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Abstract

Research on egocentric tasks in computer vision has mostly focused on head-
mounted cameras, such as fisheye cameras or embedded cameras inside immersive
headsets. We argue that the increasing miniaturization of optical sensors will lead
to the prolific integration of cameras into many more body-worn devices at various
locations. This will bring fresh perspectives to established tasks in computer vision
and benefit key areas such as human motion tracking, body pose estimation, or
action recognition—particularly for the lower body, which is typically occluded.
In this paper, we introduce EgoSim, a novel simulator of body-worn cameras
that generates realistic egocentric renderings from multiple perspectives across
a wearer’s body. A key feature of EgoSim is its use of real motion capture data
to render motion artifacts, which are especially noticeable with arm- or leg-worn
cameras. In addition, we introduce MultiEgoView, a dataset of egocentric footage
from six body-worn cameras and ground-truth full-body 3D poses during several
activities: 119 hours of data are derived from AMASS motion sequences in four
high-fidelity virtual environments, which we augment with 5 hours of real-world
motion data from 13 participants using six GoPro cameras and 3D body pose
references from an Xsens motion capture suit.
We demonstrate EgoSim’s effectiveness by training an end-to-end video-only 3D
pose estimation network. Analyzing its domain gap, we show that our dataset and
simulator substantially aid training for inference on real-world data.
EgoSim code & MultiEgoView dataset: https://siplab.org/projects/EgoSim

1 Introduction

The newest generation of AI-based personal devices evidently requires an understanding of the world
from a user’s perspective to provide meaningful context. For example, Meta’s Ray-Ban glasses [1],
Hu.ma.ne AI pin [2], or the glasses demoed at Google I/O 2024 all share the wearer’s perspective to
analyze their surroundings. Such emerging devices in addition to existing immersive Mixed Reality
platforms have further spurred research efforts on egocentric perception tasks [3, 4].

While head-worn cameras have primarily been used for localization [5, 6], they are ideally positioned
to simultaneously capture the wearer’s arm motions, for example, to estimate upper body poses [7–9]
or detect user input from hand poses and actions [10, 11]. For egocentric pose estimation, previous
work has commonly used head-mounted fisheye cameras pointing down [12–14], which can capture
much of the upper body. This promise has spurred interest in egocentric pose estimation, for which
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Figure 1: (Left) Our dataset MultiEgoView contains 5 hours of egocentric real-world footage from
6 body-worn GoPro cameras and ground-truth 3D body poses from an Xsens motion capture suit
as well as 119 hours of simulated footage in high-fidelity virtual environments on the basis of real
motion capture data and associated 3D body poses. (Right) Our method estimates ego poses from
video data alone, here visualized inside the scanned 3D scene.

several real [3, 5, 12–18] and synthetic [13, 15, 19] datasets have been collected. The advantage of
synthetic data has been demonstrated for simultaneous localization and mapping (SLAM [20–22]),
3D reconstruction [23, 24], and human mesh recovery (HMR [25–27]).

For more comprehensive capture of body motion, prior work has used motion-capture suits [28] or
individual body-worn motion sensors [29–32], where learned methods predict 3D body poses from
up to a set of inertial sensors as input. These sensor ensembles provide rich information about the
various limb motions and enable fine-grained pose estimation. However, estimates from motion
sensors alone suffer from drift and struggle with tracking global positions, for which previous work
has added head-worn cameras [6, 16, 33, 34] to complement inertial motion cues.

Considering the ongoing miniaturization of camera technology, there is promise in further augmenting
on-body tracking methods with camera sensors, for example, to remove the occlusion of lower body
parts and extend the coverage of the environment [14]. Indeed, Shiratori et al.’s pioneering effort to
track 3D body poses in the wild from multiple body-worn cameras in 2011 predates many learning-
based methods [35] and demonstrated the potential of the richer modality that is videos for human
motion tasks. In addition, body-worn cameras, such as those on the wrists [36–39] or legs [35] benefit
from their proximity to the point of interest during human activity or hand-object interaction. The
use of multiple cameras mitigates the effect of occlusion and provides multiple vantage points of the
ego-body, surrounding people, and the environment. Extensive research on integrating multi-view
data (e.g., [40–42]), albeit typically from static third-person perspectives, has shown benefits for
navigation [43], 3D reconstruction [44], and pose estimation [45, 46].

In this paper, we introduce EgoSim, a multi-view body-worn camera simulator designed for human
motion tasks. We also present MultiEgoView, a dataset that comprises rendered footage simulated
from existing human motion data and novel complementary real-world recordings (Figure 1). We
demonstrate the benefit of body-worn cameras and our simulator with the example of ego-body pose
estimation using an end-to-end trained vision-only model. Our contributions in this dataset paper are:

1. EgoSim, an easy-to-use, adaptable, and highly realistic simulator for multiple body-worn cameras
that uses real human motion as input. Camera positions on the body and their intrinsics can be
configured flexibly, and EgoSim renders a range of useful modalities. EgoSim also simulates the
attachment of body-worn cameras realistically via a spring arm to include motion artifacts.

2. MultiEgoView, a 119-hour video dataset of one or more avatars that perform natural motions and
activities based on AMASS [47] in four virtual environments with reference 3D body poses. We
contribute a novel 5-hour real-world dataset with 13 participants who wore 6 GoPro cameras with
3D body reference poses (from Xsens [48]) and dense human activity classes (BABEL [49]).

3. A learning-based multi-view method for end-to-end 3D pose estimation tasks from video. We
analyze the sim2real gap based on our dataset and show the benefits of simulated data.

Taken together, we believe that EgoSim—alongside other emerging simulators (e.g., for faces [50]
and scene interactions of human bodies [19,51–54], and hands [55,56])—will contribute to advancing
open research on egocentric perception tasks.
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2 Related Work

Synthetic datasets and simulators. The advancement of deep learning in recent years has necessi-
tated larger and more varied datasets that can be acquired using simulated data. Visual synthetic data
proved its benefits in many fields such as human mesh recovery [26], visual-inertial odometry [57],
visual SLAM [58, 59], and human pose estimation [26, 60]. Microsoft AirSim [61] stands out as
one of the most effective simulators. It has facilitated the creation of photo-realistic datasets such as
TartanAir [20], optimized for Visual SLAM tasks, and Mid-air [62], designed for low-altitude drone
flights. So far, AirSim [61] and other simulators [63] fall short in tasks centered on human dynamics,
such as 3D human pose estimation or multi-actor interactions. Only recently, the Habitat 3 [64] simu-
lator targets human-robot interaction tasks and progresses in this area but offers limited configuration
for sensor placement and environmental diversity. EgoGen as a novel human-centered simulator
demonstrates promise by focusing on human motion synthesis [19]. Traditionally, datasets simulate
cameras either statically or with smooth movements. Such datasets fail to generalize to egocentric
scenarios where the camera’s position dynamically changes in relation to the wearer’s movements.
EgoSim advances this field by being specifically designed for human-centric research with wearable
cameras that follow the natural non-smooth movements within the human body. It uniquely supports
complex multi-character interactions in varied environments, both indoor and outdoor, enabling more
comprehensive and diverse studies in this field.

Human motion datasets. In controlled settings, multiple third-person view cameras and motion
capture equipment offer accurate ground-truth data [47, 65–69]. Fitting 3D body models [70–72] to
point cloud marker sets [47] or using RGBD camera data can provide ground-truth poses. However,
the complexity of these setups mostly limits their scalability to indoor environments [3, 73, 74].
Pseudo-ground truth pose annotations can overcome these limitations for outdoor environments.
Several methods use 2D keypoints [75–77], which are easy to label at a large scale, but provide 2D
constraints only on the human pose. Alternatively, fitting 3D body models such as SMPL [70] to
images provides pseudo-ground truth parameters [78–80]. You2Me [81] and EgoBody [3] capture
human pose data for interacting individuals using head-mounted cameras in indoor settings. Recently,
Egohumans [4] has expanded the scope to include up to four interacting individuals in both indoor
and outdoor settings. Meanwhile, larger datasets like Ego4D [17, 18] offer extensive data from head-
mounted cameras for tasks such as social interaction and hand-object interaction, but they lack data
from additional body-worn cameras. The recently published Nymeria dataset [82] addresses this gap
partially and includes real-world videos from wrist-mounted cameras. Our real-world MultiEgoView
dataset further extends to a setup with six body-worn cameras with additional sensors at the knees and
pelvis. To overcome limitations in real-world datasets, realistic synthetic datasets offer an alternative
that offers diversity and quality ground truth annotations [15, 26, 27]. Our work expands on this
approach by introducing a configurable simulator tailored to body-worn sensors, with adjustable
parameters for lighting, scene, and camera placement. EgoSim complements real-world datasets like
Nymeria by enabling the rendering of synthetic images from adjustable body-worn cameras based on
their captured motion sequences.

Egocentric perception. Wearable cameras serve as the primary input for research on egocentric
perception tasks. Currently, real and synthetic egocentric datasets mainly feature head-mounted
sensors. Some systems [13, 14, 83] use a single head-mounted, body-facing, fisheye camera to
estimate 3D ego-body pose, while others rely on a stereo configuration [15, 73, 74]. Head-mounted,
body-facing cameras benefit from capturing visible joints in image space to aid ego-body pose
estimation. Other methods recover the 3D pose from non-body-facing cameras. HPS [84] integrates
multiple body-worn IMUs with camera-based localization using structure from motion. Kinpoly [85]
recovers the whole body pose from a front-facing camera using physics simulation with reinforcement
learning, while EgoEgo [5] combines SLAM with a diffusion model to recover the ego-body pose.
AvatarPoser [33] and its subsequent work [8, 34] predict full-body poses based on head and hand
poses tracked by commercial mixed reality devices. HOOV [86] extends hand tracking beyond the
field of view of head-mounted cameras using inertial signals captured at the wrist.

So far, egocentric datasets have mainly focused on head-mounted cameras that either point down
toward the body [12, 14, 15] or forward [5, 16, 87], often designed for specific devices [3, 4, 18, 88].
Our work extends egocentric datasets to multiple body-worn cameras by providing an adaptable
simulation platform and a real-world dataset of six body-worn cameras.
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Table 1: Comparison of previous datasets for egocentric 3D human pose estimation.
Dataset Mo2Cap2 [12] xR-EgoPose [13] EgoCap [73] EgoGlass [74] UnrealEgo [15] EgoBody [3] ARES [5] MultiEgoView (ours)

Head camera type fisheye fisheye wide stereo stereo fisheye stereo front facing fisheye stereo front facing
sees body ✓ ✓ ✓ ✓ ✓ ✗ ✗ partly

Hand camera ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2×
Leg camera ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2×

Pelvis camera ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Image generation composite Maya composite real Unreal Engine real Replica Unreal Engine

Image quality low high real green screen high real high high
Environment In- & Outdoor Mostly Indoor Indoor Indoor In- & Outdoor Indoor Indoor Outdoor
Dataset Size 530k 383k 2× 41k 2× 170k 2× 450k 220k 1.2M 6× 12.9M

Real data ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓6× 520k
Motion Diversity mid low low low high high high high

3 EgoSim Simulation Platform

EgoSim is designed for body-worn camera simulation. We extend Microsoft’s AirSim simulator [61]
integrated within the Unreal Engine [89] to leverage its flexibility and realistic output renders
(e.g., [26, 27]). Specifically, we augment the platform with the capability of simulating body-worn
cameras during realistic human motion, generating dynamic changes in camera motion that correspond
to a person’s movements, including potentially irregular, rough, and non-smooth moments.

Simulating images. EgoSim renders footage through Unreal Engine’s cinematic camera [90]
for realistic images. The camera model and noise parameters are adjustable. EgoSim supports
simultaneously rendering multiple modalities (Figure 2), including RGB, depth, normal maps, and
semantic segmentation masks. These modalities are complementary and can serve as input to various
computer vision tasks in the future.

Simulating physical attachment and motion artifacts. A key feature of EgoSim is the consid-
eration of camera attachment to account for motion artifacts during simulation. Since body-worn
cameras are non-rigidly mounted, often coupled to clothing or strapped to the limbs like a smartwatch,
the loose attachments can lead to slip and drag in the camera’s position and orientation. EgoSim
simulates these using spring arm mounts that connect the avatar’s body and the virtual cameras. We
demonstrate that spring-damper systems as a camera mounting model help to realistically capture the
effects of loose camera attachment as found in the real world (Section 6.3).

Simulating diverse environments. EgoSim benefits from the vast selection of indoor and outdoor
environments available in Unreal and previous work, e.g., [26]. As shown in Figure 3, it can render
both, large, realistic hand-modeled scenes and scanned scenes that closely resemble their real-world
counterparts. The used scenes are in wide open spaces where motion capture is traditionally hard to
perform. Additional details about EgoSim’s features are provided in the appendix Table 3.

Synchronizing multi-sensor and multi-person recordings. Synchronizing multiple cameras poses
challenges in real-world recordings, yet it is straightforward to generate synchronized multi-modal
data in EgoSim while obtaining ground-truth characteristics of the environment or avatars. In addition
EgoSim is capable of simulating and rendering data from across multiple avatars and to obtain
corresponding ground-truth poses and camera positions. EgoSim supports a flexible number of
sensors, sensor characteristics, and attachment locations—independently for each avatar.

a b c d

Figure 2: EgoSim renders multiple modalities: (a) RGB, (b) depth, (c) normals, (d) semantic labels.
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Figure 3: Example RGB renders produced by EgoSim and included in our MultiEgoView dataset.
Qualitatively, the simulated scan (d, e, f) and real data (g, h, i) look similar. Both simulated scenes
(Scene 1: a, b, c; Scene 2: d, e, f) offer high-fidelity environments. The pelvis provides a stable view
of the environment, whereas wrist and knee cameras typically move quickly and capture artifacts.

4 MultiEgoView Dataset

MultiEgoView contributes a sizeable and synchronized dataset of RGB data from six body-worn
cameras, along with ground-truth body poses and activity annotations. Our dataset includes real
and synthetic data, providing a challenging and interesting testbed for training and benchmarking
body-pose estimation, activity classification, dynamic camera localization, and mapping algorithms.

Synthetic data generation. Using EgoSim, we rendered a dataset of 77.4 M RGB images corre-
sponding to 119.4 hours captured by six virtual cameras on a virtual avatar. Images were rendered
with a 118° field of view (FOV) at a resolution of 640× 360 and a framerate of 30 fps. Cameras
were attached to the head, pelvis, wrists, and knees, facing outwards to capture both the environment
and parts of the wearer’s body. This considerably extends the focus of prior work on head-mounted
cameras [12, 13, 15, 73] and better resembles emerging wearable platforms devices [3, 17, 74]. To
ensure realistic motions, we animated avatars using motion capture sequences from AMASS [47],
converted to FBX format for EgoSim support [71]. We randomly varied avatar appearances in terms
of skin color and clothing texture using BEDLAM’s assets [26]. Our dataset features 24 locations
across 4 scenes: (1) a hand-built virtual outdoor environment of a city, (2) the front courtyard of a
university building that we scanned using Polycam, with an accurate public point cloud scan and
structure-from-motion model available [91], (3) Downtown city with skyscrapers and (4) a park with
sport courts, lawn, vegetation and water. Each scene includes up to four simultaneously animated
avatars to increase diversity and support multi-view multi-human pose estimation [4, 92]. In addi-
tion to the RGB data, we provide ground-truth camera and 3D avatar poses, as well as simulated
accelerometer and gyroscope readings from all six cameras.

Real-world data collection. We captured a dataset of ∼5 hours in the real world using six GoPro
cameras (5×HERO 10, 1×HERO 9) [93], worn at the same body locations as in our simulation. We
recruited 13 participants from places around our institution for this collection, who consented to
participation and data recording. The study considers ETH ethics guidelines and Participants received
a small gratuity for their time. Data was recorded in the same university front courtyard that was
scanned for the synthetic environment (2), using GoPros set to a resolution of 1080p at 30 fps and
a horizontal FOV of 118°. The 13 participants (4 female, 9 male, ages 21–30, mean = 26.4) were
recruited from our institution, with heights ranging from 160–190 cm (mean = 176.1, SD = 9.5) and
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weights from 50–94 kg (mean = 69.6, SD = 13.2). After providing consent (see Appendix for details),
participants were equipped with a full-body Xsens [48] motion capture suit for ground-truth pose
capture. Following an initial calibration, participants performed a block of 35 different activities
featuring the most common motions from AMASS according to the BABEL annotation [49]. For a
full list of activities, see our appendix Table 7. Each block lasted about 10 minutes, with participants
repeating the block 1–3 times. To synchronize the GoPro camera with Xsens, participants clap at the
beginning of each recording and match the camera with extracted SMPL poses. We compute shape
parameters from the body measurement of participants with Virtual Caliper [94].

All sequences across real and synthetic data are labeled with activity classes from BABEL [49].

5 Baseline Method: Wearable Multi-Camera Body Pose Estimation

To demonstrate the benefits of MultiEgoView, we trained a neural network to estimate 3D ego body
poses using multiple body-worn cameras. The input to the network consists of the aligned video
sequencesX ∈ [0, 1]C×F×3×H×W , with F frames from C body-attached cameras. Based on these
inputs, the network predicts a pose p̂i for each input frame i.

5.1 Network architecture

Our network is a Vision Transformer Model based on Sparse Video Tube ViTs [95]. We extract
feature vectors from each input video using a sparse view tokenizer SVT with a shared interpolated
kernel. The extracted feature vectors from the sparse tube tokenizers are then added to their fixed
spatio-temporal position encoding κp and their learnable view encoding κv,c per camera c.

vc = SVT(Xc,W ) + κp + κv,c, whereW are the shared weights of the kernel. (1)
The resulting feature vectors for the different cameras vc are concatenated with the pose token
ϕj = τ (j) + ψ, j ∈ [0, F − 1], where ψ is a trainable pose token and τ is a sinusoidal positional
encoding. The resulting token sequence is then processed using a Vision Transformer Encoder.

{z0, . . . ,zF−1} = ViT(concat(ϕ0, ...,ϕF−1,v0, ...,vc−1)) (2)

Based on each embedded pose token z, we obtain the 6D representation [96] of the SMPL pose
parameters θ, the 6D relative rotationRr, and 3D relative translation of the root tr with respect the
previous frame.

θ̂ = Wθz, R̂r = WRz, t̂r = Wtz (3)

To improve generalization, the network is trained to predict the pose difference, i.e., the relative root
pose with respect to the previous pose, instead of directly predicting global root poses.

Using Forward Kinematics, we obtain the global body pose p with respect to the starting pose.

{p̂0, . . . , p̂F−1} = FKθ(θ, R̂g, t̂g, β),where R̂g, t̂g = FKg(R̂r, t̂r) (4)

Where β are the shape parameters of the SMPL-X model [71] for a given person.

We use 4 tubes with the following configurations: 16× 16× 16 with stride (12, 48, 48) and offset
(0, 0, 0), 24×6×6 with stride (12, 32, 32) and offset (8, 12, 12), 12×24×24 with stride (24, 48, 48)
and offset (0, 28, 28), and 1×32×32 with stride (12, 64, 64) and offset (0, 0, 0). The pose embedding
parameter is initialized using the Kaiming uniform distribution [97], and the pose token is initialized
using the Normal distribution.

5.2 Loss function

We supervise the network with the following loss function:

L = λθLθ + λpLp + λvLv + λtrLtr + λRr
LRr

+ λtgLtg + λRg
LRg

+ λzLz (5)

The angle loss Lθ encourages the model to learn the SMPL angles θ, while the joint position loss Lp

forces the predicted joint positions through forward kinematics to be close to the ground-truth joint
positions. This way, both the local and the accumulated errors are considered.

Lθ = |θ6D − θ̂6D|1 and Lp = |p− p̂|1, (6)

6
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where 6D indicates the six-dimensional representation of the rotation matrices [96]. For the root pose,
we penalize both the relative and absolute translation and orientation error accumulated through the
kinematic chain,

LRr
= |Rr,6D − R̂r,6D|1 and Ltr = |tr − t̂r|1

LRg = ∥R̂gR
−1
g − I∥2 and Ltg = |tg − t̂g|1

(7)

To encourage the model to estimate more expressive motions accurately, we add a velocity loss Lv.
We also regularize the embedded pose token z using an l2-regularization term Lz .

Lv = |(pi − pi−1)− (p̂i − p̂i−1)|1 and Lz = ∥z∥2 (8)

We set λθ = 10, λp = 25, λv = 40, λtr = 25, λRr
= 15, λtg = 1, λRg

= 0.025, and λz = 0.0005.

6 Experiments

We empirically study the effectiveness of MultiEgoView for egocentric body pose estimation. Follow-
ing the BABEL-60 split [49] (60%/20%/20%), sequences of synthetic data are divided into segments
of up to 5 seconds. The baseline model directly takes inputs from all six cameras, normalizes the
images to the ImageNet mean, and downsamples them to 224× 224 pixels at 10 fps. We accelerate
the training process with a pre-trained sparse tube tokenizer on UCF101 [98,99]. The model is trained
using the Adam optimizer with a learning rate of 1× 10−4 on an Nvidia GeForce RTX 4090 with a
batch size of 12 for 135k steps, taking around 3 days.

For real data, we use a random 80%/20% split with the same 5-second chunking and training
parameters. We also conduct a cross-participant evaluation, using 10 participants for training and 3
for testing, to demonstrate the model’s generalization ability.

6.1 Quantitative metrics

We evaluate our model on a series of metrics using the body joints of the SMPLX model as follows:

Global MPJPE (m) Evaluates the mean l2-norm between predicted and ground truth joint positions,
punishing both pose and global position errors.

PA-MPJPE (m) Assesses pose estimation accuracy after aligning joint positions up to a similar-
ity transform, isolating pure pose errors.

MTE (m) Mean Translation Error measures the mean l2-norm of global root translation
errors, indicating global translation accuracy.

MRE Mean Rotation Error reports global orientation error using ∥RR̂−1 − I∥.
MJAE (°) Mean Joint Angle Error compares predicted joint angle errors in degrees

without considering forward kinematic chain errors.
Jerk (m/s3) Measures the smoothness of the predicted movement, indicating temporal

continuity and naturalness of motion.

6.2 Evaluation results

Table 2 shows the results of our multi-view pose transformer when trained on MultiEgoView. Training
on synthetic data shows a low PA-MPJPE, implying a very good pose estimation. The slightly higher
global MPJPE error arises due to a worse estimation of the root translation and rotation. The
combination of synthetic and real data in MultiEgoView is crucial, as direct sim-2-real and training
solely on real data fails to achieve accurate pose estimation. Pretraining on synthetic data followed by
fine-tuning on real data improves the global MPJPE by 3.1-4 times and also lowers the PA-MPJPE
by at least 2.7 cm, indicating a knowledge transfer of pose understanding from the large synthetic
dataset to the real-world data. Even with a reduced fine-tuning train split of 20%, the network predicts
accurate poses, though with a 8.8% increase in translation error. This showcases the benefit of
synthetic data in improving pose estimation on scarce real training data. The results of the cross-
participant evaluation lag behind the others. Indicating that more diversity could be required to obtain
stable cross-participant results.
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Table 2: Results of our method on MultiEgoView, showing the benefit of our simulator.
Method Global PA-
trained on evaluated on MPJPE ↓ MPJPE ↓ MTE ↓ MRE ↓ MJAE ↓ Jerk

Synthetic Synthetic 0.16 0.040 0.13 0.272 9.1 21.9
Synthetic Real 0.77 0.119 0.71 0.947 29.0 20.9
Real Real 1.23 0.087 0.79 1.030 16.4 1.5
with fine-tuning:
Synthetic + 20% Real Real 0.40 0.056 0.37 0.504 12.8 15.4
Synthetic + 80% real Real 0.33 0.044 0.31 0.415 10.2 16.7
Synthetic + 10 real participants Real (cross-participant) 0.35 0.060 0.32 0.557 16.6 18.3

The visualization of the predicted poses in Figure 4 confirms the quantitative metrics. Generally, the
model estimates the pose accurately. The biggest errors typically occur in the fast-moving limbs,
as seen in the right column of Figure 4 where the model does mistakenly detect an arm movement.
The pose outputs of the model are spatial-temporally smooth, which is also reflected in low jerk
values (Table 2). Generally, the evaluations yielding lower Jerk indicate less active predictions
that do not fully capture the full range and speed of the gt-motions (gt-jerk on eval set is 29.3) but
still look natural. The model’s weak point is the higher error global root position estimates. We
attribute this weakness in global transformation prediction to two factors: 1) The model predicts the
relative transformation between each frame, simplifying training by focusing on neighboring frames’
transformations. However, small errors in relative prediction quickly accumulate in the forward
kinematics. 2) The model lacks a method-based grounding of global position (e.g., through SLAM or
SfM), making its transformation prediction reliant on learned environmental understanding.

Overall, MultiEgoView, with its synthetic and real-world data, shows its utility by enabling sim-to-
real transfer learning. Our results also show that this would not be possible with just synthetic data or
the amount of real data captured, validating the benefit of our simulator.

6.3 Spring Damper

Body-worn cameras experience motion artifacts, especially when mounted on limbs that move
quickly, due to non-rigid mounting points. EgoSim models these motion artifacts via a Spring Arm.
We demonstrate that a spring-damper system approximates real camera motion better than a rigid
mount. For that, we used an OptiTrack motion capture system to track both the attached body and the
GoPro that we loosely attached to the body. Using an OptiTrack motion capture system, we tracked
both the body and a loosely attached GoPro. Results show the spring-damper model yields a lower
mean position error (1.98 cm) compared to the rigid model (2.35 cm), highlighting its effectiveness.

7 Discussion

While egocentric pose estimation has been well explored, in prior implementations head-mounted
cameras faces challenges such as self-occlusion, reduced resolution for lower body reconstruction,
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Figure 4: Visualization of our results obtained from our multi-view egocentric pose estimator on
real-world data. The change of color denotes different timestamps.
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and lack of environmental information. Here, multiple body-worn cameras can mitigate these by
providing dynamic, multi-view perspectives that simultaneously capture the environment and the
body and, more importantly, the interaction between our hands and legs with the surroundings.

EgoSim, together with MultiEgoView, is a first stepping stone to deepen our understanding of human
activity from body-worn cameras at various locations. We showcase the usefulness of MultiEgoView
for ego pose estimation with our learned video-based end-to-end multi-view model. Our findings
show that ego pose can effectively be estimated from several body-mounted cameras and EgoSim’s
rendered data helps obtain better pose estimation in sim-to-real scenarios.

Limitations of EgoSim. Our current simulator has some limitations that will be addressed in future
iterations. First, although our data includes multi-human scenarios, individual avatar animations are
sampled independently from AMASS. These animations, while physically plausible, do not account
for interactions with other humans or objects, limiting the study of such interactions. Additionally,
our system currently features only four scenes, which can be extended to improve the generalization.
Lastly, while our simulator supports high-fidelity rendering, improvements in graphics and neural
rendering methods [100] are expected to reduce the simulation-to-real gap further.

Future research on MultiEgoView. While the pose estimation capabilities of our multi-view
transformer trained using EgoMultiView are convincing on real-world data (PA-MPJPE < 5 cm),
there is still room for improvement in the global position and orientation estimation of the root,
especially for long sequences, where cumulative errors in root position become more pronounced.
Future research directions could consider integrating low-drift camera localization methods, such
as SLAM [59], or image-based localization via structure from motion [101], to achieve more
stable global translation and orientation. Moreover, our current experiments only utilize RGB data.
Future research could leverage MultiEgoView to enhance inertial-based pose estimation [29], depth
estimation using monocular or multiple cameras [102], and semantic scene classification [103], all of
which are supported by the ground-truth annotations provided by our simulator.

8 Conclusion

We have proposed EgoSim, an egocentric multi-view simulator for body-worn cameras that generates
multiple data modalities to support emerging wearable motion capture and method development.
Using EgoSim, we partially generated MultiEgoView, the first dataset that complements existing head-
focused egocentric datasets with synchronized footage from six cameras worn at other locations on the
body, simulated from accurate and real human motion and artifacts. We complement MultiEgoView’s
119 hours of synthetic data with 5 hours of actual recordings from 6 body-worn GoPro cameras and
13 participants during a wide range of motions and activities in the wild with annotated 3D body
poses and classification labels to bridge the gap between simulation and real-world data.

In the wake of the emerging area of vision-based method development from one or more body-worn
sensors, we believe that our release of EgoSim and MultiEgoView will be a useful resource for future
work to increase our understanding of human activities and interactions in the real world.
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A Data Access

The MultiEgoView dataset, its structural description, and usage information can be found here:
https://siplab.org/projects/EgoSim. We will release EgoSim’s code to facilitate future
research and data generation. An overview of EgoSim’s rich customization options can be found in
Table 3. An overview of the diversity of our scenes is shown in Figure 5.

Figure 5: An excerpt of our example images from 24 locations across 4 scenes.

B Model Complexity and Ablation Studies

Our multiview transformer is ViT-based and has 114M trainable parameters and requires roughly
1.7GB VRAM for inference. With an input/output window of up to 5 seconds, the inference time is
17.6ms on an RTX 4090 with a batch size of 1, making the system real time capable. Training with 6
cameras and a batch size of 12 increases VRAM demands to 20GB.

B.1 Analysis of Cameras

Previous work utilized varying numbers of body-worn cameras [5, 6, 35, 85]. In our ablation study
(Table 4), we demonstrate the benefits of using more cameras. In this ablation study, we use scenes
(1) and (2) of our dataset. Our multiview transformer achieves the lowest global-MPJPE with six
cameras. Even with fast-moving cameras (see Section C) attached to knees and writs, our method
accurately recovers body pose, though global translation error increases. Using only head and wrist
cameras results in higher pose errors, particularly in leg and foot movements (0.068/0.106/0.145m
root-aligned foot position error for the three configurations respectively). The use of additional
cameras also leads to more pronounced and active motions. The model tends to average poses over
sequences rather than capturing rapid movements. This is evidenced by a decreased jerk with fewer
cameras, a finding further supported by qualitative analysis.

This highlights the advantage of additional cameras, especially for accurately estimating limb poses,
even when attached to fast-moving mounting points. Thus, showing that we do not require cameras
on stable positions, e.g. head or pelvis.
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Table 3: Details of EgoSim’s features that allow simulating complex scenarios for body-worn sensors
in egocentric settings. These features are especially useful in contexts where data is scarce and data
collection poses significant challenges or requires extensive time.

EgoSim Feature Description
Avatar skeletal mesh op-
tions

Compatible with SMPL [70], SMPL+H [104], SMPL-X [71], and
custom skeletal meshes via the FBX format

Avatar motion capabili-
ties

Supports MoCap data [26, 47] as well as synthetic motions

Camera customization Adjustable image resolution, field of view (FOV), and auto exposure
settings including speed, bias, brightness limits, and spring system
between body and camera for realistic motion simulation of nonrigid
camera mounting

Image noise and distor-
tion

Customizable noise intensity and horizontal bump distortion

Environmental settings Support for various environments including indoor and outdoor settings,
diverse weather conditions, and lighting variations based on Unreal
Engine [89] marketplace

Egocentric and external
camera integration

Support for both egocentric cameras attachable to different body parts
and stationary external cameras to facilitate third-person perspective
captures.

Table 4: Results of different camera setups. Adding more cameras yields better pose prediction.
Training and evaluation were conducted on synthetic scenes (1) and (2).

Global PA-
cameras MPJPE MPJPE MTE MRE MJAE Jerk

all six 0.18 0.041 0.14 0.334 9.3 21.7
wrists & knees 0.238 0.051 0.197 0.376 11.1 19.4
head & wrists 0.293 0.06 0.243 0.454 11.6 14.6
head 0.345 0.0823 0.286 0.452 14.7 0.9

B.2 Analysis of Scenes

Within the main paper, we investigated the sim-to-real transfer of our model. Here, we investigate the
model’s ability to transfer its knowledge between scenes. Table 5 shows that there is a significant
rise in pose prediction error when transferring scenes. Interestingly the model is generally able to
predict the root pose (low MTE) and lower body pose of the avatar while the arms are badly predicted,
as confirmed by a qualitative inspection. The trend is similar when training on just 1 scene and
evaluating on the scene (2) and when training on (1) and (2) and evaluating on the very diverse scenes
(3) and (4).
This indicates the opportunity for future scene generation to improve the dataset’s generalizability. As
we will publish EgoSim upon acceptance, future research can tailor the synthetic scenes to achieve
maximal performance in the target domain.

C Analysis of Camera Positions

Limb-based cameras, such as those mounted on wrists or knees, experience higher velocities, accel-
erations, and jerks, making them harder to track and localize. As shown in Table 6, the head and
pelvis are the most stable mounting points, with the least movement. In contrast, wrists have the
highest average acceleration due to rapid arm movements during activities like walking. Knees follow
slightly behind as they are mostly steady for all standing motions. Overall, MultiEgoView offers
many body camera positions with varying stability.
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Table 5: Results of scene transfer.
Global PA-

Train Scene Eval Scene MPJPE MPJPE MTE MRE

Downtown (1) Downtown (1) 0.18 0.043 0.15 0.270
Downtown (1) CAB (2) 0.37 0.143 0.28 0.466
Synthetic (1) & (2) Synthetic (1) & (2) 0.18 0.041 0.14 0.334
Synthetic (1) & (2) Synthetic (3) & (4) 0.42 0.148 0.34 0.47

Table 6: Statistics about the movements of the real-world data of MultiEgoView. The head and pelvis
offer the most stable positions on the body, while wrists and knees experience much higher average
accelerations and changes of acceleration.

Joints mean velocity (m/s) mean acceleration (m/s2) mean jerk (m/s3)
Head 0.53± 0.12 2.37± 1.80 113.46± 192.24
Pelvis 0.48± 0.12 2.39± 1.77 119.46± 192.24
Wrists 0.83± 0.15 4.95± 2.28 163.4± 241.90
Knees 0.61± 0.12 3.58± 1.69 162.4± 187.18

D Data Recording Procedure

Participation in the data recording was entirely voluntary. Participants were required to sign a consent
form for both the data recording and the subsequent publication of the data. They retained the right to
withdraw their consent for recording and publication at any time before or during the data collection
process. The names and identities of the participants will remain confidential and undisclosed. As a
token of appreciation, participants received a small gift for their involvement in the study.

Upon obtaining informed consent, participants were given a brief overview of the recording procedure
and the specific movements required for the study. The recording session commenced from a
standardized starting position, followed by a brief calibration process. Cameras were then activated
and synchronized by a clap. Participants performed the prescribed movements within a predefined
area, executing them in a sequential order. To introduce variability in both position and camera
perspectives, participants were instructed to take one to five steps between each movement repetition.
The recording session concluded with participants returning to the initial starting position. A recording
session took on average 10:28 minutes with a standard deviation of 1:50 minutes, up to 3 sessions
were recorded per participant.

E Data Annotation

To gain insights into the semantics of human movement, we manually annotated the real-world
recordings following the categories from BABEL [49]. BABEL densely annotated the majority
of the AMASS dataset with action labels. Annotators identified segments and assigned labels to
these segments. The raw, language-based annotations were then categorized into action categories.
Building on the BABEL framework, we included commonly found movements from BABEL in our
recordings, see Table 7.

Our annotations cover the entire sequence from the starting position to the return to the starting
position. During the recording, participants performed different movements sequentially, often
walking a few steps between motions. These intermediary steps were not annotated as separate
segments unless they exceeded a few steps.

Most action classes are featured for around 6 minutes in the dataset. Walking is the most prominent
as participants often walk between different movements. MultiEgoView features a wide coverage of
different movements from leg and arm motions to sports activities, making it an ideal resource for
evaluating BABEL-based systems on real-life data.
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Table 7: Overview of different movements in the real-world data of MultiEgoView. MultiEgoView
covers a wide range of 35 different movements.

Motion Fraction (%) Motion Fraction (%)
jump 3.18 stretch body left right 2.56
walk 11.68 wave arm 2.48
A-pose 2.95 bicep curls 2.51
kick ball 2.88 elbow to opposite knee 2.44
throw ball 3.07 raise left/right arm 2.46
stand 3.80 arms in front of chest 2.50
dribble ball 2.58 squats 2.35
side steps 3.41 T-pose 3.75
aim with hand 2.84 arms over head 2.34
rotate arms 3.0 walk backward 2.38
move arms to front 2.38 balance step feet in one line 2.60
lunge with arms to the side 3.11 pick something up one arm 2.69
lunge 2.26 pick something up both arms 1.81
punch the air in front 2.49 blow kiss 1.91
walk with extended arms 2.53 bow 1.83
swing tennis racket 2.77 crouch down 2.04
arms to face 2.34 jumping jacks 1.63
stretch arms left and right 2.27

F Ethical Considerations

EgoSim’s high-fidelity simulation of camera footage addresses several ethical implications associated
with motion capture, particularly in real-world settings. Motion capture is afflicted by privacy
concerns for recorded individuals, especially given the need for larger-scale capture of representative
human data with diverse participants. Our simulator mitigates this by synthesizing data from realistic
avatars whose appearances can be flexibly adjusted while expressing behavior based on actual human
motion. This not only preserves individual privacy but also allows the creation of diverse datasets
that include a wide range of ethnic backgrounds, which is crucial for the effective generalization of
learned algorithms. Consequently, our simulator provides a valuable tool for advancing real-world
perception inference while respecting ethical considerations.

Body-worn cameras capture extensive environmental details, offering the potential for simultaneous
ego-body and environment understanding. Capturing data with more cameras always opens up more
opportunities for surveillance. In our case, the amount of cameras results in the unintended exposure
of individuals in the proximity of the participant to data recording. MultiEgoView’s focus is on the
ego-body, therefore we minimize the exposure of other people in the dataset by selecting a recording
area with a limited number of passersby. Additionally, to protect the privacy of bystanders, we
automatically detected and blurred all faces using deface [105]. Examples of blurred images are
shown in Figure 6.

In conclusion, we have addressed data-related concerns by compensating participants, obtaining
signed consent for data recording, preserving privacy through face blurring, and ensuring no personal
information is disclosed. We believe our work will not result in any harmful consequences or negative
societal impact.

G License, Data Accessibility and Maintenance

The data including its documentation will be released under the CC BY-NC-SA license and is
available at https://siplab.org/projects/EgoSim. The dataset is composed of PNG images
and CSV files, which are in open and widely used formats, ensuring ease of access and usability.
Ground truth joint poses of the synthetic data in the SMPL-X format can be obtained via the AMASS
website. Detailed explanations on how to read and utilize the dataset are provided on the hosted
website. Upon acceptance, the code for EgoSim and our method will be released on GitHub under
the GPL-3.0 license. The dataset and code will be hosted on ETH servers, ensuring long-term

19

106625 https://doi.org/10.52202/079017-3384

https://siplab.org/projects/EgoSim


Figure 6: MultiEgoView typically does not feature many people in the field of view. We preserve
people’s privacy by automatically blurring their faces.

preservation and availability. The authors confirm that the data was collected consensually and bear
all responsibility for any rights violations related to the dataset.
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