SPEAR: Exact Gradient Inversion of Batches in
Federated Learning

Dimitar I. Dimitrov!, Maximilian Baader?, Mark Niklas Miiller?>3, Martin Vechev>
L INSAIT, Sofia University "St. Kliment Ohridski" 2 ETH Zurich 3 LogicStar.ai
{dimitar.iliev.dimitrov}@insait.ai 1
{mbaader, mark.mueller, martin.vechev}@inf.ethz.ch 2

Abstract

Federated learning is a framework for collaborative machine learning where clients
only share gradient updates and not their private data with a server. However,
it was recently shown that gradient inversion attacks can reconstruct this data
from the shared gradients. In the important honest-but-curious setting, existing
attacks enable exact reconstruction only for batch size of b = 1, with larger batches
permitting only approximate reconstruction. In this work, we propose SPEAR, the
first algorithm reconstructing whole batches with b > 1 exactly. SPEAR combines
insights into the explicit low-rank structure of gradients with a sampling-based
algorithm. Crucially, we leverage ReLU-induced gradient sparsity to precisely filter
out large numbers of incorrect samples, making a final reconstruction step tractable.
We provide an efficient GPU implementation for fully connected networks and
show that it recovers high-dimensional ImageNet inputs in batches of up to b < 25
exactly while scaling to large networks. Finally, we show theoretically that much
larger batches can be reconstructed with high probability given exponential time.

1 Introduction

Exact Recon.
Federated Learning has emerged as the dom- ~ (SPEAR-ours)
inant paradigm for training machine learning
models collaboratively without sharing sensitive Approximate
data [2]. Instead, a central server sends the cur- Recon- 1]
rent model to all clients which then send back
gradients computed on their private data. The O
server aggregates the gradients and uses them to
update the model. Using this approach sensitive )
data never leaves the clients’ machines, aligning Figure 1: A sample of fO‘%r images from a batch of
it better with data privacy regulations such as 0 = 20, reconstructed using our SPEAR (top) or
the General Data Protection Regulation (GDPR) ~the prior state-of-the-art Geiping et al. [1] (mid),
and California Consumer Privacy Act (CCPA). ~compared to the ground truth (bottom).

Gradient Inversion Attacks Recent work has shown that an honest-but-curious server can use the
shared gradient updates to recover the sensitive client data [3, 4]. However, while exact reconstruction
was shown to be possible for batch sizes of b = 1 [5, 6], it was assumed to be infeasible for larger
batches. This led to a line of research on approximate methods that sacrificed reconstruction quality
in order to recover batches of b > 1 inputs [7, 8, 9]. In this paper we challenge this fundamental
assumption and, for the first time, show that exact reconstruction is possible for batch sizes b > 1.

This Work: Exact Reconstruction of Batches We propose the first gradient inversion attack
reconstructing inputs exactly for batch sizes b > 1 in the honest-but-curious setting. In Fig. 1, we
show the resulting reconstructions versus approximate methods [1] for a batch of b = 20 images.
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Our approach leverages two key properties of gradient updates in fully connected ReLU networks:
First, these gradients have a specific low-rank structure due to small batch sizes b < n, m compared
to the input dimensionality n and the hidden dimension m. Second, the (unknown) gradients with
respect to the inputs of the first ReLU layer are sparse due to the ReLU function itself. We combine
these properties with ideas from sparsely-used dictionary learning [10] to propose a sampling-based
algorithm, called SPEAR (Sparsity Exploiting Activation Recovery) and show that it succeeds with
high probability for b < m. While SPEAR scales exponentially with batch size b, we provide a
highly parallelized GPU implementation, which empirically allows us to reconstruct batches of size
up to b < 25 exactly even for large inputs (IMAGENET) and networks (widths up to 2000 neurons
and depths up to 9 layers) in around one minute per batch.

Main Contributions:
* The first gradient inversion attack showing theoretically that exact reconstruction of complete
batches with size b> 1 in the honest-but-curious setting is possible.

* SPEAR: a sampling-based algorithm leveraging low rankness and ReLU-induced sparsity
of gradients for exact gradient inversion that succeeds with high probability.

* A highly parallelized GPU implementation of SPEAR, which we empirically demonstrate
to be effective across a wide range of settings and make publicly available on GitHub.

p
. . R X
2 Method Overview i b
. . . - | svD | iii. 1 iv. l v. |
We first introduce our setting before giv- Li i 7 7= o
ing a high-level overview of our attack | oc o O Lz e =
SPEAR, whose sketch is shown in Fig. 2. sz LaT % - q? s 2 12
0b : : - : > :q :
. i , ol \ lll
Setting We consider a neural network e T A <
f containing a linear layer 2 = Wz + Law -
b followed by ReLU activations y = Sampling Filtering T

ReLU(z) trained with a loss function L.

nxb :
Let now X € R" " be a batch of b inputs Figure 2: Overview of SPEAR. The gradient 2% is de-
to the linear layer Z = W X +(b| ... |b) o o W
. . il ., composed to R and L. Sampling gives N proposal direc-
with weights W/ Emﬂfb sbiasb € R tions, which we filter down to ¢ candidates via a sparsity
?égfl}l{)puthz < I? . F;Jr.ther,h ICEYLIGJ criterion with threshold 7*m. A greedy selection method
.~ betheresult of applying the Re selects batchsize b directions. Scale recovery via 2£ re-
activation to Z, i.e., Y = ReLU(Z) and b

assume b < m, n. The goal of SPEAR is turns the dlsaggregatlon matrix @ and thus the inputs X.

to recover the inputs X (up to permutation) given the gradients -2 aW and a.c  (see Fig. 2, 1).

Low-Rank Decomposition We first show that the weight gradient 3 M = M X T naturally
has a low rank b < m,n (Theorem 3.1) and can therefore be decomposed as == = LR with
LecR™and R € Rbm using SVD (Fig. 2, ii). We then prove the existence dlsaggregatlon matrix
Q= (q1]-- |qb) € GLy(R), allowing us to express the inputs as X ' = Q'R and activation
gradients as 57 = LQ (Theorem 3.2). Next, we leverages the sparsity of 5% ‘% to recover @ exactly.

ReLU Induced Sparsity We show that ReLU layers induce sparse activation gradients g—é
(Sec. 3.2). We then leverage this sparsity to show that, with high probability, there exist sub-
matrices L4 € RP~1%? of L, such that their kernel is an unscaled column g@; of our disaggregation
matrix @, i.e., ker(L4) = span(g;), forall i € {1,...,b} (Theorem 3.3). Given these unscaled
colmuns g;, we recover their scale by leveraging the blas gradlent + (Theorem 3.5).

Sampling and Filtering Directions To identify the submatrices L 4 of L which induce the direc-
tions @;, we propose a sampling approach (Sec. 4.1): We randomly sample b — 1 rows of L to obtain

an L 4 and thus proposal direction q; = ker(L 4) (Flg 2 iii). Crucially, the product Lq; = gf

recovers a column of the sparse actlvatlon gradlent for correct directions g; and a dense linear
combination of such columns for incorrect ones. ThlS sparsity gap allows the large number N of
proposal directions obtained from submatrices L 4 to be filtered to ¢ = b unique candidates (Fig. 2 iv).
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Greedy Direction Selection We now have to select the correct b directions from our set of ¢
candidates (Fig. 2, v) To this end, we build an initial solution @’ from the b directions inducing the

highest sparsity 1n = LQ@Q'. To assess the quality of this solution Q’, we 1ntroduce the sparsity

matching score o Wthh measures how well the sparsity of the activation gradients 2 ﬁ " matches the
ReLU activation pattern induced by the reconstructed input X’T = Q'~' R. Finally, we greedily
optimize @’ to maximize the sparsity matching score, by iteratively replacing an element q; of Q’
with the candidate direction q;- yielding the greatest improvement in ¢ until convergence. We can
then validate the resulting input X ' = Q! R by checking whether it induces the correct gradients.
We formalize this as Alg. 1 in Sec. 5 and show that it succeeds with high probability for b < m.

3 Gradient Inversion via Sparsity and Low-Rankness

In this section, we will demonstrate that both low rankness and sparsity arise naturally for gradients
of fully connected ReLLU networks and explain theoretically how we recover X. Specifically, in
Sec. 3.1, we first argue that 5 L = %X T follows direclty from the chain rule. We then show that
for every decomposition aavﬁv = LR, there exists an unknown disaggregation matrix @ allowing us to
reconstruct X ' = Q'R and ‘% = LQ. The remainder of the section then focuses on recovering
Q. To this end, we show in Sec. % 2 that ReLU layers induce sparsity in 8 Z, which we then leveraged
in Sec. 3.3 to reconstruct the columns of Q up to scale. Finally, in Sec. 3.4, we show how the scale of

Q’s columns can be recovered from . Unless otherwise noted, we defer all proofs to App. B.

3.1 Explicit Low-Rank Representation of %

We first show that the weight gradients {?T% can be written as follows:
Theorem 3.1. The network’s gradient w.r.t. the weights W can be represented as the matrix product:
oL oL
= o )
ow  0Z
For batch sizes b < n, m, the dimensionalities of % € R™*? and X € R™*? in Eq. | directly yield
that the rank of e)BTLV is at most b. This confirms the observations of Kariyappa et al. [9] and shows
that X and g—é correspond to a specific low-rank decomposition of {?T%

To actually find this decomposition and thus recover X, we first consider an arbitrary decomposition

of the form gv’f;, = LR, where L € R™*b and R € Rbx" are of maximal rank. We chose the

decomposition obtained via the reduced SVD decomposition of -2 W =USV by setting L =U Sz
and R = S2V, where U € R"*?, § € R?*? and V € RP*". We now show that there exists an
unique disaggregation matrix ¢ recovermg X and 85 from L and R:

Theorem 3.2. If the gradient 2 ﬁ and the input matrix X are of full-rank and b < n,m, then there
exists an unique matrix Q € R**® of full-rank s.t. g—é =LQand XT =Q 'R

Theorem 3.2 is a direct application of Lemma B.1 shown in App. B, a general linear algebra result
stating that under most circumstances different low-rank matrix decompositions can be transformed
into each other via an unique invertible matrix. Crucially, this implies that recovering the input X

and the gradient 57 9L matrices is equivalent to obtaining the unique disaggregation matrix Q. Next,

we show how the ReLU induced sparsity patterns in gé or X can be leveraged to recover @ exactly.

3.2 ReLU-Induced Sparsity

ReLU activation layers can induce sparsity both in the gradient 2 57 L (if the ReLU activation succeeds
the considered linear layer) or in the input (if the ReLU activation precedes the linear layer).

Gradien Sparsity If a ReLU activation succeeds the linear layer, i.e., Y = ReLU(Z), we have
g—é = g—,f, © 1(z~0), where © is the elementwise multiplication and 1|z ¢) is a matrix of 0s and 1s
with each entry indicating if the corresponding entry in Z is positive. At initialization, roughly half

of the entries in Z are positive, making 3 oL 7 sparse with ~ 0.5 of the entries = 0.
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Input Sparsity ReLUs also introduce sparsity if the linear layer in question is preceded by a ReLU

activation. Here, X = ReLU(Z) will again be sparse with ~ 0.5 of the entries = 0 at initialization.

Note that for all but the first and the last layer of a fully connected network, we have sparsity in both,
X and g—é. Due to the symmetry of their formulas in Theorem 3.2, our method can be applied in

all three arising sparsity settings. In the remainder of this work, we assume w.l.o.g. that only g—é
is sparse, corresponding to the first layer of a fully connected network. We now describe how to
leverage this sparsity to compute the disaggregation matrix ) and thus recover the input batch X.

3.3 Breaking Aggregation through Sparsity

Our exact recovery algorithm for the disaggregation matrix @ is based on the following insight:

If we can construct two submatrices A € R*~1%% and L 4 € R*~1*? by choosing b — 1 rows with

the same indices from % and L, respectively, such that A has full rank and an all-zero i™ column,

then the kernel ker(L Ag of L 4 contains a column g; of Q up to scale. We formalize this as follows:

Theorem 3.3. Let A € R*"1%? be a submatrix ofg—é s.t. its i™ column is O for some i € {1,...,b}.
Further, let g—é, X, and A be of full rank and Q be as in Theorem 3.2. Then, there exists a full-rank
submatrix L € R*™1%Y of I s.t. span(q;) = ker(L 4) for the i column q; of Q = (q1| - - - |q).

Proof. Pickani € {1,...,b}. By assumption, there exists a submatrix A € R*~1%? of g—é of rank
b— 1 whose i column is 0. To construct L 4, we take rows from L with indices corresponding to A’s
row indices in g—é. As g—g and X have full rank, by Theorem 3.2, we know that g—é = LQ, and hence
A = L Q. Multiplying from the right with e; yields 0 = Ae; = LaQe; = L q;, and hence
ker(L o) D span(q;). Further, as rank(A) = b — 1 and rank(Q) = b, we have that rank(L ) =
b — 1. By the rank-nullity theorem dim(ker(L 1)) = 1 and hence ker(L 4) = span(g;). O

As g—é is not known a priori, we can not simply search for such a set of rows. Instead, we have to
sample submatrices L 4 of L at random and then filter them using the approach discussed in Sec. 4.
However, we will show in Sec. 5.2 that we will find suitable submatrices with high probability for
b < m due to the sparsity of % and the large number (le) of possible submatrices. We will now

discuss how to recover the scale of the columns g; given their unscaled directions g, forming Q.

3.4 Obtaining Q: Recovering the Scale of columns in Q

Given a set of b correct directions Q@ = (qi|- - [qp), we can recover their scale, enabling us to
reconstruct X, as follows. We first represent the correctly scaled columns as g; = s; - g; with the
unknown scale parameters s; € R. Now, recovering the scale is equivalent to computing all s;. To

this end, we leverage the gradient w.r.t. the bias g—g:

1
Theorem 3.4. The gradient w.r.t. the bias b can be written in the form % = g—é [ ]
1

Thus, the coefficients s; can be calculated as:
81
: —L | _p-17-LacL
Theorem 3.5. For any left inverse L~ of L, we have L ] =Q 'L "%
b
Theorem 3.5 allows us to directly obtain the true matrix Q = Qdiag(sy, ..., s) from the unscaled
matrix (. We now discuss how to recover @) via sampling and filtering candidate directions g;.

4 Efficient Filtering and Validation of Candidates

In the previous section, we saw that given the correct selection of submatrices L 4, we can recover QQ
directly. However, we do not know how to pick L 4 a priori. To solve this, we rely on a sampling
approach: We first randomly sample submatrices L 4 of L and corresponding direction candidates g’
spanning ker(L 4). However, checking whether g’ is a valid direction is not straightforward as we do

not know g—é and hence can not observe A directly as reconstructing g—g = LQ requires the full Q.
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To address this, we filter the majority of wrong proposals g’ using deduplication and a sparsity-based
criterion (Sec. 4.1), leaving us with a set of candidate directions C = {ﬁ; } je{l,...,c}- We then select
the correct directions in C greedily based on a novel sparsity matching score (Sec. 4.2).

4.1 Efficient Filtering of Directions g’

Filtering Mixtures via Sparsity It is highly likely (p = (1 — 2,,1_1 )®) that a random submatrix of L
will not correspond to an A with any 0 column. We filter these directions by leveraging the following

insight. The kernel of such submatrices is spanned by a linear combination ¢’ = ), o;q,. Thus Lg’
will be a linear combination of sparse columns of 3 ‘% . As this sparsity structure is random, linear

combinations will have much lower sparsity with high probability. We thus discard all candidates g’
with sparsity of Lq’ below a threshold 7, chosen to make the probability of falsely rejecting a correct

direction py,.(7,m) = Z 7] ( ) obtained from the cumulative distribution function of the

binomial distribution, small For example for m = 400 and py,.(7,m) < 1075, we have 7 = 0.395.
We obtain the candidate pool C = {ﬁ; }iequ,....cy from all samples that were not filered this way.

Filtering Duplicates As it is highly likely to have multiple full-rank submatrices A, whose i
column is 0, we expect to sample the same proposal g; multiple times. We remove these duplicates
to substantially reduce our search space.

4.2 Greedy Optimization

While filtering duplicates and linear combinations significantly reduces the number c of candidates,
we usually still have to select a subset of b < c¢. Thus, we have ( ) possible b sized subsets, each
inducing a candidate Q' and thus X’. A naive approach is to compute the gradients for all X’ and
compare them to the ground truth. However, this is computationally infeasible even for moderate c.

To address this, we propose a greedy two-stage procedure optimizing a novel sparsity matching
score A\, which resolves the computational complexity issue above while also accurately selecting the

correct batch elements and relying solely on 6 "and Z'. As both can be computed directly via Q’,
the procedure is local and does not need to backpropagate gradients. Next, we explain the first stage.

Dictionary Learning [10] As a first stage, we leverage a component of the algorithm proposed
by Spielman et al. [10] for sparsely-used dictionary learning. This approach is based on the insight
oL

that the subset of column vectors B = {g;}"_,, yielding the sparsest full-rank gradient matrix 5% is

often correct. As the scaling of g does not change the sparsny of the resulting 2 37 Z, we can construct
the subset 3 by greedily collectmg the b directions g} with the highest corresponding spar51ty that
still increase the rank of B. While this method typically recovers most directions @;, it often misses
directions whose gradients % are less sparse by chance.

Sparsity Matching We alleviate this issue by introducing a second stage to the algorithm where
we greedily optimize a novel correctness measure based solely on the gradients of the linear layer,
which we call the sparsity matching coefficient \.

Definition 4.1. Let \_ be the number of non-positive entries in Z whose corresponding entries in

% are 0. Similarly, let A be the number of positive entries in Z whose corresponding entries in

% are not 0. We call their normalized sum the sparsity matching coefficient \:

\ = Ao+ A .

m-b
Intuitively, this describes how well the pre-activation values Z match the sparsity pattern of the
gradients gg induced by the ReLU layer (See Sec. 3.2). While this sparsity matching coefficient A can
take values between 0 and 1, it is exactly A = 1 for the correct X, if the gradient g—,f, w.r.t. the ReLU
output is dense, which is usually the case. We note that A can be computed efficiently for arbitrary

full rank matrix @ by computing %/ =LQ and Z' = WX’ + (b|...|b) for X'T = Q'R.

To optimize A, we initialize @l with the result of the greedy algorithm in Spielman et al. [10], and then
greedily swap the pair of vectors g} improving A the most, while keeping the rank, until convergence.
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S Final Algorithm and Complexity Analysis

In this section, we first present our final algorithm SPEAR (Sec. 5.1) and then analyse its expected
complexity and failure probability (Sec. 5.2).

5.1 Final Algorithm

We formalize our gradient inversion Algorithm 1 SPEAR
oL oLy

attack SPEAR in Alg. 1 and out- function SPEAR(m, n, W, b, 25 2%

line it below. First, we compute the or
low-rank decomposition aaTﬁv =LR L, Rv b <~ LOWRANKDECOMPOSE (8W)
fori =1to N do

1:

2

. . ; . 3
glflctgg gv\f/:]lsghgllgé\j/(ilfm tﬁ‘diVLV via 1e- -y Sample a submatrix L 4 € R*~1%? of L,

, g us to recover g @, < ker(L4)

6
7
8

: oL
the batch size b as the rank of %= if sparsity ( Lag ) > 7+mand @ ¢ C then

ow

S{;ine t2)). We no;/v sarrflf}l;e (at most C+Ccuig)}
) submatrices L 4 of L and com- . A, X’ < GREEDYFILT (L, R, W ,b, 28 ()

pute proposal directions q; as their ) ey ob

. vt 9: if A = 1 then
kernel ker(L 4) via SVD (Lines 4— /

. . 10: return X
5). We note that our implementation : .
. : 11: end if

parallelizes both sampling and SVD 12: end if

computation (Lines 4-5) on a GPU.
We then filter the proposal directions
q; based on their sparsity (Line 6),
adding them to our candidate pool C
if they haven’t been recovered already and are sufficiently sparse (Line 7). Once our candidate pool
contains at least b directions, we begin constructing candidate input reconstructions X’ using our
two-stage greedy algorithm GREEDYFILTER (Line 8), discussed in Sec. 4.2. If this reconstruction
leads to a solution with sparsity matching coefficient A = 1, we terminate early and return the
corresponding solution (Line 9). Otherwise, we continue sampling until we have reached N samples
and return the best reconstruction we can obtain from the resulting candidate pool (Line 14). The
pseudocode for COMPUTESIGMA (Alg. 2) and GREEDYFILTER (Alg. 3) are shown in App. C.

13: end for
14: A, X’ < GREEDYFILT (C)
return X’

5.2 Analysis

In this section, we will analyze SPEAR w.r.t. the number of submatrices we expect to sample until
we have recovered all b correct directions g; (Lemma 5.2), and the probability of failing to recover
all b correct directions despite checking all possible submatrices of L (Lemma 5.3). For an analysis
of the number of submatrices we have to sample until we have recovered all b correct directions g;
with high probability, we point to Lemma B.2. Further, as before, we defer all proofs also to App. B.

Expected Number of Required Samples
To determine the expected number of re-

Failure Probability pyqi

approx

100 J

quired samples until we have recovered the _ 2be
correct b direction vectors g;, we first com- 10-3 . bf: 4
pute a lower bound on the probability g of bes
sampling a submatrix which satisfies the con- 10-6 — b=16
ditions of Theorem 3.3 for an arbitrary col- — =32
umn 7 in  and then use the coupon collector 10-9 — b=064

problem to compute the expected number of
required samples.

We can lower bound the probability of a sub-
matrix A € R*~1%? randomly sampled as
b— 1 rows of g—é, having exactly one all-zero
column and being full rank as follows:

0 80 160 240

Layer Width m
Figure 3: Visualizations of the upper bound (pf®,,

dashed) on and approximation of (pgry ", solid) the
failure probability of SPEAR for different batch sizes
b and network widths m for ps, = 107°.

Lemma 5.1. Let A € R*"'*Y be submatrix of the gradient g—é obtained by sampling b — 1
rows uniformly at random without replacement, where each element of % is distributed i.i.d. as

oL

0Z;r
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Cle| with € ~ N'(u = 0,02 > 0) and { ~ Bernoulli(p = L). We then have the probability
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q of A having exactly one all-zero column and being full rank lower bounded by:

b _ b _
e (1= (3 +op1(1)) > 57 (1= 0.939°~1).

We can now compute the expected number of submatrices n, we have to draw until we have
recovered all b correct direction vectors using the Coupon Collector Problem:

Lemma 5.2. Assuming i.i.d. submatrices A following the distribution outlined in Lemma 5.1 and
using Alg. 1, we have the expected number of submatrices ny,, required to recover all b correct
direction vectors as:

b—1
1 b bH, 1
N =—-Y ——=— =~ ~(blog(b) + b+ 1),
total q kz::o b _ k q q 2
where Hy is the b™ harmonic number and v ~ 0.57722 the Euler-Mascheroni constant.

We validate this result experimentally in Fig. 4 where we observe excellent agreement for wide
networks (m >> b) and obtain, e.g., n;5,,; ~ 1.8 x 10° for a batch size of b = 16.

Failure Probability We now analyze the probability of SPEAR failing despite considering all
possible submatrices of L and obtain:

Lemma 5.3. Under the same assumptions as in Lemma 5.1, we have an upper bound on the failure
probability p,’fabﬂ of Alg. 1 even when sampling exhaustively as:

m 1 k
p}‘;ﬁ,<b<1— ) (Z)zm (1‘0'939(“)(“))> H1=0=p)"

k=b—1
where py,. is the probability of falsely rejecting a correct direction q' via our sparsity filter (Sec. 4.1).

If we assume the full-rankness of submatrices A to i) occur with probability 1 — (5 — 0p—1(1))*~*
for 051 (1) = 0 (true for large b [11]) and ii) be independent between submatrices, we instead obtain:

m b
1 k
w1 (3 (M) o (1 - 0.5(”—1)(b—1>> 1—(1—ps)h.
Prai) (kb_l (k om + ( Pr )
We illustrate this bound in Fig. 3 and empirically validate this bound in Fig. 8 and observe the true

failure probability to lie between pgh ™ and pi2,.

6 Empirical Evaluation

In this section, we empirically evaluate the effectiveness Taple 1: Comparison to prior work in
of SPEAR on MNIST [13], CIFAR-10 [14], TINYIMA-  the image domain.
GENET [15], and IMAGENET [16] across a wide range of

settings. In addition to the reconstruction quality metrics ~ Vethd — PSNRT Time/Batch
PSNR and LPIPS, commonly used to evaluate gradient inver- 81’33 Hg ;f{“é"d fg-g }-g EE
siop attacks, we report accuracy as the port.ion of batches for  Geiping et al. 1] 19.6 18.0 min
which we recovered the batch up to numerical errors and the ~ SPEAR (Ours) 124.2 2.0 min

number of sampled submatrices (number of iterations).

Experimental Setup For all experiments, we use our highly parallelized PyTorch [17] GPU
implementation of SPEAR. Unless stated otherwise, we run all experiments on CIFAR-10 batches of
size b = 20 using a 6 layer ReLU-activated FCNN with width m = 200 and set 7 to achieve a false
rejection rate of pg, < 1075, We supply ground truth labels to all methods except SPEAR.

6.1 Comparison to Prior Work

In Table 1, we compare SPEAR against prior gradient inversion attacks from the image domain on
the IMAGENET dataset rescaled to 256 x 256 resolution. In particular, we compare to Geiping et al.
[1]', as well as, the recent CI-Net [12]. As CI-Net only considers networks with the less common
Sigmoid activations, we report its performance on both ReLU and Sigmoid versions of our network.

'We use so-called "modern” version of the attack from https://github.com/JonasGeiping/breaching
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We observe that while CI-Net obtains very ~ Table 2: Results vs prior work in the tabular domain.
good reconstructions with the Sigmoid net-

work (PSNR of 38), SPEAR still achieves ﬁtlh‘;i = Diser Ace (%’91 Cont “f:;i Tlm;’?at?h
. .. able . .6 min
a much higher PSNR (124) as it is exact. SPEAR (Ours) 100 204 0.4 min

Further, for the more common ReLLU acti-
vations, the performance of CI-Net drops significantly to a PSNR < 16 compared to 19.6 for Geiping
etal. [1]. Additionally, SPEAR is much faster compared to both Geiping et al. [1] and CI-Net, taking
10x and 100x less time, respectively. Finally, we want to emphasize that both prior works rely
on strong prior knowledge, including label information and knowledge of the structure of images,
whereas we assume no information at all about the data distribution and still achieve much better
results in only a fraction of the time taken.

To confirm the versatility of SPEAR, we compare it to the SoTA attack in the tabular domain,
Tableak [8], in Table 2. We see that due to the exact nature of our attack, we recover both continuos
and discrete features better on the ADULT dataset [18] with b = 16, while still being 6x faster.

6.2 Main Results Table 3: Reconstruction quality across 100 batches.

Dataset PSNR * LPIPS | Acc(%)1 Time/Batch
We evaluate SPEAR on MNIST, MNIST 99.1 NaN 99 2.6 min
CIFAR-10, TINYIMAGENET and  CIFAR-10 106.6 1.16x107° 99 1.7 min
IMAGENET at two different res- TINYIMAGENET 110.7 1.62x 1074 99 1.4 min

. . . IMAGENET 224 x 224 125.4 1.05%x107° 99 2.1 min
olutions, reporting results in Ta IMAGENET 720 x 720 125.6 8.08x10 11 99 2.6 min

ble 3. Across datasets, SPEAR
can reconstruct almost all batches perfectly, achieving PSNRs of 100 and above even at a batch
size of b = 20 for images as large as 720 x 720 in < 3 minutes. We provide additional results on
heterogeneous data and trained networks in App. E, as well as, on the FedAvg protocol in App. F.

Effect of Batch Size b We evaluate the effect of 10 Median # Iter.
batch size b on accuracy and the required number of 107

— ¥ o 5
iterations n ., for a wide (m = 2000) and narrow Miogat (Lemma 5.2) o 4
(m = 200) network. While n  increases exponen- ~e- m =200 /o/ e
tially with b, for both networks, the narrower net- 1065- m = 2000 /°_°/—"
work requires about 20 times more iterations than ./°///
the wider network (see Fig. 4). While trends for {,x"
the wider network (m > b) are perfectly described e
by our theoretical results in Sec. 5.2, some inde- |2, ----77" ‘ ‘ ‘ ‘
pendence assumptions are violated for the narrower 0 5 10 15 20 25
network, explaining the larger number of required Batch Size b

iterations. While we can recover all batches per-  Figure 4: Effect of batch size b on the num-
fectly for the wider network, we see a sharp drop  ber of required submatrices. Expectation
in accuracy from 99% at b = 20 to 63% at b = 24  from Lemma 5.2 dashed and median (10® to
(See Flg 6) for the narrower network. This is due to 90th percentﬂe Shaded) depending on network
increasingly more batches requiring more than the  width m solid. We always evaluate 10* sub-

N = 2 x 10° submatrices we sample at most. matrices in parallel, explaining the plateau.

, ( (
Effect of Network Architecture We (5. {‘f;_,,_,&‘,[@ 0o 108 ?i#__h“f'_____._‘_\_('(' { (}, 100
visualize the performance of SPEAR : T .
across different network widths and E '\ _:.\"_" .
depths in Fig. 5. We observe that while ~ 10': N -50  10%: -50
accuracy is independent of both (given : oy © -e- Median nier
sufficient width m > b), the number N e "~ e Accuracy [%]
of required iterations reduces with in- 1()"’12)2 T ””i‘(‘)&(] 10° 9 3 6 9’“
creasing width m. We provide further Layer Width m Network Depth L

ablations on the effect of our two-stage
filtering in App. E.3 and DPSGD noise
in App. E.6.

Figure 5: Accuracy (green) and number of median iterations
(blue) for different network widths m at L = 6 (left) and
depths L at m = 200 (right).

Effect of Layer Depth Our experiments so far focused on recovering inputs to the first layer
of FCNNs. However, SPEAR’s capabilities extend beyond this, as highlighted in Sec. 3.2. To
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demonstrate this, we use SPEAR to reconstruct the inputs to all FC layers followed by a ReLU
activation in a 6-layer FCNN with a width of m = 400 at initialization.

The results, presented in Table 4, show that SPEAR suc- Table 4: Effect of the attacked layer’s
cessfully recovers the inputs to all layers almost perfectly. depth ! (1 <! < 6) on reconstruction
However, attacking later layers is more computationally ex- time and quality for 100 TINYIMA-
pensive. Specifically, the runtime for [ = 5 increases to 70 GENET batches of size b = 20.

minutes/batch resulting in 17 batches that timed-out. This

. ) . R l MAE Acc(% Time/Batch
increased computational cost is due to the initialization of iiﬁ cc(®) 1 Time ac_

the network, which causes the outputs of later layers tobe ! 1.06x 1076 100 2.3 min
dominated by their bias terms with their inputs being almost > 152107/ 100 2.2 min
. y thetr bias tetm puts being 3 1.67x107° 100 5.6min
irrelevant. This issue is mitigated after a few training steps, 4 92.89x10-¢ 99 19 min
as weights and biases adjust to better reflect the relationships 5 3.04x1076 83 70 min

between inputs and outputs. We find that after 5000 gradient
steps the time per batch reduces to < 1 min at an accuracy of > 95% for layer [ = 5.

6.3 Scaling SPEAR via Optimization-based Attacks

As we prove theoretically in Sec. 5.2 and verify Table 5: Comparison between the reconstruction
practically in App. E.5, in the common regime quality of Geiping et al. [1] and a version of SPEAR
where the batch size b is much smaller than that uses Geiping et al. [1] to speed up its search pro-
dimensions of the attacked linear layer w.h.p. cedure evaluated on 10 TINYIMAGENET batches.

the input information is losslessly represented 1 0q )
in the client gradient. However, in practice for

m  Acc(%)1T PSNR 7T

. ? N Geiping et al. [1] 50 400 - 26.5
b > 25 the exponential sampling complexity = SPEAR + Geipingetal. [I] 50 400 100 124.5
of SPEAR become_s a bottleneqk that prevents  Geiping etal. [1] 100 2000 B 32.8
the recovery of the input (see Fig. 4). SPEAR + Geipingetal. [1] 100 2000 60 81.5

In this section, we propose a method for alleviating the exponential sampling complexity by combining
SPEAR with an approximate reconstruction method to get a prior on which submatrices L 4 satisfy
the conditions of Theorem 3.3, i.e., have corresponding matrices A containing a 0-column. To this

end, we first obtain an estimate of the client pre-activation values Z based on the approximate input

reconstructions from Geiping et al. [1]. As large negative pre-activation values in Z are much more

likely to correspond to negative pre-activation values in the true Z, and, thus, to Os in gradients

g—é, we record the locations of the 3b largest negative values for each column of Z. Importantly, by

choosing the locations this way, we ensure that each group of 3b locations correspond to locations of
likely Os in same column of g—é. Restricting the sampling of the row indices of L 4 and A only within
each group of locations, ensures that L 4 is very likely to satisfying the conditions of Theorem 3.3.

We confirm the effectiveness of this approach in a preliminary study, shown in Table 5, that demon-
strates the combined approach allows a substantial increase in the batch size SPEAR can scale
to (up to 100), thus effectively eliminating its exponential complexity. The results show that the
combined approach drastically improves the reconstruction quality of Geiping et al. [1] as well, as
unlike Geiping et al. [1], it achieves exact reconstruction. Importantly, we observe that even for the 4
batches SPEAR failed to recover in Table 5, SPEAR still reconstructs > 97 of the 100 directions gq;
correctly, suggesting that future work can further improve upon our results.

6.4 Feature Inversion in Convolutional Neural Networks

Following the Cocktail Party Attack (CPA) [9], Table 6: Comparison between the reconstructions
we experiment with using SPEAR to recover on VGG16 for Geiping et al. [1], CPA [9], and
the input features to the first linear layer of a pre- SPEAR for 10 IMAGENET batches (b = 16).

trained VGG16 convolutional network with size ~ Method LPIPS | Feature Sim 1
25088 x 4096 for IMAGENET batches of b = 16 Geiping et al. [1] 0.562 B
and use them in a feature inversion (FI) attack  CPA[9] + FI + Geiping et al. [1] 0.388 0.939

to approximately recover the client images. We =~ SPEAR +FI+Geipingetal [1]  0.362 0.984

show the results of our experiments, based on the CPA’s code and parameters, in Table 6. We see the
inverted features drastically improve quality of the final reconstructions, and that SPEAR achieves
almost perfect feature cosine similarity, resulting in better overall reconstruction versus CPA.
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7 Related Work
In this section, we discuss how we relate to prior work.

Gradient Inversion Attacks Since gradient inversion attacks have been introduced [3], two settings
have emerged: In the malicious setting, the server does not adhere to the training protocol and can
adversarially engineer network weights that maximize leaked information [19, 20, 21, 22]. In the
strictly harder honest-but-curious setting, the server follows the training protocol but still aims to
reconstruct client data. We target the honest-but-curious setting, where prior work has either recovered
the input exactly for batch sizes of b = 1 [5, 6], or approximately for b > 1 [1, 23, 7, 8, 9]. In this
setting, we are the first to reconstruct inputs exactly for batch sizes b > 1.

Most closely related to our work is Kariyappa et al. [9] which leverage the low-rank structure of the
gradients to frame gradient inversion as a blind source separation problem, improving their approx-
imate reconstructions. In contrast, we derive an explicit low-rank representation and additionally
leverage gradient sparsity reconstruct inputs exactly.

Unlike a long line of prior work, we rely neither on any priors on the data distribution [8, 24, 25, 26]
nor on a reconstructed classification label [1, 27, 7, 23, 8]. This allows our approach to be employed
in a much wider range of settings where neither is available.

Defenses Against Gradient Inversion Defenses based on Differential Privacy [28] add noise
to the computed gradients on the client side, providing provable privacy guarantees at the cost of
significantly reduced utility. Another line of work increases the empirical difficulty of inversion
by increasing the effective batch size, by securely aggregating gradients from multiple clients [29]
or doing multiple gradient update steps locally before sharing an aggregated weight update [4].
Finally, different heuristic defenses such as gradient pruning [3] have been proposed, although their
effectiveness has been questioned [30].

Sparsely-used Dictionary learning Recovering the disaggregation matrix @ is related to the
well-studied problem of sparsely-used dictionary learning. However, there the aim is to find the
sparsest coefficient matrix (corresponding to our g—é) and dense dictionary (Q ') approximately
encoding a signal (L). In contrast, we do not search for the sparsest solution yielding an approximate
reconstruction but a solution that exactly induces consistent X and g—ﬁ, which happens to be sparse.
Sparsely-used dictionary learning is known to be NP-hard [31] and typically solved approximately
[32, 10, 33]. However, under sufficient sparsity, it can be solved exactly in polynomial time [10].
While our g—é are not sparse enough, we still draw inspiration from Spielman et al. [10] in Sec. 4.

8 Limitations

We focus on recovering the inputs to fully connected layers with ReLU activations such as they occur
at the beginning of fully connected networks or as aggregation layers of many other architectures.
Extending our approach to other layers is an interesting direction for future work.

Further, our approach scales exponentially with batch size b. While SPEAR’s massive parallelizability
and its ability to be combined with optimization-based attacks, as shown in Sec. 6.3, can partially
mitigate the computational complexity, future research is still required to make reconstruction of
batches of size b > 100 practical.

9 Conclusion

We propose SPEAR, the first algorithm permitting batches of b > 1 elements to be recovered exactly
in the honest-but-curious setting. We demonstrate theoretically and empirically that SPEAR succeeds
with high probability and that our highly parallelized GPU implementation is effective across a wide
range of settings, including batches of up to 25 elements and large networks and inputs.

We thereby demonstrate that contrary to prior belief, an exact reconstruction of batches is possible
in the honest-but-curious setting, suggesting that federated learning on ReLLU networks might be
inherently more susceptible than previously thought. To still protect client privacy, large effective
batch sizes, obtained, e.g., via secure aggregation across a large number of clients, might prove
instrumental by making reconstruction computationally intractable.
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A Broader Impact

In this work, we demonstrate that contrary to prior belief, an exact reconstruction of batches is
possible in the honest-but-curious setting for federated learning. As our work demonstrates the
susceptibility of federated learning systems using ReLU networks, this work inevitably advances
the capabilities of an adversary. Nonetheless, we believe this to be an important step in accurately
assessing the risks and utilities of federated learning systems.

To still protect client privacy, large effective batch sizes, obtained, e.g., via secure aggregation
across a large number of clients, might prove instrumental by making reconstruction computationally
intractable. As gradient information and network states can be stored practically indefinitely, our
work highlights the importance of proactively protecting client privacy in federated learning not only
against current but future attacks. This underlines the importance of related work on provable privacy
guarantees obtained via differential privacy.

B Deferred Proofs

Theorem 3.1. The network’s gradient w.r.t. the weights W can be represented as the matrix product:

oL OL
Wz M

Proof. We will use Einstein notation for this proof:

oc oL 0z,

ow,’ 0z, ow,’
oL (W, ™X,,' +b,0")

"0z, oW,
oL 8kaXml
- 0Z,! oW’
B oL ow, ™ .
S0z} aw,s T

oL ...

k

= BZ»l J
=921 %)

‘We note that ¢ ,j’ is the Kronecker delta, that is §,* = 1 if k = 4 and 0 otherwise. Further, §' = 1 for
all I. Hence we arrive at Eq. 1. O

Lemma B.1. Let b,n, m € N such that b < n,m. Further, let A, L € R™*? and B, R € R"*" be
matrices of maximal rank, satisfying AB = LR. Then there exists a unique disaggregation matrix

Qe GL,(R)s.t. A=LQ,and B=Q 'R.

Proof. As b < n,m and the matrices A € R™*? and B € R**™ have full rank, we know that there
exists

o aleftinverse A~L ¢ R¥*™ for A: A~T'A = I and

* aright inverse B~ € R"*? for B: BB~ = I,.

Thus, it follows from
A YLRB *=A1tABB %=1,

that (A~FL)"! = RB~f. Wenow set Q = RB~%.
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This @ satisfies the required properties:

+ B=Q 'R:
Q 'R=A*LR=AT1TAB =B,
« A=LQ:
LQ=LRB "=ABB " =A,
* Uniqueness: Assume we have Q1 and Q> that satisfy LQ; = LQ2 = A. As L is of rank
band b < m, there exists a left inverse L~ for L: L~"L = I,,. Applying this left inverse
to LQ, = LQ, directly yields Q1 = Q2, and hence we get uniqueness.

O
1
Theorem 3.4. The gradient w.r.t. the bias b can be written in the form % 8/; g—é [ ]
1
Proof. We use again Einstein notation.
oL oL 0z !
ob,  0Z,! 0ob;
oL oW, "X, L+ 1,0
-0z} ob,
_oc b, 8!
- 9z,! ob,
oL _ .,
8Z 7570k
8£
_ 5l
8Z 0z,!
This concludes the proof. O
s1
. _ . - oL
Theorem 3.5. For any left inverse L~ of L, we have { : ] =Q 'Lt SE
Sb
Proof. The proof is straight forward. Using Theorem 3.4 and Theorem 3.2, we know that
_ 1, 0L
—17— -1r,
2= —
Q sl
~G 'L t1Q [ |
1
1 }
=QQ { : }
1
!
~Q Qe o) |
1
-[i)
O

Lemma 5.1. Let A € R'"'%? be submatrix of the gmdlent obmmed by sampling b — 1
rows uniformly at random without replacement where each element of is distributed i.i.d. as

gﬁk = Cle| with € ~ N'(u = 0,02 > 0) and ¢ ~ Bernoulli(p = 1). We then have the probability
q of A having exactly one all-zero column and being full rank lower bounded by:

b

b
o (1= (5 +oma (1)) 2 5 (109397,

q=
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Proof. We have the probability of one of the b columns being all zero as 21,% if the network has full
rank, all other columns will not be all-zero.

Further, we have the probability of the submatrix 1 4_ ¢ being full rank conditioned on column 4
being all-zero as the probability of the matrix described by remaining b — 1 columns being non-
singular. This probability is 1 — (5 + 0p—1(1))"~* [11] where lim;_, 0y—1(1) = 0, which can be
lower-bounded with 1 — 0.939°~! [34]. We thus obtain their joint probability as their product. [

Lemma 5.2. Assuming i.i.d. submatrices A following the distribution outlined in Lemma 5.1 and
using Alg. 1, we have the expected number of submatrices n;,,, required to recover all b correct
direction vectors as:

. bH, 1
ntotal Z b k T g(b log(b) + ’yb + %)7

where Hy, is the b™ harmonic number and v = 0.57722 the Euler-Mascheroni constant.

Proof. As we sample submatrices A uniformly at random with replacement, assuming them to be
i.i.d. is well justified for the regime of m > b. The the number n of submatrices drawn between
correct direction vectors g; thus follows a Geometric distribution P[n = k] = ¢(1 — ¢)*~! with
success probability ¢ with expectation n* = E[n] = %. As we draw correct direction vectors g;

uniformly at random from the b columns of @, we have the probability of drawing a new direction

vector g; as ®=£ for k already drawn direction vectors. Again via the expectation of the Geometric

distribution we obtain the expected number c* of correct direction vectors we have to draw until we
b—1 b

have recovered all b distinct ones as the solution of the Coupon Collector Problem ¢* = ), - =

bHy ~ blog(b) + vb + % The proof concludes with the linearity of expectation. O

Maximum Number of Samples Required with High Probability We now compute the number
of samples n{, , required to recover all b correct directions with high probability 1 — p

Lemma B.2. In the same setting as Lemma 5.2, we have an upper bound n., ., on the number of
submatrices we need to sample untll we have recovered all b correct direction vectors by solving the

following quadratic inequality for ¥, ,

P oo <blog(25/p*) - ”f;mzq>

n:tuomlq(]' - q)

5 =

where ® is the cumulative distribution function of the standard normal distribution and p* =
p=1+1—ps)"

Proof. At a high level, bound the number of valid directions cP we need to discover until we recover
all b distinct ones and then the number of submatrices n¥  we need to sample to obtain these c?
directions, each with probability 1 — £, before applying the union bound.

However, we first note that with probability 1 — (1 — p f,n) we will (repeatedly) reject a correct
direction due to a lack of induced sparsity and thus fail irrespective of the number of samples we
draw. We thus correct our failure probability budget fromptop* =p—1+ (1 —p fr)b, using the
union bound.

We now show how to compute the upper bound on the number of correct directions c” we need to find
until we have found all b distinct directions. To this end, we bound the probabihty of not sampling
the i direction g, after finding c candidates as p—; = (1 — 7) < e~%. We can then bound the

cP
probability of missing any of the b directions using the union bound as p_,; < Zi:l poi = be” T .
We thus obtain the minimum number ¢? of correct directions to find all b distinct ones with probability

at least % as ¢ > blog(2b/p*).

We can now compute the number n? | of samples required to find ¢? submatrices satisfying the
condition of Theorem 3.3 for some 7 with probability 1 — £. To this end, we approximate the Binomial
distribution B(n, ¢) with the normal distribution N'(ng, ng(1 — ¢)) [35], which is generally precise
if min(ng,n(q — 1)) > 9 [36], which holds for b > 5. We thus obtain the number of samples n’

total
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required to find ¢P valid directions with high probability 1 — % by solving % = @(i#f"f‘q)) for
Mo 9\t —4
nk ., which boils down to a quadratic equation.

By the union bound, we have that the total failure probability of not finding all b correct directions is
at most p. O

For a batch size of b = 10 and p = 108, we, e.g., obtain n ~ 4 x 10%.

Lemma 5.3. Under the same assumptions as in Lemma 5.1, we have an upper bound on the failure
probability p,’ffﬂ of Alg. I even when sampling exhaustively as:

- m\ 1 k
- _ (b=1)(,2, _ _ b
P, < b ( k§ (k) o (10,9390 ))) 1= (1—pp)t,

c=b—1

where py,. is the probability of falsely rejecting a correct direction q' via our sparsity filter (Sec. 4.1).

Proof. We will first compute the probability of % not containing a submatrix A satisfying the
conditions of Theorem 3.3 for all 7 € {1,...,b} and then the probability of us failing to discover it
despite exhaustive sampling.

We observe that the number k of rows in a A £ with a zero i™ entry is binomially distributed with success
probablhty 5. For each k > b— 1, we can construct (b f 1) submatrices A with an all-zero 7™ column.
The probability of any such submatrix having full rank is 1 — (3 — 0,1 (1))*~! > 1 — 0.939°~!
[11,34].

We thus have the probability of 5 oL 7 containing at least one submatrix A with full rank and an all-zero

t columnas 35", (7)o ( —0.939¢-1(1 1))

Using the union bound, we thus obtain an upper bound on the probability of g—é

submatrix A with full rank and an all-zero i™ column for all i € {1,...,b}.

not containing any

To compute the probability of us failing to discover an existing submatrix despite exhaustive sampling,
we first note that we have the probability p, of an arbitrary column in aé being less sparse than our

threshold 7. Thus, with probability 1 — (1 — py,.)® we will discard at least one correct direction due

to it inducing an unusually dense column in g—é.

We now obtain the overall failure probability via the union bound. O

C Deferred Algorithms

Here, we present the Algorithms COMPUTELAMBDA and GREEDYFILTER referenced in Sec. 5.1.

Algorithm 2 COMPUTELAMBDA

1: function COMPUTELAMBDA(L, R, W, b, 8b,l’j’)
2 Q + FIXSCALE (B,L, %)
3 2+ L-Q

4: XT+— Q1

5: Z=W. X+ (b|...|b)
6: >\_<—Zi)j]1[Z <0]- [az =0]
T Ay 1Z > 0] 15 m.# 0]
8 PR S
9 return )\
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Algorithm 3 GREEDYFILT

1: function GREEDYFILTER(L, R, W, b, 2% ()
2 B+« {}
3 while rank of 5 is B do
4: Select the sparsest vector g; from C \ B
5: B« BuU{q}}
6: if 5 is not of full rank then
7 B« B\ {q;}
8: end if
9: end while
10:
11: A+« COMPUTELAMBDA (L, R,W,b, 22 B)
12: while not changed do
13: changed < False
14: for (g;,q}) in B x (C\ B) do
15: B« B\ {q;} U{gq;}
16: N < COMPUTELAMBDA (L, R, Wb, 22 B')
17: if \’ > )\ then
18: B+ B
19: A X
20: changed < True
21: end if
22: end for

23: end while

. oL
24: Q < FIXSCALE (B, L, g)
25: XT— Q' R
26: return )\, X

Table 7: Reconstruction quality across 100 batches.

Dataset PSNR 1 LPIPS | Acc(%)71T Time/Batch
MNIST 99.1 +13.2 NaN 99 2.6 min
CIFAR-10 106.6 + 15.1 1.16x107° £2.26 x10~* 99 1.7 min
TINYIMAGENET 110.7 £ 12.8 1.62x10~% +£3.22x 1073 99 1.4 min
IMAGENET 224 x 224 1254+ 11.2 1.05%x107°5 £9.50x 10~* 99 2.1 min
IMAGENET 720 x 720 125.6 £8.1 8.08x10'!+3.05x10°3 99 2.6 min

D Dataset Licenses

In this work, we use the commonly used MNIST [13], CIFAR-10 [14], TINYIMAGENET [15] and
IMAGENET [16] image datasets. No information regarding licensing has been provided on their
respective websites. Further, we use Adult tabular dataset under the Creative Commons Attribution
4.0 International (CC BY 4.0) license.

E Deferred Experiments

E.1 Main Results with Error Bars

In this section, we provide the results from our main experiment in Table 3, alongside 95% confidence
intervals.

E.2 Experiments on Label-Heterogeneous Data

In this section, we provide experiments on heterogeneous client data. In particular, we look at
the extreme case where each client has data only from a single class. As label repetition makes
optimization-based attacks harder [1, 23, 7], the results presented in Table 8 for the TinyImageNet
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Figure 6: Effect of the second stage of our reconstruction algorithm discussed in Sec. 4.2, depending
on the batch size b.

dataset show another advantage of our algorithm, namely, SPEAR works regardless of the label
distribution, providing even better reconstruction results compared to Table 3 for single-label batches.

Table 8: Mean reconstruction quality metrics across 100 batches for batches only containing samples
from only one class in the same setting as Table 3.

Dataset PSNR 1  SSIM 1 MSE | LPIPS | Acc (%) 1
TINYIMGNET 127.7  0.999717 4.80x107% 10.36x10°° 98

E.3 Effectivness of our 2-Stage Greedy Algorithm
In this section, we compare reconstruction success rate (accuracy) with and without the second stage

of our greedy algorithm discussed in Sec. 4.2 in Fig. 6. We observe that the second stage filtering
becomes increasingly important for larger batch size b.

E.4 Effect of Training on SPEAR

. 7 lter. Sparsity / Acc [%] - # lter. Sparsity / Acc %]
107 oo oo ° 2100 107 e---0-.g 0 —g--0-__ g -100
/0/'\0 /0"‘0 -®- Median njze,
10° ’ :k‘/’ 50 10° : .X°/. .50 -® Accuracy [%]
\'\. o e ° e g0 * Ne— o -®- Sparsity [%]
1030« v 20 13-« e o0
102 103 104 102 103 104
Training Steps Training Steps
(a) Training Set (b) Test Set

Figure 7: Effect of training (on MNIST) on the effectiveness of SPEAR at a batch size of b = 10
evaluated on the MNIST training (a) and test (b) sets.

In this section, we demonstrate how training effects SPEAR’s performance. To this end, we train
a network on MNIST and evaluate SPEAR periodically during training both on the train and test
datasets, visualizing results in Fig. 7. We observe that SPEAR performance is very similar between
the two datasets we evaluate on. Further, we see that SPEAR performs very well on trained networks,
with the number of required steps by the algorithm being even lower those those on untrained
networks. However, if the minimum column sparsity of g—é drops significantly, as is the case for the
checkpoints around 1000 training steps in the illustrated run. SPEAR’s performance drops slightly.
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E.5 Failure Probabilities

In this section, we validate experimentally our theoretical results on SPEAR’s failure rate for several
batch sizes b (Lemma 5.3). As this requires exhaustive sampling of all (le) submatrices of L we
only consider small batch sizes b < 10 and networks m < 40. We show the results in Fig. 8 where
we observe that the empirical failure probability (blue) with 95% Clopper-Pearson confidence bounds
generally agrees with the analytical approximation (solid line) and always lies below the analytical
upper bound (dashed line). We conclude that in most settings, the number of required samples rather
than complete failure is the limiting factor for SPEAR’s performance.

Failure Probability

Failure Probability

1.0%-- s
“\ ®~ Dfail
B ___ _approx
05 iy fail
5- \

——. ub
Prail

https://doi.org/10.52202/079017-3390
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Figure 8: Empirical failure probability (blue) with 95% Clopper-Pearson confidence bounds (shaded
blue) compared to the analytical upper bound (dashed line) and approximation (solid line) of the
failure probability for different batch sizes b.

E.6 Results under DPSGD

In this section, we show experimental results on reconstructing images from gradients defended using
DP-SGD [28]. In Table 9, we report results on the TINYIMAGENET dataset, b = 20, with noise levels
o < 1.0x10~* and gradient clipping that constrains the ¢» norm of the composite gradient vector,
combining the gradients of all layers, to a maximum value of C' € [1,2]. We chose the maximum
value o to be close to median gradient magnitude of the first linear layer which in our experiments
was also ~ 1.0 x 104, We chose the range for C' such that for the upper bound 2, most individual
input gradients are not clipped, while for the lower bound 1 almost all are.

Adapting SPEAR to Noisy Gradients In the experiments presented in Table 9, we make several
adjustments to SPEAR to better handle the noise added by DPSGD. First, we apply looser thresholds
in our sparsity filtering at Line 6 in Alg. 1 to account for the noise added to the sparse entries of
g—é. To account for the imperfect reconstructions in this setting, we also perform our early stopping
(Line 9 in Alg. 1) when the sparsity matching coefficient v reaches a lower value than 1. Further,
we sample matrices L 4 of larger size (b 4+ 1 x b) to increase the numerical stability of our solutions
under noise. While sampling larger L 4 is more computationally expensive, as b 4 1 instead of b — 1
entries in A are required to be correctly sampled as 0, the resulting directions g; are more numerically
stable as they are obtained as a solution of an overdetermined system of linear equations. Note that if
A is assumed to be of rank b — 1, Theorem 3.3 remains valid for these larger matrices L 4. Finally,
due to our looser sparsity filtering described above we encounter more incorrect directions g,. We
tackle this issue by only keeping g; that correspond to matrices L 4 of rank exactly b — 1. Under our
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assumption in Theorem 3.3, those are exactly the vectors g, that correspond to A of the correct rank
b — 1. Note that we apply these changes only for o > 0.

Invariance to Gradient Clipping In Table 9, we observe that the quality of our reconstructions is
not affected by the clipping constant C'. This is not a coincidence, but rather a mathematical fact. To
see this, note that the observed gradients w.r.t. W under clipping are given by:

b b

oL oL oL
= ) = 7 X’L'a

ow ~ = “ow; ; ‘oz,
where ¢; € R are the unknown to the attacker factors applied by the clipping procedure to each
individual input gradlent . One can adapt the proof to Theorem 3.1, to show that = %X T
where we define 57 OL o be the clipped gradient w.r.t Z, consisting of the columns gZL = gzﬁ .
We also observe that one can adapt Theorem 3.4 to work directly on the clipped gradients as well,

1

resulting in the formula = gg [ ] for the clipped gradient w.r.t. b. The formula follows from the

1
observatlon that in our setting the same clipping factor c¢; is applied to the gradients of each layer,
including 2 5 and ‘% . By applying the rest of the theoretical results of the paper without change but

on clipped gradients 2 A Z , instead of the original unclipped gradients 2 9z Z , we conclude that SPEAR is
directly applicable on the clipped client gradient and that applying it on those still recover the true
input matrix X without the need of knowing the clipping constants c;.

Robustness to Noise From Table 9, we observe that SPEAR is very robust to noise. We emphasize
in particular that even when noise of similar size to the size of the gradients in expectation is applied,
we still obtain a reconstruction with PSNR > 28. This is similar to the PSNR of 29.3 that Geiping
et al. [1] achieves *without any noise* which is commonly considered unacceptable information
leakage. These experiments suggest that to efficiently defend against SPEAR using noise, one needs
to apply such high magnitudes that training will likely be significantly impeded.

F SPEAR under FedAvg Updates

In this section, we first demonstrate theoretically that SPEAR can be generalized to attack FedAvg [4]
client updates, and then present empirical results confirming that SPEAR is indeed very effective
under FedAvg protocols with different number of epochs &£, local client learning rates 7, and, even
works, when mini-batches of size by,; are used.

Generalizing SPEAR to FedAvg Updates Assuming that a client uses all of its data points, X, in
each local gradient step of the FedAvg protocol, i.e. byini = b, the client computes and subsequently
shares with the server the following updated linear layer weights:

&£ &
oL oL
WO—nE - O —n e-XT=W°—77< e>~XT,
aW 07 297

e=1

where W7 is the global model sent by the server, W ¢ represent the local client weights after e client

epochs, and 8‘359 and ;’Zﬁe are the weight and output gradients at epoch e.

We empirically observe that sparsity patterns of the different local gradients -2 3 Zp are usually similar.
This is expected as these patterns correspond to the ReLU activation patterns for the layer outputs

Z° (see Sec. 3.2) at different local steps which are computed on the same data X and with similar

weights W €. As the sparsity patterns for the individual gradients are similar, their sum Z o1 3856

also shares this sparsity pattern and is, thus, also sparse. As the server knows W and it can subtract
it from the client’s shared weights W€ and apply Theorem 3.3, as before, on the sparse matrix
Zf 1 a Ze to obtain the corresponding matrix @ and client data X. We note that while our sparsity
matching coefficient o will typically not reach 1 for the final reconstruction in this setting, as there is
some mismatch between the sparsity patterns of the different output gradients %, we have found
that SPEAR remains practically effective regardless.

106788 https://doi.org/10.52202/079017-3390



Table 9: Reconstruction quality across 100 batches of size b = 20 computed on TINYIMAGENET for
gradients computed with DPSGD [28] with different noise levels ¢ and gradient clipping levels C'.

Method C o PSNR 1+ Acc (%) 1
Geipinget. al [1]  0.00 0 29.3 100
SPEAR (Ours)  1.00 0 118.2 100
SPEAR (Ours)  1.25 0 118.1 100
SPEAR (Ours)  1.50 0 118.5 100
SPEAR (Ours)  1.75 0 118.7 100
SPEAR (Ours)  2.00 0 118.0 100
SPEAR (Ours)  1.00 5.0x107%¢ 386 99
SPEAR (Ours) 1.25 5.0x107¢ 404 98
SPEAR (Ours)  1.50 5.0x107¢  41.9 98
SPEAR (Ours)  1.75 5.0x1076 42.2 97
SPEAR (Ours)  2.00 5.0x107¢  42.0 96
SPEAR (Ours)  1.00 1.0x107°  38.2 99
SPEAR (Ours) 1.25 1.0x107®>  40.0 98
SPEAR (Ours)  1.50 1.0x107® 38.5 99
SPEAR (Ours)  1.75 1.0x107>  39.2 99
SPEAR (Ours)  2.00 1.0x107°>  39.6 99
SPEAR (Ours)  1.00 5.0x107°  32.3 97
SPEAR (Ours) 1.25 5.0x107°  33.5 98
SPEAR (Ours)  1.50 5.0x107° 34.4 99
SPEAR (Ours)  1.75 5.0x107°>  34.6 100
SPEAR (Ours)  2.00 5.0x107°  34.1 100
SPEAR (Ours)  1.00 1.0x10~*  29.7 98
SPEAR (Ours) 1.25 1.0x10™*  29.3 97
SPEAR (Ours)  1.50 1.0x107% 29.9 99
SPEAR (Ours)  1.75 1.0x10™*  29.4 98
SPEAR (Ours)  2.00 1.0x10™*  28.7 95

We note that SPEAR can be even be generalized to FedAvg protocols that use random mini-batches
X € of size byin; < b sampled from X at each local step. This is the case, as each local client gradient

a%e = Oazﬂ (X e)T, can be represented as 8‘9;6 X7, where aazﬂe is derived from aazae by adding 0
columns at batch positions corresponding to batch elements not in X ¢. Importantly, as % only

2 oL
e=1 9Z¢

adds 0 columns to %, the sparsity of aﬁzﬁe can only increase, allowing to conclude that

remains sparse, and, thus, Theorem 3.3 can still be applied to it.

Experiments with FedAvg Updates Next, we show empirically the effectiveness of SPEAR for
FedAvg updates. In Table 10, we show the results of attacking clients with b = 20 datapoints from
the TINYIMAGENET dataset for different number of local client epochs £. We observe that even for
&€ = 50 gradient steps we recover data from most batches, with quality similar to the quality achieved
when attacking individual gradients. This is expected as Theorem 3.3 still holds, as described in the
previous paragraph. The slight dip in the fraction of reconstructed batches for larger number of steps
£ can be attributed to some client batches inducing larger discrepancy between the sparsity patterns
of aazﬁe compared to others, resulting in their sum being much less sparse. Further, Table 10 also
shows that SPEAR can attack client updates that take b/bpin; = 4 local steps per epoch for £ = 20
epochs. Interestingly, while a total of 80 gradient steps are taken in this scenario the results are closer
to the by = 20, & = 20 setting, instead of the by, = 20, £ = 50 setting. This can be explained by

the increased sparsity of the individual expanded gradients %.

Finally, we experiment with different local client learning rates n and show the results in Table 11.
We observe that even for large learning rates SPEAR still recovers its inputs well, showing that while

the individual weights W can change a lot, their induced sparsity on ;ZEC remains consistent.

G Additional Visualisations

In this section we present additional visualisations of the reconstructions obtained by SPEAR. First,
in Fig. 9 we show an extended comparison between the images recovered by our method and Geiping
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Table 10: Reconstruction quality across 100 FedAvg client updates computed on TINYIMAGENET
batches of size b = 20 for different number of epochs £ and different mini batch sizes byip;.

n E  bmm PSNR?T Acc (%)

001 1 20 97.8 97
001 5 20 103.9 100
001 10 20 106.7 99
0.01 20 20 108.90 98
0.01 50 20 104.9 90
0.01 20 5 106.7 97

Table 11: Reconstruction quality across 100 FedAvg client updates computed on TINYIMAGENET
batches of size b = 20 for different local client learning rates 7).

n € bmm PSNRT Acc(%)7
01 5 20 119.3 95
001 5 20 103.9 100
0001 5 20 85.5 100

Exact Reconstruction
(SPEAR - ours)

Approximate Recon.

(11

Original Image

Exact Reconstruction
(SPEAR - ours)

Approximate Recon.

(11

Original Image

Flgure 9: The reconstructions of all images from Fig. 1, reconstructed using our SPEAR (top) or the
prior state-of-the-art Geiping et al. [1] (mid), compared to the ground truth (bottom).

et al. [1] on the TINYIMAGENET batch first shown in Fig. 1. In Fig. 9 we operate in the same
setting as Table 8, namely batches of only a single class. We observe that while some images are
reconstructed well by Geiping et al. [1], most of the images are of poor visual quality, with some even
being hard to recognize. In contrast, all of our reconstructions are pixel perfect. This in particular also
means, that SPEAR’s reconstructions improve in fine-detail recovery even upon the well recovered
images of Geiping et al. [1]. This is expected as our attack is exact (up numerical errors).

Further, to show the results in Fig. 9 are representative, in Fig. 10-12 we provide additional visualiza-
tions of the reconstructions obtained by SPEAR corresponding to the 10,50, and 90" percentiles
of the PSNRs obtained in the TINYIMAGENET experiment reported in Table 3. We observe that
only 1 sample has visual artefacts for the 10" percentile batch (top left image in Fig. 10) and that
the 50" and 90™ percentile batches contain only perfect reconstructions. We theoreticize that the
visual artefact in Fig. 10 is a result of a numerical instability issue and that using L 4 of bigger size as
described in App. E.6 one could further alleviate it in exchange of additional computation.

Finally, we demonstrate what happens to SPEAR reconstructions in the rare case when the algorithm
fails to recover all correct directions g; from the batch gradient. In Fig. 13, we show the only such
batch for the TINYIMAGENET experiment reported in Table 3. The batch has 2 wrong directions and
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still achieves an average PSNR of 91.2 (the worst PSNR obtained in this experiment), which is still
much higher compared to prior work. Further, all but 2 images are affected by the failure.

Exact Reconstruction
(SPEAR - ours)

Original Image

Exact Reconstruction
(SPEAR - ours)

Original Image

Figure 10: Visualisation of the images reconstructed by SPEAR from the batch whose PSNR is at
the 10" percentile based on the set of 100 TINYIMAGENET reconstructions reported in Table 3.

Exact Reconstruction
(SPEAR - ours)

Original Image

Exact Reconstruction
(SPEAR - ours)

Original Image

Figure 11: Visualisation of the images reconstructed by SPEAR from the batch whose PSNR is at
the 50" percentile based on the set of 100 TINYIMAGENET reconstructions reported in Table 3.

Exact Reconstruction
(SPEAR - ours)

Original Image

Exact Reconstruction
(SPEAR - ours)

Original Image

Figure 12: Visualisation of the images reconstructed by SPEAR from the batch whose PSNR is at
the 90" percentile based on the set of 100 TINYIMAGENET reconstructions reported in Table 3.
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Figure 13: Visualisation of the images reconstructed by SPEAR from the only batch from the 100
TINYIMAGENET reconstructions reported in Table 3, where not all recovered directions @} are correct.
SPEAR recovered 2/20 wrong directions, resulting in the left most images being wrongly recovered.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claim of our abstract and introduction sections is that we introduce
the first algorithm to reconstruct whole batches of data exactly when b > 1 in the important
honest-but-curious setting. To this end, we provide high-level overview of our algorithm
SPEAR in Sec. 2 and deeper technical explanation in Sec. 3 that lays in great mathematical
details how and why our algorithm is able to recover user data under ReLU-induced sparsity.
We further claim we provide efficient GPU implementation recovering inputs to fully-
connected networks fast and precisely even for high-dimensional inputs when b < 25.
Our experiments in Sec. 6 show that for these batch sizes on high-dimensional inputs like
IMAGENET images our algorithm is significantly faster compared to prior work, while also
recovering the images up to numerical precision. Finally, we claim that our method, despite
its exponential runtime, can in theory recover the client inputs for much larger batch sizes b,
under sufficient compute. These claims are supported by our theoretical analysis in Sec. 5.2
and our experiments in Sec. 6.3.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss our limitations in a separate limitation section (Sec. 8). The broader
impact of our work is discussed in App. A.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide proofs for our theorems either immediately following the theorems
themselves or in App. B. We explicitly state all theorem assumptions.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide code in the accompanying GitHub repository. Further, Sec. 3 we
give all technical details needed to reimplement our algorithm. Finally, in Sec. 6 we explain
in detail how our experiments were performed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code in the accompanying GitHub repository alongside instal-
lation instructions and example commands. We rely only on publicly available datasets.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

 Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes we list all details of our experiments in Sec. 6.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars for our main experiments in App. E.1, as well as, our
failure probability verification experiments in App. E.5. We didn’t provide error bars for our
other experiments due to computational limitation.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about the amount and types of compute needed to
conduct our experiments in Sec. 6.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper does not introduce new models or datasets. We use only standard
datasets in our experiments and provide discussion of their licenses in App. D. We discuss
our broader impact on privacy of federated learning in App. A.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide discussion of our broader impact in App. A. We discuss possible
mitigations to our attack in App. E.6

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our code is publicly available at our GitHub repository under license that
only permits educational and academic uses and explicitly forbids malicious uses including
obtaining, accessing, or disclosing private or confidential information about individuals.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use only standard datasets in our experiments and provide discussion of
their licenses in App. D.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We do not introduce new datasets or models. We provide the code in our
GitHub repository alongside instructions for installations.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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