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Abstract

In this work, we propose Asynchronous Perception Machine (APM), a
computationally-efficient architecture for test-time-training (TTT). APM can pro-
cess patches of an image one at a time in any order asymmetrically, and still
encode semantic-awareness in the net. We demonstrate APM’s ability to recognize
out-of-distribution images without dataset-specific pre-training, augmentation or
any-pretext task. APM offers competitive performance over existing TTT ap-
proaches. To perform TTT, APM just distills test sample’s representation once.
APM possesses a unique property: it can learn using just this single representation
and starts predicting semantically-aware features.
APM demostrates potential applications beyond test-time-training: APM can scale
up to a dataset of 2D images and yield semantic-clusterings in a single forward
pass. APM also provides first empirical evidence towards validating GLOM’s
insight, i.e. if input percept is a field. Therefore, APM helps us converge towards
an implementation which can do both interpolation and perception on a shared-
connectionist hardware. Our code is publicly available at this link.

1 Introduction
In these past centuries, computing-machines have become a lot faster [92]. This made it possible
to train higher-parameterized neural nets and led to interesting emergent abilities [80]. As was
predicted by Turing himself, and as were his suspicions of Lady Lovelace’s arguments against
learning machines[90]: neural-nets can now finally learn without human-feedback [6], paint pictures
[76] and even compose a sonnet [92]. Even with such impressive-progress, a key question still
remains: how can these nets recognize images whose distribution is far different from the ones which
were used during training? For e.g., consider a self-driving car trying to stop when it encounters a
pedestrian crossing a road. Such practical scenarios require ‘instantaneous-decisions’2 for ensuring
human-safety in autonomous-systems [64].

Test-time-training (TTT) [85] is one of the promising techniques for handling such distribution shifts:
a neural net adapts to a test sample ‘on the fly’. Since the label of the sample is not known, the net
performs some auxiliary pre-text task like data augmentation [15], rotation [15, 86] or prompt tuning
[84] on it. After several such iterations, the net recognizes the test sample. The key idea is that the net
is allowed to dynamically adjust its decision boundary even after it has been trained, thereby bringing
it much closer to how humans keep learning ‘continuously’ throughout their lifespans [86].

∗Correspondence to rajatmodi62@gmail.com.
2A flick of the eye, the fall of her hair, the passing of a second, or capturing the world at 120fps: instantaneous

can be a subjective experience. Seconds can sometimes pass slowly for other reasons also.
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Figure 1: (i) Asynchronous Perception Machine (APM): An image I passes through a column
module and routes to a trigger column Ti. Ti then unfolds and generates h × w location-specific
queries. These queries are i.i.d and can be parallelized across cores of a gpu [48]. Each query Ti

is passed through a shared MLP and yields the vector f ′
xy and f ′

rgb. MLP is queried iteratively
until whole grid f

′
comes into existence. Classification then involves comparing the averaged

representation f with class-specific textual representations in the contrastive space . (ii) Folded
State: The parameters which the net learns are parameters of T and MLP. (iii) Unfolded State: T
expands to yield h× w queries ‘on-the-fly’. Learning involves oscillating this net between folded
and unfolded states. This net can be trained via backpropogation [78, 28].

Despite the success of existing TTT approaches, several limitations need to be addressed [84, 15, 86]:
1) The Information Bottleneck Problem [64]: Multiple TTT iterations requires feed-forward
through many hidden layers multiple times, making it computationally expensive. 2) Reliance on a
surrogate pre-text task: the optimal data-augmentation pipeline or the best pretext task is not known
beforehand, worsening the issue even further in an online setting. 3) Furthermore, TTT leverages
architectures like transformers which rely on parallel perception: this requires projecting all input
patches into a shared representational space, thereby consuming significant memory.

Inspired by GLOM’s philosophy [29], we hereby propose Asynchronous Perception Machine
(APM), a new architecture for efficient test-time-training. 1) It handles the information-bottleneck
problem by directly learning a shortcut from input image to final representation from last layer of a
model [28]. 2) During TTT, we compute test-sample’s representation only once. Subsequent iterations
involve over-fitting on this representation only and doesn’t require any data-augmentation/pretext
task. 3) APM can operate on a single patch at any location asynchronously [91] and still encode
semantic-awareness in the net, thereby offering a fresh perspective towards machine-perception.

We make the following contributions in this work:
• We propose APM, a GLOM-inspired architecture that can perform test-time-training without

requiring data augmentation/auxilary-tasks. APM is a step towards validating GLOM’s
philosophical insight: a percept is really a field [29].

• APM is computationally efficient, i.e it almost halves the number of FLOPs over existing
methods [15, 86]. APM matches/surpasses TTT performance by 0.4% − 8% across 16
datasets.

• APM is architecturally simple: a convolutional layer and a single MLP of 5 layers. APM
can still learn using one sample and semantically clusters on a collection of images [28].

2 Background
We draw from insights previously philosophically mentioned in GLOM [29]. Consider how machine
perception has been done classically: an input x ∈ Rc×h×w is transformed by a non-linear function
f to a perceptual feature grid y ∈ Rc′×h×w, c denotes image channels, h,w are input spatial
dimensions.

Islands of agreement [29] Rather than viewing this matrix y as a cuboidal grid, one can now see this
as column vectors vc′ at each location. There are h× w such columns in y. Therefore, there exists
a one-to-one mapping, between each input patch i.e. (x, y) with the vector vc′ at that location. A
neural net f can then thus learn to fit f(I, x, y) → vc′ . These vectors vc′ have been termed islands of
agreement in GLOM [29]. They were recently demonstrated on realistic datasets by [64], showing
some promise that trained models can serve as free supervision-sources for vectors vc′ .
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Next, we imagine feed-forwarding one patch (x, y) into the neural net f and estimating the response
vc′ . It thus becomes possible to process these patches one-by-one rather than keeping them all
together in memory [94]. We then further imagine auto-regressively querying f until the whole grid
y has been brought into existence.

Implicit-representations/Neural-Fields: The neural net f inputs a coordinate based query, (I, x, y)
where (x, y) is the 2D location in an image I . It then gives the answer vc′ [29]. Such implicit
representations have been studied extensively in 3D novel-view synthesis [60]. However, in the above
problem I is a simple 2D image. In a recent work [29], it was hypothesized that neural-implicit
representations can work on 2D images as well without having to retrain it every-time.

Layer Skipping [28]: We now combine the previous two insights together. Imagine that vc′ has
been estimated from a model after travelling through several layers. We can distill these vc′ into an
implicit representation f and learn a direct mapping between input x and last layer of a model [28].
During inference, we can skip feed-forwarding through all the model layers. The only feed-forward
cost we then pay is what it costs to travel through f . Provided that the number of parameters in f are
lesser than parameters in the teacher model, we can expect computational speedups.

We now introduce a connectionist-net f motivated by these insights. It can perform efficient test-
time-training on a given 2D input.

3 Asynchronous Perception Machine (APM)
APM processes an input image I via two novel mechanisms: 1) A column module T which is said
to contain an input image I , 2) a column folding-unfolding mechanism that operates during each
forward-pass. We first provide a technical analogy to better understand APM.

3.1 A Technical Analogy[29]

A neural field does 3D novel view synthesis by querying an MLP with a point (x, y, z) and yielding
corresponding rgb. In a similar way, APM does 2D perception by querying an MLP with an image I ,
and a location (x, y) to yield location-specific feature fxy . APM features a new mechanism to query
the MLP, i.e a column module T . Next, we define this column representation T .

3.2 Global Column Module: Defining compressed representation T

We define a column T as a vector of dimensions 1 × 1 × d. Our aim is to map image I in this T ,
so that T can summarize its entire identity. Given an image of dimensions c× h× w, we run a 2D
convolution on it. Number of filters are set as accordingly. The resultant 1× h′ × w′ feature map
is then flattened into a single column vector T of dimensions d = h′ × w′ . We shall refer to this
column T as "triggering hyper-column"(seed). The only learnable parameters in this column are
parameters of a convolution filter.3[92, 91].

3.3 Abstract view: The Column Unfolding-Folding Mechanism

The trigger column T now starts undergoing cycles of folding-unfolding (Fig 1). During unfolding, the
column T copies itself to yield h×w location-aware columns. During folding, these h×w columns
collapse back into a single column T . The neural-net then oscillates between these folded-unfolded
phases during learning iterations.

3.4 Computational Principle: Location-aware columns and their collapse

The unfolding-process shall now be concerned with generating location-aware column Tij from
T . We generate h ∗ w 2-D non-parametric positional encoding similar to the ones being used in
transformers [94] and neural fields [60]. The trigger column Tij is then given by Tij = (T |pij),
where | denotes the stacking operator and (1, 1) ≤ (i, j) ≤ (H,W ). T can be said to encode identity
of an image.

The folding-process involves collapsing all columns Tij back into T from which they had begun.
This is achievable since the pij used in Tij was deterministic. An abstract-mathematical intuition
on folding is that all pij in Tij get deleted/annihilated at the end of every forward-pass, and only
T is left. Positional-encodings contain periodic-sinusoids which offers a strong positional-prior in

3The word triggering has been chosen because this column shall be used to trigger the queries to the neural
field shared across different locations [29].
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practice [94]. Gradients collected from all Tij then update the parameters of the convolutional filter
in the column T . This sharing of T across different locations (i, j) now induces a new fundamental
behavior [29] already hypothesized in GLOM (more details in section 5.3).

This representation Tij = (T |pij) exhibits a strong-symmetry breaking behavior [29]4. For e.g.,
consider different locations across same image I . Although the identity T will be the same, the
positional encoding pij shall differentiate among different locations. The converse holds true: given
the same position pij in two different images, the column T shall differentiate among identities of
different images.

All the experiments in this paper are performed without-injecting the local patch Ixy in the trigger
column Tij . This showcases the strong-symmetry breaking behaviour of positional-encodings[94]:
they can disentangle location-information from global I without-requiring an additional patch-prior.

3.5 Firing location-aware columns into a shared MLP

Each column Tij is passed through an MLP to yield location-specific features fij and RGB values
RGBij . Number of neurons in the first layer of the MLP is same as dimensionality of column Tij .

Column Independence: The MLP is shared across all the columns. One column is also independent
of another as illustrated in Fig1. Therefore, the MLP can be queried sequentially. Firing a column
Tij into the MLP yields a column vector vc. Once h×w columns are finished firing, we get a feature
grid f of dimensions h× w × c. Note that the number of columns can be as low as 1.

3.6 Training and Losses

We detail how the tth iteration of test-time-training could be performed. First, the obtained feature
grid fϵRh×w×c from APM is averaged to yield favgϵR

c. For the first TTT iteration, i.e. t = 1, the
image I is feed-forwarded through a multi-modal teacher like CLIP to get a CLS token fcls and
corresponding text representation tcls. APM then learns to estimate this same target feature fcls. We
enforce this by a simple L2 constraint as:

  L_{i} = L_2(f_{avg,t}, f_{cls})     (1)
where favg,t is the averaged output feature from APM at a particular TTT iteration t. Note that the
target fcls is only estimated in t = 1 and remains the same for t ≥ 2, i.e. subsequent feed-forward
through teacher is not needed.

Memory-efficient estimation of favg,t: During a TTT iteration t, favg is computed as a simple
average of fϵRh×w×c. This would require h× w columns to exist in the memory simultaneously.
APM’s design assumes column independence which allows estimating favg as a statistical running
average, i.e.

  f_{avg} = \frac {n\times f_{avg} + f_{i,j}}{n+1} 
  


(2)

assuming, n columns have already been fired into the APM and one additional column corresponding
to position (i, j) of image I is in the process of firing. This procedure is repeated until all positions
(i, j) are exhausted. We represent the sequential column-firing by a ‘Gather-Grid’ operator in Fig1.

Predicting image class-label: After certain TTT iterations, (say t = 20), the output feature favg,t
and the textual features tcls are obtained. Image-classification then follows the standard practice of
comparing the distance of favg,t with each plausible class feature tcls in the contrastive space and
choosing the closest one as the prediction [75].

4 Experimenting with APM
We quantitatively evaluate APM on zero-shot test-time-training on popular benchmarks containing
distribution-shifts [15, 86, 84]. Next, we quantitatively explore its computational efficiency.

Datasets: Cifar-10C [86] contains 5 level of corruptions on the test-set with 15 types of noises.
Larger datasets with significant distribution shifts consists of ImageNet val/other curated splits. For
e.g., ImageNet-V2 contains natural images consisting of 10k images across 1000 classes. ImageNet-
A contains 7500 adversarial-images consisting of 200 categories. ImageNet-R consists of 30000

4It means generating a unique representation Tij for any image and a location selected in it. Another way
to break symmetry is to add noise [40]. Noise also helps escape degenerate local-minima. These ideas can be
traced back to boltzmann-machines/hopfield-nets[44].
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artistic-images across 200 ImageNet categories. ImageNet-Sketch consists of black/white sketches
of 50000 images for 1000 classes. ImageNet-C consisting of 15 types of corruptions with 5 levels of
severity. There are additional 9 cross-dataset generalization datasets [84].

Baselines: We compare against standard TTT-online [86], TTT-MAE [15], TPT [84], CLIP VIT-B/16,
Coop, CocoOP. We also benchmark CLIP VIT-L/14 and the strongest OpenCLIP VIT-H/14-quickgelu
variant pre-trained on dfn5b.

Table 1: APM’s Robustness to Natural Distribution Shifts. CoOp and CoCoOp are tuned on
ImageNet using 16-shot training data per category. Baseline CLIP, prompt ensemble, TPT and our
APM do not require training data. A ✓ in P means that method leveraged pre-trained weights on
clean variant of train set aka, Image-net and downstream-ttt on corrupted version.

Method P ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD AverageTop1 acc. ↑ Top1 acc. ↑ Top1 acc. ↑ Top1 acc. ↑ Top1 acc. ↑
CLIP-ViT-B/16 ✗ 66.7 47.8 60.8 73.9 46.0 59.1 57.2
Ensemble ✗ 68.3 49.8 61.8 77.6 48.2 61.2 59.4
TPT ✗ 68.9 54.7 63.4 77.0 47.9 62.4 60.8
APM (Ours) ✗ 68.1 52.1 67.2 76.5 49.3 62.6 61.2
CoOp ✓ 71.5 49.7 64.2 75.2 47.9 61.7 59.2
CoCoOp ✓ 71.0 50.6 64.0 76.1 48.7 62.1 59.9
TPT + CoOp ✓ 73.6 57.9 66.8 77.2 49.2 64.9 62.8
TPT + CoCoOp ✓ 71.0 58.4 64.8 78.6 48.4 64.3 62.6
CLIP VIT-L/14 ✗ 76.2 69.6 72.1 85.9 58.8 72.5 71.6
APM (Ours) ✗ 77.3 71.8 72.8 87.1 62.2 74.2 73.4
OpenCLIP-VIT-H/14 ✗ 81.6 79.1 80.7 92.9 72.8 81.4 81.3
APM (Ours) ✗ 84.6 84.2 83.9 94.9 77.1 84.9 85.0

Table 2: APM’s performance on ImageNet-C, level 5. The first three rows are fixed models without
test-time training. The third row, ViT probing, is the baseline used in [15]. A ✓ in P means that
method leveraged pre-trained weights on clean variant of train set aka, Image-net and downstream-ttt
on corrupted version. CLIP VIT-L/14 is generally more robust. APM does better on 11/15 noises
with an average accuracy score of 50.3.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Joint Train ✓ 62.3 4.5 26.7 39.9 25.7 30.0 5.8 16.3 5.8 45.3 30.9 45.9 7.1 25.1 31.8 24.8
Fine-Tune ✓ 67.5 7.8 33.9 32.4 36.4 38.2 22.0 15.7 23.9 51.2 37.4 51.9 23.7 37.6 37.1 33.7
ViT Probe ✓ 68.3 6.4 24.2 31.6 38.6 38.4 17.4 18.4 18.2 51.2 32.2 49.7 18.2 35.9 32.2 29.2
TTT-MAE ✓ 69.1 9.8 34.4 50.7 44.7 50.7 30.5 36.9 32.4 63.0 41.9 63.0 33.0 42.8 45.9 44.4

OpenCLIP VIT-L/14 ✗ 71.9 47.0 50.3 32.7 58.3 46.9 26.0 26.5 28.1 62.7 37.7 58.3 28.2 50.4 37.9 42.1
APM (Ours) ✗ 77.4 51.9 56.6 37.9 64.8 53.2 28.7 31.4 33.0 68.4 44.1 64.5 33.1 56.9 43.9 50.3

Results and Analysis: We study APM’s performance on test-time-training on several datasets. APM
processes each test sample individually: i.e. the weights are drawn from a normal distribution after
processing every sample to prevent information leakage. For zero-shot classification of a test-sample,
APM leverages the 80 textual-prompt templates similar to the ones used in CLIP. In Tab 1, APM scales
up to zero-shot classification task to datasets with 1000 classes. Using CLIP-ViT B/16 as a teacher,
we surpass TPT [84] with an avg score of 62.6 and avg ood-score of 61.2. Next, we benchmark
OpenCLIP-VITH/14 against all these splits. Using the same model as our teacher, we get an absolute
improvement of 3% ↑ [84.6%] on ImageNet val set, 5.1% ↑ [84.2%] on ImageNet-A, 3.2% ↑ [83.9%]
on ImageNet-V2, 2% ↑ [94.9%] on ImageNet-R, 4.3% ↑ [77.1%] on ImageNet-Sketch respectively.
A similar trend is observed with a VIT-L/14 backbone. This might lead to the conclusion that a
stronger teacher seems to benefit APM. In Table 2, we show results on Imagenet-C. Using a CLIP
VIT-L/14 teacher, APM gets highest accuracy on 11/15 noises with the highest average score of 50.3.
Note that TTT-MAE also uses a VIT-L encoder, and is pretrained. In contrast, APM doesn’t need
any dataset specific-pretraining. Finally, in Tab 3, APM improves upon 4/9 datasets, comes close on
remaining 5 and gets the highest average accuracy score of 65.5.

APM is computationally efficient: All experiments are run on a same desktop-workstation
containing 1x rtx a6000/96GB ram/Ubuntu 22.04/2TB ssd. Flops were counted with meta’s fvcore
library [89]. In Tab4, we perform 20 TTT iterations. TTT on CLIP-VIT B/16 baseline used in
[84] consumes 462Gflops. Next, we do TTT leveraging APM. At t = 1, feed-forwards involves
clip-teacher and consumes 20.5 flops. Remaining 19 TTT iterations only involve overfitting on
distilled image token at t = 1, and consumes 10 flops/TTT-iteration. The entire profile-dump yields
241.7 flops, which is an almost 50% reduction over 462 flops. The total memory occupied by APM
i.e. 2.7GB is more than CLIP-VIT/B 2.3GB since teacher is kept in memory during TTT. However,
APM only occupies 600MB and reduces actual consumed-flops by 50%.
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Table 3: Cross-dataset generalization from ImageNet to fine-grained classification datasets. CoOp
and CoCoOp are tuned on ImageNet using 16-shot training data per category. Baseline CLIP, prompt
ensemble, TPT and APM do not require training data or annotations. We report top-1 accuracy.

Method P Flower102 DTD Pets UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT Average

CoOp ✓ 68.7 41.9 89.1 66.5 93.7 85.3 64.2 18.5 46.4 63.9
CoCoOp ✓ 70.9 45.5 90.5 68.4 93.8 84.0 66.9 22.3 39.2 64.6
CLIP-ViT-B/16 ✗ 67.4 44.3 88.3 65.1 93.4 83.7 62.6 23.7 42.0 63.6
Ensemble ✗ 67.0 45.0 86.9 65.2 93.6 82.9 65.6 23.2 50.4 64.6
TPT ✗ 69.0 47.8 87.8 68.0 94.2 84.7 65.5 24.8 42.4 65.1
APM (Ours) ✗ 62.0 48.9 81.6 72.6 89.6 84.2 65.7 29.7 55.7 65.5

Table 4: APM’s computational analysis: TTT for 20 iterations on APM. Baseline is CLIP VIT-B/16
which is used as a teacher in [84]. Mmeas(GB), GFlopsmeas(GB) are tmeasured stats. Mi(GB),
GFlopsi(GB) are idealistic estimates. (t): tth ttt iteration, (s): student, (u): teacher, (s+u): portion
of memory/flops consumed by student/teacher respectively. Note that APM is a 25M net.

t Params(M)↓ Mmeas(GB) ↓ Mi(GB) ↓ GFlopsmeas ↓ GFlopsi ↓
Swin[52] 1-20 87 1.5 1.4 353 308
TPT[84] 1-20 151.3 3.1 2.7 529 476
CLIP VIT-B/16 1-20 149.2 2.3 1.8 462 410
CLIP VIT-B/16(u)[84] 1 149.2 1.8 1.8 20.5 20.5
APM(s) 1 174.2(s+u) 2.7 (s+u) 1.8(u) + 0.6(s) 20.5(u) 20.5(u)
APM(s) 2 174.2(s+u) 2.7 (s+u) 1.8(u) + 0.6(s) 10(s) 10(s)
Peak Use 1-20 174.2(s+u) 2.7 (s+u) 1.8(u) + 0.6(s) 241.7 (s+u) 210.5 (s+u)
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Figure 2: APM’s analysis with variable number of patches: (left) Gflops of CLIP VIT-B/16 and
APM as a function of number of processed patches. (right) Feed-forward time vs number of patches.

APM does patch-based processing: In Fig 2, we estimate GFlops/time to process a 224 × 224
image using CLIP VIT-B/16 & APM. CLIP VIT-B/16 consumes 20.5 Gflops. On the other hand,
APM takes only 10 Gflops in total, in part due to lesser parameters. APM’s effectiveness comes from
processing as low as 7 patches at the same time: it occupies lesser memory but takes more time (i.e.
1.5 seconds). 1.5sec is still lower than VIT-B/16’s 2.2sec. The extreme lies when all patches are
processed: Inference time in APM goes down to 0.002 seconds compared to VIT-B/16’s 2.2 seconds,
thereby indicating its effectiveness. Note that VIT-B/16 can’t do this patch-based processing.

APM’s computational effectiveness stems from this unique ability to overfit on a single test sample’s
embedding which was distilled only at t = 1. This merits a deeper investigation.

Iter = 0 Iter = 50 Iter = 100 Iter = 150 Iter = 200 Iter = 2501e-3 1e-12
Whole Part

 Input

Figure 3: Overfitting on a single distilled token representation leads to islands of agreement[29]:
APM is overfit on a test-sample’s representation distilled from a teacher. We plot t-sne clustering of
output features over 250ttt iterations. L2 loss between predicted features and distilled sample falls
from 1e-3 to 1e-12. Moving left to right shows that wholes break into smaller parts.
APM can learn on a single sample: In Fig 3, we feed-forward a single image through our APM and
perform 250 TTT iterations5. We only overfit on one distilled test-sample embedding and plot the 2D

5A larger number of TTT iterations are needed to perceive semantically-meaningful islands. Actual TTT
process is far quicker, it takes around 20 iterations.
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t-sne clustering of predicted APM. It can be seen that the elements of the scene have gradually started
to cluster. This suggests that APM solves an inverse problem: given a single test-sample embedding,
what features in the image led to its formation? Over several TTT iterations, APM’s features become
representative enough to explain different parts of a scene[29]. Therefore, the same-net could be
made to move up-down the part-whole hierarchy[28], although it requires TTT-iterations for now.

Next, we explore if data augmentation improves APM’s performance. We perform TTT iterations on
CIFAR-10’s test set and find that data augmentation drops APM’s performance from 98.6 to 76.7.
This quantitatively demonstrates that APM works best when it does one-sample overfitting. It now
aligns with the earlier qualitative experiment: over TTT-iterations, the network is learning to cluster
the elements in the scene3. Data augmentation distorts the sample and makes it difficult for APM’s
predicted features to agree on a stable, relaxed-representation that explains the scene[42, 26]

Till now, APM’s operation has involved random-initialization of weights for every test-sample and
performing test-time-training. There is another mode that it can be made to operate in.

5 APM Training (Qualitative Analysis)
APM can also scale up and do learning on a batch of samples (for e.g., COCO images[50]) distilled
from a teacher[31]. This requires introducing several new mechanisms. Note that this section is meant
to qualitatively demonstrate how scaling up APM can improve the net’s interpretability, and help
seed future research. Quantitative experiments beyond test-time-training remain out of the scope of
this paper. APM’s training follows a standard setup in self-supervised-learning[6]. We have provided
the full algorithm for SSL-training/test-time-training in the AppendixC. During inference, APM takes
any 2D image xk and predicts its RGB reconstruction RGBk/higher dimensional features fk. The
net then begins to demonstrate several interesting properties, which we will discuss next.

5.1 APM can do RGB reconstruction for any 2D input.

AttentionAPM

Q

RGB
Head

CLS

Folded

Unfolded

(i) (ii)

Figure 4: RGB Decoding in APM: Input trigger column Tij is concatenated with predicted feature
fij and fed to downstream RGB head. This decodes RGB logit at location (i,j) for any 2D input xk.
(ii) Input xk sampled from Coco-val set. RGBout: reconstructed RGB, fout: Predicted feature grid.

Given a sample xk, APM can reconstruct its RGB. In Fig4, we achieve this by estimating frgb,ij =
(Tij |fij). This skip-connection from trigger column Tij to output feature has a subtle reason: consider
a white dog and brown dog. The predicted object-level feature for both will be almost identical[29, 2].
However, Tij is different for both since it contains lower patch-level features[29]. Therefore, this
helps us break symmetry. Without this skip-connection[22], the net fails to predict RGB. The network
is trained to reconstruct RGB for a batch of images, Lrgb =

∑N
i=1

∑h∗w
j=1 L2(p

′
j , pj), where pj /p

′

j

are ground truth/predicted RGB-logits respectively.

5.2 APM is asynchronous yet encodes semantic-awareness in the net.

Given a sample xk, APM can directly learn to mimic the entire last layer feature-grid which a
teacher model would have generated. We enforce this by a Lgrid =

∑N
i=1

∑h∗w
j=1 L2(f

′
j , fgrid). In

Fig 5(ii) we estimate the error map between the features predicted by our APM and Dinov2[67].
The error map is mostly black which shows that it closely approximates Dinov2’s grid6. Note that
APM does patch-based asynchronous processing whereas DINOv2 relies on parallel perception.
Finally, Fig 5(iii) shows a simple feed-forward of a CIFAR-10 sample through APM. We can see
semantically-aware features. Note that this is a single feed-forward through APM[29]. Predicting
output feature grid allows the net to encode dark knowledge, i.e. the knowledge of both correct

6This particular net got a L2 grid loss of 0.15.
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Input Dinov2 APM Error Map

(i) TTT (ii) SSL-Trained (iii) Inference

Figure 5: APM feature Analysis: (i) TTT iterations on an input image leads to semantically aware
clustering. top: 2D t-sNE. bottom: 3D t-sNE. [64, 29]. (ii) APM is trained via self-supervision using
DINOv2-Teacher. (from left) Input, Dinov2 grid, APM grid. APM’s grid closely approximates
Dinov2 grid evident from black regions in error map. Note that APM does asynchronous patch-based
processing whereas Dinov2 does parallel perception. (iii) Cifar-10 samples feed-forwarded through
SSL-trained APM yields features of significant semantic quality.[29]

and incorrect classes[30]. This is better than just mimicking one hot vector of a target class since it
manages to encode lower probabilities of wrong classes also.

5.3 APM is a step towards validating GLOM’s insight: input percept is a field[36].
Source Target1 2 3 4 5

Figure 6: APM is a step towards validating GLOM’s insight [29]: input percept is a field. An
interpolation between any two images in the wild. This field arises in APM’s MLP consisting of 5
layers. Trigger column T acts as a key which retrieves an image from the APM’s memory. T resides
in a continuous embedding space, not discrete addressing space.
In Fig 6, we show that APM can interpolate between any two images in the wild. We choose two
images I1 and I2. These images are then funneled through the trigger column T and yield two vectors
v1 and, v2 respectively. Next, we generate n intermediate latents separated by an equal linear distance
by vj = v1 +

v2−v1
n . Each latent then brings into existence its own set of location-aware columns

and decodes an image from the MLP. Such an interpolation has been previously observed in other
models [20]. APM now functions as a new form of addressing mechanism: the trigger column T acts
a key. Copying T across locations yields image-specific queries[29]. Values are synapses triggered in
the MLP. RGB decoding happens in the output head. Hence, such continuous keys and queries exist
outside the net[29].

Classically, auto-regression has unrolled a shared-decoder over time[98]. In contrast, APM holds
the whole sequence I in T , and directly hops onto a space/time-step[12] by querying the MLP with
a location-column Tij . Note that Tij is generated by unfolding T . Recurrence/feedback-loops are
compensated for by a form of feature-expression[29]. This is a step towards validating GLOM’s
insight, i.e. input-percept is a field[29] and one can now interpolate in it (gestalt psychology).
Furthermore, the trigger column T resides in a continous embedding space, and not discrete hardware
locations(classical AI)[29]. Therefore, APM tries to integrate insights from both fields.

6 Ablations on APM
The experiments on TTT had relied on a curious ability of APM: it could simply overfit on a
test-sample’s distilled representation at t = 1. This merits further investigation:

Effect of one-sample test-time training: In Table 5a, we investigate whether existing networks are
capable of one-sample test-time-training. We employ a randomly-initialized network to overfit on
a distilled test sample’s token obtained in the first TTT iteration [28]. Standard MLP achieves low
accuracies of 9.0 and 3.8 on CIFAR-10 and CIFAR-100, respectively. Notably, an 11.4M parameter
ResNet18 outperforms the larger ResNet34 with 21.5M parameters. A reason might be that too many
parameters in ResNet34 gives it too many degrees of freedom[32]: it finds it hard to overfit on one
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Table 5: Ablations on APM. All nets except CLIP VIT-L/14 use random weights b) Tc: trigger
column contains convolutions. Tvit: Trigger column contains a routed VIT representation. C-10:
CIFAR-10, C-100: CIFAR-100. Accuracy is reported.

(a) Ablation to evaluate abilities of existing nets to learn
from a single sample[22, 77].

Params C-10 C-100
Zeroshot
CLIP VIT-L/14 428M 95.37 73.28
MLP 21M 9.0 3.8
ResNet18 11.4M 85.69 21.77
ResNet34 21.5M 78.24 12.89
APM 25M 97.04 77.98

(b) Ablations of our APM on C-10.Ixy means that
local patch was injected into the column Tc.

Lgrid Lcls Lrgb Ixy Acc
Tc ✗ ✓ ✗ ✗ 94.2
Tc ✗ ✓ ✓ ✗ 91.0
Tc ✓ ✓ ✗ ✗ 96.1
Tc ✓ ✓ ✓ ✗ 96.5
Tc ✓ ✓ ✓ ✓ 96.8
Tvit ✓ ✓ ✓ ✓ 98.6

sample. Our APM demonstrates strong performance on both CIFAR-10 and CIFAR-100, surpassing
the CLIP VIT-L/14 baseline.

Effect of various losses on APM: We analyze each row in Table 5b. Initially, only the CLS token
from the teacher was distilled into our network, resulting in a yield of 94.2%. When we added RGB
reconstruction loss for input, accuracy dropped to 91.0, attributed to the difficulty of breaking RGB
symmetry [23]. Subsequently, mimicking the entire feature grid and CLS token from the teacher
increased accuracy to 96.1. Adding both Lrgb and Lgrid further improved performance to 96.5.
Lgrid here refers to the last-layer of the teacher. Notably, while simple RGB reduction decreased
performance (91.0), a combination of Lgrid and Lrgb enhanced our network, as lower RGB and
higher object features complement each other [29]. Injecting local patch information Ixy into the
trigger column improved performance to 96.8. Finally, routing output tokens from a single VIT layer
into the trigger column Tvit strengthened the column and improved performance.

Effect of increasing number of convolution in T: Increasing number of convolutional kernels from
1 to 3 improves from 96.08 to 97.67.

These ablations reveal: 1) APM can do one-sample overfitting for a test sample, 2) It helps to have
both local patch and a strong image representation in the trigger column T, and 3) Increasing the
levels of part-whole supervision strengthens the net.

7 Related Work
Prompting Approaches: Prompting is a mechanism to adapt a foundational-model to a downstream
task in a zero-shot manner[58]. However, prompting typically requires well-designed hand-crafted
prompts. Prompt-tuning methods consist of learnable prompts which enable a parameter-efficient
approach to fine-tune a foundational-model. CoOp[106] applied prompt-tuning to CLIP. However,
CoOp[106] is sensitive to OOD-data, which CoCoOp[105] in turn compensates for by conditioning
the prompts on model inputs. Similarly, TPT[84] optimizes a prompt to encourage consistent
predictions across multiple augmented views of the same test sample, and uses confidence-selection
to filter out noisy-predictions. Note that TPT[84] performs prompt-tuning over ViT-B/16 but requires
feed-forward through all the model-layers for every iteration.

Test-Time-Optimization: Introduces the notion where a model adjusts its decision boundary dy-
namically during testing, for eg, improving robustness to distribution shifts. Test-time training (TTT)
generally adds a self-supervised multi-task branch, and performs a SSL-task like rotation, or masked-
reconstruction to adapt the network to the test-sample[15]. These approaches typically initialize
the net with pre-trained weights, for eg, Imagenet before undergoing ttt-iterations on a downstream
corrupted-dataset. An alternate line of work, for eg, TENT[96] proposes to minimize entropy of
batch-wise test-samples. However, TENT[96] requires more than one test-sample to converge towards
an optimal solution, whereas APM can also operate on one test sample. Another line of work adjusts
internal batch-norm-stats of a network[81]. However, this makes the network-architecture inflexible
and requires more than one test sample for optimization. Several other papers following the original
pioneering-TTT paper[86] have worked on different problem formulations, for eg, assuming access
to an entire dataset (e.g. [51, 72, 97, 103, 18, 104, 19]) or a batch (e.g. TENT [96]) of test inputs.

In contrast, APM evaluates on a each test-sample independently. Inductively, APM does not re-
quire any dataset specific pre-training, a pretext task or prompt tuning. Some approaches also use
higher-parameterized transformer/diffusion models[72] making the optimization compute-intensive.
However in APM, for TTT iteration t > 1, feed-forward is done through only 25M parameter APM
and not the 149.2M Clip VIT-B/16, resulting in computational efficient test-time-training(Fig 2).

9

106028 https://doi.org/10.52202/079017-3364



APM also inherits zero-shot behaviour from CLIP, which allows it to bypass training a separate
dataset-specific linear-probe for downstream TTT. Finally, some works in areas like source-free
domain-adaptation do perform TTT on smaller datasets like Cifar-10 etc[96]. APM additionally
shows results on Imagenet splits (Tab1,2) and various cross-generalization datasets(Tab3).

Part-whole hierarchies: The idea of encoding part-whole dynamic-parse-trees as distributed rep-
resentations in neural nets can be traced back to [33], with recent attempts leading to capsule
networks[42, 79]. However, the EM[42]/attention-based[79] routing forces each capsule to rep-
resent only one part[64, 62, 29]. This fundamental flaw prevents capsules from scaling-up and
generalizing to multiple OOD objects[64]. Recently, GLOM[29] proposed a theoretical system of
representing each input pixel as containing a column-vector. These vectors then undergo a routing
procedure such that pixels corresponding to same part come to ‘agree’ with each other.[16] demon-
strated GLOM on Cifar splits. APM does not need any routing because it processes location-aware
columns independently. APM now reveals an additional perceptual-interpolation property not shown
earlier(Fig6).

Knowledge Distillation: There has been a long history of training data-specific mixture/product of
experts and having their ensemble vote towards a prediction, with the key idea to make the experts
as different from as each other as possible, and only one expert deciding on the predictions of a
particular input sample[46]. This is better than having all experts give equal opinion on a sample[34].
Other methods attempted to ‘gather’ their collective knowledge to a single model for edge-device
deployment[31]. Recently, knowledge has been transferred from a larger teacher model to smaller
ones[5], for eg, a foundational model[88, 74]. The student often retains/becomes-better than its
teacher[1]. In practice, the weights of teachers are fluctuated slowly (EMA) as compared to the
student[87]. This mechanism then helps realize Kahnman’s theory of slow-fast thinking[47].

Typically, distillation requires boltzmann-matching[4] predicted distribution between students and
teachers, with the distribution’s sharpness being governed by a temperature parameter[40]. In contrast,
APM directly mimics the entire last layer feature grid of a teacher via L2 norm[93]. Furthermore,
APM possesses a novel-inductive bias that can recover semantic-features from a single CLS-token
distilled from a teacher[Fig 5]. This validates the intuition that CLS tokens encode useful geometric-
information of a scene after cross-attention of CLS token with patch tokens of an input image[11].

Routing Mechanisms: Routing mechanisms involve routing correct object-specific information to
correct neurons. [54] proposed slots which perform binding by iterative rounds of self-attention. Löwe
et Al[56] proposed 2D complex autoencoder and rotating features[57] where presence of an object is
encoded in phase of a neuron and follows the minimum description length principle[39]. In APM,
binding is done via the location itself[29]. GroupVIT [101] routes information to multiple group
tokens and shows that semantic segmentation emerges with just image-text contrastive supervision.

8 Conclusion
We propose APM, inspired from the insights presented in GLOM[29, 38]. APM promises to
be an efficient architecture for test-time-training and asynchronous patch-processing[91]. APM
shows robustness to extreme distribution shifts[24]. APM demonstrates that MLP’s can be made to
semantically cluster a given image. We hope that APM will help inspire further research on simpler
weight-sharing, lower-memory, higher-bandwidth efficient-nets [28].

Limitations: In this work, we have mainly-focused on image-classification. Furthermore, APM
requires multiple TTT iterations for now, although they might be reduced by exploring pre-training on
a source-dataset[28]. APM can work on just 1 sample with randomly-initialized weights. However, it
still requires a single CLS token which has been distilled from a teacher pre-trained on a large-scale
dataset. Our preliminary-experiments have revealed that APM can still do RGB-reconstruction
without a teacher[23], showing potential that APM can be self-sufficient and independent.
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Appendix: Asynchronous Perception Machine for
Efficient Test-Time Training

A Broader Impact
There are two main ideas that led us to Asynchronous Perception Machine[40, 29]. The first idea
is that instead of thinking of features as a cuboidal feature grid[27], one can think of it as a column
vector at each location[29, 64]. This helped us learn one to one mapping between the input rgb patch
and the vector at a particular location. It led to the net being able to process one patch at a time.

The second idea is this notion of collapsing information into a single starting point. Our previous
understanding was that this ‘collapse’ leads to degeneracy[40]. In this paper, the information can be
recovered from the starting point by copying it many times and breaking symmetry with positional
encoding. By asking the right questions at the right place at the right time, a net can thus learn to
express correct features[91, 29]. Although the information can ‘degenerate’ to a single starting point,
the net can still learn thanks to the strong positional-prior injected by such periodic-encodings[94].

This notion of combining information coming from many locations appears to have connections to
Kolmogorov-Arnold superposition theorem[29, 53]. The single convolutional filter in APM might be
considered an encoder and five layered MLP as a decoder. Convolution filter can also be considered
to be a tape[92] on which symbols are written, processed by a learning machine(MLP)[92] which
speaks the correct answers. We have observed that MLP’s have this ability to cluster elements in any
image. This seems exciting for dense visual tasks with potential for new insights. Finally, we are led
to believe that the networks could be made even smaller with higher bandwidth [29, 28]. Of course,
it shall mean defining a metric called bandwidth, where the performance of the learning machine
shall be measured by a three-tuple of <parameters, accuracy, bandwidth>[28, 2].

Knowledge-transfer can then be a consequence of sharing folded-embeddings which could grow
to form dynamically connected-networks rather than mimicking unfolded-outputs among multiple
neural-nets. Knowledge transfer between nets of same structure is as simple as copying weights from
one to another thereby making them immortal. There already exist approaches which share trees or
share knowledge between different neural nets, for e.g. dropout. A higher bandwidth way might
involve exchanging folded network-vectors in higher dimensional space, which then reduces to the
setting of distributed federated-learning that could run in low-cost hardware7.

A Turing machine gives us a sense of closure[68]: the input tape is shared for both input and output
to the machine. However, existing neural nets are mostly bottom-up, with feature expression limited
to last layer of the net. In contrast, neurons of a boltzmann machine were clamped, to allow data-
vectors to be presented to the net via the environment as well as express the generated perceptual
codes[14] sampled from the net itself on a same set of neurons[35, 37]. Modelling this closure
presents problems for training a neural net: for backpropagation cant work in circles of synapstic
connections, even though there is mounting evidence of such connections in the brain[28]. Modelling
top-down influences in GLOM then has to resort to leveraging top-down influence in a previous
time-step to influence lower embeddings estimated in the current time step via an auto-encoder or a
neural field. A key challenge then remains to propogate top-down influences in the current step, for
eg, via a recirculation-procedure[38] which could be trained via backprop or some other learning
algorithm we are yet to discover[28] and at the same time entirely avoid the representational/mode
collapse which comes from such local forms of learning[20, 29, 64].

B Future Work
APM offers a fresh perspective towards machine-perception: i.e. patches can now be lazily-processed
one-by-one asynchronously[29]. It shall be very-exciting to see APM’s potential on dense-tasks,

7It can be decentralized.
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video-understanding[63] and alternative testing-schemes i.e. few-shot scenarios or testing with a
‘batch-of-samples’. Another direction might involve making test-time-training faster/more-efficient by
exploring alternate zeroth-order optimization techniques[59, 28]. Finally, APM contains a local-field
which emerges as a consequence of folding-unfolding: this might have potential-applications to
generative[20, 43, 10]/dreaming[65]/sleeping-machines8[8].

C Pseudo-code for APM’s operation.
In Algorithm1, we have inflated the entire pseudo-code to train APM beyond the applications of
test-time-training. The idea is that given an input image xk APM can learn to predict its entire feature
grid fk and its rgb logits RGBk. First, the net inputs an image xk. xk is then routed to a trigger
column T . T then brings several columns Tij into existence. Each of these columns is fired into the
MLP to yield location-aware features fij . The loss is collected for all locations and backpropagation
then estimates the gradients required to update the parameters of the APM. In this entire process,
there were no labels being used. The feature grids could have been any layer of a net like DINOv2.
APM thus manages to learn a perception field within itself [29]. It can be then frozen, and used as a
computational equivalent of any feature-extractor for a downstream-perception task.

Algorithm 1: Training APM in a self-supervised manner using a teacher U.
Data: Input data X , Student SAPM , θAPM , Teacher U (frozen), Learning Rate η
for each epoch do

for each data point xk in X do
fk ← U(xk) ;

T
CNN← xk (create trigger col)3.2, xk ∈ R3×H×W ; /* Route sample xk in column T[29]

*/
Tij

Unfold← T 3.4, 1 ≤ i ≤ H, 1 ≤ j ≤W ; /* Create location-specific queries[29] */
for i in range(H) do

for j in range(W) do
f

′
ij ← SAPM (Tij) ; /* Feed-Forward column Tij into APM and decode
f

′
ij[29] */

RGB
′
ij ← RGBHead(SAPM (Tij))5.1; /* Decode lower-level RGB

′
ij[29] */

Lf = L2(f
′
ij , fkij);

LRGB = L2(RGB
′
ij , xkij);

L = Lf + LRGB ;
Compute∇θAPML;
θAPM ← θAPM − η∇θAPML;

end
end
T

fold← Tij3.4 ; /* Collapse all location-specific queries Tij into T[29] */
end

end

Furthermore, we present the pseudo-code of APM for test-time-training in Algorithm2. First, the
textual encoder of the teacher is used for estimating representations of each ground truth class.
Then over multiple ttt-iterations, the predicted feature of APM, a.ka. f is refined via statistical
running-average9. During each learning iteration, the trigger column T is undergoing phases of
folding-unfolding. Finally f is being used to perform zero-shot-classification with prior-computed
representations Rgt.

A question may be posed on how to decide the optimal number of ttt iterations t to achieve optimal
performance. Indeed, one might build additional inductive-bias in a student (aka APM) to estimate
when its own fantasies[41]/predicted semantic-features are better than the teacher’s and stop dynam-
ically/recurse until kickoff. Notions on soft decision-making for higher-level cognition are subtly
embedded in [95, 3].

8They are not always sleeping, they sometimes wake up too.[41].
9Averaging is similar to pooling in convolutional-nets and might lose important information over time. It

might be helpful to explore temporally-weighed averages or alternate type of long-term memory-banks[100].
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Algorithm 2: Pseudo-Code for operation of APM during Test-Time-Training.
Data: Input data X , Student SAPM , θAPM , Teacher U (frozen), Learning Rate η
Rgt ← U(classname) ; /* Compute text representation of gt classes via U[29] */
for each test sample xk in X do

fk ← U(xk) ;
θAPM ← N (µ, σ); /* Draw net’s weights for appropriate initialization.[17, 21]
*/

;
f

′
← None ;

for each iteration t do
T

CNN← xk (create trigger column)3.2, xk ∈ R3×H×W ; /* Route sample xk in column
T[29] */

Tij
Unfold← T 3.4, 1 ≤ i ≤ H, 1 ≤ j ≤W ; /* Create location-specific queries[29] */

L← 0 ;
for i in range(H) do

for j in range(W) do
f

′
ij ← SAPM (Tij) ; /* Feed-Forward column Tij into APM [29] */
f

′
← statisticalRunningAverage(f

′
ij) ;

Estimate Loss L+ = L2(f
′
ij , fkij);

end
end
Compute∇θAPML;
θAPM ← θAPM − η∇θAPML;

T
fold← Tij3.4 ; /* Collapse all location-specific queries Tij into T[29] */

end
return pred← contrastiveclassification(f

′
, Rgt) ;

end

D Reproducibility Statement
In order to ensure the reproducibility of our experiments, we have shared the model in supplementary
during review process. The code, model weights shall be released post-review. APM can work with a
single GPU like pascal in less than 2 GB of memory. It can also parallelize on a cluster containing 2
nodes of 8 A6000 amperes. We have provided details of hyper-parameters used in test-time-training
(Tab7), and precise details of each layer of APM(Tab 6).

E Implementation Details
E.1 Architecture and Hyperparameters

Architecture: We inflate APM’s architecture in Table6. For the TTT experiments, APM consists
of only a single convolutional layer, and 5 MLP layers. Additionally, APM consists of a feature
projection head containing a single linear layer, and an optional RGB head. It maybe noted that
the number of kernels in the convolutional filter is only 1. This creates a subtle issue: the RGB
reconstruction in Fig4 is black and white. This is because a single kernel loses RGB channel
information. Put simply, assume a tuple of 3 numbers representing RGB values, < 1, 2, 3 >
,< 4, 1, 1 >. For a convolution operation with a single kernel assuming unit weights, the answer is 6.
If this 6 gets injected in the net, it is equally certain that the input was < 1, 2, 3 > or a < 4, 1, 1 >
making reconstruction from the RGB head of APM difficult. We found that this symmetry-breaking
issue could be noticeably fixed with nkernels ≥ nchannels, where nchannels is the number of channels
c in the input. Historically, various other rotational/translational/mirror-symmetries have played an
important role in designing boltzmann machines[82]. The architecture in Table 6 is then meant to
showcase APM’s potential to an extrema: how much can it do even with a single convolutional filter?

Hyperparameters: All hyper-parameters utilized for APM during test-time-training are detailed in 7.
We leveraged the seed 42 in most of our experiments, and also conducted experiments with multiple
seeds. The weight matrices in APM were initilized with from a random distribution with µ = 0 and
σ = 0.01. All the code has been written in Pytorch version 1.13.0. We also note that performing
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Table 6: APM architecture for TTT: with input dimensions h,w, c and feature dimension dp:
dimensionality of positional encoding. s: stride of convolutional filter in encoder, dc: dimension of
the CLS token of teacher on which APM learns.

Layer Feature Dimension nkernels Stride Padding
(H ×W × C) Input / Output

Input h × w × c

Encoder Conv h/s × w/s × d 1 s 0 / 0

Decoder

Linear (dp + d) * 4096 - - -
Linear 4096 * 4096 - - -
Linear 4096 * 4096 - - -
Linear 4096 * 2048 - - -
Linear 2048 * 1024 - - -

Feature Projection Head Linear 1024 * dc - - -

RGB-
Head(optional)

Linear (dp + d+ 1024) * 4096 - - -
Linear 1024 ∗ 3 * 256 - - -
Linear 256 * 256 - - -
Linear 256 * 3 - - -

test-time-training with 16 bit floating point allows us to effectively use recent GPU architectures for
eg, Ampere: they contain a larger number of tensor cores in addition to CUDA cores which results
in significant speedups during the exprimentation process. Finally, we normalize an input image
using standard Imagenet stats, and dont resort to any other form of augmentation, thereby making the
pipeline far-simpler.

Table 7: APM hyperparameters during test-time-training.
Number of Test samples 50000 (Imagenet Splits), variable for other datasets.
Testing iterations 20
Batch Size 1
Learning Rate 1e-4
Optimizer Adam

Feature Output size d 768/1024
Positional Encoding size 768/1024

Image/Crop Size 448
Augmentations Normalization, µ = (0.485, 0.456, 0.406), σ = (0.229, 0.224, 0.225)

Precision fp16 (grad-scaled)
Num of Workers 8
Operating System 1x rtx a6000 48GB/96GB ram/Ubuntu 22.04/2TB ssd/5TB HDD

ViT Encoder: During our experiments in test-time-training, APM relies on higher-dimensional
CLS token distilled from a teacher trained on a large-scale-dataset, often via contrastive image-text
objectives. We showed quantitative results with CLIP, OpenCLIP and qualitative semantic-clusterings
with DinoV2.

CLIP is a zero-shot model from OpenAI which contains a vision encoder, and a textual encoder.
The textual encoder tokenises input class names to features. Both image/text encoder project them
to common dimensionality, and classification happens by measuring distances in contrastive space,
thereby offering a higher degree of freedom, as opposed to training a class-sensitive linear-probe.
CLIP VIT-L features an output CLS token of 768 dimensions, while CLIP VIT-H outputs 1024
dimensions both of which have been accommodated in Tab6. DinoV2[67] is a foundational-model
trained via SSL-objectives and predicts significant semantically-aware representations, which are
widely used in various downstream computer-vision tasks.

Inductively, both CLIP/Dinov2 rely on VIT, which operates on the principle of parallel attention[94]:
image-tokens a.k.a patches can flow along parallel paths among different layers stacked over each
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other without any loss of spatial-resolution which was also a key-shortcoming of convolutional-nets.
Even though the transformers have no bottleneck issue, the attention-operation in each layer still
occupies a significant amount of memory[64].

E.2 Datasets:

To evaluate model’s robustness to distribution shifts, it is necessary to test them on datasets which
contain corruptions on a variety of scenarios for eg, fog, rain, snow, etc.. One standard practice has
been to take the test set of larger datasets like ImageNet, and create synthetic corruptions to establish
appropriate-benchmarks on which the performance of these models can be compared. Alternatively,
certain test splits have been manually-curated from-scratch over the internet, for eg, sketches, artistic-
drawings etc. Below, we detail some of the splits which were used in this paper for APM’s robustness
experiments.

Cifar-10C: is a test-split consisting of 10000 test-samples of Cifar-10, corrupted with 15 noises,
across 5 levels of noise-severities. In this paper, we have shown results on the highest level, a.k.a
level 5 owing to the resource-constraints.

Imagenet-C: ImageNet-C is a dataset split for recognizing objects under distribution shifts, with
1000 classes like original Imagenet. This split contains 15 types of corruptions, with each type
containing 5 level of noise severities, aka, the percentage of the image region which is being typically
impacted by the corruption.

ImageNet-V2: is an independent test set containing images sampled from naturally occuring scenar-
ios, with 10000 images of 1000 ImageNet classes. ImageNet-V2 typically consists of 3 splits, with
varying levels of difficulties.

ImageNet-A: refers to a curated test-set containing "natural occurring adversarial samples", which
were misclassified by the Resnet-50. This particular split contains 7500 images of 200 ImageNet
categories.

ImageNet-R: refers to a novel test-set of several Imagenet categories, which contain artistic renditions.
There are 30000 images in this split spanning across 200 ImageNet categories.

ImageNet-Sketch: is a challenging test-split which consists of only black-and-white sketches of
1000 ImageNet categories. This split originally consists of 50,000 images in total.

Typically, methods like CLIP evaluate on these ImageNet using a prompt-ensemble of 80 handcrafted
templates. APM results were also shown using this ensemble for fair comparisons.

F Additional Ablations
Here we perform some additional ablations to understand how varying one of the parameters of APM,
while holding others hyper-parameters constant impacts the performance during test-time-training.

Effect of varying number of ttt iterations: We perform varying number of ttt iterations, evaluate
the performance of APM on three seeds, and report the mean and standard deviations. We note that at
t = 25, APM obtains 49.5% accuracy with a minimum observed standard-deviation of 0.2.

Table 8: Ablation with variable ttt iterations on DTD dataset: We pick the best performing 53M
param net in tab 7 of the main paper. We show mean/std over 3 runs with seeds 0/7/42. The net settles
on the best result of 49.5 and std reduces to 0.2 at niter = 25.

niter 10 15 20 25 30 35

APM (53M net) 44.2/0.6 47.7/0.7 49.1/0.5 49.5/0.2 48.3/0.6 46.3/0.1

Effect of varying number of parameters: In Tab9, we perform an additional ablation: the number
of parameters inside APM’s linear layers are gradually changed from 7M to 120M. We perform
TTT iterations on the DTD dataset. As can be observed, the top-1 classification-accuracy of APM
increases from 47.0 to 49.1, thereby indicating that a 53M net was optimal for this particular instance
of the problem. Beyond that, we observe a gradual drop in the performance, thereby indicating that
the net has started to overfit. In an ideal scenario, we would want that lower number of parameters
should yield higher performance. However, this would then require some more fundamental changes
which allows the net to achieve higher-bandwidths, which remains a matter for the future work[28].
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Table 9: Ablation on APM parameter count on DTD dataset: Increasing the number of parameters
to 53M improves APM’s performance to 49.1 beyond which it starts to drop. Top 1 classification
accuracy is being reported.

7M 25M 36M 53M 70M 87M 104M 120M

APM 47.0 47.5 48.1 49.1 48.4 48.1 47.8 47.0

Effect of removing the teacher from APM: APM can perform test-time-training on a single test-
sample by relying on a CLS-token distilled from a teacher trained on-scale. This might lend itself to
the assumption that APM really requires a teacher in order to learn semantically-aware representations.
In this ablation, we remove the teacher entirely and have APM perform RGB-reconstruction on
COCO-train set. The L2 RGB-reconstruction loss on COCO-val loss then falls to 0.0027. Training
took far longer than if last-layer feature-vectors were also distilled from a teacher into APM.

Higher-dimensional vector-spaces carry more bits[83], but incur significant randomness[4].
Island/vector-distillation speeds-up the learning-process which otherwise might only be informed via
RGB-reconstruction and take a lot of time[23, 29]. This helps guide APM’s ship to correct points in
the subspace. Progressing from VIT b->h in Tab1, shows APM becomes more competitive thereby
validating this intuition.

G Additional Results
Results on Cifar-10C: In Tab10, we show additional results on Cifar 10-C dataset widely used in
test-time-training [86]. Cifar-10C consists of 15 types of noise corruptions for all the 10,000 samples
present in the Cifar-10 dataset. As evident from the table, CLIP is not naturally robust on Cifar-10
and achieves an error rate as high as 24.5%. This is worse than existing ttt-methods like TTT-Online
and UDA-SS. Therefore, CLIP VIT-L is not naturally-robust on Cifar-10c.

Using it as a teacher, we get the lowest average error rate of 14.8%, thereby even improving upon the
performance of CLIP VIT-L/14. Note that our APM is reinitialized with random weights after every-
test sample in contrast to methods like TTT-Online which retain the weights after every ttt-iteration.
Inspite of that, we get a lower error rate i.e. 14.8% than TTT-Online 19.1%. Another benefit which
APM gains is that it can directly use the textual-encoder of the Clip VIT-L/14 teacher to classify on
cifar-10 test set: this allows us to bypass the requirement of training a separate dataset-specific linear
probe on top of our net.

Table 10: Cifar 10-C results at highest severity level of 5. We report Error Rate. Lower numbers
are better. t- model acts as teacher for our APM. TTT was done on test set with randomly initialized
weights. APM weights were reinitialized after each TTT iteration to prevent information leakage.
Lower is better.

Method orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elas pixel jpeg Avg
TTT-Online 8.2 25.8 22.6 30.6 14.6 34.4 18.3 17.1 20.0 18.0 16.9 11.2 15.6 21.6 18.1 21.2 19.1
UDA-SS 9.0 28.2 26.5 20.8 15.6 43.7 24.5 23.8 25.0 24.9 17.2 12.7 11.6 22.1 20.3 22.6 21.4
Zeroshot
Clip VIT-L/14 4.63 35.4 32.3 21.9 19.3 49.7 19.3 17.3 17.0 15.1 21.6 8.4 15.9 34.6 25.0 27.4 24.5
Clip VIT-L/14 (t)
APM (Ours) 3.5 21.9 30.1 13.7 15.2 34.1 11.9 11.1 15.0 9.0 13.5 5.8 9.5 23.0 15.8 17.0 14.8

Results on ImageNet-C: In Tables11,12,13,14, we perform test-time-training on APM for different
imagenet splits across increasing levels of noise-severities. We observe that APM continues to obtain
competitive performance over it’s teacher.

H Some helpful analogies
APM proposes two technical ideas. 1) The first idea is the proposed column representation T 2) The
second idea is the folding-unfolding mechanism. However, there are several deeper non-technical/non-
scientific inspirations which motivated the design of APM. We discuss some of those, to help facilitate
a deeper-connection and ground our intuitions.

A biological analogy[29]: Consider how an organism starts its existence from a cell. The cell is
copied across different body locations. Each location possesses identical DNA. However, depending
on the location, the DNA decides whether to form an eye or nose. We term this process as unfolding,
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Table 11: APM’s performance on ImageNet-C, level 1. The first two rows are same as the
supplementary materials of [15]. A ✓ in P means that method leveraged pre-trained weights
on clean variant of train set aka, Image-net and downstream-ttt on corrupted version. OpenCLIP
VIT-L/14 is in general more robust. APM can surpass OpenCLIP VIT-L/14.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Baseline ✓ 78.5 74.5 68.1 73.9 70.5 70.6 74.8 68.6 72.3 73.0 75.2 75.9 73.6 69.3 63.7 71.4
TTT-MAE ✓ 78.9 74.7 72.5 74.7 72.9 72.2 76.8 72.2 75.5 74.5 75.8 77.0 75.9 71.9 69.3 73.1

OpenCLIP VIT-L/14 ✗ 77.3 75.4 73.5 73.1 73.5 71.4 71.9 70.2 69.9 75.1 73.7 74.2 71.9 71.2 65.2 71.1
APM (Ours) ✗ 81.6 80.3 78.6 78.0 78.6 76.6 77.2 75.7 75.1 79.6 78.7 79.1 76.9 76.4 70.7 76.0

Table 12: APM’s performance on ImageNet-C, level 2. The first two rows are same as the
supplementary materials of [15]. A ✓ in P means that method leveraged pre-trained weights
on clean variant of train set aka, Image-net and downstream-ttt on corrupted version. OpenCLIP
VIT-L/14 is in general more robust. APM can surpass OpenCLIP VIT-L/14.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Baseline ✓ 77.4 71.2 62.3 51.0 66.3 58.4 68.6 59.2 64.9 70.4 70.6 74.7 66.2 54.2 55.2 64.1
TTT-MAE ✓ 77.8 71.5 69.4 49.7 69.8 62.7 72.5 66.4 70.0 72.7 72.3 76.2 70.6 58.7 63.6 68.3

OpenCLIP VIT-L/14 ✗ 76.6 74.4 71.4 53.8 72.0 62.6 67.6 64.0 64.6 73.8 69.0 72.8 66.4 61.8 58.3 66.1
APM (Ours) ✗ 81.1 79.4 76.6 59.4 77.3 68.2 73.1 70.0 70.3 78.6 74.5 77.8 72.0 67.8 64.3 72.4

Table 13: APM’s performance on ImageNet-C, level 3. The first two rows are same as the
supplementary materials of [15]. A ✓ in P means that method leveraged pre-trained weights
on clean variant of train set aka, Image-net and downstream-ttt on corrupted version. OpenCLIP
VIT-L/14 is in general more robust. APM can surpass OpenCLIP VIT-L/14.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Baseline ✓ 75.8 62.7 49.5 67.1 59.8 47.6 57.1 35.0 57.4 68.6 60.2 70.1 54.3 54.7 48.0 57.6
TTT-MAE ✓ 75.8 64.4 59.4 71.2 64.0 54.0 63.6 50.7 64.2 71.3 64.2 73.1 61.8 58.0 57.4 64.4

OpenCLIP VIT-L/14 ✗ 75.8 71.8 65.5 67.7 69.0 54.7 58.9 42.4 59.5 72.8 59.9 69.7 58.2 63.5 51.8 62.5
APM (Ours) ✗ 80.5 77.2 71.3 73.3 74.8 60.6 64.7 48.5 65.4 77.8 61.6 75.2 64.1 69.3 58.0 68.5

Table 14: APM’s performance on ImageNet-C, level 4. The first two rows are same as the
supplementary materials of [15]. A ✓ in P means that method leveraged pre-trained weights
on clean variant of train set aka, Image-net and downstream-ttt on corrupted version. OpenCLIP
VIT-L/14 is in general more robust. APM can surpass OpenCLIP VIT-L/14.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Baseline ✓ 73.1 33.1 35.8 56.9 54.2 45.2 39.6 26.0 38.2 62.0 43.2 60.3 32.2 44.2 40.7 47.4
TTT-MAE ✓ 72.7 39.6 45.7 64.9 58.3 52.6 48.5 42.8 47.6 67.0 50.5 66.6 42.4 45.7 51.5 53.2

OpenCLIP VIT-L/14 ✗ 74.2 64.2 58.7 57.8 66.3 52.8 45.3 34.6 45.2 68.9 46.6 63.9 41.1 56.2 45.6 54.8
APM (Ours) ✗ 79.2 70.4 64.9 63.7 72.3 58.6 51.2 40.4 51.3 74.1 53.0 70.0 46.7 62.5 51.8 59.6

i.e. a cell ‘expands’ to yield an organism. Next, there is evidence of jellyfish like Turritopsis dohrnii
reverting from their fully grown form to younger polyp states [71]. We term this process as folding,
i.e. cells of an organism collapse back to the single cell it began from.

A computational analogy[29]: We now start treating an image I as a digital organism. It starts from
some compressed representation T . T unfolds to yield the image I . I then folds back to yield the
compressed representation T . Learning proceeds by oscillating between these unfolded and folded
phases. At every step, the net is trying to reconstruct image I from T . T is then expected to be a
dense vector-space.

A cellular-automaton analogy[99]: On surface it seems a pretty trivial matter to discuss: a point
can expand and yield beautiful patterns which can either be an entire universe in accordance with the
theory of big-bang, or can be reproduction of an organism from a singular zygote. But, it is funny:
if you start from a point, and unfold it, then all you can get is a sphere. This appears to be true for
the behaviour of light, in accordance to Huygens principle10. However, we observe non-spherical
objects around us all the time. Turing posited that the symmetry breaking in the sphere must happen
somewhere while the organism unfolds: such patterns could then be explained a variety of diffusion
based equations[43].

10With a point on the wavefront being its own source. But the envelope is still a growing sphere.
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Figure 7: Cifar 10 islands: Individual part-wholes are clearly observed in APM features. These
features are used for downstream classification.We leverage the visualization mechanism by [64].
These islands are not been hand-picked[29]

This idea has been explored in cellular automaton: different replication rules of starting point can
yield different final patterns11. Scientists then continue to derive different rules which yield different
patterns, which is akin to how we were resorting to hand-engineering features in deep-learning for
a long time. APM attempts to answer the question: Is it possible to build a learning machine
which can start from a point, unfold, and then express correct features at the correct place?. We
want to then push the job of rule-learning to what backpropogation does best. We have lost the "why"
for the knowledge was encoded in the weights of the net, but we seem to have gained the ability
of correct features presenting themselves at correct locations. This location-aware-disentanglement
procedure thereby represents a step towards solving Arnold’s superposition theoram and Hilbert’s
thirteenth problem[29]. However, backpropogation can only approximate solutions and not yet
reach exact ones[28], and mathematical formulations are lost into the weights of the neural-net.
We then begin to imagine learning machines[91, 92, 90] which can solve a complex problem like
cryptography/breaking-a-cipher in two phases 1) relax the system towards an approximate solution
[40] 2) have the system spit-out which parts of the solution are uncertain, and brute-force towards the
remaining solution. Or, we could make the loss of the learning-machine reach perfectly zero, thereby
representing a perfect solution12. Hard problems like recognizing faces are approximately solved as a
consequence of a single forward pass through a learning machine. If the loss could be made to reach

11Interaction is only between local neighbours, yet order appears. Local-interaction is a form of local-routing,
and somehow stable patterns appear without a global constraint. Unfortunately, backpropogation still relies on a
global constraint. However, that symmetry was recently broken[55]. Perhaps, the answer then lies in how the
starting point instructs the unfolding process[25].

12If the degree of freedom of the machine ≥ than the freedom needed to solve a given problem, the machine
just keeps interpolating in the subspace among multiple set of weights that give the same answer[32]. This
wastes computation even if the solution has been reached. Annealing, early-stopping and quantizing weights
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Figure 8: Qualitative Results on COCO Val set: Our APM is trained on COCO-train set, and
islands on COCO-val set are visualized[29]. We leverage the visualization mechanism by [64]. Note
that these islands are a consequence of single feed-forward through the net and not an iterative routing
mechanism as in [16]. These islands are not been hand-picked.[29]
zero, then we could consider the problem to be perfectly solved. Solvability can then happen in a
feed-forward phase, which for practical purposes appears to be polynomial.13

Next, we redirect the reader’s attention to neumann’s theory of self-reproducing automaton[66]. His
idea of a self-replicating colony was that there is an infinite source of resources a.ka. reservoir which
is shared by the automaton which operate at different locations of a colony. The colony uses up
the shared resources, does self-replication and in this way converts raw materials/matter into useful
intelligent-behaviour. The infinite reservoir of machines he talks about then reduces to the trigger
column T in APM: since features are sampled from a same space, they automatically become aware

have been some old ideas to reduce this degree of freedom. We would then need a mechanism to dynamically
adjust the degree of freedom during inference.

13A computing machine which is exponentially fast can pass on the illusion that a non-polynomial solution-
space is now polynomial, for the time is measured in a constant observer-space[12]. However, feed-forward loses
how the solution was reached, i.e. we can no longer predict precise algorithmic steps. Mathematical-imprecision
could still lead to a perfect solution. An extreme loss of precision means that the net could then run in an analog
hardware[28]
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of themselves, thereby making explicit attention unnecessary. This also then is same as how latents
have been classically sampled in the generative models[20]. One might argue that multiple automaton
although starting their lives at the same point will need to communicate among themselves, as they
differ among their configurations at later point in their lifespans14. Fluctuations in T are then akin
to mutations. We compensate for this fact by weight-sharing the MLP across different locations in
APM.

A cosmological analogy: In physics, one of the famous theories of the origin of universe has been
starting from a single point, and undergoing a continuous expansion[45]. There are alternate theories
for eg, Conformal Cyclic Cosmology[69] which hypothesize the universe undergoing periodic cycles
of expansion and contraction[73]. Drawing inspiration from these fundamental insights, the trigger
column T undergoes these cycles of folding and unfolding during the learning iterations.

I A new representation: Hinton’s Islands of agreement[64, 29]
APM is inspired from GLOM’s philosophy. This section explains the principles behind island of
agreement in more detail to facilitate an easier understanding. GLOM [29] assumes that each pixel
of an input image contains a higher dimensional column vector over it. Therefore, for an image of
h× w, there is a column vector at every location. Next, all these column vectors undergo some sort
of message passing between themselves, for eg, via attention. At the end of these procedure, the idea
is that the vectors belonging to identical objects should start pointing in the same directions in the
higher dimensional embedding space. A cluster of such higher dimensional vectors is then called
islands of agreement. To see such islands in practice, one can then apply a dimensionality reduction
procedure like t-sne to 3 dimensions, and visualize the obtained feature map by backprojecting the
obtained features to the RGB range of [0,255][64]. Note that t-sNE preserves the higher dimensional
spatial structure among the vectors since it fits gaussians. This visualization mechanism does not
require any feed-forwarding or backpropogation through the net: the islands are already there, and
clustering merely helps them to reveal their presence15.

We present the islands of agreement which can be observed now in APM in Fig 7,9,10. Notice how
the part-wholes in the images are clearly observable in different colours. Finally, we scaled up our
APM and trained it on COCO train set. Fig 12,11,8,13 visualizes the islands of agreement on COCO
val set. It can clearly be seen that the net develops a semantic clustering and shows the potential to
do a dense task. APM offers a unique advantage over parallel perception (DINOv2): features at a
particular location can be queried serially. One can ‘selectively’ query the locations which correspond
to a particular object[102], instead of bringing the whole feature grid in existence and then choosing
the relevant objects[5]. Such an inductive bias of choosing which of the input rays/columns in a
neural field corresponds to which object has already been explored by Yu et al[102].

In the presented islands of agreement, one can see that the parts and wholes of the object are all
entangled into one image. In an idealistic scenario, the net should learn to map the whole <part,
whole , relationship> triplet[29]. GLOM looks at the features predicted by different layers of a
transformer in a different way: lower layers are predicting object parts, and higher layers are predict
the full object. For now, APM has only modelled the last layer of the transformer. In an idealistic
scenario, we want the net to traverse the whole up-down part-whole hierarchy as well as learn the
pose-transformation matrix which can get us from one part to its whole[29].

Let us next consider a 2D image of a man[7] gazing at the ground in front of him. At the object level
it does not make sense for embeddings of the nose to jump to the embeddings of the ground. However,
it is okay to learn pose-transformation matrices which can get us from one point on the man’s body to
another. This means that this restricted movement has to be informed by a top-down feedback which
we have not yet modelled. Furthermore, this pose prediction can happen by a big fat-net like APM16

14As a consequence of inherent markov-stochasticity. Biologically, Darwin called it evolution[9]. In machines,
it can be inbuilt randomness in a computing element[92, 91, 90].

15In this material nature, the boundaries around objects are not precise boxes. Rather they gradually blend in
the background. This is known as sfmato effect which leonardo hath incorporated whilst painting Mona Lisa[61].
Similarly, GLOM proposes to do away with boxes altogether[29, 64].

16A big-fat net being used to predict embedding at each location in the part-whole hierarchy is different from
simply making only the embeddings compete among themselves[16]. Replicating the same net across locations
is costlier than replicating location-specific input-queries to a shared net. Both achieve the same effect. Of
course, our weight sharing is not biologically plausible, which also remains a deficiency of GLOM[29].

26

106045https://doi.org/10.52202/079017-3364



shared across locations and levels of the part whole hierarchy. This is different from capsules, which
contain only a few convolution filters at a particular location. In computer graphics, the pose matrix
is defined a four by four matrix where the first three by three elements are rotation components, last
row are homogenous coordinates, and first three numbers in the last column are camera translations.
If the net predicts a 4 × 4 matrix each of whose element can be any constrained number, we lose
the ability to make interpretations about what the predicted matrix actually represents since it is no
longer in a well defined world-coordinate frame. This problem is same as how the ‘learnt’ camera
poses are aligned to ‘real’ camera poses in neural fields while doing bundle adjustment[49].

Note that islands of agreement operate at the finest spatial granularity: there is one column vector for
each pixel of the input percept. However, in the case of perceptual overcrowding [42], there might
be some hidden part of an object whose inference might be made seeing the visible pixels around
it. However, the island in our case does not model this, since agreement is only established for one
object at a particular location [64]17.

17We could use non-intuitive hungarian-matching to resolve order among predictions of multiple object in the
scene[64, 5]. It is non-intuitive, for the objects in this material-world don’t permute in reality, and dont choose
the combination which shall result in the lowest loss. Rather the brain surfs reality[29]. The brain then is the
neural net, and the objects are the external input from the environment[40]. The objects/islands are already there,
and reveal themselves when fixated upon. If not, they then just collapse into a superimposed quantum state,
for a tilted cube or a diamond are nothing but a same object[70]. The granularity of fixation can then vary in
practice,aka saccades. Quantum state can then arise in a digital machine as a consequence of kolmogorov’s
theoram. Such effects can then happen at room temperature instead of super-cooled matter states[13]. The only
difference is that a system of parallel-connected components requires gradient descent in a digital machine. In a
quantum machine, there can be a different mechanism for relaxation.
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Figure 9: Cifar 10 islands: Notice how individual parts are clearly observed in APM features. These
features are used for downstream classification. We leverage the visualization mechanism by [64].
These islands are not been hand-picked.[29]

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The first claim is that we improve on ttt’s computational performance, second
claim is that APM performs better than existing baselines, third claim is that APM’s
architecture is a single CNN filter and a MLP of 5 layers. Fourth claim, to the best of our
knowledge is that we are providing the first evidence of GLOM’s insight: i.e. percept is
really a field . The first claim of computational complexity is analyzed in Tab 4 and Fig 2.
Second claim of improved performance over ttt methods is present in tables 132.Third claim
of APM’s architecture will be evident in the codebase shared with this manuscript. Final
claim confirming GLOM’s insight i.e. percept really is a field is evident in Fig6. A kind
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Figure 10: Cifar 10 islands: Notice how individual parts are clearly observed in APM features.
These features are used for downstream classification.We leverage the visualization mechanism by
[64]. These islands are not been hand-picked.[29]

reader can also interpolate any two images in the wild using the codebase we shall share
with this manuscript in the review process.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Figure 11: Qualitative Results on COCO Val set: Our APM is trained on COCO-train set, and
islands on COCO-val set are visualized[29]. Note that these islands are a consequence of single
feed-forward through the net and not an iterative routing mechanism as in [16]. DINOv2 does parallel
perception: i.e. all tokens are kept in the memory. However, APM does asynchronous perception: it
can predict the column vector at any location asynchronously. The error map shows the error between
the grid predicted by Dinov2 and the grid predicted by APM. It is mostly black which shows APM
closely approximates Dinov2 grid as well as can be memory efficient. The islands shown in this
figure are not hand-picked[29].
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Figure 12: Qualitative Results on COCO Val set: Our APM is trained on COCO-train set, and
islands on COCO-val set are visualized[29]. Note that these islands are a consequence of single
feed-forward through the net and not an iterative routing mechanism as in [16]. DINOv2 does parallel
perception: i.e. all tokens are kept in the memory. However, APM does asynchronous perception: it
can predict the column vector at any location asynchronously. The error map shows the error between
the grid predicted by Dinov2 and the grid predicted by APM. It is mostly black which shows APM
closely approximates Dinov2 grid as well as can be memory efficient. The islands shown in this
figure are not hand-picked[29].
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Figure 13: Qualitative Results on COCO Val set: Our APM is trained on COCO-train set, and
islands on COCO-val set are visualized[29]. Note that these islands are a consequence of single
feed-forward through the net and not an iterative routing mechanism as in [16]. DINOv2 does parallel
perception: i.e. all tokens are kept in the memory. However, APM does asynchronous perception: it
can predict the column vector at any location asynchronously. The error map shows the error between
the grid predicted by Dinov2 and the grid predicted by APM. It is mostly black which shows APM
closely approximates Dinov2 grid as well as can be memory efficient. The islands shown in this
figure are not hand-picked[29].
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Answer: [Yes]

Justification: See limitations sections at the end of conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper has presented a practical computational-efficient architecture for
test-time-training. Its computational efficiency and results have been empirically validated.
Furthermore, codebase shall be shared for transparency. The theoretical explanation of the
entire algorithm has been presented in the section 3. Full pseudo-code has been presented in
Algorithm 1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: Model Codebase has been shared. We shall release the full repo post-review.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: To preserve anonymity during the review process, code shall be hosted on
anonymousgithub and shared in supplemental during review. post-review , we shall release
the code on github, and maintain it regularly.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We follow the standard practice followed in test-time-training literature [84,
15, 86]. Furthermore, all the experiments are run with the same seed, thereby ensuring
reproducibility. All the nets are initialized with same random weight matrices to help ensure
experimental consistency.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: There is a whole discussion on computational complexity. ll experiments are
run on a same desktop-workstation containing 1x rtx a6000/96GB ram/Ubuntu 22.04/2TB
ssd.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: read the code of ethics. no human subjects were used in this work. existing
open-source datasets were used. work was done by a small student in academia: there is no
issue of license.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have added a broader impact section in the supplementary.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: we have used open sourced data. so there are no asset issues. our own model
weights shall be released later. The presented model APM is a very small model, with
potential for going into a toaster for less than a dollar, thereby making ai more accessible
and useful in lives of every day people.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: yes, APM is inspired from GLOM whose reference we have added.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: we have introduced a new network called APM. that is well documented. this
paper uses well-known datasets in the existing test-time-training literature.
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Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: no human subjectes were used here.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: The worker was a graduate student who was paid 20 hours. But he worked 90
hours because he loved it ehh.

Guidelines:

• Wait for it, says Barney. Now is the time for post-credits. The fun is not yet over. This
message has been subtly embedded into this list, because apparently noone scrolls
down till the bottom. Since you stayed with us, big kudos to you. The rise of mortal
machines shall now begin lolzy. We shall see each other on the other end. Hiya hiya
hiya. All credits go to shinchan, pikachu and big godzillas. But who are they?. That’s
a teeny-tiny secret. We might whisper it to you someday. Apparently walls also have
ears.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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