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Abstract

Neural image compression has made a great deal of progress. State-of-the-art
models are based on variational autoencoders and are outperforming classical
models. Neural compression models learn to encode an image into a quantized
latent representation that can be efficiently sent to the decoder, which decodes
the quantized latent into a reconstructed image. While these models have proven
successful in practice, they lead to sub-optimal results due to imperfect optimization
and limitations in the encoder and decoder capacity. Recent work shows how to use
stochastic Gumbel annealing (SGA) to refine the latents of pre-trained neural image
compression models. We extend this idea by introducing SGA+, which contains
three different methods that build upon SGA. We show how our method improves
the overall compression performance in terms of the R-D trade-off, compared to its
predecessors. Additionally, we show how refinement of the latents with our best-
performing method improves the compression performance on both the Tecnick
and CLIC dataset. Our method is deployed for a pre-trained hyperprior and for a
more flexible model. Further, we give a detailed analysis of our proposed methods
and show that they are less sensitive to hyperparameter choices. Finally, we show
how each method can be extended to three- instead of two-class rounding.

1 Introduction

Image compression allows efficient sending of an image between systems by reducing their size.
There are two types of compression: lossless and lossy. Lossless image compression sends images
perfectly without losing any quality and can thus be restored in their original format, such as the PNG
format. Lossy compression, such as BPG Bellard (2014), JPEG Wallace (1992) or JPEG2000 Skodras
et al. (2001), loses some quality of the compressed image. Lossy compression aims to preserve as
much of the quality of the reconstructed image as possible, compared to its original format, while
allowing a significantly larger reduction in required storage.

Traditional methods Wallace (1992); Skodras et al. (2001), especially lossless methods, can lead to
limited compression ratios or degradation in quality. With the rise of deep learning, neural image
compression is becoming a popular method Theis et al. (2017); Toderici et al. (2017). In contrast
with traditional methods, neural image compression methods have been shown to achieve higher
compression ratios and less degradation in image quality Ballé et al. (2018); Minnen et al. (2018);
Lee et al. (2019). Additionally, neural compression techniques have shown improvements compared
to traditional codecs for other data domains, such as video. Agustsson et al. (2020); Habibian et al.
(2019); Lu et al. (2019).

In practice, neural lossy compression methods have proven to be successful and achieve state-of-the-
art performance Ballé et al. (2018); Cheng et al. (2020); Minnen et al. (2018); Lee et al. (2019). These
models are frequently based on variational autoencoders (VAEs) with an encoder-decoder structure
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Kingma and Welling (2013). The models are trained to minimize the expected rate-distortion (R-D)
cost: R + λD. Intuitively, one learns a mapping that encodes an image into a compressible latent
representation. The latent representation is sent to a decoder and is decoded into a reconstructed
image. The aim is to train the compression model in such way that it finds a latent representation that
represents the best trade-off between the length of the bitstream for an image and the quality of the
reconstructed image. Even though these models have proven to be successful in practice, they do
have limited capacity when it comes to optimization and generalization. For example, the encoder’s
capacity is limited which makes the latent representation sub-optimal Cremer et al. (2018). Recent
work Campos et al. (2019); Guo et al. (2020); Yang et al. (2020) proposes procedures to refine the
encoder or latents, which lead to better compression performance. Furthermore, in neural video
compression, other work focuses on adapting the encoder Aytekin et al. (2018); Lu et al. (2020) or
finetuning a full compression model after training to improve the video compression performance
van Rozendaal et al. (2021).

The advantage of refining latents Campos et al. (2019); Yang et al. (2020) is that improved com-
pression results per image are achieved while the model does not need to be modified. Instead, the
latent representations for each individual image undergo a refining procedure. This results in a latent
representation that obtains an improved bitstream and image quality over its original state from the
pre-trained model. As mentioned in Yang et al. (2020), the refining procedure for stochastic rounding
with Stochastic Gradient Gumbel Annealing (SGA) considerably improves performance.

In this paper, we introduce SGA+, an extension of SGA that further improves compression perfor-
mance and is less sensitive to hyperparameter choices. The main contributions are: (i) showing
how changing the probability space with more natural methods instead of SGA boosts the compres-
sion performance, (ii) proposing the sigmoid scaled logit (SSL), which can smoothly interpolate
between the approximate atanh, linear, cosine and round, (iii) demonstrating a generalization to
rounding to three classes, that contains the two classes as a special case, and (iv) showing that
SGA+ not only outperforms SGA on a similar pre-trained mean-scale hyperprior model as in Yang
et al. (2020), but also achieves an even better performance for the pre-trained models of Cheng
et al. (2020). Further, we show how SSL outperforms baselines in an R-D plot on the Kodak
dataset, in terms of peak signal-to-noise ratio (PSNR) versus the bits per pixel (BPP) and in terms
of true loss curves. Additionally, we show how our method generalizes to the Tecnick and CLIC
dataset, followed by qualitative results. We analyze the stability of all functions and show the effect
of interpolation between different methods with SSL. Lastly, we analyze a refining procedure at
compression time that allows moving along the R-D curve when refining the latents with another λ
than a pre-trained model is trained on Gao et al. (2022); Xu et al. (2023). The code can be retrieved
from: https://github.com/yperugachidiaz/flexible_neural_image_compression.

2 Preliminaries and related work

In lossy compression, the aim is to find a mapping of image x where the distortion of the reconstructed
image x̂ is as little as possible compared to the original one while using as little storage as possible.
Therefore, training a lossy neural image compression model presents a trade-off between minimizing
the length of the bitstream for an image and minimizing the distortion of the reconstructed image
Ballé et al. (2017); Lee et al. (2019); Minnen et al. (2018); Theis et al. (2017).

Neural image compression models from Ballé et al. (2017); Cheng et al. (2020); Minnen et al. (2018);
Theis et al. (2017), also known as hyperpriors, accomplish this kind of mapping with latent variables.
An image x is encoded onto a latent representation y = ga(x), where ga(·) is the encoder. Next, y is
quantized Q(y) = ŷ into a discrete variable that is sent losslessly to the decoder. The reconstructed
image is given by: x̂ = gs(ŷ), where gs(·) represents the decoder. The rate-distortion objective that
needs to be minimized for this specific problem is given by:

L = R+ λD

= Ex∼px
[− log2 pŷ(ŷ)]︸ ︷︷ ︸

rate

+λEx∼px
[d(x, x̂)]︸ ︷︷ ︸

distortion

, (1)

where λ is a Lagrange multiplier determining the rate-distortion trade-off, R is the expected bitstream
length to encode ŷ and D is the metric to measure the distortion of the reconstructed image x̂
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compared to the original one x. Specifically for the rate, px is the (unknown) image distribution
and pŷ represents the entropy model that is learned over the data distribution px. A frequently used
distortion measure for d(x, x̂), is the mean squared error (MSE) or PSNR.

In practice, the latent variable y often consists of multiple levels in neural compression. Namely,
a smaller one named z, which is modeled with a relatively simple distribution p(z), and a larger
variable, which is modeled by a distribution for which the parameters are predicted with a neural
network using z, the distribution p(y|z). We typically combine these two variables into a single
symbol y for brevity. Furthermore, a frequent method of quantizing Q(·) used to train hyperpriors
consists of adding uniform noise to the latent variable.

2.1 Latent optimization

Neural image compression models have been trained over a huge set of images to find an optimal
encoding. Yet, due to difficulties in optimization or due to constraints on the model capacity, model
performance is sub-optimal. To overcome these issues, another type of optimizing compression
performance is proposed in Campos et al. (2019); Yang et al. (2020) where they show how to find
better compression results by utilizing pre-trained networks and keeping the encoder and decoder
fixed but only adapting the latents. In these methods, a latent variable y is iteratively adapted using
differentiable operations at test time. The aim is to find a more optimal discrete latent representation
ŷ. Therefore, the following minimization problem needs to be solved for an image x:

arg minŷ [− log2 pŷ(ŷ) + λd(x, x̂)] . (2)

This is a powerful method that can fit to a test image x directly without the need to further train an
entire compression model.

2.2 Stochastic Gumbel Annealing

Campos et al. (2019) proposes to optimize the latents by iteratively adding uniform noise and updating
its latents. While this method proves to be effective, there is still a difference between the true rate-
distortion loss (L̂) for the method and its discrete representation ŷ. This difference is also known as
the discretization gap. Therefore, Yang et al. (2020) propose the SGA method to optimize latents
and show how it obtains a smaller discretization gap. SGA is a soft-to-hard quantization method
that quantizes a continuous variable v into the discrete representation for which gradients can be
computed. A variable v is quantized as follows. First, a vector vr = (⌊v⌋, ⌈v⌉) is created that stacks
the floor and ceil of the variable, also indicating the rounding direction. Next, the variable v is
centered between (0, 1) where for the flooring: vL = v − ⌊v⌋ and ceiling: vR = ⌈v⌉ − v. With a
temperature rate τ ∈ (0, 1), that is decreasing over time, this variable determines the soft-to-hardness
where 1 indicates training with a fully continuous variable v and 0 indicates training while fully
rounding variable v. To obtain unnormalized log probabilities (logits), the inverse hyperbolic tangent
(atanh) function is used as follows:

logits = (− atanh(vL)/τ,− atanh(vR)/τ). (3)

To obtain probabilities a softmax is used over the logits, which gives the probability p(y) which
is the chance of v being floored: p(y = ⌊v⌋), or ceiled: p(y = ⌈v⌉). This is approximated by the
Gumbel-softmax distribution. Then, samples are drawn: y ∼ Gumbel-Softmax(logits, τ) Jang et al.
(2016) and are multiplied and summed with the vector vr to obtain the quantized representation: v̂ =∑

i (vr,i ∗ yi). As SGA aids the discretization gap, this method may not have optimal performance
and may not be as robust to changes in its temperature rate τ .

Besides SGA, Yang et al. (2020) propose deterministic annealing Agustsson et al. (2017), which
follows almost the same procedure as SGA, but instead of sampling stochastically from the Gumbel
Softmax, this method uses a deterministic approach by computing probabilities with the Softmax from
the logits. In practice, this method has been shown to suffer from unstable optimization behavior.

2.3 Other methods

While methods such as SGA aim to optimize the latent variables for neural image compression at
inference time, other approaches have been explored in recent research. Guo et al. (2021) proposed
a soft-then-hard strategy alongside a learned scaling factor for the uniform noise to achieve better
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Figure 1: Probability space for (a) Two-class rounding (b) Three-class rounding

compression and a smoother latent. These methods are used to fine-tune network parameters but
not the latents directly. Zhu et al. (2022) proposed using Swin-transformer-based coding instead
of ConvNet-based coding. They showed that these transforms can achieve better compression with
fewer parameters and shorter decoding times. van Rozendaal et al. (2021) proposed to also fine-tune
the decoder alongside the latent for video compression. While accommodating the additional cost of
saving the model update, they demonstrated a gain of ∼ 1dB. Zhang et al. (2021) and Dupont et al.
(2021) proposed using implicit neural representations for video and image compression, respectively.
He et al. (2022) proposed an improved context model (SCCTX) and a change to the main transform
(ELIC) that achieve strong compression results together. El-Nouby et al. (2023) revisited vector
quantization for neural image compression and demonstrated it performs on par with hyperprior-based
methods. Li et al. (2020) proposed a method to incorporate trellis-coded quantization in neural codecs.
While these approaches change the training process, our work differs in that we only consider the
inference process. Balcilar et al. (2023) proposes latent shift, a method that can further optimize
latents using the correlation between the gradient of the reconstruction error and the gradient of the
entropy.

3 Methods

As literature has shown, refining the latents of pre-trained compression models with SGA leads to
improved compression performance Yang et al. (2020). In this section, we extend SGA by introducing
SGA+ containing three other methods for the computation of the unnormalized log probabilities
(logits) to overcome issues from its predecessor. We show how these methods behave in probability
space. Furthermore, we show how the methods can be extended to three-class rounding.

3.1 Two-class rounding

Recall from SGA that a variable v is quantized to indicate the rounding direction to two classes and
is centered between (0,1). Computation of the unnormalized log probabilities is obtained with atanh
from Equation (3). Recall, that in general the probabilities are given by a softmax over the logits with
a function of choice. As an example, for SGA the logits are computed with atanh. The corresponding
probabilities for rounding down is then equal to: eatanh(vL)

eatanh(vL)+eatanh(vR) . Then looking at the probability
space from this function, see Figure 1a, the atanh function can lead to sub-optimal performance
when used to determine rounding probabilities. The problem is that gradients tend to infinity when
the function approaches the limits of 0 and 1, see Appendix A for the proof that gradients at 0 tend to
∞. This is not ideal, as these limits are usually achieved when the discretization gap is minimal. In
addition, the gradients may become larger towards the end of optimization. Further analyzing the
probability space, we find that there are a lot of possibilities in choosing probabilities for rounding to
two classes. However, there are some constraints: the probabilities need to be monotonic functions,
and the probabilities for rounding down (flooring) and up (ceiling) need to sum up to one. Therefore,
we introduce SGA+ and propose three methods that satisfy the above constraints and can be used to
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overcome the sub-optimality that the atanh function suffers from. We opted for these three as they
each have their own interesting characteristics. However, there are many other functions that are also
valid and would behave similarly to these three.

We will denote the probability that v is rounded down by:
p(y = ⌊v⌋), (4)

where y represents the random variable whose outcome can be either rounded down or up. The
probability that v is rounded up is conversely: p(y = ⌈v⌉) = 1− p(y = ⌊v⌋).

Linear probabilities To prevent gradient saturation or vanishing gradients completely, the most
natural case would be to model a probability that linearly increases or decreases and has a gradient of
one everywhere. Therefore, we define the linear:

p(y = ⌊v⌋) = 1− (v − ⌊v⌋). (5)
It is easy to see that: p(y = ⌈v⌉) = v − ⌊v⌋. In Figure 1a, the linear probability is shown.

Cosine probabilities As can be seen in Figure 1a, the atanh tends to have gradients that go to
infinity for v close to the corners. Subsequently, a method that has low gradients in that area is by
modeling the cosine probability as follows:

p(y = ⌊v⌋) = cos2
(
(v − ⌊v⌋)π

2

)
. (6)

This method aids the compression performance compared to the atanh since there is less probability
of overshooting the rounding value.

Sigmoid scaled logit There are a lot of possibilities in choosing probabilities for two-class round-
ing. We introduced two probabilities that overcome sub-optimality issues from atanh: the linear
probability from Equation (5), which has equal gradients everywhere, and cosine from Equation (6),
that has little gradients at the corners. Besides these two functions, the optimal probability might
follow a different function from the ones already mentioned. Therefore, we introduce the sigmoid
scaled logit (SSL), which can interpolate between different probabilities with its hyperparameter a
and is defined as follows:

p(y = ⌊v⌋) = σ(−aσ−1(v − ⌊v⌋)), (7)
where a is the factor determining the shape of the function. SSL is exactly the linear for a = 1. For
a = 1.6 and a = 0.65 SSL roughly resembles the cosine and atanh. For a → ∞ the function tends
to shape to (reversed) rounding.

Note that the main reason behind the linear version is the fact that it is the only function with constant
gradients which is also the most robust choice, the cosine version is approximately mirrored across
the diagonal of the − atanh(x) which shows that it is more stable compared to the − atanh(x), and
the reason behind the SSL is that it is a function that can interpolate between all possible functions
and can be tuned to find the best possible performance when necessary.

3.2 Three-class rounding

As described in the previous section, the values for v can either be floored or ceiled. However, there
are cases where it may help to round to an integer further away. Therefore, we introduce three-class
rounding and show three extensions that build on top of the linear probability Equation (5), cosine
probability Equation (6), and SSL from Equation (7).

The probability that v is rounded is denoted by: p(y = ⌊v⌉) ∝ f3c(w|r, n), where w = v − ⌊v⌉ is
centered around zero. Further, we define the probability that v is rounded +1 and rounded −1 is
respectively given by: p(y = ⌊v⌉ − 1) ∝ f3c(w − 1|r, n) and p(y = ⌊v⌉ + 1) ∝ f3c(w + 1|r, n).
Recall, that vL, vR ∈ [0, 1], whereas w ∈ [−0.5, 0.5]. Defining w like this is more helpful for the
3-class since it has a center class. The general notation for the three-class functions is given by:

f3c(w|r, n) = f(clip(w · r))n, (8)
where clip(·) clips the value at 0 and 1, r is the factor determining the height and steepness of
the function and power n controls the peakedness of the function. Note that n can be fused with
temperature τ together, to scale the function. This only accounts for the computation of the logits and
not to modify the Gumbel temperature, therefore, τ still needs a separate definition.
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Figure 2: Performance plots of (a) True R-D Loss (b) Difference in loss (c) PSNR (d) BPP.

Extended linear Recall that the linear probability can now be extended to three-class rounding as
follows:

flinear(w) = |w|. (9)

A special case is f3c,linear(w|r = 1, n = 1), where the function is equivalent to the linear of the
two-class rounding from Equation (5). For r < 1 this function rounds to three classes, and for n ̸= 1
this function is not linear anymore.

In Figure 1b, three-class rounding for the extension of Equation (5) can be found. As can be seen,
solid lines denote the special case of two-class rounding with r = 1 and n = 1, dashed lines denote
three-class rounding with r = 0.9 and n = 1 and dotted lines denote the two-class rounding with
r = 1 and n = 3, which shows a less peaked function. For an example of two- versus three-class
rounding, consider the case where we have variable v = −0.95. For two-class rounding there is
only the chance of rounding to −1 with p(y = ⌊v⌉) (red solid line), a chance to round to 0 with
p(y = ⌊v⌉+ 1) (green solid line) and zero chance to round to −2 with p(y = ⌊v⌉ − 1) (yellow solid
line). For three-class rounding, with r = 0.9 and n = 1, when v = −0.95 we find a high chance to
round to −1 with p(y = ⌊v⌉) (red dashed line) and a small chance to round to 0 with p(y = ⌊v⌉+ 1)
(green dashed line) and a tiny chance to round to −2 with p(y = ⌊v⌉ − 1) (yellow dashed line).

Extended cosine Similarly, we can transform the cosine probability from Equation (6) to three-class
rounding:

fcosine(w) = cos

(
|w|π
2

)
. (10)

When f3c,cosine(w|r = 1, n = 2), this function exactly resembles the cosine for two-class rounding,
and for r < 1 this function rounds to three classes.

Extended SSL Additionally, SSL from Equation (7) can be transformed to three-class rounding as
follows:

fSSL(w) = σ
(
−aσ−1 (|w|)

)
, (11)

where a is the factor determining the shape of the function. When f3c,SSL(w|r = 1, n = 1), this
function exactly resembles the two-class rounding case, and for r < 1, the function rounds to three
classes. Recall that this function is capable of exactly resembling the linear function and approximates
the cosine from two-class rounding for a = 1 and a = 1.6, respectively.

4 Experiments

In this section, we show the performance of our best-performing method in an R-D plot and compare
it to the baselines. Further, we evaluate and compare the methods with the true R-D loss performance
(L̂), the difference between the method loss and true loss (L−L̂), and corresponding PSNR and BPP
plot that respectively expresses the image quality, and cost over t training steps. Finally, we show
how our best-performing method performs on the Tecnick and CLIC dataset and show qualitative
results.

Following Yang et al. (2020), we run all experiments with temperature schedule τ(t) =
min(exp{−ct}, τmax), where c is the temperature rate determining how fast temperature τ is de-
creasing over time, t is the number of train steps for the refinement of the latents and τmax ∈ (0, 1)
determines how soft the latents start the refining procedure. Additionally, we refine the latents for
t = 2000 train iterations, unless specified otherwise. See Section 4.2 for the hyperparameter settings.
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Implementation details We use two pre-trained hyperprior models to test SGA+, for both models
we use the package from CompressAI Bégaint et al. (2020). The first model is similar to the one trained
in Yang et al. (2020). Note, that the refining procedure needs the same storage and memory as theirs.
In Appendix C, implementation details and results of this model can be found. All experiments in this
section are run with a more recent hyperprior-based model which is based on the architecture of Cheng
et al. (2020). Additionally, this model reduces the R-D loss for atanh on average by 7.6% and for SSL
by 8.6%, compared to the other model. The model weights can be retrieved from CompressAI Bégaint
et al. (2020). The models were trained with λ = {0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045}. The
channel size is set to N = 128 for the models with λ = {0.0016, 0.0032, 0.0075}, refinement of the
latents on Kodak with these models take approximately 21 minutes. For the remaining λ’s channel
size is set to N = 192 and the refining procedure takes approximately 35 minutes. We perform our
experiments on a single NVIDIA A100 GPU.

Baseline methods We compare our methods against the methods that already exist in the literature.
The Straight-Through Estimator (STE) is a method to round up or down to the nearest integer
with rounding bound set to a half. This rounding is noted as ⌊·⌉. The derivative of STE for the
backward pass is equal to 1 Bengio et al. (2013); Van Den Oord et al. (2017); Yin et al. (2019).
The Uniform Noise quantization method adds uniform noise from u ∼ U(− 1

2 ,
1
2 ) to latent variable

y. Thus: ŷ = y + u. In this manner ŷ becomes differentiable Ballé et al. (2017). As discussed in
Section 2.2, we compare against Stochastic Gumbel Annealing, which is a soft-to-hard quantization
method that quantizes a continuous variable v into a discrete representation for which gradients can
be computed.

4.1 Overall performance

Figure 3a shows the rate-distortion curve, using image quality metric PSNR versus BPP, of the base
model and for refinement of the latents on the Kodak dataset with method: STE, uniform noise,
atanh and SSL. We clearly see how SSL outperforms all other methods. In Appendix B.1a, the
results after t = 500 iterations are shown, where the performance is more pronounced.

To show how each of the methods behave, we take a closer look at the performance plots shown in
Figure 2. The refinement results are obtained from the pre-trained model, trained with λ = 0.0075.
The true R-D loss in Figure 2a shows that STE performs worse and has trouble converging, which
is reflected in the R-D curve. Uniform noise quickly converges compared to atanh and SSL. We
find that SSL outperforms all other methods, including atanh in terms of the lowest true R-D loss at
all steps. Looking at the difference between the method loss and true loss Figure 2b, we find that
both SSL and atanh converge to 0. Yet, the initial loss difference is smaller and smoother for SSL,
compared to atanh. Additionally, uniform noise shows a big difference between the method and true
loss, indicating that adding uniform noise overestimates its method loss compared to the true loss.

Tecnick and CLIC To test how our method performs on other datasets, we use the Tecnick Asuni
and Giachetti (2014) and CLIC dataset. We run baselines atanh and the base model and compare
against SSL with a = 2.3. Figure 3b shows the corresponding R-D curves on the Tecnick dataset.
Note that Appendix B.3 contains the results of the CLIC dataset which shows similar behavior as on
Tecnick. We find that both refining methods improve the compression performance in terms of the
R-D trade-off. Additionally, our proposed method outperforms atanh and shows how it improves
performance significantly at all points. The R-D plot after t = 500 iterations for both datasets can be
found in Appendix B.1. Note, that these results show even more pronounced performance difference.

BD-Rate and BD-PSNR To evaluate the overall improvements of our method, we computed the
BD-Rate and BD-PSNR Bjontegaard for Kodak, Tecnick and CLIC in Table 1. We observe that
across the board SSL achieves an improvement in both BD-PSNR and BD-Rate. After 500 steps, SSL
achieves almost double the BD-Rate reduction as atanh. The difference between the two becomes
smaller at 2000 steps. This underlines the faster convergence behavior of the SSL method.

4.2 Qualitative results

In Figure 4, we demonstrate the visual effect of our approach. We compare the original image with
the compressed image from base model with λ = 0.0016, refinement method atanh, and SSL. For

7
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Table 1: Pairwise Comparison between atanh and SSL of BD-PSNR and BD-Rate.

BD-PSNR (dB) BD-Rate (%)
500 steps 2000 steps 500 steps 2000 steps

Kodak Tecnick CLIC Kodak Tecnick CLIC Kodak Tecnick CLIC Kodak Tecnick CLIC

Base vs SSL 0.50 0.57 0.56 0.82 0.95 0.89 -10.30 -11.60 -13.18 -16.23 -18.77 -20.11
Base vs Atanh 0.26 0.28 0.31 0.69 0.79 0.78 -5.52 -5.91 -7.37 -13.82 -15.93 -17.70
Atanh vs SSL 0.24 0.28 0.26 0.14 0.16 0.11 -5.04 -5.97 -6.20 -2.86 -3.34 -2.76

the image compressed by SSL, we observe that there are less artifacts visible in the overall image.
For instance, looking at the window we see more texture compared to the base model and atanh
method.

Hyperparameter settings Refinement of the latents with pre-trained models, similar to the one
trained in Yang et al. (2020), use the same optimal learning rate of 0.005 for each method. Refinement
of the latents with the models of Cheng et al. (2020) use a 10 times lower learning rate of 0.0005.
Following Yang et al. (2020), we use the settings for atanh with temperature rate τmax = 0.5, and
for STE we use the smaller learning rate of 0.0001, yet STE still has trouble converging. Note that,
we tuned STE just as the other baselines. However, the STE method is the only method that has a lot
of trouble converging. Even with smaller learning rates, the method performed poorly. The instability
of training is not only observed by us, but is also observed in Yang et al. (2020); Yin et al. (2019). For
SGA+, we use optimal convergence settings, which are a fixed learning rate of 0.0005, and τmax = 1.
Experimentally, we find approximately best performance for SLL with a = 2.3.

5 Analysis and Societal Impact

In this section we perform additional experiments to get a better understanding of SGA+. An in-depth
analysis shows the stability of each proposed method, followed by an experiment that expresses
changes in the true R-D loss performance when one interpolates between functions. Further, we
evaluate three-class rounding for each of our methods. Finally, we show how SGA+ for semi-multi-
rate behavior improves the performance of its predecessor and we discuss the societal impact. Note,
the results of the additional experiments are obtained from the model trained with λ = 0.0075.
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Figure 3: R-D performance for SSL on (a) Kodak with the baselines, (b) Tecnick with the base model
and atanh and (c) Kodak for semi-multi-rate behavior with atanh. Best viewed electronically.

(a) Original Image (b) Base Model
(0.19 BPP vs 25.75 PSNR)

(c) atanh
(0.19 BPP vs 25.91 PSNR)

(d) SSL
(0.19 BPP vs 25.98 PSNR)

Figure 4: Qualitative comparison of a Kodak image from pre-trained model trained with λ = 0.0016.
Best viewed electronically.
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Table 2: True R-D loss for different τmax settings of:
atanh(v), linear, cosine and SSL with a = 2.3. The lowest
R-D loss per column is marked with: ↓. Note that the func-
tion containing atanh is unnormalized.

Function \τmax 0.2 0.4 0.6 0.8 1.0
exp atanh(v) 0.6301 0.6273 0.6267 0.6260 0.6259
1− v (linear) 0.6291 ↓ 0.6229 ↓ 0.6225 0.6222 0.6220
cos2( vπ2 ) 0.6307 0.6233 0.6194 ↓ 0.6186 0.6187
σ(−aσ−1(v)) 0.6341 0.6233 0.6196 0.6181 ↓ 0.6175 ↓
exp atanh(v) 0.0010 0.0044 0.0073 0.0079 0.0084
1− v (linear) 0 0 0.0031 0.0041 0.0045

Temperature sensitivity Table 2
represents the stability of atanh and
the SGA+ methods, expressed in true
R-D loss, for different τmax settings
for the temperature schedule. As can
be seen, the most optimal setting is
around τmax = 1 for each of the meth-
ods. In the table we find that the linear
function is least sensitive to changes
in τmax. To further examine the sta-
bility of the linear function compared
to atanh, we subtract the best τmax,
column-wise, from the linear and atanh of that column. Also taking into account the sensitivity
results of the one of Yang et al. (2020) in Appendix C.2 we find in general, that overall performance
varies little compared to the best τmax settings of the other methods and has reasonable performance.
While SSL has the largest drop in performance when reducing τmax, it achieves the highest per-
formance overall for higher values of τmax. If there is no budget to tune the hyperparameter of
SGA+, the linear version is the most robust choice. Further, we evaluated the necessity of tuning
both the latents and hyper-latents. When only optimizing the latents with the linear approach for
τmax = 1, we found a loss of 0.6234. This is a difference of 0.0012, which implies that optimizing
the hyper-latent aids the final loss.

Table 3: True R-D loss of two- versus three-class rounding for
SGA+ with the extended version of the linear, cosine, and SSL
method at iteration 2000 and in brackets after 500 iterations.

Function \Rounding Two Three

f3c,linear(w|r = 0.98, n = 2.5) 0.6220 (0.6594) 0.6175(0.6435)

f3c,cosine(w|r = 0.98, n = 3) 0.6187 (0.6516) 0.6175 (0.6449)

f3c,sigmoidlogit(w|r = 0.93, n = 2.5) 0.6175 (0.6445) 0.6203 (0.6360)

Interpolation Table 4 represents
the interpolation between different
functions, expressed in true R-D loss.
In Appendix B.2 the corresponding
loss plots can be found. Values for
a < 1 indicate methods that tend to
have larger gradients for v close to
the corners, while high values of a
represent a method that tends to a (re-
versed) step function. The smallest a = 0.01 diverges and results in a large loss value compared
to the rest. For a = 2.3 we find a lowest loss of 0.6175 and for a = 5 we find fastest convergence
compared to the rest. Comparing these model results with the model results with the one of Yang et al.
(2020), see Appendix C.2, we find that the Cheng et al. (2020) model obtains more stable curves.

Table 4: True R-D loss results
for the interpolation between
different functions by chang-
ing a of the SSL.

a R-D Loss

0.01 0.7323
0.3 0.6352
0.65 (approx atanh) 0.6260
0.8 0.6241
1 (linear) 0.6220
1.33 0.6199
1.6 (approx cosine) 0.6186
2.3 0.6175 ↓
5 0.6209

Three-class rounding In Table 3, the true R-D loss for two versus
three-class rounding can be found at iteration t = 2000 and in
brackets t = 500 iterations. For each method, we performed a grid
search over the hyperparameters r and n. As can be seen in the
table, most impact is made with the extended version of the linear
of SGA+, in terms of the difference between the two versus three-
class rounding at iteration t = 2000 with loss difference 0.0045 and
t = 500 with 0.0159 difference. In Appendix B.3 a loss plot of the
two- versus three- class rounding for the extended linear method
can be found. Concluding, the three-class converges faster. For the
extended cosine version, there is a smaller difference and for SSL
we find that the three-class extension only boosts performance when
run for t = 500. In Appendix C.2, the three-class experiments for
the pre-trained model similar to Yang et al. (2020) can be found.
We find similar behavior as for the model of Cheng et al. (2020),
whereas with the linear version most impact is made, followed by the cosine and lastly SSL. The
phenomenon that three-class rounding only improves performance for t = 500 iterations for SSL may
be due to the fact that SSL is already close to optimal. Additionally, we ran an extra experiment to
asses what percentage of the latents are assigned to the 3-classes. This is run with the best settings for
the linear version f3c,linear(w|r = 0.98, n = 2.5). At the first iteration, the probability is distributed
as follows: p(y = ⌊v⌉) = 0.9329, for p(y = ⌊v⌉ − 1) = 0.0312, and p(y = ⌊v⌉ + 1) = 0.0359.
This indicates that the class probabilities are approximately 3.12 for class −1 and 3.6 for class +1.
This is a lot when taking into account that many samples are taken for a large dimensional latent. In
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conclusion, three-class rounding may be attractive under a constraint optimization budget, possibly
because it is easier to jump between classes. Additionally, for the extended linear three-class rounding
also results in faster convergence.

Semi-multi-rate behavior An interesting observation is that one does not need to use the same
λ during refinement of the latents, as used during training. This is also mentioned in Gao et al.
(2022) for image and Xu et al. (2023) for video compression. As a consequence of this approach,
we can optimize to a neighborhood of the R-D curve without the need to train a new model from
scratch. We experimented and analyze the results with methods: atanh and SSL. Figure 3c shows the
performance after t = 500 iterations for the model of Cheng et al. (2020). We find that SSL is moving
further along the R-D curve compared to atanh. Note the refinement does not span the entire curve
and that the performance comes closer together for running the methods longer, see Appendix B.4.
For future work it would be interesting how SGA+ compares to the methods mentioned in Gao et al.
(2022); Xu et al. (2023), since SSL outperforms atanh.

Societal impact The improvement of neural compression techniques is important in our data-driven
society, as it allows quicker development of better codecs. Better codecs reduce storage and computing
needs, thus lowering costs. However, training these codes requires significant computational resources,
which harms the environment through power consumption and the need for raw materials.

6 Conclusion and Limitations

In this paper we proposed SGA+, a more effective extension for refinement of the latents, which
aids the compression performance for pre-trained neural image compression models. We showed
how SGA+ has improved properties over SGA and we introduced SSL that can approximately
interpolate between all of the proposed methods. Further, we showed how our best-performing
method SSL outperforms the baselines in terms of the R-D trade-off and how it also outperforms the
baselines on the Tecnick and CLIC dataset. Exploration of SGA+ showed how it is more stable under
varying conditions. Additionally, we gave a general notation and demonstrated how the extension
to three-class rounding improves the convergence of the SGA+ methods. Lastly, we showed how
SGA+ improves the semi-multi-rate behavior over SGA. In conclusion, especially when a limited
computational budget is available, SGA+ offers the option to improve the compression performance
without the need to re-train an entire network and can be used as a drop-in replacement for SGA.

Besides being effective, SGA+ also comes with some limitations. Firstly, we run each method for
2000 iterations per image. In practice this is extremely long and time consuming. We find that
running the methods for 500 iterations already has more impact on the performance and we would
recommend doing this, especially when a limited computational budget is available. Future work
may focus on reducing the number of iterations and maintaining improved performance. Note, higher
values for a flatten out quickly, but they achieve much better gains with low-step budgets. Further,
the best results are obtained while tuning the hyperparameter of SSL and for each of our tested
models this lead to different settings. Note, that the experiments showed that the linear version of
SGA+ is least sensitive to hyperparameter changes and we would recommend using this version when
there is no room for tuning. Additionally, although three-class rounding improves the compression
performance in general, it comes with the cost of fine-tuning extra hyperparameters. Finally, it applies
for each method that as the temperature rate has reached a stable setting, the performance will be less
pronounced, the longer you train, but in return requires extra computation time at inference.
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A Proof

In this appendix we will proof that the normalization from the (Gumbel) softmax causes infinite
gradients at 0.

Recall that the probability is given by a 2-class softmax is defined by:

K(v) =
ef(v)

ef(v) + eg(v)
,

where f(v) = −atanh(v) and g(v) = −atanh(1− v). We will study the softmax for the first class 0,
since the softmax is symmetric this also holds for the second class. The problem is that the gradients
of the function K(v) will tend to ∞ for both v → 1 but also for v → 0. Here we show that the
gradients also tend ∞ for v → 0, via the normalization with the term g(v). First, take the derivative
to v:

dK(v)

dv
=

dK(v)

df(v)
· df(v)

dv
+

dK(v)

dg(v)
· dg(v)

dv
,

where dK(v)
df(v) = K(v)(1 − K(v)) and dK(v)

dg(v) = −K(v) eg(v)

ef(v)+eg(v) . Recall that datanh(v)
dv = 1

1−v2

therefore df(v)
dv = − 1

1−v2 and dg(v)
dv = 1

1−(1−v)2 . Plugging this in and computing dK(v)
dg(v) gives us:

dK(v)

dv
= K(v)(1−K(v))

(
− 1

1− v2

)
−K(v) · eg(v)

ef(v) + eg(v)
· 1

1− (1− v)2
.

Taking the limit to 0, (recall that limv→0 K(v) = 1, limv→0 e
f(v) = 1 and limv→0 e

g(v) = 0) allows
the following simplifications:

lim
v→0

0 ·
(
− 1

1− 02

)
− 1 · e

g(v)

1 + 0
· 1

1− (1− v)2

For simplicity we substitute q = 1− v (when q → 1, then v → 0) which will result in the following:

lim
v→0

−e−atanh(1−v) · 1

1− (1− v)2
= lim

q→1
−e−atanh(q) · 1

1− q2
,

Recall, −atanh(q) = − 1
2 ln

1+q
1−q , so e−atanh(q) = 1/

√
1+q
1−q thus:

− lim
q→1

√
1− q

1 + 1
· 1

1− q2
= − lim

q→1

√
1

2

(1− q)

(1− q2)2

Since 1
2 is a constant and limx→∞

√
x = ∞ the final step is to simplify and solve:

− lim
q→1

√
(1− q)

(1− q2)2
= − lim

q→1

√
−1

(q − 1)(q + 1)2
= −∞.

This concludes the proof that the gradients tend to −∞ for v → 0.
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B Additional results

In this appendix, additional experimental results for refinement of the latents with the pre-trained
models of Cheng et al. (2020) can be found.

Difference across runs Although we do not report the standard deviation for every run, the
difference across runs is very small. For the model of Cheng et al. (2020) with λ = 0.0032, running
five refinement procedures for 2000 iterations, results in a mean of 0.3969 and a standard deviation
of 2.41 · 10−5.

B.1 Additional overall performance

Figure B.1 show the R-D curve for the Kodak dataset. We observe that atanh is similar to uniform
noise at t = 500 iterations, while SSL manages to achieve better R-D gains. After t = 2000 iterations
SLL achieves the best R-D trade-off, but the gain is a bit smaller compared to atanh at t = 500
iterations.

Tecnick and CLIC Figure B.2 and Figure B.3 show the R-D results for respectively, Tecnick and
CLIC at t = {500, 2000} iterations. We observe that SSL achieves best performance at t = 2000,
compared to t = 500 iterations. However, running the method for 2000 iterations is in practice very
long. Looking at the results at t = 500 iterations we see that there is already great improvement of
performance for SSL, compared to the base model for both Tecnick and CLIC dataset.
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Figure B.1: Comparison of atanh and SSL on the Kodak dataset for t = {500, 2000} iterations.

B.2 Interpolation

In Figure B.4a the true loss, difference in loss, BPP and PSNR curves can be found. As can be seen
for a = 0.01, the function diverges and a = 0.3 does not seem to reach stable behavior, both resulting
in large loss values. For a ≥ 1, the difference in losses start close to zero (see Figure C.7b). SSL
with a = 5 results in the fastest convergence and quickly finds a stable point but ends at a higher loss
than most methods.

B.3 Two- versus three- class rounding

Besides an improved RD performance for the three-class rounding, we also found that three-class
rounding leads to faster convergence. In Figure B.5 a true loss plot over the iterations for the linear
method, can be found. As one can see, the three-class converges faster and especially on 500 iterations,
boosts performance which makes it attractive under a constraint budget.
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Figure B.2: Comparison of atanh and SSL on the Tecnick dataset for t = {500, 2000} iterations.
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Figure B.3: Comparison of atanh and SSL on the CLIC dataset for t = {500, 2000} iterations.

B.4 Semi-multi-rate behavior

In Figure B.6, we have plotted the R-D curve of the base model (lime green line) and its corresponding
R-D curves, obtained when refining the latents with the proposed λ’s. For each model trained using
λ ∈ {0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045}, we run atanh and SSL with a = 2.3 for t = 2000
iterations for all λ ∈ {0.0004, 0.0008, 0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045, 0.06, 0.09}. We
depicted the base curve alongside the curves for each base model. We observe that the improved
performance by SSL is especially noticeable at t = 500 iterations in Figure B.6a.
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Figure B.4: Interpolation performance plots of different a settings for SLL (a) True R-D Loss (b)
Difference in loss (c) PSNR (d) BPP.
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Figure B.5: True R-D loss curves for two- versus three-class rounding of the linear method.
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Figure B.6: R-D performance on Kodak of the Cheng et al. (2020) model when varying the target λ.
Best viewed electronically.
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C Mean-Scale Hyperprior

To make a clear comparison we trained a similar mean-scale hyperprior as in Yang et al. (2020).
Therefore, we use the architecture of Minnen et al. (2018), except for the autoregressive part as a
context model. Instead, we use the regular convolutional architecture of Ballé et al. (2018). The
model package for the mean-scale hyperprior is from CompressAI Bégaint et al. (2020). The details
and results of this model can be found in this section.

Similar as for Cheng et al. (2020) we run all experiments with temperature schedule τ(t) =
min(exp{−ct}, τmax). Additionally, we refine the latents for t = 2000 train iterations, unless
specified otherwise.

Table C.1: True R-D loss results for the
interpolation between different functions
by changing a of the SSL.

a R-D Loss

0.01 1.15
0.3 0.7528
0.65 (approx atanh) 0.7410
0.8 0.7396
1 (linear) 0.7386
1.33 0.7380 ↓
1.6 (approx cosine) 0.7382
2.25 0.7388
5 0.7415

Implementations details The pre-trained mean-scale
hyperpriors are trained from scratch on the full-size CLIC
2020 Mobile dataset Toderici et al. (2020), mixed with
the ImageNet 2012 dataset Russakovsky et al. (2015)
with randomly cropped image patches taken of size
256× 256. For ImageNet, only images with a size larger
than 256 for height and width are used to prevent bilin-
ear up-sampling that negatively affects the model per-
formance. During training, each model is evaluated on
the Kodak dataset Kodak. The models were trained with
λ = {0.001, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08}, with
a batch size of 32 and Adam optimizer with a learning rate
set to 1e−4. The models are trained for 2M steps, except
for model λ = 0.001, which is trained for 1M steps and
model λ = 0.08, which is trained for 3M steps. Training runs took half a week for the 1M step model,
around a week for the 2M step models, and around 1.5 weeks for the larger 3M step model. We ran all
models and methods on a single NVIDIA A100 GPU. Further, the models for λ = {0.04, 0.08} are
trained with 256 hidden channels and the model for λ = 0.001 is trained with 128 hidden channels.
The remaining models are trained with hidden channels set to 192.

C.1 R-D Performance

We evaluate our best-performing method SSL on the Kodak and Tecnick datasets, by computing the
R-D performance, average over each of the datasets. The R-D curves use image quality metric PSNR
versus BPP on the Kodak and Tecnick dataset. Recall that as base model we use the pre-trained
mean-scale hyperprior, trained with λ = {0.001, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08}. For SSL we
choose a = 4

3 as we found that this setting achieves the best R-D loss overall at 2000 iterations. This
is a lower setting compared to the model by Cheng et al. (2020). The hyperparameters are similar to
what we reported for Cheng et al. (2020) but with two main differences. We found that we could
increase the learning rate by a factor 10 to 0.005 for atanh and SGA+. We also found that a lower
a ∈ [1.3, 1.4] was optimal.

Kodak Figure C.2 shows the R-D curve for refining the latents, evaluated on Kodak. We compare
SLL against baselines: STE, uniform noise, atanh and the base model at iteration t = 500 (see
Figure C.2a) and after full convergence at t = 2000 (see Figure C.2b). As can be seen in Figure C.2a,
STE performs slightly better than the base model, while after t = 2000 iterations the method performs
worse, this is also reflected in the corresponding true loss curve for λ = 0.01 (see Figure C.1a), which
diverges. Remarkably, for the smallest λ = 0.001, STE performs better than at t = 500. Adding
uniform noise results in better performance when running the method longer. Comparing the R-D
curves, Figure B.1 to Figure C.2, we find that most impact is made at t = 500 iterations. However,
for the model similar to Yang et al. (2020) the performance lay closer to the performance of atanh,
than for the model of Cheng et al. (2020).

Tecnick Figure C.3 shows the R-D curve when refining latents on the Tecnick dataset, after t = 500
and t = 2000 iterations. As can be seen in the plot, we find that the longer the methods run, the
closer the performance lies to each other. The improvement by SSL compared to atanh is greater for
Tecnick than for Kodak.
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Figure C.1: Performance plots of (a) True R-D Loss (b) Difference in loss (c) PSNR (d) BPP.
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Figure C.2: R-D performance on Kodak of the base mean-scale hyperprior model, STE, Uniform
noise, SGA atanh and SSL with a = 4

3 .

CLIC Figure C.4 shows the R-D curve when refining latents on the CLIC dataset, after t = 500
and t = 2000 iterations. Similar to the previous results, we find that the longer the methods run, the
closer the performance lies to each other and that running the method shorter already gives better
performance, compared to the base model.

BD-Rate Gain In Table C.2, we computed the change in BD-PSNR and BD-rate for the mean-scale
hyperprior model. We observe that SSL is slightly better than atanh, although the difference between
them is smaller than reported on the Cheng et al. (2020) model. The gap between 500 steps and 2000
steps is also smaller compared to the results in 1.

C.2 Analysis

In this appendix, we analyze additional experiments for the model, similar to those in Yang et al.
(2020). The results for the analysis are obtained from a pre-trained model trained with λ = 0.01.
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Figure C.3: R-D performance on Tecnick of the base mean-scale hyperprior model, SGA atanh and
SSL with a = 4

3 . Best viewed electronically.
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Figure C.4: R-D performance on CLIC of the base mean-scale hyperprior model, SGA atanh and
SSL with a = 4

3 . Best viewed electronically.
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Figure C.5: R-D performance on Kodak of the base mean-scale hyperprior model, SGA
atanh and SSL with a = 4

3 . Each point is optimized with a different target λ ∈
{0.001, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08}.
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Table C.2: Pairwise Comparison of BD-PSNR and BD-Rate for the Kodak, Tecnick, and CLIC
dataset on the Mean-Scale Hyperprior Model.

BD-PSNR (dB) BD-Rate (%)
500 steps 2000 steps 500 steps 2000 steps

Kodak Tecnick CLIC Kodak Tecnick CLIC Kodak Tecnick CLIC Kodak Tecnick CLIC

Base vs SSL 0.68 1.21 1.03 0.91 1.50 1.33 -13.52 -22.77 -21.87 -17.69 -28.17 -27.86
Base vs Atanh 0.59 1.06 0.89 0.87 1.46 1.30 -11.90 -20.20 -19.14 -17.03 -27.49 -27.28
Atanh vs SSL 0.09 0.15 0.14 0.04 0.04 0.03 -1.80 -3.22 -3.14 -0.82 -1.03 -0.74
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Figure C.6: True R-D loss curves for different learning rates settings for method SSL and atanh.

Table C.3: True R-D loss for different learning settings of:
atanh and SSL with a = 4

3 . At t = 2000 iterations and in
brackets t = 500 iterations

Lr \Method SSL atanh

0.02 0.7386 (0.7506) 0.7491 (0.7627)

0.01 0.7375 (0.7498) 0.7411 (0.7540)

0.005 (base) 0.7380 (0.7521) 0.7408 (0.7570)

Learning rates We run SSL and
atanh with higher learning rate set-
tings of 0.02 and 0.01 and compare it
to the results obtained with learning
rate 0.005. Figure C.6 shows the cor-
responding loss curves and Table C.3
shows the corresponding loss values at
t = {500, 2000} iterations. We find
that for a learning rate of 0.01 the gap between atanh versus SSL at 500 iterations is only around
14.3% smaller and it remains pronounced, while with a learning rate of 0.01 the gap at 2000 iterations
is around 28.6% better. This concludes that SSL benefits more than atanh at 2000 iterations, with a
higher learning rate. More interestingly, for a learning rate of 0.02, atanh diverges whereas SSL still
reaches comparable performance. This highlights the sensitivity of atanh.

Table C.4: True R-D loss for different τmax settings of:
atanh(v), linear, cosine and SSL with a = 4

3 . Lowest R-D
loss per column is marked with: ↓. Note that the function
containing atanh is unnormalized.

Function \τmax 0.2 0.4 0.6 0.8 1.0
exp atanh(v) 0.7445 ↓ 0.7408 0.7412 0.7416 0.7418
1− v (linear) 0.7458 0.7406 ↓ 0.7390 ↓ 0.7386 0.7386
cos2( vπ2 ) 0.7496 0.7414 0.7393 0.7387 0.7384
σ(−aσ−1(v)) 0.7578 0.7409 0.7391 0.7383 ↓ 0.7380 ↓
exp atanh(v) 0 0.0002 0.0022 0.0033 0.0038
1− v (linear) 0.0013 0 0 0.0003 0.0006

Temperature sensitivity Table C.4
represents the stability of atanh and
the SGA+ methods, expressed in true
R-D loss, for different τmax settings
for the temperature schedule. As can
be seen, the most optimal setting is
with τmax = 1 for each of the SGA+
methods. atanh obtains equal loss
for τmax ∈ [0.4, 0.5]. In general, we
find that the linear method of SGA+
is least sensitive to changes in τmax

and has equal loss between τmax ∈
[0.7, 1]. To further examine the stability of the linear function compared to atanh, we subtract the
best τmax, column-wise, from the linear and atanh of that column. We now see that the linear
function is not only least sensitive to changes in τmax, but overall varies little compared to the best
τmax settings of the other methods. While the SSL has the largest drop in performance when reducing
τmax, it achieves the highest performance overall for higher values of τmax.
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Interpolation Table C.1 presents the true R-D loss results for the interpolation with different a
settings for SSL for the mean-scale hyperprior model. In Figure C.7, the corresponding overall
performance of the methods can be found. As can be seen in Figure C.7a, for a = {0.01, 0.30}, the
functions diverge, resulting in large loss values. For a = 0.65, we find that the loss curve is slightly
unstable at the beginning of training, which can be seen in the bending of the curve, indicating
non-optimal settings. This may be due to the fact that we run all methods with the same τmax = 1
for a fair comparison. Additionally, note that SSL with a = 0.65 obtains a true R-D loss of 0.7410
compared to 0.7418 for atanh with the same settings. This is due to the fact that SSL, especially in
the tails of the probability, is slightly more straight-curved compared to the atanh when looking at
its probability space.

Remarkably, for a ≥ 1, the difference in losses start close to zero (see Figure C.7b). SSL with a = 5
results in the fastest convergence and quickly finds a stable point but ends at a higher loss than most
methods.

Table C.5: True R-D loss of two versus three-class rounding for SGA+
with the extended version of the linear, cosine, and SSL method at
iteration 500 and in brackets after 2000 iterations.

Function \Rounding Two Three

f3c,linear(w|r = 0.98, n = 1.5) 0.7552 (0.7386) 0.7517(0.7380)

f3c,cosine(w|r = 0.98, n = 2) 0.7512 (0.7384) 0.7513 (0.7379)

f3c,sigmoidlogit(w|r = 0.93, n = 1.5) 0.7524 (0.7380) 0.7504 (0.7380)

Three-class rounding
Table C.5 shows the true
R-D loss for two- versus
three-class rounding, at
iteration t = 500 and
in brackets t = 2000
iterations. For each
method, we performed
a grid search over the
hyperparameters r and n. Additionally, for the extended SSL, we also performed a grid search
over a and found the best setting to be a = 1.4. As can be seen in the table, most impact is made
with the extended version of the linear of SGA+, in terms of the difference between the two versus
three-class rounding at iteration t = 500 with loss difference 0.0035 and t = 2000 with 0.0006
difference. There is a small difference at t = 500 for the extended cosine version. In general, we find
that running models longer results in convergence to similar values. SSL converges to equal values
for two- and three-class rounding.

Semi-multi-rate behavior Similar as in Appendix B.4, we experimented with different values
for λ to obtain a semi-multi-rate curve. For every pre-trained model, we ran SSL and atanh using
λ ∈ {0.001, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08}. In Figure C.5, we have plotted the R-D curve of
the base model (lime green line) and its corresponding R-D curves, obtained when refining the latents
with the proposed λ’s for atanh and SSL. As can be seen, running the methods for t = 500 iterations,
SSL obtains best performance. While the longer you train, the closer together the performance will
be.
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Figure C.7: Interpolation performance plots of different a settings for SLL (a) True R-D Loss (b)
Difference in loss (c) PSNR (d) BPP under the mean-scale hyperprior model.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the Methods and Experiments sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the Conclusion and Limitations section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix A.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Methods and Experiments sections, where we provide the methods imple-
mented, data required and packages used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The data and packages used are all open source. The code is publicly accessible
at GitHub.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The changes per run are very small with negligible changes in standard
deviation, see Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes we adhere to the code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See the Analysis and Societal Impact section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes all creators and original owners of assets are cited and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

106742 https://doi.org/10.52202/079017-3388




