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Abstract

Recently, diffusion models have garnered significant interest in the field of text
processing due to their many potential advantages compared to conventional
autoregressive models. In this work, we propose Diffusion-of-Thought (DoT),
a novel approach that integrates diffusion models with Chain-of-Thought, a
well-established technique for improving the reasoning ability of autoregressive
language models. In contrast to autoregressive language models that make decisions
in a left-to-right, token-by-token manner, DoT allows reasoning steps to diffuse over
time through a diffusion language model and offers greater flexibility in trading-off
computation for reasoning performance. Our experimental results demonstrate
the effectiveness of DoT in multi-digit multiplication, boolean logic, and grade
school math problems, with a small diffusion model outperforming a much larger
autoregressive model in both efficiency and accuracy. In addition to that, DoT
showcases promising self-correction abilities and benefits from existing reasoning-
enhancing techniques like self-consistency decoding. Our findings contribute to
the understanding and development of reasoning with diffusion language models.

1 Introduction

Large language models (LLMs) have had a profound impact on the entire field of artificial
intelligence [42, 50], transforming our approach to addressing classical problems in natural language
processing and machine learning. Among the most notable aspects of LLMs is their remarkable
reasoning ability, which many researchers consider to be a representative emergent capability
brought about by LLMs [53]. Chain-of-thought prompting (CoT) [54]), which generates a series
of intermediate reasoning steps in autoregressive (AR) way, has emerged as a central technique to
support complex reasoning processes in LLMs. Despite advancements, errors in intermediate CoT
steps can lead to inaccurate answers [32], posing self-correction difficulties [25], and concerns about
CoT’s inefficiency have been highlighted in recent studies [7].

Recently, diffusion models have attracted interest in text processing [33, 65, 69] as a result of success
in the vision domain and distinctive modeling strengths over autoregressive models [34], offering
potential benefits including global planning ability [59, 63], self correction [23] and efficiency [37].
As part of the research community effort, pre-trained diffusion language models such as Plaid [18]
and SEDD [37] have shown significant progress in text generation capabilities. Although they have
not yet attained the scale and capabilities of existing proprietary autoregressive LLMs like GPT-4 [42],
these models have demonstrated performance on par with GPT2 [4] and the scaling law [27] in
diffusion language models have been highlighted in Plaid. As a result, it becomes pertinent to explore
the following question: can diffusion language models also leverage the CoT-style technique to gain
enhanced complex reasoning abilities?
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Figure 1: Illustration of reasoning approaches.
(a) Answer-only and (b) CoT generate left-to-
right tokens by prompting autoregressive language
model. (c) Implicit CoT replaces horizontal
reasoning (CoT) with vertical reasoning from
shallow layer to deep layer [7]. (d) DoT generates
reasoning path along with the diffusion timesteps.

This work presents a preliminary study on this
question. We propose Diffusion of Thought
(DoT), an inherent chain-of-thought method
tailored for diffusion models. In essence,
DoT progressively updates a sequence of latent
variables representing thoughts in the hidden
space, allowing reasoning steps to diffuse over
time in parallel. We also introduce a multi-pass
variant of DoT which focuses on generating
one thought at a time to compensate for causal
bias. To condition on complex queries, instead
of using gradient-based classifier guidance [18,
33], DoT trains and samples from the denoising
model using the classifier-free guidance as
in Gong et al. [15], to provide more reliable
controlling signals on exact tokens.

Furthermore, to improve the self-correcting
capability of the diffusion model, DoT integrates
training-time sampling algorithms to learn to
recover from errors originating from prior or
current reasoning steps. This feature offers
a fresh angle on the issue of error accumula-
tion [25, 32] inherent in autoregressive models.
Finally, we adapt a conditional ODE Solver [39]
for DoT during inference time to accelerate the
inference of continuous diffusion models. We show DoT enjoys flexibility in trading off computation
(reasoning time) and performance as more complex problems may necessitate increased computation
in reasoning [2, 54].

From a methodological standpoint, DoT shares similarities with the recently proposed Implicit CoT
approach [7], where the latter learns thoughts in hidden states across transformer layers to improve
the time efficiency of autoregressive CoT generation. A schematic illustration of CoT, Implicit CoT,
and DoT can be found in Figure 1.

The main contributions of our paper are threefold:

1. We first introduce the reasoning technique for diffusion models (DoT), and showcase
its advantages in simple reasoning tasks (digit multiplication and boolean logic) when
compared to autoregressive CoT and Implicit CoT. DoT achieves up to 27× speed-up
without performance drop (§4.2).

2. We further adapt DoT to continuous and discrete diffusion base models, and introduce
two training-time sampling algorithms to improve its self-correction ability. DoT exhibits
superior performance compared to GPT2 with CoT on grade school math problems, enabling
a small diffusion model to outperform a 4.6x larger autoregressive model, showing the
potential of text diffusion models for complex reasoning (§4.3).

3. Our analysis demonstrates the flexibility of DoT in the trade-off between reasoning time and
performance (§4.4), and showcases DoT’s self-correction capability (§4.6). We also find
that self-consistency decoding can further improve DoT and its multi-pass variant (§4.5).

Although it is challenging for current pre-trained diffusion language models to directly compete with
LLMs that are hundreds of times larger in parameter size, our study emphasizes the possibility of their
complex reasoning abilities and highlights the substantial potential in developing LLMs that go be-
yond the autoregressive paradigm. We release all the codes at https://github.com/HKUNLP/diffusion-
of-thoughts.

2 Preliminaries

This section introduces key concepts and notations in diffusion models for text generation. Detailed
formulations and derivations are provided in Appendix A.
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A typical diffusion model contains the forward and reverse process. For each forward step q(zt|zt−1),
we gradually inject noise into the data representation zt−1 from the last timestep to obtain zt. Here
t = 1, 2, ..., T and the larger t corresponds to noisier data. For reverse process, the ultimate goal
is to recover the original z0 by denoising zt: pθ(z0:T ) := p(zT )

∏T
t=1 pθ(zt−1|zt). We model the

learning process pθ(zt−1|zt) using the proposed diffusion model zθ(zt, t).

Previous text generation using diffusion models almost contains two categories: (1) Continuous
diffusion models such as Diffusion-LM [33], which relies on a mapping function between the
real values and feasible integral point; (2) Discrete diffusion models like D3PM [1], which
directly formulate the problem as the integer program. Continuous diffusion models map the
discrete text w into a continuous space through an embedding function EMB(w), and its inverse
operation is called rounding. The forward perturbations are applied according to q(zt|zt−1) =
N (zt;

√
1− βtzt−1, βtI), where βt ∈ (0, 1) represents different scales of the Gaussian noise.

Plaid [18] is a continuous diffusion language model trained from scratch on 314B tokens with
1024 context size. It is currently the largest scale diffusion language model with 1.3B parameters.
In the case of discrete diffusion models, each zt is represented as a discrete random variable using
one-hot vectors in {0, 1}K , where K denotes the vocabulary size. They define q(zt|zt−1) through a
transition matrix, making it a point mass with probability on an absorbing state [MASK] or a uniform
distribution over the vocabulary size. SEDD [37] is a recently trained-from-scratch discrete diffusion
language model with small and medium size similar to GPT2.

For sequence-to-sequence (seq2seq) generation, which involves a pair of sequences wx and wy,
DiffuSeq [15] treats these two sequences as a single one wz = w[x;y] and uses a left-aligned
mask [0;1] during the forward and reverse diffusion process to distinguish them. Unlike traditional
diffusion models that corrupt the entire zt, DiffuSeq only adds noise to those entries with the mask
value of 1 (e.g., yt). This modification, termed partial noising, tailors diffusion models for conditional
language generation, and set a difference between the gradient-based token guidance in [33] and [18].

3 Diffusion-of-Thoughts

In this section, we begin with an overview of our method and its relationship with other reasoning
paradigms (§3.1). We then introduce Diffusion-of-Thoughts (DoT) as well as its multi-pass variant
(DoTMP; §3.2), as illustrated in Figure 2. Following this, we outline the implementation of our
training (§3.3) and inference (§3.4) protocols.

3.1 Overview

Without loss of generality, we use the mathematical problem-solving task as our running example.
A problem statement and its correct answer are denoted as s and a, respectively. We employ a
language model with parameters θ, represented as pLM

θ , to find the solution for each problem. For
regular usage of language models without Chain-of-Thoughts (CoT), the final answer a is generated
directly as a ∼ pLM

θ (a|s). The CoT approach introduces meaningful intermediate steps or rationales
r1, . . . , rn for language models to bridge s and a, resulting in the output a ∼ pLM

θ (a|s, r1...n). For
implicit CoT [7], the hidden representations of rationales z1, . . . , zn are distilled into transformer
layers, leading to a ∼ piCoT

θ (a|s, z1...n). Similarly but differently, for DoT, these representations are
distributed over diffusion timestep t as a ∼ pDoT

θ (a|s, zt), where zt corresponds exactly to the noised
data in diffusion models.

3.2 Modeling

We begin by observing the gradient-based token guidance fails to do accurate conditioning as the
model cannot exactly recover each conditioning token (see Table 2). This is vital, especially in
mathematical reasoning, as it is expected to perform reasoning based on exact tokens (e.g., numbers)
in the problem statement, rather than more compact gradient signals. For this, we adopt DiffuSeq-
style [15] classifier-free conditioning during the fine-tuning of Plaid, where all rationales are generated
by the backward diffusion process in parallel, with all the conditional tokens fixed as still. Specifically,
the problem context s is concatenated with the rationales r1...n during training and sampling, while
the noise is only partially imposed to the rationale part in r1...n, keeping s anchored as the condition.
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Figure 2: Demonstration of DoT pipeline. DoT diffuses all possible thoughts across diffusion timestep
t. Multi-pass DoT disentangles each rationale and introduces causal bias. The stacked circles stand
for the marginalization over other potential reasoning paths, which is implicitly carried out during the
training of diffusion models.

We further propose a multi-pass (MP) variant of DoT, denoted as DoTMP, which generates rationales
in a thought-by-thought paradigm. This method disentangles the generation of multiple rationales and
introduces casual inductive bias such that later rationale can be guided by stronger condition signals
of prior rationales during the generation. Specifically, in the first pass, we generate the first rationale
by r1 ∼ pDoT

θ (r1|s, zr1t ), where zr1t is the noised vector representation of r1 in diffusion model.
Then r1 is connected to s as the condition [s; r1] to get r2 ∼ pDoT

θ (r2|[s; r1], zr2t ), and then we have
[s; r1; r2]. Through multiple iterations, we can get the final answer: a ∼ pDoT

θ (a|[s; r1; ...; rn], zrnt ).

3.3 Training

Scheduled sampling Diffusion models have intrinsic self-correcting capability through the multi-
step denoising process. To further improve their self-correcting ability, we design a scheduled
sampling [3] mechanism tailored for diffusion models such that self-generated error thoughts in
previous timesteps are exposed and corrected during the training stage. Formally, for any timesteps
s, t, u that satisfy 1 < s < t < u < T , zt is sampled from the forward distribution q (zt | z0) in
the training stage while during inference it is sampled from q(zt | zθ (zu;u)) instead, where zθ is
a denoiser neural network that reparameterizes Eq[z0|zt]. The presence of such exposure bias may
impede the model’s ability to recover from erroneous thoughts during the generation process as the
model zθ has only been trained on corruptions zt diffused from oracle data. To mitigate this problem,
we mimic the inference stage with probability ϵi during training depending on the current training
step i, and ϵi linearly decays from 1 to ϵmin. Specifically, for time-step t, we randomly sample a
former time-step u ∈ {t + 1, . . . , T}, obtain zu by forward noising and perform a model forward
pass to get a predicted ẑ0 = zθ (zu;u)). zt is then sampled from q(zt | ẑ0) to replace the regular one
in loss calculation. Compared with scheduled sampling for autoregressive models, such a mechanism
in DoT helps the model to recover from errors by considering global information instead of relying
on the left-side tokens.

Coupled sampling In DoTMP, correct previous thoughts are given in the training stage, which
is not given during inference. Similar to auto-regressive decoding, DoTMP may suffer from error
accumulation during the thought-by-thought generation process. To enhance the self-correction
ability of DoTMP, we propose a coupled sampling mechanism by adding noise not only to the current
thought but also to previous thoughts during training with some probability. For instance, the previous
sequence z0 = EMB([s; r1]) will be modified to z0 = EMB([s; r1; r2]), with the partial noise being
applied to [r1; r2] rather than just the last rationale r2. Therefore, the model learns to be robust to
errors in r1 when predicting r2, which better aligns with the inference stage. The new z0 will be
reparameterized into zt as before and other procedures keep the same.

Training objective Given a set of training data for problem-solving tasks of size D:
{sj , rj1...n,aj}j∈D, we have two training settings for DoT models: one is training from
scratch, while the other is fine-tuning from the pre-trained diffusion model. In both training settings,
we share the same training objective. For example, the objective is to minimize the negative
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variational lower bound LVLB(w
z) in continuous diffusion models:

LVLB(w
z) =Eq(z0|wz)

[
log

q(zT |wz)

pθ(zT )︸ ︷︷ ︸
Prior loss

+LVLB(z0)︸ ︷︷ ︸
Diffusion loss

− log pθ(w
z|z0)︸ ︷︷ ︸

Rounding loss

]
, (1)

where the rounding loss regularizes the embedding learning and the diffusion loss sums up the KL
divergence of each time step t with different weighting terms. Please refer to Appendix A for a
detailed training objective formulation of continuous and discrete diffusion models.

3.4 Inference

One of the significant advantages of diffusion models is their inference flexibility. Naturally, more
complex problems may necessitate increased computation in reasoning time [2, 54], which can be
controlled by setting a larger backward timestep T in DoT. However, continuous diffusion such as
Plaid usually requires more timesteps, e.g., 4096 [18], to converge. To accelerate the sampling process
of the continuous diffusion, we adapt the ODE Solver [38, 39] into a conditional form to fit the
conditional training process (detailed in Appendix A.4). Moreover, sharing a similar idea of MBR [30],
self-consistency [52] boosts the performance of CoT significantly by generating and aggregating
multiple samples. In the context of diffusion models, we can also expect its potential improvement
using self-consistency, thanks to their ability to naturally produce diverse responses [15]. After
sampling m times to obtain multiple reasoning pathways (ri;1...n,ai) from DoT, self-consistency
involves marginalizing over ri;1...n by taking a majority vote over ai, i.e., argmaxa

∑m
i=1 1(ai = a).

We consider this as the most “consistent” answer among the candidate set of m answers.

4 Experiments

We conduct experiments on both simple multi-digit multiplication and boolean logic reasoning as
well as complex grade school math problems, to explore the reasoning paradigm in diffusion models.

4.1 Experimental Setup

Datasets and Metrics. Following Deng et al. [7], we employ the four-digit (4× 4) and five-digit
(5× 5) multiplication problems from the BIG-bench benchmark [49], known to be challenging for
LLMs to solve without CoT. Given that arithmetic reasoning is just one type of the reasoning ability,
we also incorporate a boolean logical reasoning task [68]. For more complex tasks, grade school
math problems require both language understanding and mathematical reasoning, so we adopt the
widely-used GSM8K dataset [6]. We use the augmented training data from Deng et al. [7] and keep
all original test sets unchanged. The statistics are listed in Appendix B.1. For both datasets, we
use accuracy to measure the exact match accuracy of predicting the final answer, and throughput to
measure the number of samples processed per second (it/sec) during inference with a batch size of 1.

Base Models. When training from scratch, we follow DiffuSeq2 to use a 12-layer Transformer [51]
encoder with similar size as GPT2-small (124M). We also use Plaid3 (1.3B) [18], SEDD-small4

(170M) and SEED-medium (424M) [37] as pre-trained diffusion language models for further fine-
tuning. Both Plaid and SEDD are pre-trained on OpenWebText [10, 13], which is similar to that in
GPT2, and the pre-training perplexity of Plaid and SEDD-small is on par with GPT2-small.

Baselines. We consider Answer-only and CoT as reasoning paradigms for comparison. Another
important baseline is Implicit CoT [7], which distills thoughts into transformer layers to accelerate
CoT reasoning. We use GPT-2 [4] at various scales (i.e., small 124M, medium 355M, and large
774M) as model baselines, known as conventional autoregressive language models. We mainly
consider fine-tuning the model due to the relatively small model size, but we also consider prompting
the strong commercial LLM ChatGPT gpt-3.5-turbo-1106 using CoT few-shot demonstrations
for completeness. We use 5-shot in the few-shot setting.

2https://github.com/Shark-NLP/DiffuSeq
3https://github.com/igul222/plaid
4https://github.com/louaaron/Score-Entropy-Discrete-Diffusion
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Table 1: The main results on different problem-solving reasoning tasks. Acc (↑) is to measure the
exact match accuracy of the predicted final answer. Throughput (↑) measures the number of samples
processed per second during test with batch size equals to 1. The baseline results for Mult. and
GSM8K datasets are taken from the implicit CoT paper [7] and have been validated for reproducibility
by us. Bracketed numbers indicate the self-consistency results.

Models 4× 4 Mult. 5× 5 Mult. Boolean logic GSM8K-Aug

Acc Throughput Acc Throughput Acc Throughput Acc Throughput

Answer-only
GPT2-small 28.7 13.2 1.2 11.1 98.8 16.2 13.3 24.7
GPT2-medium 76.2 7.0 1.9 5.9 100 9.6 17.0 9.1
GPT2-large 33.6 4.8 0.9 4.0 100 7.4 12.7 9.1
ChatGPT (few-shot) 2.2 1.0 0.0 1.4 67.6 0.5 28.1 1.8

Chain-of-Thoughts (CoT)
GPT2-small 100 2.3 100 1.5 100 0.8 39.0 (41.6) 2.0
GPT2-medium 100 1.2 100 0.8 100 0.5 43.9 1.1
GPT2-large 100 0.8 99.3 0.6 100 0.3 44.8 0.7
ChatGPT (few-shot) 42.8 0.1 4.5 0.1 75.8 0.2 61.5 0.2

Implicit CoT
GPT2-small 96.6 8.9 9.5 7.9 - - 20.0 16.4
GPT2-medium 96.1 4.8 96.4 4.3 - - 21.9 8.7

Diffusion-of-Thoughts (DoT)
From-scratch 100 62.5 100 61.8 100 55.2 4.6 22.7
Plaid 100 24.3 100 21.3 100 10.2 32.6 (36.3) 0.3
SEDD-small 100 59.2 100 55.5 100 33.3 45.3 (51.8) 1.0
SEDD-medium 100 31.8 100 28.5 100 17.2 53.5 (59.4) 0.5

Diffusion-of-Thoughts (DoTMP)
From-scratch 100 11.8 100 9.5 100 3.7 5.5 8.6
Plaid 100 4.3 100 3.9 100 1.0 37.7 0.1
SEDD-small 100 9.9 100 9.2 100 3.3 43.2 0.2
SEDD-medium 100 4.5 100 4.0 100 1.7 53.3 0.1

Implementation Details. During tokenization, we treat all the digits as individual tokens. For
DoTMP, we append a special token <EOS> to the last thought, so when the model generates a
thought followed by <EOS>, it stops generating further, which enables the model to decide the
number of rationales dynamically. We conduct all the experiments on 8 NVIDIA V100-32G GPUs.
During training, we set ϵmin to be 0.95 as we find decreasing the probability of oracle demonstration
hinders model training. We choose coupled sampling γ = 0.01, k = 1 and self-consistency m = 20.
Following Plaid, we also adopt self-conditioning [5] during training. During inference, we set both
the temperature of the score and output logit to 0.5 to sharpen the predicted output distribution while
maintaining the ability to generate diverse samples. The sampling timesteps T is dynamic. By default,
we set it to be 64. Considering that simple tasks do not necessitate an excessively large number of
steps, we opt to reduce T while ensuring there is no notable performance drop. Other details are in
Appendix B.3.

4.2 Results on Digit Multiplication and Boolean Logic

We first train DoT for digit multiplication tasks and a boolean logical reasoning task as the preliminary
investigation, as shown in the left part of Table 1. We observe that neither ChatGPT nor the distilled
Implicit CoT model can reach 100% accuracy. GPT-2 can be fine-tuned to achieve high accuracy but
sacrifices throughput during CoT. Interestingly, DoT can attain 100% accuracy for these tasks while
maintaining significant throughput with diffusion sampling steps set at 1 for multiplication datasets
and 2 for the boolean logical dataset, achieving maximum 27× speed-up compared to GPT-2. This
preliminary finding indicates that DoT performs well in modeling exact math computation or boolean
logic reasoning and benefits from its computational efficiency.
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Models Acc. (%) ↑
Continue pre-training 0.5
DoT-finetune 32.6

(-) scheduled sampling 31.2
DoTMP-finetune 37.7

(-) coupled sampling 35.5

Table 2: Ablation of Plaid DoT on GSM8K.
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Figure 3: The effectiveness of ODE solver in
speedup inference of Plaid DoT.

4.3 Results on Grade School Math

We now move on to a much more complex grade school math task GSM8K as shown in the right
part of Table 1. We first consider training DoT from scratch as in the previous tasks, but we are only
able to achieve an accuracy of around 5%, which is much lower than the fine-tuned version of GPT-2.
This indicates the pre-trained natural language understanding capability is vital for grade school
math. Once DoT is extended based on the pre-trained diffusion language models Plaid and SEDD,
the performance is significantly improved after fine-tuning, where the DoT based on SEDD-medium
outperforms similar-sized GPT2-medium with CoT by around 10%. Additionally, multi-pass DoT,
with casual bias, performs slightly better than single-pass one on Plaid, while the latter is more
efficient. The performance gap between SEDD and Plaid also highlights the importance of the
training objective in pretraining diffusion LMs. Finally, we find that self-consistency further yields
substantial improvements in DoT models owing to the diverse generations of diffusion model (§4.5).

We further explore several alternatives and conduct an ablation study as in Table 2 when fine-tuning
Plaid. As discussed above, continuing pre-training Plaid using the GSM8K-augmented dataset and
performing reasoning with gradient-based conditioning is not a good choice for fine-tuning diffusion
LMs on downstream tasks, because reasoning tasks require more specific guidance. An example of
groundtruth and recovered text is shown below, where bold words in the query part are incorrectly
recovered:

Groundtruth: Two trains leave San Rafael at the same time. They begin traveling westward,
both traveling for 80 miles. The next day, they travel northwards, covering 150 miles.
What’s the distance covered by each train in the two days? «2∗80=160» «150∗2=300»
«300+160=460» «460/2=230» #### 230

Recovered Text: Three trains leave San Juan at the same time. They start traveling westward,
both traveling for 80 miles. The next day, they travel southward, covering 150 miles.
What’s the distance covered by each train in the two days? «3∗80=180» «180+80+150=340»
«340/30=12.5» #### 12.5

We can see there are three recovered query tokens that exhibit minor differences due to soft gradient
guidance, causing interference with the model’s comprehension of the problem. The ablation of two
sampling strategies proposed in §3.3 showcases their effectiveness. This provides evidence that better
denoising models are trained using our training-time sampling strategies, allowing DoT models to
self-correct more effectively during inference. Further analysis about self-correction is listed in §4.6.
In Figure 3, we further show the conditional ODE solver substantially speeds up the inference of
continuous diffusion model Plaid, ensuring a decent performance with only 8 generation timesteps.

4.4 Reasonability-efficiency Trade-off

The community has devoted substantial efforts to improve the reasoning capabilities of left-to-right
language models, such as refining instructions [31, 67], finding better demonstrations [9, 55, 58], and
designing elaborate decoding algorithm [43, 56, 57]. Non-autoregressive diffusion models naturally
provide another simple way to enhance reasoning by allocating more timesteps during inference,
albeit at the expense of efficiency. We show such efficiency trade-off in Figure 4(a), where we
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Figure 4: (a) Accuracy over reasoning steps using various methods. We measure the reasoning steps
as the average number of calling the model forward function for instances from the test set. DoT
provides a flexible way to balance accuracy and efficiency through the reasoning steps. (b) Absolute
accuracy improvement versus samples in self-consistency per instance on the GSM8K dataset with
Plaid DoT.

measure the reasoning steps as the average number of calling the model forward function for all
the instances from the test set. For CoT and Implicit CoT baselines, we treat reasoning steps as the
average number of output tokens for all the test instances5.

Given a small budget of reasoning steps (e.g., 1 or 2) on simpler tasks such as 5×5, both DoT-Plaid
and DoT-SEDD already have an accuracy of 100%, and no more reasoning steps are needed. For such
cases of simple tasks, only a little computation cost is required for our method. For complex tasks
such as GSM8K, we find DoT performance can continuously improve by allowing more reasoning
steps, which indicates DoT can be efficient if we can sacrifice performance in certain scenarios.
Specifically, DoT-SEDD-medium outperforms autoregressive CoT-GPT2-medium when we allocate
32 generation timesteps, and the performance continues improving when we increase the timesteps.
In comparison, CoT and Implicit CoT with the autoregressive model are hard to be more efficient
given their nature of token-by-token prediction. Overall, with DoT, we can flexibly control the
trade-off between efficiency and performance for tasks with different difficulty levels.

4.5 Self-consistency in DoT

Figure 4(b) shows the effectiveness of the self-consistency mechanism for Plaid DoT and its variant.
We can see self-consistency improves both DoT and DoTMP, which is in line with the effectiveness
of self-consistency for auto-regressive models [52]. From Table 1, SEDD DoT is also significantly
improved by self-consistency. This benefits from the diversity generation in DoT. We observe that DoT
can generate diverse reasoning paths, such as <3*3=9><9*60=540> and <3*60=180><180*3=540>
for the same question, providing cross-validation when selecting the most “consistent” answer. Note
that different from autoregressive models, where diversity usually relies on decoding algorithms [8,
22], the natural advantage of the diffusion models is to generate different sentences with different
random noises at each timestep.

4.6 Self-correction in DoT

In this section, we provide several cases in Table 3 to show the self-correction ability of Plaid DoT,
which acts as a distinct difference between diffusion models and autoregressive models. In the first
case, we can see the model figures out all the correct thoughts together with only a single reasoning
step (i.e., a single calling of the model forward function), and obtains the correct final answer in
the second step. This mirrors how humans think in both fast and slow modes [26]. In the second
case where the problem is slightly harder, the model cannot give concrete thoughts in the first step
but can still produce the correct answer through the later “slow” thinking process. We can see the
solution framework, roughly outlining how the task will be carried out, is established at the very

5Here we define reasoning steps of Implicit CoT as the times of forwarding the whole model instead of the
layers of transformers, considering that the former reflects the inference speed.
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Table 3: Cases that show the predictions of Plaid DoT at each time-step t with T=8 on the GSM8K
test set. The incorrect thoughts are marked in bold red and we omit some correct predictions when
t < 4. The difficulty level of the questions increases from left to right.

Q. A robe takes 2 bolts of blue 
appet and half that much white 
fertil. How many bolts in total 
does it take?

Tommy is fundraising for his charity by selling brownies for 
$3 a slice and cheesecakes for $4 a slice. If Tommy sells 43 
brownies and 23 slices of cheesecake, how much money 
does Tommy raise?

When Freda cooks canned tomatoes into sauce, they 
lose half their volume. Each 16 ounce can of 
tomatoes that she uses contains three tomatoes. 
Freda’s last batch of tomato sauce made 32 ounces of 
sauce. How many tomatoes did Freda use?

Gold <<2/2=1>> <<2+1=3>> #### 3 <<43*3=129>> <<23*4=92>> <<129+92=221>> #### 221 <<32*2=64>> <<64/16=4>> <<3*4=12>> #### 12

<<2/2=1>> <<2+1=3>> #### 43 <<43*3=123>> <<3*43=12>> <<133+12=217>> # # 227 <<32/16=2>> <<12/12=2*3 ## *2=2= ######

<<2/2=1>> <<2+1=3>> #### 3 <<43*3=129>> <<23*4=92>> <<129+92=111>> #### 111 <<32/16=2>> #2*3=4>> #4*3=3>>>>>>######

<<2/2=1>> <<2+1=3>> #### 3 <<43*3=129>> <<23*4=92>> <<129+92=221>> #### 221 <<32/16=2>> <<2*3=6>> <<6*3=24>> #### 18

<<2/2=1>> <<2+1=3>> #### 3 <<43*3=129>> <<23*4=92>> <<129+92=221>> #### 221 <<32/16=2>> <<2*3=4>> <<4*3=12>> #### 12

<<2/2=1>> <<2+1=3>> #### 3 <<43*3=129>> <<23*4=92>> <<129+92=221>> #### 221 <<32/16=2>> <<2*2=4>> <<4*3=12>> #### 12

: : : :

<<2/2=1>> <<2+1=3>> #### 3 <<43*3=129>> <<23*4=92>> <<129+92=221>> #### 221 <<32/16=2>> <<2*2=4>> <<4*3=12>> #### 12

𝒕=8

𝒕=7

𝒕=6

𝒕=5

𝒕=4

𝒕=1

beginning, and then the subsequent work is for refining and improving, which is also similar to
how human performs a complex task. Interestingly, in DoT, the correct thoughts may not appear
in a left-to-right paradigm as in the traditional chain-of-thought process. The third case serves as
compelling evidence to illustrate this distinctive nature of diffusion-of-thought and how it diverges
from the chain-of-thought approach. In step 4 the model has a wrong intermediate thought <2*3=4>
with the latter thoughts and final answer computed correctly first. In the next step, the error in the
wrong intermediate thought is fixed, which suggests both prior and latter thoughts can help in the
prediction of the current thought. Furthermore, from these three cases, we observed that the model
tends to maintain its prediction after it considers the answer to be complete. This suggests we can
further enhance the inference efficiency by incorporating mechanisms such as early exit [16], and
easier tasks can get earlier exits as observed in Table 3.

5 Related Work

5.1 Diffusion Models for Text

Building upon advancements in diffusion models for image generation [21, 45], text continuous
diffusion [15, 33] employs an embedding function to transform discrete text into the continuous
space. Besides, discrete diffusion models [1, 23] directly introduce discrete noise to accommodate
the discrete nature of texts, demonstrating significant potential [37, 65]. Numerous studies have
shown that diffusion models can efficiently generate diverse texts [11, 14], and achieve competitive
performance in various sequence-to-sequence NLP tasks, including machine translation [60, 61],
summarization [62], code generation [44], and style transfer [24]. In this work, we explore diffusion
model for mathematical reasoning tasks.

5.2 Pre-train and fine-tune Diffusion LMs

The pre-training and fine-tuning paradigm, while a familiar concept in NLP before the era of
prompting methods [36], remains relatively under-explored for diffusion language models. Prior
efforts include initializing diffusion models with pre-trained masked language models such as
BERT [20] and RoBERTa [66] and XLM-RoBERTa [59]. GENIE [35] adopts paragraph denoising to
train encoder-decoder models, proving beneficial for summarization tasks. Plaid [18] and SEDD [37]
are pioneers in pre-train diffusion language models from scratch, attaining comparative or better
perplexity scores over GPT-2 [4]. To the best of our knowledge, we are the first to explore the
fine-tuning of a pre-trained diffusion language model for reasoning tasks.

5.3 Reasoning Paradigms

Large language models usually excel in performing system-1 [47] tasks that are processed quickly
and intuitively by humans but struggle in system-2 tasks, which require deliberate thinking [4, 48, 54].
The chain-of-thought reasoning paradigm [31, 41, 54] has been widely employed to elicit reasoning
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abilities and can be further improved with various techniques. For instance, self-consistency [52]
samples a diverse set of reasoning paths and selects the most consistent answer, while tree-of-
thought [57] achieves different reasoning paths by tree search. Despite these advancements, errors
introduced in intermediate CoT steps can lead to inaccurate answers [32], posing difficulties in
self-correction [25]. Moreover, there are concerns about the inefficiency of CoT [7]. From the
architecture perspective, we explore diffusion model as an alternative paradigm for reasoning.

6 Conclusion and Limitation

In this work, we propose diffusion-of-thought (DoT), integrating CoT reasoning with continuous
diffusion models. We thoroughly evaluate DoT on representative mathematical reasoning tasks in
various aspects, including their flexible control of reasoning efficiency, self-correction capability,
and the ability to generate diverse reasoning paths. Considering pre-trained diffusion models are
still in their early stages, particularly in terms of model scales compared to the more extensively
studied autoregressive language models, our study presents an initial exploration into the reasoning
ability of current diffusion language models. A notable limitation of DoT is its requirement for
additional training to achieve accurate reasoning. With more powerful pre-trained diffusion models,
we anticipate DoT can attain comparative or better generalization capabilities of auto-regressive
language models while removing the need for specialized training. Moreover, extending the standard
Transformer to other variants [17] is also a viable direction to further improve inference efficiency.
Besides, the diffusion training techniques employed in this work are general and applicable to other
tasks beyond mathematical reasoning. Extending our training recipes of diffusion language models
to further scaled setups such as multi-task instruction tuning and other modalities [19, 64], is an
interesting avenue for future research.
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A Derivations

A.1 Seq2Seq Modeling in DiffuSeq

To implement the diffusion model in seq2seq generation, we inherit the design from DiffuSeq [14],
which systematically defines the forward noising process and reverse denoising process on
latent continuous space z as two major components of the model.

Latent space configuration z. Following Li et al. [33], z is constructed from an embedding function
EMB(wz), which takes the discrete text wz as input. Particulatly, in Diffuseq [14], wz contains wx

and wy where wx is the source sequence and wy is the target sequence. The relationship is defined
as wz = w[x;y]. They denote zt = xt ⊕yt to simplify the wordings, where xt and yt represent parts
of zt that belong to wx and wy , respectively.

Forward diffusion process q(zt|zt−1) and q(zt|z0). The process of forward noising is to
fractionally disrupt the content of input data z0, introduced as partial noising by Gong et al. [15]. It
is achieved by only applying Gaussian noise to yt and preserving xt with a masking scheme, denoted
as zt = [xt;yt] with mask [0;1].

After the process of forward noising where T -step forward random disturbance is applied, the z0
is finally transformed into the partial Gaussian noise with yT ∼ N (0, I).

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (2)

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1) (3)

where t = 1, 2, ..., T and {βt ∈ (0, 1)}Tt=1 are the variance schedule. A reparameterization trick
could be applied to the above process to attain a closed-form representation of sampling zt at any
arbitrary time step t. Let αt = 1− βt and ᾱt =

∏t
i=1 αi, the equation is reduced to:

zt =
√
αtzt−1 +

√
1− αtϵt−1 =

√
αtαt−1zt−2 +

√
1− αtαt−1ϵ̄t−2

=... =
√
ᾱtz0 +

√
1− ᾱtϵ,

(4)

where ϵt−1, ϵt−2, · · · ∼ N (0, I) and ϵ merges all the Gaussians. In the end:

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I) (5)

A sqrt noise schedule is applied according to the Diffusion-LM [33], that is, ᾱt = 1−
√
t/T + s

with s as a small constant at the start of the noise level.

Posterior q(zt−1|zt, z0). Derived by Bayes’ rule, the posterior is given by:

q(zt−1|zt, z0) = q(zt|zt−1, z0)
q(zt−1|z0)
q(zt|z0)

(6)

Given the above relationship, the posterior is still in Gaussian form. After applying the Eq. (4) to it,
the mean of q(zt−1|zt, z0) could be derived:

µt(zt, z0) =

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
ᾱt−1(1− αt)

1− ᾱt
z0, (7)

Backward generative process pθ(z0:T |zT ). After the forward noising process is defined and
the training is completed, the reverse denoising process then denoises zt, aiming to recover original
z0 with the trained Diffuseq model zθ(zt, t). This process is defined as:

pθ(z0:T ) = pθ(zT )

T∏
t=1

pθ(zt−1|zt) (8)

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σθ(zt, t)), (9)
and the initial state pθ(zT ) is defined as N (0, I).
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Training objective LVLB. Inherited from Diffuseq [14], the training objective is to recover the
original z0 by denoising zt as in Eq. (8). The learning process as Eq. (9) is modeled by Diffuseq:
zθ(zt, t), where the µθ(·) and σθ(·) serve as the parameterization of the predicted mean and
standard deviation of q(zt−1|zt) in the forward noising process respectively. The input xt serves
as the condition during the reverse denoising process as the partial noising is adopted in the
forward noising.

Typically, a transformer architecture is adopted to model zθ, which is capable of modeling the
semantic relation between xt and yt instinctively. The variational lower bound (LVLB) is computed
as follows:

LVLB(w
z) = Eq(z0|wz)

[
log

q(zT |wz)

pθ(zT )︸ ︷︷ ︸
Prior loss

+LVLB(z0)︸ ︷︷ ︸
Diffusion loss

− log pθ(w
z|z0)︸ ︷︷ ︸

Rounding loss

]
, (10)

where the diffusion loss is the same as the continuous diffusion loss in DDPM [21], which is given
by:

LVLB(z0) = Eq(z1:T |z0)

[
log

q(zT |z0)
pθ(zT )︸ ︷︷ ︸
LT

+

T∑
t=2

log
q(zt−1|z0, zt)
pθ(zt−1|zt)︸ ︷︷ ︸

LT−1+···+L1

−log pθ(z0|z1)︸ ︷︷ ︸
L0

]
. (11)

Here the prior loss and LT is considered as a constant when the noising schedule q is fixed and
pθ(zT ) = N (0, I).

After reweighting each term (i.e., treating all the loss terms across time-steps equally) as in Ho et al.
[21] and using the Monte Carlo optimizer, the training objective can be further simplified as:

min
θ

LVLB(w
z) → min

θ
Eq(z0:T |wz)

[
T∑

t=2

||z0 − zθ(zt, t)||2 + ||EMB(wz)− zθ(z1, 1)||2 − log pθ(w
z|z0)

]

→ min
θ

[
T∑

t=2

||y0 − z̃θ(zt, t)||2 + ||EMB(wy)− z̃θ(z1, 1)||2 +R(||y0||2)

]

→ min
θ

[
T∑

t=1

||y0 − z̃θ(zt, t)||2 +R(||y0||2)

]
,

(12)
where z̃θ(zt, t) is used to denote the fractions of recovered z0 corresponding to y0. R(||y0||2)) is
the regularization term which regularizes the embedding learning. The embedding function is shared
between source and target sequences, contributing to the joint training process of two different feature
spaces.

A.2 Pre-trained Plaid

The Plaid model [18] mostly adopts the variational diffusion model (VDM) framework [28] and we
illustrate its forward, reverse, and loss calculations in this section. When fine-tuning Plaid 1B, we
use the VDM formulation and apply the same sequence-to-sequence modification as in DiffuSeq.
This involves imposing partial noise on zt and keeping the source condition sentence anchored as
un-noised.

Forward diffusion process q(zt|z0) and q(zt|zs). The distribution of latent zt conditioned on z0
is given by:

q(zt|z0) = N (αtz0, σ
2
t I). (13)

After reparameterization, we have z0 = (zs − ϵ1σs)/αs and zt = (αt/αs)zs − (αtσs/αs)ϵ1 +σtϵ2,
where ϵ1 ∼ N (0, I) and ϵ2 ∼ N (0, I). Then after merging two uniform Gaussians, the distribution
of zt given zs, for any 0 ≤ s < t ≤ 1, is given by:

q(zt|zs) = N
(
αt|szs, σ

2
t|sI

)
, (14)
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where αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ

2
s . The variance-preserving special case gives αt =√

1− σ2
t . In VDM, the noise schedule αt and σ2

t , which specify how much noise to add at each
time in the diffusion process, are parameterized as a scalar-to-scalar neural network η that satisfies
σ2
t = sigmoid (γη(t)) and α2

t = sigmoid (−γη(t)). This is different from previous practices that
use a predefined function, e.g., DDPM [21] set the forward process variances to constants increasing
linearly from β1 = 10−4 to βT = 0.02.

Posterior q(zs|zt, z0). The joint distribution of latent variables (zs, zt, zu) at any subsequent
timesteps 0 ≤ s < t < u ≤ 1 is Markov: q(zu|zt, zs) = q(zu|zt). Given the distributions above, we
can verify through the Bayes rule that q(zs|zt, z0), for any 0 ≤ s < t ≤ 1, is also Gaussian given by:

q(zs|zt, z0) = N (µQ(zt, z0; s, t), σ
2
Q(s, t)I) (15)

where σ2
Q(s, t) = σ2

t|sσ
2
s/σ

2
t (16)

and µQ(zt, z0; s, t) =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

z0. (17)

Backward generative process pθ(zs|zt). In VDM, the reverse process or the generative process
is also defined as a Gaussian that satisfies pθ(zs|zt) = q(zs|zt, z0 = zθ(zt; t)), i.e. the same as
q(zs|zt, z0), but with the original data z0 replaced by the output of the denoising model zθ(zt; t).
Therefore, based on Eq. (17), the mean of pθ(zs|zt) is given by:

µθ(zt; s, t) =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

zθ(zt; t), (18)

and the variance is the same as Eq. (16).

Continuous diffusion loss term LVLB(z0). The prior loss and rounding loss in Eq. (10) can be
(stochastically and differentiably) estimated using standard techniques. We now derive an estimator
for the diffusion loss in VDM. Different from Eq.(12) which simplifies the loss term by reweighting,
VDM adopts the standard loss formulation. We begin with the derivations of diffusion loss for
discrete-time diffusion with t ∈ {1, . . . , T}, which is given by:

LVLB(z0) =

T∑
t=1

Eq(zt|z0)DKL[q(zs|zt, z0)||p(zs|zt)], (19)

and we derive the expression of DKL(q(zs|zt, z0)||pθ(zs|zt)) as follows:

DKL(q(zs|zt, z0)||pθ(zs|zt)) =
1

2σ2
Q(s, t)

||µQ − µθ||22 (20)

=
σ2
t

2σ2
t|sσ

2
s

α2
sσ

4
t|s

σ4
t

||z0 − zθ(zt; t)||22 (21)

=
1

2σ2
s

α2
sσ

2
t|s

σ2
t

||z0 − zθ(zt; t)||22 (22)

=
1

2σ2
s

α2
s(σ

2
t − α2

t|sσ
2
s)

σ2
t

||z0 − zθ(zt; t)||22 (23)

=
1

2

α2
sσ

2
t /σ

2
s − α2

t

σ2
t

||z0 − zθ(zt; t)||22 (24)

=
1

2

(
α2
s

σ2
s

− α2
t

σ2
t

)
||z0 − zθ(zt; t)||22 (25)

=
1

2
(SNR(s)− SNR(t)) ||z0 − zθ(zt; t)||22, (26)

where SNR(t) = α2
t /σ

2
t and its physical meaning is signal-to-noise ratio.
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After reparameterization of zt, the diffusion loss function becomes:

LVLB(z0) =

T∑
t=1

Eq(zt|z0)[DKL(q(zs|zt, z0)||pθ(zs|zt))] (27)

=
1

2
Eϵ∼N (0,I)[

T∑
t=1

(SNR(s)− SNR(t)) ||z0 − zθ(zt; t)||22]. (28)

In practice, we follow Plaid to use the continuous-time diffusion formulation, where t ∈ [0, 1], and
we can express L as a function of τ with τ → 0:

LVLB(z0) =
1

2
Eϵ∼N (0,I)

∫ 1

0

[
SNR(t− τ)− SNR(t)

τ
||z0 − zθ(zt; t)||22

]
dt, (29)

and let SNR′(t) denote the derivative of the SNR function, this then gives:

LVLB(z0) = −1

2
Eϵ∼N (0,I)

∫ 1

0

SNR′(t) ∥z0 − zθ(zt; t)∥22 dt. (30)

A.3 Pre-trained SEDD

SEDD [37] is a discrete diffusion language model built based on discrete score matching [40], which
generalizes score matching [45, 46] to the discrete data. We now denote x as a categorical random
variable and the following derivation can be extended to a sequence of variable x as well.

Concrete score. Instead of directly modeling pθ(x) to approximate original data distribution q(x),
the core idea of discrete score matching is to learn a quantity known as the concrete score [40]
through a neural network:

sθ(x)y =
pθ(y)

pθ(x)
=

efθ(y)/Z

efθ(x)/Z
=

efθ(y)

efθ(x)
, (31)

which eliminates normalizing constant Z as in the energy-based model. In particular, this quantity
is the categorical equivalent of the famous score function ∇x log p in continuous space. Regarding
the choice of y, if we model the ratio for every possible y, we would have V items given V as the
dimension of x, and NV items for x given N as the sequence length of x, which is computationally
intractable. So we sparsify and only model "relevant" ratios based on whether y is "close" to x. These
relevant positions will be denoted as y ∼ x, e.g., all sentences y that differ from x with Hamming
distance 1.

Training objective. Lou et al. [37] define a learning objective named score entropy to learn the
neural network, which is given by:

Ex∼q

[∑
y∼x

sθ(x)y −
q(y)

q(x)
log sθ(x)y

]
. (32)

Taking a derivative w.r.t. s and setting it to 0, we see that this occurs when sθ(x)y = q(y)
q(x) , which

can be easily checked to be globally optimal as the function is convex as a function of s. To handle
the unknown term q(y)

q(x) , they further propose denoising score entropy motivated by denoising score
matching [45] based on q(xt) =

∑
x0

qt|0(xt|x0)q0(x0):

Ex0∼q0,t∼U [0,T ],xt∼qt|0(xt|x0)

[∑
y∼xt

sθ(xt, t)y −
qt|0(y|x0)

qt|0(xt|x0)
log sθ(xt, t)y

]
, (33)

where qt|0(·|x0) is a perturbation of a base density q(·) by a transition kernel, and the transition ratio
qt|0(y|x0)

qt|0(xt|x0)
is known by design.
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Forward diffusion process. The transition qt|0(xt|x0) is a vector that represents a categorical
distribution, and can be defined by a forward diffusion process qt|0(xt|x0) = exp(σ(t)Q)x0

, where
σ(t) ∈ R≥0 is the cumulative noise

∫ t

0
σ(s)ds at timestep t with a value close to 0 when t is small

and increasing when t growing. Lou et al. [37] use two standard transition matrices with special
structures to implement matrix Q following prior work [1]:

Quniform =


1− V 1 · · · 1

1 1− V · · · 1
...

...
. . .

...
1 1 · · · 1− V

 (34)

Qabsorb =


−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
1 1 · · · 1 0

 (35)

One can view the above diffusion process by taking small ∆t Euler steps and randomly sampling the
resulting transitions:

qt+∆t|t(xt+∆t = y|xt = x) ∝ δxy +Qt(y, x)∆t+O(∆t), (36)

where Qt = σ(t)Q, and O(∆t) represents terms that tend to zero at a faster rate than ∆t.

Backward generative process. To simulate the diffusion defined above, one can use the Euler
strategy to derive the time reversal of the forward process:

qt−∆t|t(xt−∆t = y | xt = x) ∝ δxy +Rt(y, x)∆t+O(∆t), (37)

where Rt is the reverse transition rate matrix that can be derived using Bayes rule: Rt(y, x) =
qt(y)
qt(x)

Qt(x, y). Each column of Rt represents the transition probability from a token at timestep t to
other tokens at timestep t−∆t. Let pθ(xt−∆t = y | xt = x) = qt−∆t|t(xt−∆t = y | xt = x), we
have:

pθ(xt−∆t = y | xt = x) ∝ δxy +Rθ
t (y, x)∆t+O(∆t), (38)

where Rθ
t (y, x) =

∑
x0

q0|t(x0|x)
qt|0(y|x0)

qt|0(x|x0)
Qt(x, y) = sθ(x, t)yQt(x, y). For a sequence of random

variables x, this is inefficient because only one position is modified per step. A natural alternative has
been to use τ -leaping [12], which performs an Euler step at each position simultaneously.

A.4 Conditional ODE solver

The sampling of continuous diffusion models can be implemented by solving the diffusion ODEs [45,
46]. Specifically, sampling by diffusion ODEs needs to discretize the following ODE [46] with t
changing from T to 0:

dzt
dt

= f(t)zt +
g2(t)

2σt
ϵθ(zt, t), zT ∼ N (0, σ̃2I). (39)

The data prediction model zθ(zt, t) predicts the original data z0 based on the noisy zt, and its
relationship with ϵθ(zt, t) is given by zθ(zt; t) := (zt − σtϵθ(zt, t))/αt [28]. Therefore, the
equivalent diffusion ODE w.r.t. the data prediction model zθ is:

dzt
dt

=

(
f(t) +

g2(t)

2σ2
t

)
zt −

αtg
2(t)

2σ2
t

zθ(zt, t), zT ∼ N (0, σ̃2I), (40)

where the coefficients f(t) = d logαt

dt , g2(t) = dσ2
t

dt − 2d logαt

dt σ2
t [28].

Given an initial value zs at time s > 0 and denote ẑθ(ẑλ, λ) := zθ(ztλ(λ), tλ(λ)) as the change-of-
variable form of zθ for λ, the solution zt at time t ∈ [0, s] of diffusion ODEs in Eq. (40) is:

zt =
σt

σs
zs + σt

∫ λt

λs

eλẑθ(ẑλ, λ)dλ, (41)
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which can be proved by taking derivative w.r.t. t in Eq. (41):

dzt
dt

=
dσt

dt

zs
σs

+
dσt

dt

∫ λt

λs

eλẑθ(ẑλ, λ)dλ+
dλt

dt
σte

λt ẑθ(ẑλt , λt)

=
dσt

dt

zt
σt

+
dλt

dt
σte

λt ẑθ(ẑλt
, λt)

=

(
f(t) +

g2(t)

2σ2
t

)
zt
σt

− αtg
2(t)

2σ2
t

zθ(zt, t),

and this gives us the exact formulation as in Eq. (41).

Based on Eq. (41), the aim of an ODE solver is to approximate the exact solution at time ti given the
previous value zti−1

at time ti−1. Denote z
(n)
θ (λ) := dnẑθ(zλ,λ)

dλn as the n-th order total derivatives of
zθ w.r.t. logSNR λ. Lu et al. [38, 39] show that by taking the (k− 1)-th Taylor expansion (k ≥ 1) at
λti−1

for zθ w.r.t. λ ∈ [λti−1
, λti ] and substitute it into Eq. (41) with s = ti−1 and t = ti, we have

zti =
σti

σti−1

zti−1 + σti

k−1∑
n=0

z
(n)
θ (ẑλti−1

, λti−1)︸ ︷︷ ︸
estimated

∫ λti

λti−1

eλ
(λ− λti−1

)n

n!
dλ︸ ︷︷ ︸

analytically computed

+O(hk+1
i )︸ ︷︷ ︸

omitted

, (42)

where the integral
∫
eλ

(λ−λti−1
)n

n! dλ can be analytically computed by integral-by-parts. Therefore,
to design a k-th order ODE solver, we only need to estimate the n-th order derivatives z(n)θ (λti−1

)

for n ≤ k− 1 after omitting the O(hk+1
i ) high-order error terms. For k = 1, Eq. (42) becomes (after

omitting the O(hk+1
i ) terms)

zti =
σti

σti−1

zti−1
+ σtizθ(zti−1

, ti−1)

∫ λti

λti−1

eλdλ =
σti

σti−1

zti−1
− αti(e

−hi − 1)zθ(zti−1
, ti−1),

(43)
where hi := λti − λti−1

for i = 1, . . . , T .

Since DoT is conditionally trained with partial nosing, we introduce a conditional form of Eq. (43)
when adapting the above ODE solver into the inference stage. For k = 1, this is given by:

yti =
σti

σti−1

yti−1
− αti(e

−hi − 1)z̃θ(zti−1 , ti−1),

where zti−1
= [x;yti−1] and z̃θ(zt, t) is used to denote the fractions of recovered z0 corresponding

to y0.

B Experiment Details

B.1 Dataset Statistics

We list the statistics of our used datasets in Table 4. For the digit multiplication datasets and GSM8K
dataset, we use processed datasets from Implict CoT6 [7]. For boolean logic task, we construct the
training and test dataset using the method from DyVal7 [68]. All datasets contain 1000 test examples
except GSM8K, which contains 1319 examples.

B.2 Details of Baselines

When fine-tuning GPT2, we train 40 epochs using the learning rate of 1e-4 for boolean logic and
5e-4 for others. During inference, we use greedy decoding for single decoding. For self-consistency,
following the original paper [52], we apply temperature sampling with T = 0.5 and truncated at the
top-k (k = 40) tokens with the highest probability for diverse generation. All GPT2-based models

6https://github.com/da03/implicit_chain_of_thought
7https://github.com/microsoft/promptbench/blob/main/examples/dyval.ipynb
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Table 4: Training set size, average number of tokens in the input, intermediate, and output texts
respectively when using Plaid tokenizer on the validation set and average number of rationales.

Dataset Size #Input token #Intermediate token #Output token #Rationales
4x4 808k 16 84 15 4
5x5 808k 20 137 19 5
Boolean logic 99k 112 134 3 10
GSM8K-Aug 378k 61 34 2 2.7

use GPT2Tokenizer with vocabulary size of 50257. All datasets are trained using sequence length
of 256 except boolean logic, which uses 384 length.

Note in Table 1, we compare Plaid DoT with the fine-tuned GPT2 small, given that the Plaid
1B [18] model exhibits similar perplexity to GPT2 small. This might put our Plaid DoT model at a
disadvantage in terms of inference speed, as the parameters of Plaid 1B are nearly 10× greater than
those of GPT2 small.

For Transformer-scratch baseline [51], we use 6 transformer encoder layers and 6 transformer decoder
layers. We employ the tokenizer from bert-base-uncased with a vocabulary size of 30522. The
learning rate is set to 1e-5, and we train for 60k steps with a batch size of 128.

For ChatGPT, we use OpenAI api8 with the following prompt in 5-shot.

Answer the final question
following the format of the
given examples.

Example problems:

Q: {query}
A: {answer}
...
Question to answer:
Q:

Table 5: Prompt for ChatGPT.

Please note that the throughput of ChatGPT in Table 1 only measures the response speed of ChatGPT
and does not represent the actual generation speed of the model. As a blackbox commercial product,
ChatGPT may employ various optimization techniques to speedup generating responses to enhance
user experiences.

B.3 DoT Implementation Details

We conduct all the experiments on NVIDIA V100-32G GPUs, and we use 8 GPUs for training and
sampling. We resort to half precision (fp16) instead of bfloat16 (bf16) as V100 GPU doesn’t
support bf16, and we don’t observe any number explosion. By default, we train DoT from scratch on
three datasets respectively, including the four-digit (4× 4), five-digit (5× 5) multiplication datasets,
and the GSM8k dataset. Additionally, we fine-tune the pre-trained model Plaid-1B on the GSM8K
dataset with DoT to explore its effectiveness further.

For DoT trained from scratch. We use 12 layers of transformer and bert-base-uncased vocabulary.
We preprocess the four-digit (4 × 4) and five-digit (5 × 5) multiplication datasets to prepare for
the training process of the DoT multi-path variant, and sampling from it. The learning rate is 1e-4
and we train for 60k steps with the batch size of 128 and max sequence length of 128. For digit

8https://platform.openai.com/docs/api-reference
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multiplication in Table 1, we use sampling step T = 1 to achieve high throughput while keeping the
accuracy. For boolean logic dataset, we use T = 2.

For DoT fine-tuned from Plaid, we set the training steps of the DoT and multi-pass DoT to be 120k
and 30k respectively, as we find more training steps will lead to performance degradation. The
learning rate is set to 1e-4 for boolean logic and 3e-4 for other datasets. The max sequence length
is set to 384 for the boolean logic dataset and 256 for others. We use Adam optimizer [29]. During
tokenization, we use Plaid’s tokenizer and we treat all the digits as individual tokens. During training,
we set ϵmin to be 0.95 as we find decreasing the probability of oracle demonstration hinders model
training. We choose glancing sampling γ = 0.01 and self consistency m = 20. Following Gulrajani
and Hashimoto [18], we also adopt self-conditioning [5] during training. During inference, we set
the scoring temperature to 0.5 to sharpen the predicted noise distribution. We also use soft logits with
a temperature of 0.5 to produce more diverse samples. By default, we use sampling step T = 64 to
ensure accuracy. Training DoT and DoT require 29h and 10h, respectively. For DoT trained from
SEDD, we set the training steps of the DoT and multi-pass DoT to be 200k, with other parameters
being the same as when training Plaid. For all the experiments, we have verified the statistical
significance by running them multiple times.

B.4 Additional Results

Table 6: Comparison to larger AR models.

Params Accuracy
GPT-2-medium CoT 355M 43.9
Mistral CoT 7B 68.8
Llama CoT 7B 59.0
SEDD-medium DoTMP 424M 53.5

Comparison to larger open language models. We compare our model with LoRA fine-tuning
of AR LLMs on the same GSM-Aug dataset, which is listed in Table 6. Please note that the current
diffusion pretrained model is much smaller than Llama 7B, so this comparison is not fair and we just
list them for reference. We have validated that our DoT is better than the same scale autoregressive
model GPT-2, which shares a similar architecture with Llama. We believe that further exploration of
diffusion language models will lead to larger models that can compete with current LLMs, allowing
DoT to achieve results more comparable to Llama.

Table 7: Comparison between DoT and no-DoT (Answer-only).

Accuracy
GPT-2-small Answer-only 13.3
GPT-2-small CoT 39.0
Plaid Answer-only 12.4
Plaid DoTMP 37.7
SEDD-small Answer-only 29.1
SEDD-small DoTMP 43.2

Comparison with no-DoT finetune. We conduct the answer-only setting to further validate the
effectiveness of DoT. The results in Table 7 reveal that fine-tuning diffusion models solely with
answer data leads to inferior performance compared to DoT, mirroring the degradation of AR models
in the absence of CoT.

Throughput Comparison. We have shown how T affects performance on grade school math in
Figure 3, and here we also show how T affects throughput for Plaid DoTMP, as in Table 8. The
relationship between throughput and T appears to be nearly linear.

Comparison of the reasoning paths between DoT and DoTMP. We observe that DoTMP

outperforms DoT in correctness regarding the reasoning paths, while DoT slightly excels in diversity
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Table 8: Throughput comparison when increasing the number of timesteps T for Plaid DoTMP.

T Accuracy Throughput
1 18.2 6.6
2 35.9 3.4
4 36.7 1.7
8 36.4 0.9
16 36.1 0.4
32 37.4 0.2
64 37.7 0.1
128 37.7 .05

as depicted in Figure 4(b). Below we show some examples where DoTMP can predict the correct
reasoning path while DoT fails:

Query: The Kennel house keeps 3 German Shepherds and 2 Bulldogs. If a German Shepherd
consumes 5 kilograms of dog food and a bulldog consumes 3 kilograms of dog food per day.
How many kilograms of dog food will they need in a week?
DoT: «3∗5=15» «7∗3=21» «15+21=36» #### 36
DoTMP : «3∗5=15» «2∗3=6» «15+6=21» «21∗7=147» #### 147

Query: Skyler has 100 hats on his hand with the colors red, blue, and white. Half of the hats
are red, 3/5 of the remaining hats are blue, and the rest are white. How many white hats does
Skyler have?
DoT: «1/2∗100=50» «3/5∗50=30» «100-30=70» #### 70
DoTMP : «100/2=50» «100-50=50» «50∗3/5=30» «50-30=20» #### 20

B.5 Other Attempts

For the ablation design for DoT fine-tuning in Table 2, we have tried to fine-tune a decoder-only
autoregressive language model (i.e., GPT2 here), where we only change the base model from Plaid
1B to GPT2 large, remove the causal mask and keep all other diffusion training settings the same
with the Plaid fine-tuning. In this setting, even though the model is formulated and trained in the
diffusion manner, it still can not predict the right format of answers. This experiment may indicate
that a pre-trained diffusion model is necessary for the further fine-tuning of downstream tasks.

Regarding datasets, we also try to mix up four-digit (4 × 4) and five-digit (5 × 5) multiplication
datasets for training and testing, considering that the number of rationales is different in these two
tasks. As for the result, the trained model learns when to conclude the computation and can attain
100% accuracy.

C Discussion about base models

Our DoT approach is constrained by the pre-training and fine-tuning paradigm due to the not-strong-
enough base models. This lags behind the current trend of instruction-tuning LLMs and pursuing
the generalization of LMs across various tasks. Nevertheless, considering the pre-trained diffusion
models are still in their early stages and the lack of scaled pre-trained diffusion models, our study is a
preliminary exploration to show the potential of diffusion models for reasoning tasks, and we believe
that with more powerful pre-trained diffusion models and post-instruction tuning, DoT can attain the
generalization capabilities of today’s LLMs and yield further advantages.

D Boarder Impacts

Our work contributes to the understanding of denoising generative models and enhances their
generation capabilities within certain discrete text reasoning datasets. The proposed DoT with
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diffusion language models challenges autoregressive models with CoT, achieving competitive
performance. While there is still a large gap with modern large autoregressive language models
such as ChatGPT, we believe DoT can benefit more with future work on scaling diffusion language
models. However, we acknowledge that deep generative models, as powerful tools for learning from
unstructured data, can have detrimental societal impacts if misused. Specifically, these models can
facilitate the spread of misinformation by reducing the resources required to create realistic fake
content. Additionally, the generated samples from these models accurately reflect the statistics of
their training datasets. Consequently, if these samples are interpreted as objective truth without
considering the inherent biases present in the original data, they can perpetuate discrimination against
minority groups.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details of the dataset, training infrastructure, and implementa-
tions in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
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Answer: [Yes]

Justification: We have uploaded the code to reproduce our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: We provide the implementation details in Section 4.1 and Appendix B. We
also provide the official code implementation in ...

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: Please see Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see Appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please see Section 4.1 and Appendix B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The license detail is provided in the uploaded code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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