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Abstract

Speech serves as a ubiquitous input interface for embedded mobile de-
vices. Cloud-based solutions, while offering powerful speech understanding
services, raise significant concerns regarding user privacy. To address this,
disentanglement-based encoders have been proposed to remove sensitive infor-
mation from speech signals without compromising the speech understanding func-
tionality. However, these encoders demand high memory usage and computation
complexity, making them impractical for resource-constrained wimpy devices.
Our solution is based on a key observation that speech understanding hinges on
long-term dependency knowledge of the entire utterance, in contrast to privacy-
sensitive elements that are short-term dependent. Exploiting this observation, we
propose SILENCE, a lightweight system that selectively obscuring short-term de-
tails, without damaging the long-term dependent speech understanding perfor-
mance. The crucial part of SILENCE is a differential mask generator derived from
interpretable learning to automatically configure the masking process. We have
implemented SILENCE on the STM32H7 microcontroller and evaluate its efficacy
under different attacking scenarios. Our results demonstrate that SILENCE offers
speech understanding performance and privacy protection capacity comparable to
existing encoders, while achieving up to 53.3× speedup and 134.1× reduction in
memory footprint.

1 Introduction

Privacy concern for cloud speech service The volume of speech data uploaded to the cloud for
spoken language understanding (SLU) is steadily increasing [1, 2, 3], particularly in ubiquitous
wimpy devices where textual input is inconvenient [4, 5, 6], e.g., home automation devices [7],
smartwatches [8], telehealth sensors [9] and smart factory sensors [10] . However, exposing raw
speech signal to the cloud raises privacy concerns [11]. It was revealed that contractors regularly
listened to confidential details in Siri recordings to improve its accuracy [12]. This included private
discussions, medical information, and even intimate moments.

There are many aspects of potential privacy leakage in cloud-based SLU. Among them: biometric
or contextual privacy leakage have been well studied and somewhat solved by removing information
relevant to such tasks without compromising the SLU accuracy [13, 14]; transcript protection (espe-
cially sensitive entities) is more challenging since it is deeply entangled with the SLU task itself. As
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Figure 1: Illustration of offloaded speech understanding on resource-constrained devices and its
privacy protection.

shown in Figure 1, this paper focus on ensuring that cloud-based systems could efficiently classify
the intent of SLU task (e.g., scheduling appointments or controlling home devices) while refraining
from identifying the concrete entities (e.g., unintended names or passwords) in the spoken utterance,
i.e., high word error rate (WER) of Automatic Speech Recognition (ASR) task. This is also a setting
commonly used in speech privacy protection [15, 16, 17, 11, 18].

Prior approaches A prevalent method for private speech processing is employing encoders1 based
on disentanglement representation learning [15, 16, 19, 20], as illustrated in Figure 1(b). Those en-
coders extract the speech representations using pre-trained acoustic models, e.g., wav2vec [21, 16],
conformer [22, 20] and Preformer [23, 15]. Furthermore, they promote representation disentangle-
ment through adversarial training [24]. For example, PPSLU [15] uses a 12-layer transformer-based
Preformer as its encoder.

As a result, disentanglement-based encoders still demand considerable computational resources,
often exceeding tens of GFLOPs, to achieve effective disentanglement [25]. They are also memory-
intensive, often comprising tens of millions of parameters. Consequently, they are unsuitable for
embedded devices with limited memory. Moreover, it takes time-consuming adversarial training to
disentangle the encoded representation for each specific SLU task. This aspect limits the flexibility
and scalability for emerging SLU tasks. More motivating details will be presented in §2.2.

In this paper, we aim to achieve the real-time, privacy-preserving offloading of speech understanding
task on wimpy devices like STM32H7 microcontroller [26] with only 1MB RAM. This goal neces-
sitates a novel encoder design that must be both lightweight and effective in filtering out sensitive
information, as illustrated in Figure 1(c).

Our solution We therefore present SILENCE, a SImpLe ENCodEr designed for efficient privacy-
preserving SLU offloading. It is based on the asymmetric dependency observation: SLU intent
extraction (e.g., scenario identification) typically requires only long-term dependency knowledge
across the entire utterance, while ASR task (e.g., recognizing individual words or phrases) needs
short-term dependency, as confirmed by our experiments in §3.1. Based on it, SILENCE strategically
partitions the utterance into several segments, selectively masking out the majority to enhance pri-
vacy by obscuring short-term details, without significantly damaging the long-term dependencies.
The processed audio waveform is then transmitted to the cloud for SLU intent analysis. Addition-
ally, we integrate a differential mask generator, inspired by interpretable learning methods [27], to
optimize performance by automatically identifying how many and which segments to mask.

Results We deploy SILENCE on the STM32H7 microcontroller [26] and assess its performance
using the SLURP dataset [28] in both black-box and white-box attack environments. SILENCE
achieves 81.2% intent classification accuracy on SLURP, surpassing previous privacy-preserving
SLU systems by up to 8.3%. Regarding privacy protection, SILENCE offers comparable security

1Note that these encoders are not specifically transformer encoders; rather, they can be implemented using
any NNs to encode speech signals.
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to earlier systems, with a word error rate of up to 81.6% and an entity error rate of 90.7% under
malicious ASR attacks. Even against white-box attacks, where attackers are strongly assumed to
have the same encoder structure and weights as SILENCE, plus partial data from malicious clients,
SILENCE maintains 67.3% word error rate and 64.3% entity error rate. Additionally, SILENCE
proves to be resource-efficient and feasible for wimpy devices, using only 394.9KB of memory
and taking just 912.0ms to encode a 4-second speech signal. Integrated with RPI-4B for a fair
comparison, SILENCE uses up to 134.1× less memory and operates up to 53.3× faster than prior
systems. The accuracy of SILENCE is only 7% lower than unprotected SLU systems.

Contribution We have made the following contributions.

• Based on the observation of asymmetric dependency between SLU and ASR tasks, we
propose SILENCE, a simple yet effective encoder system for privacy-preserving SLU of-
floading.

• We are the first to retrofit interpretable learning methods to automatically configure the
masking process for a better balance between privacy and utility in speech understanding
tasks.

• We evaluate SILENCE on a wimpy microcontroller unit and demonstrate its effectiveness
under various attack scenarios.

2 Related Work and Background

2.1 Privacy-preserving SLU

Spoken Language Understanding (SLU) is a critical component of modern voice-activated systems,
responsible for interpreting human speech and translating it into structured, actionable commands.
For instance, when a user says, "Set a meeting for tomorrow at 10 AM," the SLU system might map
this to a structured intent such as {scenario: Calendar, action: Create_entry}. Long-
dependent intend classification is currently the main objective of SLU understanding literature and
has a wide range of application scenarios [29, 30, 31, 32, 33, 28, 34, 35, 36].

Evolution of SLU Systems The evolution of SLU systems has seen a shift from traditional two-
component systems, comprising ASR and Natural Language Understanding (NLU), to modern end-
to-end neural networks [37, 38]. These advanced systems bypass the intermediate textual represen-
tation and directly map speech signals to their semantic meaning, enhancing efficiency and reducing
error propagation. A typical end-to-end SLU model features an encoder, often with convolution and
attention-based elements, and a decoder, including a transformer decoder and a connectionist tem-
poral classification decoder. Many SLU systems incorporate encoders from pre-trained ASR models
like HuBERT [39], replacing the original ASR decoder with one tailored for SLU tasks.

Threat Model Our threat model aligns with prior work [15, 16] where users (the victims) actively
offloads their audio data to the cloud server (the adversary) for intended SLU tasks. Upon receiving
the data, the adversary may employ automatic speech recognition to transcribe the audio and identify
private entities [17, 11, 18]. Note that the transcriptions are often exceedingly detailed, containing
much more information than the users intend to disclose. The goal of this paper is to ensure that
the victims can reliably obtain the predefined SLU intent from the adversary, while preserving the
adversary from discerning sensitive details or private entities in the transcript.

For instance, home pods might capture recordings of confidential daily interactions alongside ex-
plicit commands, presenting a paradigmatic case for SILENCE. Without SILENCE, over 80% of our
private daily conversations could be automatically recognized and stored for unforeseen usage as
will be analyzed in §5.1.

2.2 Inefficiency of Existing Approaches

Privacy-preserving methods Crypto-based approaches, such as HE [40] and MPC [41], have been
proposed to provide encrypted computation. Unfortunately, they are technically slow and thus im-
practical for deployment on resource-constrained audio devices due to the significant increase in
computation and communication complexity. For example, MPC-based PUMA [42] takes 5 min-
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utes to complete one token inference, which is far too slow for real-time. Voice conversion is another
method to protect speech content. Prεεch [43] integrates voice conversion with GPT-based gener-
ated noise protect privacy, but it is far from feasible for deployment on wimpy devices. Traditional
peripheral devices, such as ultrasonic microphone jammers (UMJ), are designed to obscure raw
speech by inserting non-linearity noise, thereby preventing illegal eavesdropping[44, 18]; however,
they also corrupt speech semantics as well. A emerging and prevailing strategy is disentangling-
based encoders [16, 15, 19]; they aim to create a disentangled and hierarchical representation of the
speech signal devoid of sensitive data. But we reveal their performance issue next.
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Figure 2: Cost of disentangling-based encoders [15] for a 4-second audio inference.
We conduct preliminary experiments to measure the resource consumption of the disentangling-
based encoder of a pre-trained SLU model on a Raspberry Pi 4B (RPI-4B) [45] and Jetson TX2
(TX2) [46]. Our key observation is that disentangling-based privacy-preserving SLU system is too
resource-intensive for practical deployment. As illustrated in Figure 2, a disentanglement encoder
consumes 648.7MB memory and 12.8s for complete one inference on RPI-4B. Even in the strong
TX2 with GPU, the encoder still takes 593.0ms to complete one inference. Considering the network
latency, the end-to-end latency of the disentangling-based SLU offloading system only saves 0.7%
wall-clock time compared to the OnDevice inference without offloading, with a similar memory
footprint over 500M.

Implications Disentangling-based encoders is slow and memory-intensive due to the complex en-
coder structure designed to separate sensitive information from the speech signal. Given the limited
resource of wimpy devices, it is not practical for common privacy-preserving SLU scenarios. To
enable practical privacy-preserving SLU, the encoder structure and the inference process need to be
simplified.

3 SILENCE Design

3.1 System Design and Rationales

We introduce SILENCE to efficiently scrub raw audio for privacy-preserving SLU, as depicted in
Figure 3. The key idea of SILENCE is simple and novel: it masks out a portion of audio segments
before sending them to the cloud for SLU tasks. This design is based on an unique observation
shown in Figure 4(c): when a portion of audio segments is masked out, the ASR model becomes
incapable to recognize the phonemes in the masked frames, while the SLU model can still recognize
the intent.

B

Transcript: set a meeting for tomorrow at 10 AM

Intent: {scenario: Calendar, action: Create_entry}User

SILENCE Mask 
generator

Transcript: set a meeting for tomorrow at 10 AM

Intent: {scenario: Calendar, action: Create_entry}

Cloud

Figure 3: SILENCE overview. Red hard line represents the long-term dependency, while the green
dotted line represents the short-term dependency.
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Figure 4: Foundation of SILENCE: asymmetrical dependency. (a). ASR task is short-term dependent
on the peaky phoneme probability. (b). SLU task is long-term dependent on knowledge from the
whole utterance. (c). Empirical results.

Design rationale Why is SILENCE able to protect the sensitive entity privacy while maintaining
SLU accuracy? This capability is rooted in the asymmetrical dependency between the ASR and
SLU task.

Speech is composed of many meta phonemes, and the generation of a single meta phoneme depends
on its adjacent frame [11]. Dependency is defined as the length of frame that a model’s output
depends on. Figure 4(a) shows each phoneme is mainly dependent on a few frames, indicating short-
term dependency. This phenomenon is referred to as "peaky behavior" in the ASR literature [47]. In
contrast, an SLU model utilizes an attention-based decoder [39] to capture the relationship between
the entire utterance and the intent, implying that the intent is long-term dependent on the whole
utterance.

Formally, SILENCE is a simple encoder based on asymmetrical dependency-based masking. This
simple masking encoder is defined as: x̂ = x ⊙ Z, where x is the input audio signal, ⊙ represents
the element-wise multiplication, x̂ is the masked audio signal and Z is the binary masking vector
with the same dimension as x. Z consists of k uniform portion, with all 0s or 1s in one portion
to mask-out or preserve the complete adjacent frames, respectively. This simple encoder forms
the basis of SILENCE’s efficiency and privacy-preservation capacity, enabling secure offloading of
speech understanding tasks on wimpy devices.

The configuration challenges: Figure 4(c) demonstrates that the ratio of masked portion plays
a crucial role in balancing the privacy (WER-ASR) and utility (ACC-SLU). Currently, SILENCE
employs a trivial masking mechanism, necessitating clients to undertake a time-intensive hyper-
parameter adjustment about the extent and location of masking. Incorrect masking configurations
can result in significant loss of global long-term dependency, negatively affecting SLU accuracy,
or insufficient masking of sensitive information, thus compromising privacy. Therefore, we face
critical questions: how many and which portions should be masked?

3.2 Online Configurator for SILENCE

To address these challenges, we derive a differential mask generator from the interpretable learn-
ing [27] as a online configurator for SILENCE. This automatically generate the masking vector Z.
The mask generator is trained to identify how many and which portions to mask, optimizing the
privacy-utility balance.

Differentiable mask generator The configurator model aims to minimize the discrepancy between
masked and original output by generating a mask Z. Formally, we define the number of unmasked
portions as L0 loss:

L0(ϕ, x) =

n∑
i=1

1[R̸=0] (Zi) (1)

where ϕ is the mask generator, 1(·) is the indicator function. We minimize L0 for dataset D, ensuring
that predictions from masked inputs resemble those from the origin model:
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min
ϕ

∑
x∈D

L0(ϕ, x) (2)

s.t. D⋆[y∥ŷ] ≤ γ ∀x ∈ D (3)

where ŷ = f(x̂), y is the tokenized label, D⋆[y∥ŷ] is the KL divergence and the margin γ ∈ R>0 is
a hyperparameter.

Given that L0 is discontinuous and has zero derivative almost everywhere, and the mask generator ϕ
requires a discontinuous output activation (like a step function) for binary masks, we utilize a sparse
relaxation to binary variables [48, 49] instead of the binary mask during training.

Holistic workflow As shown in Figure 5, SILENCE encompasses two phases:

(1) Offline phase: (1a) First, SILENCE trains a differentiable mask generator. The client selects a
mask generator model, potentially a submodule of a pre-trained ASR model, such as HuBERT’s
CNN feature extractor. A small gate model is then integrated with this submodule. The combined
model processes the input audio and generates a mask. This mask selectively conceals parts of the
input, ensuring retention of only vital SLU information while hiding sensitive data. The masked
input is then forwarded to either a trusted cloud service or a local SLU model for obtaining masked
output. The mask generator is fine-tuned to minimize the discrepancy between the masked output
logits and the original intent, as defined in Equation (1-3).

(1b) Second, SILENCE adapts the cloud model . Here, the client forwards the masked input and a
specific SLU intent (e.g., "set alarm") to the cloud-based SLU model. The model undergoes fine-
tuning to adapt to the masked inputs. This process includes adjusting the model parameters for
accurate recognition and response to SLU commands based on the masked input.

(2) Online phase: In online speech understanding, the client sends the masked input to the cloud
SLU model. Using the adapted model, the cloud-based SLU accurately identifies and executes the
intended SLU action or response.

Configurator cost analysis Training the differentiable mask generator is affordable for the client.
Our experiments indicate that convergence is achieved with approximately 200 audio samples,
equivalent to 600 seconds of audio. This process takes up to 30 seconds on an A40 GPU. Adapting
the SLU model to each mask generator is a one-pass effort. This adaptation is relatively trivial, espe-
cially when starting from a fine-tuned SLU model rather than building from scratch. This aspect of
the process incurs minimal cost compared to the training of the cloud SLU model. Moreover, these
costs can be amortized over a large number of edge users in the long run, making it an economically
viable solution.

Remark Note that the mask generator is not developed for tagging sequences at a semantic level.
Rather, its design focuses on identifying segments that are more relevant to the SLU task. This task is
essentially a relatively straightforward binary classification problem, which is proven to be effective
in prior interpretable learning literature [27, 49] and light-weight enough for real-time inference.
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4 Implementation and Methodology

We have fully implemented the SILENCE prototype atop SpeechBrain [50], a PyTorch-based and
unified speech toolkit. As prior work [39], we use SpeechBrain to train the differential mask gener-
ator and simulate the cloud training process. After that, we deploy the trained mask generator into
the embedded devices and evaluate the end-to-end performance.

Hardware and environment Offline training is simulated on a server with 8 NVIDIA A40 GPUs.
The trained mask generator is deployed into the STM32H7 [26] or Raspberry PI 4 (RPI-4B) [45].
STM32H7 is a resource-constrained microcontroller with 1MB RAM. RPI-4B is a popular develop-
ment board with 4GB RAM. We embed the approaches not feasible to fit in the STM32H7 into the
RPI-4B.

Models We design four types of mask generator structures: (1) Random: a random binary vector
generator with 50% portion masked; (2) SILENCE-S: a learnable mask generator with only one MLP
gate; (3) SILENCE-M: a learnable mask generator with one HuBERT encoder layer and the gate; (4)
SILENCE-L: a learnable mask generator with three HuBERT encoder layers and the gate. As for the
cloud SLU model, we simulate it using the SoTA end-to-end SLU model [39]. It replaces the ASR
decoder of pre-trained HuBERT with SLU attentional decoder.

Dataset and Metrics We run our experiments on SLURP [28] and FSC [51]. FSC is a widely used
dataset for spoken language understanding research. SLURP’s utterances are complex and closer to
daily human speech, We select scenario classification accuracy to measure the SLU understanding
performance (ACC-SLU). Following prior work [15], we choose large-scale English reading corpus
LibriSpeech [52] for a multi-task protection scenario. In the multi-task protection scenario, not only
the SLU command utterance (SLURP/FSC) but also the background or the subsequent utterance
(LibriSpeech) are uploaded to the cloud. WER is used to measure the attack performance. More
specifically, we utilize WER-SLU to measure the attacker’s capacity to recognize the word infor-
mation in the uploaded SLU audio itself, and WER-ASR as the WER of recognized accompanying
audio, i.e., LibriSpeech dataset. We also report the private entity recognition error rate (EER) to
ensure that the cloud model is not able to recognize the private information in the speech signal. As
for latency, we sequentially fed test audios into the local model without any window processing2

and recorded the average forward time as the local execution time.

Baselines We compare SILENCE to the following alternatives: (1) OnDevice means the cloud SLU
model is downloaded and run locally on the client device. (2) AllOffload means the raw audio
is uploaded to the cloud for SLU inference. (3) VAE [16] is the vanilla variational auto-encoder
method that uses adversarial training to disentangle the private information from speech signal. (4)
PPSLU [15] is the state-of-the-art disentangling-based SLU privacy-preserving system, which uses
12 transformer layers to separate the SLU information into a part of the hidden layer and only sends
those hidden layers to the cloud for SLU inference.
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Mask 
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Figure 6: Mask generator and different attack scenarios, including both passive and active attacks.

2The average duration of test SLU snippets is 2.8 seconds, with a maximum of 21.5 seconds, which is
shorter than the maximum input window of speech models (e.g., 30 seconds for Whisper [53]).
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Attack scenarios. As illustrated in Figrue 6, we use five attacks encompassing both active and pas-
sive attacks: (1) Azure represents a passive black-box attacker scenario, in which the masked audio
is transmitted to Azure [54] for automatic speech recognition. (2) Whisper simulates a SoTA cloud-
based ASR model. This passive black-box attacker uses the pre-trained Whisper.medium.en
model [53], directly downloaded from HuggingFace [55]. (3) Whisper(White-box) constitutes
an active white-box attack. Here, we hypothesize that certain users are malicious and disclose the
mask generator’s structure and weights, along with their own audio data, to the Whisper attack
model. Whisper(White-box) then utilizes this collected data from malicious users to adapt the
pre-trained Whisper.medium.en model to the specific masking pattern. (4) U-Net is a traditional
inpainting model based on convolutional U-Net structure, commonly used in literature to actively
reconstruct missing audio signals [56, 57]. We utilize the SLURP training set and their masked coun-
terparts to train the inpainting model from scratch to reconstruct the missing audio. (5) CQT-Diff
is a neural diffusion model with an invertible Constant-Q Transform to leverage pitch-equivariant
symmetries [58], allowing it to effectively reconstruct audio without retraining.

Hyper-parameters During the offline phase in Figure 5, we use the Adam optimizer with a learning
rate of 1e-5 and a batch size of 4. For the inference step, we use the batch size of 1 to simulate the
real streaming audio input scenario. The end-to-end cloud SLU latency is measured by invoking
Azure APIs following previous work [59]. KL threshold λ is set as 0.15 for all mask generators.
Attack model is set as Whisper without special declaration. We have an illustrative example of the
generated masks on audios selected randomly from SLURP in supplimentary material.

5 Evaluation

5.1 End-to-end performance

SILENCE achieves comparable accuracy performance and privacy protection capacity to pre-
vious encoders. As shown in Figure 7, we compare the accuracy of SILENCE with all baselines.
OnDevice offloads no signals to the cloud and thus has the best privacy protection (WER=100).
It is observed that SILENCE could achieve up to 81.1% accuracy, with less than 7% accuracy loss
compared to unprotected AllOffload and local OnDevice SLU model. Its rationale is that we
mainly mask the short-dependent frames that does not significantly affect the SLU performance.
We also compare the performance of SILENCE with the SoTA privacy-preserving SLU system, i.e.,
PPSLU [15]. SILENCE achieves 7.2% higher accuracy than PPSLU which tries to apply complex non-
linear transformation to the hidden layer to prevent malicious re-construction, but this might also
damage part of the SLU information. In terms of privacy preservation, our learnable mask generator
achieves up to 78.6% WER using SILENCE-L, indicating a privacy-preserving capacity on par with
PPSLU. The same benefits exist in FSC dataset as well. SILENCE demonstrates more than 99% in-
tent understanding accuracy, similar to all the baselines, while effectively defends against sensitive
word recognition attacks, achieving more than 80% WER, outperforming all disentanglement-based
protections. Furthermore, we complete the inference with much lower delays and memory footprint
as will be shown in Figure 10.

OnDevice

AllOffload

Ours-Learnable

Ours-Random

PPSLUVAE

Figure 7: Performance of different
privacy-preserving SLU approaches.

Figure 6: Performance of different privacy-preserving SLU
approaches. OnDevice offloads no signals to the cloud and
thus has the best privacy protection (WER=100).

Whisper.medium.en model to the specific masking pattern.
Hyper-parameters During the offline phase in Figure 5,

we use the Adam optimizer with a learning rate of 1e-5 and a
batch size of 4. For the inference step, we use the batch size
of 1 to simulate the real streaming audio input scenario. The
end-to-end cloud SLU latency is measured by invoking Azure
APIs following previous work [42]. KL threshold l is set as
0.15 for all mask generators. Attack model is set as Whisper
without special declaration.

5 Evaluation

In this section, we evaluate the performance of SILENCE under
different attack scenarios, and also assess the effect of varying
hyper-parameters on the privacy-utility trade-off. After that,
we discuss the system cost of SILENCE.

5.1 End-to-end performance

SILENCE achieves comparable accuracy performance
and privacy protection capacity to previous encoders. As
shown in Figure 6, we compare the accuracy of SILENCE with
all baselines. Is observed that SILENCE could achieve up to
80% accuracy, with less than 8% accuracy loss compared to
AllOffload and OnDevice SLU model. Its rationale is that
we mainly mask the short-dependent frames that does not
significantly affect the SLU performance. We also compare
the performance of SILENCE with the state-of-the-art privacy-
preserving SLU system, i.e., PPSLU [43]. SILENCE achieves
6% higher accuracy than PPSLU which tries to apply complex
non-linear transformation to the hidden layer to prevent ma-
licious re-construction, but this might also damage part of
the SLU information. In terms of privacy preservation, our
learnable mask generator achieves up to 75% WER using
SILENCE-L, indicating a privacy-preserving capacity on par
with PPSLU. That is, over 75% of the words in the masked
audio are not correctly recognized by the ASR model. Fur-
thermore, we complete the inference with much lower delays
and memory footprint as will be shown in Figure 8.

Plain Azure Whisper
Whisper

(White-box)
ASR-WER 12.3 71.6 68.1 64.4
SLU-WER 14.7 81.6 78.6 51.4

EER 30.1 90.7 73.2 58.1

Table 1: Performance under different attack models.

Figure 7: Effect of threshold with different mask generators.

SILENCE is resistant to different attack models. As il-
lustrated in Table 1, SILENCE increases the SLU-WER from
14.7% to 78.6% under the attack model Whisper. As for
the online attack model Azure, SILENCE increases the SLU-
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generator is more aggressive, enhancing privacy. Another way
to achieve more practical privacy-utility balance is using a
more complex mask generator structure, e.g., SILENCE-L. It
achieves higher utility with the same privacy level compared
to SILENCE-S, albeit with less efficiency, as will be shown in
§ 5.2.

6

Figure 8: SILENCE privacy-preserving capacity under dif-
ferent attack models.

SILENCE is resistant to different attack models. As illustrated in Figure 8, SILENCE increases the
SLU-WER from 14.7% to 78.6% under the attack model Whisper. As for the online attack model
Azure, SILENCE increases the SLU-WER from 14.7% to 81.6%. According to our returned service
details, we find that over 50% of the sent audios are tagged as ”ResultReason.NoMatch”, which
means audios are recognized as null utterances by the Azure ASR model. Whisper(White-box)
is a white-box attack model, which means the attacker has the same mask generator structure and
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weights as the SILENCE. We still achieve more than 50% SLU-WER under this attack model. This
is because even Whisper(White-box) is fine-tuned to fill some of the missing frames, it still could
not recover the private missing frames. Because masking the short-dependent frames fundamentally
destroys the raw audio signal. It is not possible to re-construct the phoneme without knowing any
speech information. In the last subfigure, we show the high entity error rate to demonstrate that the
private entity is not leaked.

SILENCE can defend against the active inpainting attack as well. As shown in Table 1, U-Net can
rarely reconstruct the masked audio. Even worse, it introduces incorrect noisy signals, degrading
the attack success rate. CQT-Diff inpainting can fill the missing waveforms but cannot success-
fully reconstruct the content because it is designed to reconstruct background music, such as piano
concertos. SLU audio, which includes human intent and conversation, is difficult to reconstruct.

PlainText Azure Naive Whisper U-Net CQT-Diff Whisper predict (white box)
WER-SLU (%) 14.7 81.6 78.6 82.5 74.3 67.3
WER-ASR (%) 12.3 71.6 681. 71.4 65.9 64.4

Table 1: Potential attack Word Error Rate (WER) under different attack scenarios.

SILENCE scales to better privacy-accuracy trade-off with a larger mask generator. We explore
the impact of the threshold γ of SILENCE under different mask generator structures. As shown in
Figure 9, the threshold γ controls the trade-off between the privacy and utility. When γ is small,
the mask generator is more conservative, leading to higher the utility a lower the masking portion.
As we have discussed in Section 3, a lower rate of masking portions leads to higher possibility of
privacy entity leakage. When γ is large, the mask generator is more aggressive, enhancing privacy.
Another way to achieve more practical privacy-utility balance is using a more complex mask gener-
ator structure, e.g., SILENCE-L. It achieves higher utility with the same privacy level compared to
SILENCE-S, albeit with less efficiency, as shown in § 5.2.

5.2 System cost

SILENCE protects the private entities efficiently as shown in Figure 10. Different from prior en-
coders using complex disentanglement model, SILENCE only requires a light-weight mask generator
to scrub the private information. The size of this generator varies according to different mask gen-
erator structures. For the smallest mask generator, SILENCE-S, it only requires a 394.9KB memory
footprint, and could successfully embed into the resource-constrained STM32H7 with 2MB RAM.
SILENCE is efficient not only in terms of memory footprint but also in latency. SILENCE-S com-
pletes the local encoding with only 912.2ms on the resource-constrained STM32H7. For a fair
comparison, we embed SILENCE-S into RPI-4B and find that it is 18.1× faster and 134.1× less
memory footprint than PPSLU. Even with the strong mask generator SILENCE-L, SILENCE achieves
up to 7.5× lower encoding latency and consumes 1.9× less memory compared to OnDevice.
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6 Conclusion and Discussion

SILENCE is an efficient and privacy-preserving end-to-end SLU system based on the asymmetrical
dependency between ASR and SLU. SILENCE selectively mask the short-dependent sensitive words
while retaining the long-dependent SLU intents. Together with the differentiable mask generator,
SILENCE shows superior end-to-end inference speedup and privacy protection under different attack
scenarios.

Limitations: While for the first time, SILENCE provides a feasible privacy-preserving solution for
resource-constrained audio devices, it introduces a huge design space for mask generator structures.
The mask generator is akin to a lock; a genius lock design can protect privacy in the smallest of
spaces, but a poor lock design can be bulky and easily broken. In this work, we simply inherit the
SLU model structure and instantiate three sub-models from it to demonstrate better efficiency than
previous encoders. Researchers can explore other structures for a better privacy-accuracy-efficiency
trade-off. We will open-source all the code and checkpoints to facilitate further research in this
direction.

Some other potential limitations about lossy privacy-preserving capacity, the need for fine-tuning
the cloud SLU model, the scope of defended threat model and the extension to offline scenarios are
thoroughly discussed below for further clarification.

Is current privacy-preserving capacity enough? The quantitative WER 80% is considered secure
enough, as previous encoders have strived to reach that level [15, 16]. And some SLU transcripts
contain the intent word, so the successfully inferred word might be a non-private intent word. For
instance, in one test audio transcript, “I want some jazz music to play”, the intent is ‘scenario’:
‘play’, ‘action’: ‘music’. The interpretation of the malicious cloud ASR, “all subjects were used
to play”, is acceptable since the predicted phrase “to play” contains no private information. This
scenario is typical for most audios; we managed to preserve 90% of the private entities in Figure 7.
This achievement matches the SoTA in privacy-preserving capacity, with up to 30× lower latency
and 100× memory reduction.

Why and how to fine-tune the cloud SLU Model? Initially, the cloud SLU is a generic pre-trained
speech model lacking the capability to accurately understand personalized user intent. It is crucial
to fine-tune the cloud SLU for better personalized intent understanding3. Secondly, while short-
dependent masking does not eliminate intent information, it does impact specific details within the
attention map, as depicted in Figure 4(b). Fine-tuning the cloud SLU model helps mitigate this
impact and enhances the understanding of the user’s intent. Currently, cloud service providers have
already offered APIs that allow users to fine-tune their personalized cloud speech model [60].

Could private semantic detection attack be prevented? We clarified that detecting short-
dependent key phrases or specific commands is not the focus of this work. For example, eaves-
dropping on specific financial words and political framing are out-of-scope. However, we can offer
defense capabilities against them. The mask generator, controlled by the user, is trained to scrub
utterances unrelated to the public intent. Private entities not predefined by the user are almost never
included in the masked audio. Therefore, even if an attacker possesses a well-defined semantic and
the mask generator, training the detection threat model is challenging because the synthetic masked
audio lacks clear representations of the private semantic.

Extesion to offline scenarios: Offline conditions occur periodically for resource-constrained de-
vices. SILENCE can be easily integrated into an orchestration of small on-device SLU models and
robust cloud models. This orchestration has been officially adopted by many off-the-shelf products,
such as Apple Intelligence in iOS 18. Our system remains indispensable in such circumstances be-
cause small on-device SLU models may not generate satisfactory intent understanding due to their
restricted model size. Even when on-device SLU models produce correct intent understanding, they
cannot always operate due to limited device energy. As a result, online procedures are still the main
components of current SLU solutions. The on-device functionality can be used as an alternative in
offline conditions. With our system, the cloud-based SLU component is both privacy-preserving and
efficient.

3Note that a general speech model is sufficient for training the local mask generator in Figure 5 step (1a), as
the focus is not on generating precise intent but rather on obtaining a coarse-grained distribution of numerical
logits to facilitate mask generator training.
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NeurIPS Paper Checklist

(1) Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contribution is outlined as a seperated paragraph in §1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

(2) Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We thoroughly discuss the limitations of our work in §6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

(3) Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

(4) Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed instructions on how to reproduce the main experimental
results in §4. We will open-source the code and data upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

(5) Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will open-source the code and data upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

(6) Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed instructions on how to reproduce the main experimental
results in §4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
(7) Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because of the time limit. We will attempt to add
them in the camera-ready version.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

(8) Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed hardware information in §4 and the intended runtime in
§3.2 and §5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

(9) Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and believe that our research
conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
(10) Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed and provided real-world examples of both positive and
negative societal impacts in §1 and §2.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

(11) Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is intended for privacy protection and does not involve high-risk
data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

(12) Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited the original code, data and models in §4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

(13) New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [No]

Justification: We will provide detailed documentation for the new assets upon acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

(14) Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

(15) Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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