintainer tunes
the hyperparameter of the target model on the entire dataset, and keeps it fixed during unlearning.
Since the impact of regularization on the attack performance is rather challenging to analyze and not
immediately obvious, we here present results on attacking models without regularization.

C.1 ACS Income Regression

On this task, the model maintainer directly optimizes the following objective without the regularization
term:

g = argmin | X5 3 (16)

This problem admits an analytical expression for 31 and 5=, which can be written as:

—1yT
ﬂJr =C Xprivypriv7 a7
- T\—1/vT T
B~ = (C —xx ) (Xprivypri\’ - y)7 (18)
where C' = X;iVX priv 18 the covariance matrix. In the scenario where the inverse of the covariance

matrix doesn’t exist, we use the Moore—Penrose inverse instead. Our attack still stays the same.

The results are presented in Figure[T0] and we can see that without regularization

Method = OLS | State = NY Method = OLS | State = CA Method = OLS | State = TX
—— HRec (ours)

0.8
0.6

0.4

Proportion under target

0.2

0.0 —
Method = RBF OLS | State = NY Method = RBF OLS | State = CA Method = RBF OLS | State = TX

Proportion under target

0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Cosine similarity Cosine similarity Cosine similarity

Figure 10: ACS Income Regression. Target models are ordinary linear regression on original features
(first row), and over random Fourier features (second row). Our attack HRec reconstructs the deleted
sample almost perfectly.

C.2 Image Classification Tasks

Here we additionally show results across CIFAR10, MNIST, and Fashion MNIST on the more
challenging target model scenario (RBF Cross Entropy). For these results, the model maintainer does
not use any form of regularization. Results are shown in Figure [T}
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Figure 11: Cumulative distribution function of cosine similarity between the target (deleted) sample
and the reconstructed sample via the average, MaxDiff, and HRec (our) attack on Fashion MNIST,
MNIST, and CIFARI1O for a target model using cross-entropy over 4096 random Fourier features. In
this scenario, the model maintainer does not use any form of regularization when training the original
or updated model. Here lower curves dominate higher curves. Our attack achieves better cosine
similarity with the deleted sample across all settings; the effect is especially apparent in the denser
CIFAR10 dataset.
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D Performance of Target Models

D.1 ACS Income Tasks

Table 1: Performance of target models on ACS Income tasks. Regression tasks are evaluated using
r2, which indicates the portion of explained variance, and classification tasks are evaluated using F'1
score since class labels are not balanced.

STATE NY CA TX
TASK TARGET MODEL +RBF +RBF +RBF
REGRESSION (R2) RIDGE REGRESSION 0.2755 | 0.32712 | 0.30139 | 0.3510 | 0.3089 | 0.3510
CLASSIFICATION (F1) LOGISTIC REGRESSION | 0.7154 | 0.7230 0.7313 | 0.7413 | 0.6889 | 0.7009
LINEAR SVM 0.7099 | 0.7149 0.7345 | 0.7325 | 0.6868 | 0.6968

D.2 Image tasks

Table 2: Out of sample accuracy of target models on Image tasks

DATASET LINEAR CROSS-ENTROPY | RBF RIDGE | RBF CROSS ENTROPY
CIFAR10 39.5% 48.7% 50.4%
MNIST 91.6% 96.2% 96.4%
FASHION MNIST 84.5% 87.3% 88.4%
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E Additional Results on Image Datasets
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Figure 12: Sample reconstructions on CIFAR10. Rows 1-3 rows show results of attacking a linear
cross-entropy model, and rows 4-6 show similar results for ridge regression over 4096 random Fourier
features. We randomly chose one deleted sample per label (shown in rows 1 and 4) and compared
them against the reconstructed sample using our method (HRec, rows 2 and 5) and a perturbation
baseline (MaxDiff, rows 3 and 6) which searches for the public sample with the largest prediction
difference before and after sample deletion. HRec produces reconstructions that are highly similar to
the deleted images.
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Figure 13: Sample reconstructions on Fashion MNIST. Rows 1-3 rows show results of attacking a
linear cross-entropy model, and rows 4-6 show similar results for ridge regression over 4096 random
Fourier features. We randomly chose one deleted sample per label (shown in rows 1 and 4) and
compared them against the reconstructed sample using our method (HRec, rows 2 and 5) and a
perturbation baseline (MaxDiff, rows 3 and 6) which searches for the public sample with the largest
prediction difference before and after sample deletion. HRec produces reconstructions that are highly
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Figure 14: Sample reconstructions on MNIST. Rows 1-3 rows show results of attacking a linear
cross-entropy model, and rows 4-6 show similar results for ridge regression over 4096 random Fourier
features. We randomly chose one deleted sample per label (shown in rows 1 and 4) and compared
them against the reconstructed sample using our method (HRec, rows 2 and 5) and a perturbation
baseline (MaxDiff, rows 3 and 6) which searches for the public sample with the largest prediction
difference before and after sample deletion. HRec produces reconstructions that are highly similar to
the deleted images.

. .
[ [
<y <y
© ®

HRec (ours)

HRec (ours)

MaxDiff
MaxDiff

Target
Target

HRec (ours)

HRec (ours)

MaxDiff
MaxDiff

https://doi.org/10.52202/079017-3334 105014



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract describes the context of the contribution and describes the main
theoretical and practical results presented

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide clear context on the settings where our contribution applies and
substantiate each claim with theory and/or empirical results.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: assumptions and results are clearly stated.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed algorithm and description of the exact setup of our
experiments

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: Open source code will be provided at a later date
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: setup and hyperparameters are well described
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: While we don’t report error bars, we report the full distribution of the recon-
struction error for our experiments in the form of cosine similarity CDF curves.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
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10.

11.

12.

13.

14.

15.

Justification: The computational costs of the experiments were small enough that they could
be run serially on a single GPU machine without great effort.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We comply fully with the code of ethics
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential impacts of our work in the introduction and conclusion.
Chief among them that more care needs to be taken to ensure model unlearning preserves
user privacy (e.g., using DP at the model learning/disgorging phase).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper highlights an existing vulnerability in the field of machine unlearn-
ing.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: (public) datasets and architectures are properly cited.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are provided

Guidelines:

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA
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