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Abstract

This paper pertains to an emerging machine learning paradigm: learning higher-
order functions, i.e. functions whose inputs are functions themselves, particularly
when these inputs are Neural Networks (NNs). With the growing interest in ar-
chitectures that process NN, a recurring design principle has permeated the field:
adhering to the permutation symmetries arising from the connectionist structure of
NNs. However; are these the sole symmetries present in NN parameterizations?
Zooming into most practical activation functions (e.g. sine, ReLU, tanh) answers
this question negatively and gives rise to intriguing new symmetries, which we
collectively refer to as scaling symmetries, that is, non-zero scalar multiplications
and divisions of weights and biases. In this work, we propose Scale Equivariant
Graph MetaNetworks - ScaleGMNs, a framework that adapts the Graph Metanet-
work (message-passing) paradigm by incorporating scaling symmetries and thus
rendering neuron and edge representations equivariant to valid scalings. We in-
troduce novel building blocks, of independent technical interest, that allow for
equivariance or invariance with respect to individual scalar multipliers or their
product and use them in all components of ScaleGMN. Furthermore, we prove
that, under certain expressivity conditions, ScaleGMN can simulate the forward
and backward pass of any input feedforward neural network. Experimental results
demonstrate that our method advances the state-of-the-art performance for several
datasets and activation functions, highlighting the power of scaling symmetries
as an inductive bias for NN processing. The source code is publicly available at
https://github.com/jkalogero/scalegmnl

1 Introduction

Neural networks are becoming the workhorse of problem-solving across various domains. To solve a
task, they acquire rich information which is stored in their learnable parameters throughout training.
Nonetheless, this information is often opaque and difficult to interpret. This begs the question: How
can we efficiently process and extract insights from the information stored in the parameters of
trained neural networks, and how to do so in a data-driven manner? In other words, can we devise
architectures that learn to process other neural architectures?

The need to address this question arises in diverse scenarios: NN post-processing, e.g. analy-
sis/interpretation (i.e. inferring NN properties, such as generalisation and robustness [[74}[19]]), as well
as editing (e.g. model pruning [22], merging [[75] or adaptation to new data) - or NN synthesis (e.g. for
optimisation [12]] or more generally parameter prediction/generation [31 167, 32} 58])). Furthermore,
with the advent of Implicit Neural Representationsﬂ [13} 152} 157, [70L [53]] trained NN parameters
are increasingly used to represent datapoint signals, such as images or 3D shapes, replacing raw
representations, i.e., pixel grids or point clouds [[18]. Consequently, many tasks involving such data,
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across various domains such as computer vision [47] and physics [68]], which are currently tackled
using domain-specific architectures (e.g. CNNs for grids, PointNets [63]] or GNNs [60] for point
clouds and meshes), could potentially be solved by NNs that process the parameters of other NNs.

The idea of processing/predicting NN parameters per se is not new to the deep learning community,
e.g. it has been investigated in hypernetworks [27]] or even earlier [65]. However recent advancements,
driven by the need for INR processing, leverage a crucial observation: NNs have symmetries. In
particular, several works have identified that the function represented by an NN remains intact when
applying certain transformations to its parameters [28l [11] with the most well-known transformations
being permutations. That is, hidden neurons can be arbitrarily permuted within the same layer,
along with their incoming and outgoing weights. Therefore, all the tasks mentioned in the previous
paragraph can be considered part of equivariant machine learning [10], as they involve developing
models that are invariant or equivariant to the aforementioned transformations of neural networks.
Recently Navon et al. [54] and Zhou et al. [86] acknowledged the importance of permutation
symmetries and first proposed equivariant architectures for Feedforward NN (FFNN) processing,
demonstrating significant performance improvements against non-equivariant baselines. These
works, as well as their improvements [85]] and extensions to process more intricate and varying
architectures [33} 144, [88]], are collectively known as weight space networks or metanetworks, with
graph metanetworks being a notable subcase (graph neural networks with message-passing).

Nevertheless, it is known that permutations are not the only applicable symmetries. In particular,
theoretical results in various works [[11}/61], mainly unified in [25] show that FFNNs exhibit additional
symmetries, which we collectively here refer to as scaling symmetries: multiplying the incoming
weights and the bias of a hidden neuron with a non-zero scalar a (with certain properties) while
dividing its outgoing weights with another scalar b (often b = a), preserves the NN function.
Intuitively, permutation symmetries arise from the graph/connectionist structure of the NN whereas
different scaling symmetries originate from its activation functions o, i.e. when it holds that o (ax) =
bo(z). However, equivariance w.r.t. scaling symmetries has not received much attention so far
(perhaps with the exception of sign symmetries - a € {—1,1} [41}/40]), and it remains effectively
unexplored in the context of metanetworks.

To address this gap, we introduce in this paper a graph metanetwork framework, dubbed as Scale
Equivariant Graph MetaNetworks- ScaleGMN, which guarantees equivariance to permutations and
desired scaling symmetries, and can process FFNNs of arbitrary graph structure with a variety
of activation functions. At the heart of our method lie novel building blocks with scale invari-
ance/equivariance properties w.r.t. arbitrary families of scaling parameters. We prove that ScaleGMN
can simulate the forward and backward pass of an FFENN for arbitrary inputs, enabling it to reconstruct
the function represented by any input FFNN and its gradients.

Our contributions can be summarised as follows:

* We extend the scope of metanetwork design from permutation to scaling symmetries.

* We design invariant/equivariant networks to scalar multiplication of individual multipliers
or combinations thereof, originating from arbitrary scaling groups.

» We propose scale equivariant message passing, using the above as building blocks, unifying
permutation and scale equivariant processing of FFNNs. Additionally, the expressive power
of our method is analysed w.r.t. its ability to simulate input FFNNs.

* Our method is evaluated on 3 activations: ReLU (positive scale), tanh (sign) and sine (sign
- we first characterise this using a technique from [25]]) on several datasets and three tasks
(INR classification/editing & generalisation prediction), demonstrating superior performance
against common metanetwork baselines.

2 Related work

Neural network symmetries. Long preceding the advent of metanetworks, numerous studies delved
into the inherent symmetries of neural networks. Hecht-Nielsen [28]] studied FFNNs and discovered
the existence of permutation symmetries. Chen et al. [[11]] showed that, in FFNNs with tanh activations,
the only function-preserving smooth transformations are permutations and sign flips (multiplication
of incoming and outgoing weights with a sign value) - this claim was strengthened in [21]]; this
was the first identification of scaling symmetries. Follow-up works extended these observations to
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other activations, such as sigmoid and RBF [37]] and ReLU [56, |51} 61} 164} 26]], and architectures,
such as RNNs [3} 2]], characterising other scaling symmetries and providing conditions under which
permutations and scalings are the only available function-preserving symmetries or the parameters
are identifiable given the input-output mapping. Recently, Godfrey et al. [25]] provided a technique to
characterise such symmetries for arbitrary activations that respect certain conditions, unifying many
previous results. Additionally, symmetries have been found in other layers, e.g. batch norm [6} 14} [16]
(scale invariance) or softmax [36] (translation invariance). Prior to metanetworks, symmetries were
mainly studied to obtain a deeper understanding of NNs or in the context of optimisation/learning
dynamics [56} 71} 14, 17,1361 15, 183}, 184]] and/or model merging/ensembling [20, |1, 169} 159, 155]].

Metanetworks. The first solutions proposed for NN processing and learning did not account for
NN symmetries. Unterthiner et al. [[74] and Eilertsen et al. [[19], initially employed standard NNs on
vectorised (flattened) CNN weights or some statistics thereof, to predict properties of trained neural
networks such as generalization or estimation of a hyperparameter resp.). Similar methods have been
proposed to process continuous data represented as INRs. In [78] high-order spatial derivatives are
used (suitable only for INRs), in [47]] the architecture operates on stacked parameter vectors (but is
constrained by the assumption that all INRs are trained from the same initialization), while in [[18]]
and [7] the authors learn low-dimensional INR embeddings (which are further used for downstream
tasks) by jointly fitting them with meta-learning. Finally, Schiirholt et al. [66]] learn representations
of NN weights with self-supervised learning and in [67] this is extended to generative models.

In contrast to the above methods, our work follows a recent stream of research focusing on equivariant
metanetworks. Navon et al. [54] and Zhou et al. [85] first characterised all linear equivariant layers
to permutation symmetries of MLPs and combined them with non-linearities, while in the latter
this was extended to CNNs. These approaches derive intricate weight-sharing patterns but are non-
locaﬂ and cannot process varying architectures. In follow-up works, Zhou et al. [86] constructed
equivariant attention layers and in [87] the above characterisation was generalised to arbitrary input
architectures and layers (e.g. RNNs and transformers) introducing an algorithm for automatic linear
layer (with weight-sharing) construction. A different route was taken in the very recent works of
Kofinas et al. [33] and Lim et al. [44], where input NNs are treated as a special class of graphs and
are naturally processed with Graph Neural Networks (GNNs), with appropriate symmetry breaking
wherever necessary. This perspective has been adopted several times in the deep learning literature
[9 231145077, 180] and in a few examples, GNNs were applied on the graph representation for, e.g.
neural architecture search ([82, 72} |31]]), albeit without mapping parameters to the graph edges. In
parallel to our work, [73]] extended the framework of [85] to incorporate scaling and sign-flipping
symmetries. They construct non-local equivariant layers, resulting in an architecture with fewer
trainable parameters. Nevertheless, their method suffers from limited expressive power, while their
experimental results showcase limited advancements. In contrast to our method, this approach
limits the choice of activation functions to those equivariant to the studied symmetries. Finally,
their framework cannot be extended to other activation functions, as the parameter sharing must be
re-designed from scratch, while it is not suitable for processing diverse architectures.

Scale Equivariance Equivariance to vector scaling (or more generally to matrix multiplication
with diagonal matrices) remains to date underexplored in the machine learning community. Sign
symmetries received attention in the work of Lim et al. [42], where an invariant network (SignNet)
was designed, mainly to process eigenvectors, with the theoretical analysis revealing universality
under certain conditions. This was extended in [39], where the importance of sign equivariance on
several tasks was demonstrated and a sign equivariant network was proposed. In our work, we draw
inspiration from these architectures and extend their formulations to arbitrary scaling symmetries.

3 Notation and Preliminaries

Notation. We denote vectors, matrices, and tensors with bold-face letters, e.g., x, X, X, respectively
and sets with calligraphic letters X'. A normal font notation will be used for miscellaneous purposes
(mostly indices and functions). Datapoint (input) functions/signals will be denoted with u, while
higher-order functions (functions of functions) will be denoted with fraktur font §.

Functions of Neural Networks. Consider functions of the form u¢ ¢ : X — X. Each function is
parameterised (1) by a computational graph G, which determines all the mathematical operations

’They can be perceived as the metanetwork analogue of Invariant Graph Nets [50] for conventional graphs.
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that should be performed to evaluate the function « at a datapoint x € X'. When w is a neural network,
G is determined by the NN architecture. Additionally, v is parameterised by (2), by a tuple of
numerical parameters 6, on which the aforementioned mathematical operations are applied (along
with the input x) - these are the learnable parameters, which can be arranged into a vector. We are
interested in learning unknown higher-order functions § : XX Y of the form § (’U,G)g). In our
case, the goal is to learn § by accessing solely the parameters (G, 0) of each u, i.e. via functions
f : G X © — Y of the form f (G, 0), where G is a space of architectures/computational graphs and
© a space of parameters We are typically interested in learning functionals () C R%) or operators
(Y =G x O or)Y = 0). To approximate the desired higher-order function, we assume access to
a dataset of parameters sampled i.i.d. from an unknown distribution p on G x ©. For example, in

a supervised setup, we aim to optimise the following: argmin ;. » E,0)~pL (S(UG79)7 f(G, 0)) ,
where L(-, -) is a loss function and F is an NN processing hypothesis class (e.g. metanetworks).

Feedforward Neural Networks (FFNNs). In this paper, we focus our analysis on Feedforward
Neural Networks (FFNNs), i.e. linear layers interleaved with non-linearities. Consider NNs of the
form ug g : Ré%» — R of the following form:

x0=%, xX;=o0¢(Wyxe_1+by), uge(x)=xg ¢))

where L: the number of layers, W; € RdeXde—1: the weights of the NN, b, € R4 the biases of
the NN, dy = din, d, = dou, 0¢ : R — R activation functions applied element-wise. Here, the
learnable parameters are @ = (W1,..., W, bq,...,by) and the computational graph encodes the
connections between vertices, but also the type of activations used in each layer.

Neural Network symmetries. One of the major difficulties with working with function parameters
directly is that the same function can be represented with more than one parameter, i.e. there
exists transformations that when applied to any parameter (G, 0), keep the represented function
intact. Formally, an NN symmetry is induced by a set ¥ of transformations ¢ : G x ©® — G x O,
such that ug,e(x) = uyg,0)(x),Vx € X,V(G,0) € G x ©. If for a pair parameters (G, 9),
(G',0"), I such that (G, 0) = (G',0"), we will call the two parameters equivalent and write
(G, 8) ~ (G, 8'). To appropriately represent a functional , a hypothesis (metanetwork) f should be

invariant to transformations in W: f W (G,0)) = f (G, ). For operators, f should be equivariant to
transformations: f (¢ (G, 80)) = (f(G, @)), such that identical functions map to identical functions.

Permutation symmetries (connectionist structure). For a fixed computational graph G, perhaps
the most well-known symmetry of FFNNs are those induced by hidden neuron permutations [28].
As far as metanetworks are concerned it is to date the only NN symmetry that has been accounted
for - see Section 2] This symmetry implies that permuting hidden neurons (along with their biases
and incoming and outgoing weights) within each layer preserves the NN function (regardless of the
activation function). This reads:

W, =P,W,P, ! b, =Pb, = (W},b)){L;, =60 ~0= (Wb, 2)

where £ € {1,...,L}, Py =P =T and P, € R%*% are arbitrary permutation matrices. Observe
that they are different for each layer, with the input and output neurons held fixed.

Graph Metanetworks (GMNs). A recently introduced weight space architecture [33}144], takes
advantage of the permutation symmetries and treats FFNNs (among others, e.g. CNNs) as graphs,
processing them with conventional GNNs. In particular, let G = (V, £) be the computational graph,
¢ € V an arbitrary vertex in the graph (neuron) and (i, j) € £ an arbitrary edge from vertex j to
vertex i ['| Additionally, let xy € RIVI*@" be the vertex features and x; € RIEI*4e the edge features
(i.e. biases and weights resp. in a FFNN). The general form of a T" iteration (layer) GMN reads:

h, (i) = INITy (xv (7)), h(i,j) = INITg (xg (i, 7)) (Init)
mi (i) = @, MSGY (i (). b5 (). by} (1.) (Msg)
hi, (i) = UPDY, (hy ' (i), mi (i), h%(i,5) = UPDy (hi (i), hi; ' (j), b '(i,4))  (Upd)
he = READ({h{ (1)}, ). (Readout)

3Note the difference with architectures that access u via input-output pairs (x;, uc,e (x:)) [46L34].
*We use this convention to align with the indexing of the weights W (i, 5).
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where h!,, h’, are vertex and edge representations at iteration ¢ and h¢ is the overall graph (NN)
representation. INIT, MSG, UPD are general function approximators (e.g. MLPs), while READ is
a permutation invariant aggregator (e.g. DeepSets [81]). The above equations have appeared with
several variations in the literature, e.g. in some cases the edge representations are not updated or the
readout might involve edge representations as well. Another frequent strategy is to use positional
encodings py , pg to break undesired symmetries. In FENNs, Eq. (2) reveals that input and output
vertices are not permutable, while vertices cannot be permuted across layers. Therefore, vertices (or
edges) that are permutable share the same positional encoding (see Appendix [A.1.2]for more details).
Remark: Although, typically, the neighbourhood A/ () contains both incoming and outgoing edges,
in Section [5] we will illustrate our method using only incoming edges: forward neighbourhood
New(i) = {j € V | layer (i) — layer (j) = 1} and backward where layer (7) gives the layer neuron
i belongs. Backward neighbourhoods ANgw (i) are defined defined similarly. In Appendix [A.2] we
show a more elaborate bidirectional version of our method, with both neighbourhoods considered.

4 Scaling symmetries in Feedforward Neural Networks

Scaling symmetries (activation functions). Intuitively, permutation symmetries stem from the graph
structure of neural networks, or put differently, from the fact that hidden neurons do not possess any
inherent ordering. Apart from the affine layers W that give rise to the graph structure, it is frequently
the case that activation functions o, have inherent symmetries that are bestowed to the NN.

Let us dive into certain illustrative examples: for the ReLU activation o (z) = max(x, 0) it holds that
o(ax) = max(az,0) = amax(x,0), Va > 0. For the tanh and sine activations o(z) = tanh(z),
o(z) = sin(z) respectively, it holds that o (ax) = ao(z), Va € {—1,1}. In a slightly more complex
example, polynomial activations o(x) = 2¥, we have o(ax) = ac(x), i.e. the multiplier differs
between input and output. In general, we will be talking about scaling symmetries whenever there
exist pairs (a,b) for which it holds that o(ax) = bo(x). To see how such properties affect NN
symmetries, let us focus on FFNNs (see Appendix for CNNs): for a neuron ¢ (we omit layer
subscripts) we have o (aW (i,:)x + ab(i)) = bo(W(i,:)x + b(i)), i.e. multiplying its bias and
all incoming weights with a constant a results in scaling its output with a corresponding constant b.
Generalising this to linear transformations, we may ask the following: which are the pairs of matrices
(A, B) for which we have o (AWx + Ab) =Bo (Wx + b) ? Godfrey et al. [25] provide an answer

for any activation that respects certain conditions. We restate here their most important results:

Proposition 4.1 (Lemma 3.1. and Theorem E.14 from [25])). Consider an activation function
o : R — R. Under mild conditions,E] the following hold:

e For any d € N7, there exists a (non-empty) group of invertible matrices defined as:
Ina = {A € R¥™ : invertible | 3B € R4 invertible, such that: c(Ax) = Bo(x)}
(intertwiner group), and a mapping function ¢, q such that B = ¢, 4(A).

* Every A € I, q is of the form PQ, where P: permutation matrix and Q = diag(q17 e qd)
diagonal, with ¢; € D, = {a € R\{0} | o(az) = ¢51(a)o(x)}: the I-dimensional group,
and ¢O’,d(A) = Pdlag (¢0,1(q1)7 cee ¢a,1(Qd))‘

This is a powerful result that completely answers the question above for most practical activation
functions. Importantly, not only does it recover permutation symmetries, but also reveals symmetries
to diagonal matrix groups, which can be identified by solely examining ¢ 1, i.e. the one-dimensional
case and the set D, (easily proved to be a group) we have already discussed in our examples above.

Using this statement, Godfrey et al. [25] characterised various activation functions (or recovered
existing results), e.g. ReLU: I, 4 contains generalised permutation matrices with positive entries
of the form PQ, Q = diag(q1,...,¢q), ¢ > 0 and ¢, ¢(PQ) = PQ [56]. Additionally, here we
characterise the intertwiner group of sine (used in the popular SIREN architecture [70] for INRs).
Not surprisingly, it has the same intertwiner group with tanh [11, 21] (we also recover this here
using Proposition @.T)). Formally, (proof in Appendix [A.7.1):

Corollary 4.2. Hyperbolic tangent o(x) = tanh(z) and sine activation o(z) = sin(wx), satisfy the
conditions of Proposition when (for the latter) w # km, k € Z. Additionally, 1, 4 contains signed
permutation matrices of the form PQ, with Q = diag(qu, . ..,q4), ¢ = £1 and ¢,,(PQ) = PQ.

>See Appendixfor the precise statement and more details about ¢ 4.
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It is straightforward to see that the symmetries of Proposition[4.1] induce equivalent parameterisations
for FNNNSs. In particular, it follows directly from Proposition 3.4. in [25], that for activation functions
oy satisfying the conditions of Proposition and when ¢, ¢(Q) = Q, we have that:

W, =PQW,Q P, b, =PQiby = (Wi, b)i_, =0 ~0= (Wb, )
where again¢ € {1,...,L},Po=Qy =P, =Qr =1

5 Scale Equivariant Graph MetaNetworks

As previously mentioned, the metanetworks operating on weight spaces that have been proposed so
far, either do not take any symmetries into account or are invariant/equivariant to permutations alone
as dictated by Eq. (2). In the following section, we introduce an architecture invariant/equivariant to
permutations and scalings, adhering to Eq. (3). An important motivation for this is that in various
setups, these are the only function-preserving symmetries, i.e. for a fixed graph ug 9 = ug,e =
(0,0’) satisfy Eq. (3) - e.g. see [21]] for the conditions for tanh and [61} 26] for ReLU.

Main idea. Our framework is similar in spirit to most works on equivariant and invariant NNs [10].
In particular, we build equivariant GMNSs that will preserve both symmetries at vertex- and edge-level,
i.e. vertex representations will have the same symmetries with the biases and edge representations
with the weights. To see this, suppose two parameter vectors are equivalent according to Eq. (3).
Then, the hidden neurons representations - the discussion on input/output neurons is postponed until
Appendix - should respect the following (the GMN iteration ¢ is omitted to simplify notation):

h/\/(l) = q¢ (m¢ (0)) hy (me (4)), € =layer (i) € {1,...,L -1} (4)
hp(i, 5) = qe (me (D) i (mg (), 71 (7)) a2 (me—1 (7)), € = layer (i) € {2,...,L =1}, (5)

where 7y : Vy <> V), permutes the vertices of layer ¢ (denoted with Vy) according to P, and
qe : Ve — R\ {0} scales the vertex representations of layer ¢ according to Q. We will refer
to the latter as forward scaling in Eq. @) and bidirectonal scaling in Eq. (§). To approximate
operators (equivariance), we compose multiple equivariant GMN layers/iterations and in the end,
project vertex/edge representations to the original NN weight space, while to approximate functionals
(invariance), we compose a final invariant one in the end summarising the input to a scalar/vector.

To ease exposition, we will first discuss our approach w.r.t. vertex representations. Assume that
vertex representation symmetries are preserved by the initialisation of the MPNN - Eq. - and
so are edge representation symmetries for all MPNN layers. Therefore, we can only focus on the
message passing and vertex update steps - Eq. and Eq. (Upd). Additionally, let us first focus
on hidden neurons and assume only forward neighbourhoods. The following challenges arise:

Challenge 1 - Scale Invariance / Equivariance. First off, the message and the update function
MSGy,, UPDy should be equivariant to scaling - in this case to the forward scaling using the
multiplier of the central vertex gy (7). Additionally, the readout READ, apart from being permutation
invariant should also be invariant to the different scalar multipliers of each vertex . Dealing with this
requires devising functions of the following form:

gi(@X1, ..., @nXn) = ¢igi(x1,..., %), Vg; € Dy,i € {1,...,n} (6)

where D; a 1-dimensional scaling group as defined in Proposition[d.T} Common examples are those
discussed in Section eg. D;={l,-1}or D; = R*. The first case, i.e. sign symmetries, has been
discussed in recent work [43}40]. Here we generalise their architecture into arbitrary scaling groups.
In specific, Scale Equivariant networks follow the methodology of [40]], i.e. they are compositions of
multiple linear transformations multiplied elementwise with the output of Scale Invariant functions:

Scalelnv®(X) = p* (X1,...,%n), (Scale Inv. Net)
ScaleEq = fK o o f!, f¥(X) = (T¥x1,...,T%x,) ® Scalelnv¥(X),  (Scale Equiv. Net)
where pF : e, & — R 40 universal approximators (e.g. MLPs), T¥ : X, — R% linear

transforms (for each of the k invariant/equivariant layers resp - in practice, we observed experimentally
that a single layer K = 1 was sufficient), and x; are explained in detail in the following paragraph.

Central to our method is defining a way to achieve invariance. One option is canonicalisation, i.e. by
defining a function canon : X — X that maps all equivalent vectors x to a representative (obviously
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non-equivalent vectors have different representatives): Iff x ~ y € X, thenx ~ canon(x) =
canon(y). In certain cases, these are easy to define and differentiable almost everywhere, for example
X

for positive scaling: canon(x) = Wﬁ For sign symmetries, this is not as straightforward: in

1-dimension one can use ||, but for arbitrary dimensions, a more complex procedure is required, as
recently discussed in [49]48]. Since the group is small - two elements - one can use symmetrisation
instead [[79], as done by Lim et al. [41]: symm(x) = Ey:y:x MLP(y), i.e. for sign: symm(x) =

MLP(x)+MLP(—x). Therefore, we define: Scalelnv®(X) = p* (X1,...,%,), with%; = canon(x;)
or X; = symm(x;). Importantly, it is known that both cases allow for universality, see [8,29] and
[79, 162] respectively.

Challenge 2 - Rescaling: Different multipliers. Scale equivariance alone is not sufficient, since
the input vectors of the message function MSGy, are scaled by different multipliers - central vertex:
qe (1), neighbour: o1 (5), edge: qe(i)q, ', (§), while its output should be scaled differently as well -
qe(7). We refer to this problem as rescaling. Dealing with Challenge 2 requires functions of the form:

n
g(ax1,. . gnxy) :g(xlu"'xn)Hqiavqi € D;. @)
i=1

We call these functions rescale equivariant. Note, that this is an unusual symmetry in equivariant NN
design. Our approach is based on the observation that any n-other monomial containing variables
from all vectors x; is rescale-equivariant. Collecting all these monomials into a single representation
is precisely the outer product X,, = x1 ® - - - @ X,,, where X,, (j1, - - -, jn) = [ [ Xi(Ji). Therefore,
the general form of our proposed Rescale Equivariant Network is as follows:

ReScaleEq(x1, . .. x,) = ScaleEq(vec(X,,)). (ReScale Equiv. Net)

In practice, given that the size of X,, grows polynomially with n, we resort to a more computationally
friendly subcase, i.e. hadamard products, i.e. ReScaleEq(xy,...x,) = O Iix;, T'; : A, — R<.
Contrary to the original formulation, the latter is linear (lack of multiplication with an invariant layer).

Scale Equivariant Message Passing. We are now ready to define our message-passing scheme.
Starting with the message function, we require each message vector my (i) to have the same
symmetries as the central vertex ¢. Given the scaling symmetries of the neighbour and the edge, for
forward neighbourhoods, this reads: MSGy (qazx, Y, qzqgle) = ¢;MSGy (x,y,e). In this case,
we opt to eliminate ¢, by multiplication as follows:

MSGy (x,y,e) = ScaleEq ([x, ReScaleEq (y, e)]), )

where [-, -] denotes concatenation, ReScaleEq(gyy, qxqgle) = ¢,ReScaleEq(y, e). In our experi-
ments, we used only y and e, since we did not observe significant performance gains by including the
central vertex x. Now, the update function is straightforward to implement since it receives vectors
with the same symmetry, i.e. it should hold that: UPDy (¢,x, ¢;m) = ¢,UPDy (x, m) which is
straightforward to implement with a scale equivariant network, after concatenating x and m:

UPDy (x,m) = ScaleEq ([x, m]) . ©)

Finally, to summarise our graph into a single scalar/vector we require a scale and permutation-
invariant readout. The former is once more achieved using canonicalised/symmetrised versions of the
vertex representations of hidden neurons, while the latter using a DeepSets architecture as usual:

READy (X) := DeepSets (X1,...,X,), X;=canon;(x;) orX; =symm; (x;) (10)

In Appendix [A.T]} we show how to handle symmetries in the rest of the architecture components (i.e.
initialisation, positional encodings, edge updates and i/o vertices) and provide an extension of our
method to bidirectional message-passing (Appendix [A.2), which includes backward neighbourhoods.

Expressive power. Throughout this section, we discussed only scaling symmetries and not permu-
tation symmetries. However, it is straightforward to conclude that ScaleGMN is also permutation
equivariant/invariant, since it is a subcase of GMNss; if one uses universal approximators in their
message/update functions (MLP), our corresponding functions will be expressible by this architecture,
which was proved to be permutation equivariant in [44]. Although this implies that GMN can express
ScaleGMN, this is expected since P(Q symmetries are more restrictive than just P. Note that these
symmetries are always present in FFNNs, and thus it is desired to explicitly model them, to introduce
a more powerful inductive bias. Formally, on symmetry preservation (proved in Appendix [A.7.2):

6 o _ Y _ax . x_ Lx .y — =l ~
Fwdix >y = x=qy = 157 = g = Tag (@ > 0 Reverse: o = g = x = oy = x >y
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Table 1: INR classification on MNIST, F-MNIST, CIFAR-10 and Aug. CIFAR-10. We train all
methods on 3 seeds and report the mean and std. (*) denotes the baselines trained by us and we report
the rest as in the corresponding papers. Colours denote First, Second and Third.

Method MNIST F-MNIST CIFAR-10 Augmented CIFAR-10
MLP 17.55 +£0.01 19.91+047 11.38 £0.34%* 16.90 £ 0.25
Inr2Vec [47] 23.69+0.10 22.33£041 - -

DWS [54] 85.71+£0.57 67.06+0.29  34.45+0.42 41.27 £ 0.026
NFNnp [85] 78.50 £0.23* 68.19£0.28*% 33.41 £0.01* 46.60 £ 0.07
NFNpynp [85] 79.11 £0.84*% 68.94 £ 0.64* 28.64 £0.07* 44.10 £ 0.47
NG-GNN [33] 91.40 £0.60  68.00+£0.20 36.04 £0.44* 45.70 £ 0.20%*
ScaleGMN (Ours) 96.57 £0.10  80.46 £0.32  36.43 £0.41 56.62 +0.24
ScaleGMN-B (Ours)  96.59 +0.24  80.78 £ 0.16 38.82 £ 0.10 56.95 £+ 0.57

Table 2: Generalization pred.: Kendall-7 on subsets of SmallCNN Zoo w/ ReLU/Tanh activations.

Method CIFAR-10-GS SVHN-GS CIFAR-10-GS SVHN-GS CIFAR-10-GS
etho ReLU ReLU Tanh Tanh both act.
StatNN [74] 0.9140 +£0.001  0.8463 +0.004 0.9140 + 0.000 0.8440 + 0.001 | 0.915 £ 0.002
NFNnp [85] 0.9190 £ 0.010 0.8586 +0.003 0.9251 + 0.001  0.8580 £ 0.004 | 0.922 £ 0.001
NFNynp [85] 0.9270 £+ 0.001  0.8636 4+ 0.002  0.9339 £ 0.000 0.8586 £ 0.004 | 0.934 + 0.001
NG-GNN [33] 0.9010 £ 0.060 0.8549 +0.002 0.9340 + 0.001  0.8620 + 0.003 | 0.931 £ 0.002
ScaleGMN (Ours) 0.9276 4+ 0.002 0.8689 + 0.003 0.9418+ 0.005 0.8736 & 0.003 | 0.941 4 0.006
ScaleGMN-B (Ours) 0.9282 + 0.003 0.8651 4+ 0.001  0.9425 + 0.004 0.8655 + 0.004 | 0.941 £ 0.000

Proposition 5.1. ScaleGMN is permutation & scale equivariant. Additionally, ScaleGMN is permu-
tation & scale invariant when using a readout with the same symmetries.

Finally, we analysed the ability of ScaleGMN to evaluate the input FFNN and its gradients, i.e.
simulate the forward and the backward pass of an input FFNN. To see why this is a desired inductive
bias, recall that a functional/operator can often be written as a function of input-output pairs (e.g.
via an integral on the entire domain) or of the input function’s derivatives (e.g. via a differential
equation). By simulating the FFNN, one can reconstruct function evaluations and gradients, which an
additional module can later combine. Formally (proof and precise statement in Appendix [A.7.2):

Theorem 5.2. Consider an FFNN as per Eq. with activation functions respecting the conditions
of Proposition[d.1} Assume a Bidirectional-ScaleGMN with sufficiently expressive message and vertex
update functions. Then, ScaleGMN can simulate both the forward and the backward pass of the
FFNN for arbitrary inputs, when ScaleGMN'’s iterations (depth) are L and 2L respectively.

6 Experiments

Datasets. We evaluate ScaleGMN on datasets containing NNs with three popular activation functions:
sine, ReLU and tanh. The former is prevalent in INRs, which in turn are the most appropriate
testbed for GMNs. We experiment with the tasks of (1) INR classification (invariant task), i.e.
classifying functions (signals) represented as INRs and (2) INR editing (equivariant), i.e. transforming
those functions. Additionally, ReLU and tanh are common in neural classifiers/regressors. A popular
GMN benchmark for those is (3) generalisation prediction (invariant), i.e. predicting a classifier’s
test accuracy. Here, classifiers instead of FFNNs are typically CNNs (for computer vision tasks) and
to this end, we extend our method to the latter in Appendix We use existing datasets that have
been constructed by the authors of relevant methods, are publicly released and have been repeatedly
used in the literature (8 datasets in total, 4 for each task). Finally, we follow established protocols: we
perform a hyperparameter search and use the best-achieved validation metric throughout training to
select our final model. We report the test metric on the iteration where the best validation is achieved.
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Table 3: Dilating MNIST INRs. MSE between  Table 4: Ablation: Permutation equivariant mod-

the reconstructed and ground-truth image. els + scaling augmentations.
CIFAR-10-GS
Method F-MNIST
Method MSE in 102 RelLU
DWS [54] 67.06 £ 0.29 —
MLP 5.35 £ 0.00 DWS [54] + aug. 71.42 +0.45 —
DWS [54] 2.58 £0.00 NFNxp [83] 68.194+0.28  0.9190 £ 0.010
NFNyp [83] 2.55 4+ 0.00 NFNyp [83] +aug.  70.34+0.13  0.8474 £ 0.01
NFNune 83 2.65+0.01 NFNgnp [85] 68.94 £0.64 0.9270 £ 0.001
) g NFNpnp [83] +aug.  70.24 +£0.47  0.8906 + 0.01
NG-GNN-0 [53] 2.38 +0.02 NG-GNN [33] 68.04+0.20  0.9010 + 0.060
NG-GNN-64 [33] 2.06 & 0.01 NG-GNN [33] + aug. 72.01+1.4  0.8855+ 0.02
ScaleGMN (Ours) 2.56 + 0.03 ScaleGMN (Ours) 80.46 +0.32  0.9276 + 0.002
ScaleGMN-B (Ours)  1.89 + 0.00 ScaleGMN-B (Ours)  80.78 +0.16  0.9282 + 0.003

Baselines. DWS [54] is a non-local metanetwork that uses all linear permutation equivariant/invariant
layers interleaved with non-linearities. NFNgnp [85] is mathematically equivalent to DWS, while
NFNyp [85] makes stronger symmetry assumptions in favour of parameter efficiency. The two
variants are also designed to process CNNs contrary to DWS. NG-GNN [33]] converts each input NN
to a graph (similar to our work) and employs a GNN (in specific PNA [15]]). Importantly, the last three
methods transform the input parameters with random Fourier features while all methods perform
input normalisations to improve performance and facilitate training. These tricks are in general
not equivariant to scaling and were unnecessary in the ScaleGMN experiments (more details in
Appendix[A.4). On INR classification we include a naive MLP on the flattened parameter vector and
Inr2Vec [47], a task-specific non-equivariant method. For generalization prediction, we also compare
to StatNN [74]], which predicts NN accuracy based on statistical features of its weights/biases.

INR classification. We design a ScaleGMN with permutation & sign equivariant components (and
invariant readout). Additionally, we experiment with the bidirectional version denoted as ScaleGMN-
B. We use the following datasets of increasing difficulty: MNIST INR, F-MNIST INR (grayscale
images) and CIFARI0-INR, Aug. CIFARI0-INR.: INRs representing images from the MNIST [38]],
FashionMNIST [76] and CIFAR [35]] datasets resp. and an augmented version of CIFAR10-INR
containing 20 different INRs for each image, trained from different initialisations (often called
views). The reported metric is fest accuracy. Note that [85 [86] use only the augmented dataset
and hence we rerun all baselines for the original version. All input NNs correspond to functions
ug,e : R? — R, i.e. pixel coordinate to GS/RGB value. Further implementation details can be
found in Appendix [A.4.1] As shown in Table[I]} ScaleGMN consistently outperforms all baselines in
all datasets considered, with performance improvements compared to the state-of-the-art ranging
from approx. 3% (CIFAR-10) to 13% (F-MNIST). While previous methods often resort to additional
engineering strategies, such as probe features and advanced architectures [33] or extra training
samples [85]] to boost performance, in our case this was possible using vanilla ScaleGMNs. For
example, in MNIST and F-MNIST, NG-GNN achieves 94.7 & 0.3 and 74.2 + 0.4 with 64 probe
features which is apprpx. 2% and 6% below our best performance. The corresponding results for
NG-T [33]l (transformer) were 97.3£0.2 and 74.8+ 0.9, still on par or approx. 6% below ScaleGMN.
Note that all the above are orthogonal to our work and can be used to further improve performance.

Predicting CNN Generalization from weights. As in prior works. we consider datasets of image
classifiers and measure predictive performance using Kendall’s 7 [30]. We select the two datasets
used in [85], namely CIFAR-10-GS and SVHN-GS originally from Small CNN Zoo [74]. These
contain CNNs with ReLU or tanh activations, which exhibit scale and sign symmetries respectively.
To assess the performance of our method (1) on each activation function individually and (2) on a
dataset with heterogeneous activation functions we discern distinct paths for this experiment. In the
first case, we split each dataset into two subsets each containing the same activation and evaluate
all baselines. As shown in Table [2] once again ScaleGMN outperforms all the baselines in all the
examined datasets. This highlights the ability of our method to be used across different activation
functions and architectures. Performance improvements here are less prominent due to the hardness
of the task, a phenomenon also observed in the comparisons between prior works. Note that in this
case, additional symmetries arise by the softmax classifier [36], which are currently not accounted for
by none of the methods. We additionally evaluate our method on heterogeneous activation functions.
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In principle, our method does not impose limitations regarding the homogeneity of the activation
functions of the input NNs - all one needs is to have a different canonicalisation/symmetrisation
module for each activation. Experiments on CIFAR-10-GS show that ScaleGMN yields superior
performance compared to the baselines, significantly exceeding the performance of the next-best
model. Further implementation details can be found in Appendix[A.4.2]

INR editing. Here, our goal is to transform the weights of the input NN, to modify the underlying
signal to a new one. In this case, our method should be equivariant to the permutation and scaling
symmetries, such that every pair of equivalent input NNs is mapped to a pair of equivalent output
NNs. Hence, we employ a ScaleGMN similar to the above experiments but omit the invariant
readout layer. Following [33]], we evaluate our method on the MNIST dataset and train our model to
dilate the encoded MNIST digits. Further implementation details can be found in Appendix [A.4.3]
As shown in Table our bidirectional ScaleGMN-B achieves an MSE test loss (10~2) equal to
1.891, surpassing all permutation equivariant baselines. Notably, our method also outperforms the
NG-GNN [33] baseline that uses 64 probe features. Additionally, our forward variant, ScaleGMN,
performs on par with the previous permutation equivariant baselines with an MSE loss of 2.56. Note
that the performance gap between the forward and the bidirectional model is probably expected for
equivariant tasks: here we are required to compute representations for every node of the graph, yet in
the forward variant, the earlier the layer of the node, the smaller the amount of information it receives.
This observation corroborates the design choices of the baselines, which utilize either bidirectional
mechanisms (NG-GNN [33]]) or non-local operations (NFN [85]]).

Ablation study: Scaling data augmentations. We baseline our method with permutation equivariant
methods trained with scaling augmentations: For every training datapoint, at each training iteration,
we sample a diagonal scaling matrix for every hidden layer of the input NN and multiply it with the
weights/bias matrices as per Eq. (3) (omitting the permutation matrices). We sample the elements of
the matrices independently as follows: Sign symmetry: Bernoulli distribution with probability 0.5.
Positive scaling: Exponential distribution where the coefficient )\ is a hyperparameter that we tune
on the validation set. Observe here that designing augmentations in the latter case is a particularly
challenging task since we have to sample from a continuous and unbounded distribution. Our
choice of the exponential was done by consulting the norm plots where in some cases the histogram
resembles an exponential Fig. [I] Nevertheless, regardless of the distribution choice we cannot
guarantee that the augmentations will be sufficient to achieve (approximate) scaling equivariance, due
to the lack of upper bound. We evaluate on the F-MNIST dataset for the sign symmetry and on the
CIFAR-10-GS-ReLU for the positive scale. As shown in Table ] regarding the former, augmenting
the training set leads consistently to better results when compared to the original baselines. None of
these methods however achieved results on par with ScaleGMN and ScaleGMN-B. On the other hand,
we were unable to even surpass the original baselines regarding the latter task. This indicates that
designing an effective positive scaling augmentation might be a non-trivial task.

Limitations. A limitation of our work is that it is currently designed for FFNNs and CNNs and does
not cover other layers that either modify the computational graph (e.g. skip connections) or introduce
additional symmetries (e.g. softmax and normalisation layers). In both cases, in future work, we
plan to characterise scaling symmetries (certain steps were made in [25]]) and modify ScaleGMN
for general computational graphs as in [44, [88]]. Additionally, a complete characterisation of the
functions that can be expressed by our scale/rescale equivariant building blocks is an open question
(except for sign [40]). Finally, an important theoretical matter is a complete characterisation of the
expressive power of ScaleGMN, similar to all equivariant metanetworks.

7 Conclusion

In this work, we propose ScaleGMN a metanetwork framework that introduces to the field of NN
processing a stronger inductive bias: accounting for function-preserving scaling symmetries that arise
from activation functions. ScaleGMN can be applied to NNs with various activation functions by
modifying any graph metanetwork, is proven to enjoy desirable theoretical guarantees and empirically
demonstrates the significance of scaling by improving the state-of-the-art in several datasets. With
our work, we aspire to introduce a new research direction, i.e. incorporating into metanetworks
various NN symmetries beyond permutations, aiming to improve their generalisation capabilities and
broaden their applicability in various NN processing domains.
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A Appendix / supplemental material

A.1 Additional practical considerations of ScaleGMN

In the following section, we describe the additional practical considerations that were omitted from
Section [5| For the purposes of this section, we introduce the functions layer () and pos () which
return the layer of a vertex ¢ and its position within this layer respectively.

A.1.1 Initialisation

As previously discussed, all vertex/edge representations throughout the network should respect the
symmetries given by Eqs. @), (8). This is straightforward to achieve at initialisation, by using the
NN biases and weights (similarly to [33]]). It is possible to use a scale equivariant layer here as
well, e.g. a linear layer, which is what was performed in our empirical evaluation. For notation

convenience, denote the biases and weights of Eq. , with b, W, such that b(i) = biayer(iy (pOs (7)),
W(i,j) = Waer(i) (Pos (7) , pos (j)). Now we can define the initialisation:

e{1,...,L},

INITy (e ) = Do), ) = {0 ) an

1, if layer (7)

INITg (xp (i,5)) = Tpxp(i,j), xp(i,j) =W (i,j), iflayer (i) € {1,...,L}. (12

Note that the above is different from the initialisation/graph construction used in [44]]. For example,
in this work, an extra vertex is created for each bias, which is connected to its corresponding neuron
vertex with an edge initialised with the bias value. However, this strategy would complicate scaling
symmetry preservation and was thus not used in our work.

A.1.2 Positional Encodings

As discussed in Section [3] not all vertices/edges of an FFNN are permutable. In particular, vertices
corresponding to the input and output neurons are fixed, while vertices corresponding to hidden
neurons can be permuted only within the same layer. Similarly, edges originating from an input
neuron are permutable only with edges originating from the same neuron, and the same holds for
edges terminating at an output neuron, while edges of hidden layers can be only permuted within the
same layer.

To adhere to the above, we need to devise a symmetry-breaking mechanism, to ensure that the GMN
is not equivariant to undesired symmetries (e.g. permuting output neurons). This is the role of
positional encodings, which are learnable vectors (in the literature fixed vectors have been also used),
shared across all input graphs, that take part in message-passing. In particular, for vertex positional
encodings the following holds:

pv (i) = pv(j), if layer (i) = layer () # {0, L}, (13)

and for edge positional encodings:

Jj = j' layer (j) € {0, L},
pe(i,j) = pr(i’,j'), if { layer (j) = layer (j') # 0, layer (i) = layer (') # L, (14)
i =1',layer (i) € {0, L},

while otherwise, the positional encodings are free to take different values. Symmetry-breaking usually
happens at initialisation (which is then inherited by the subsequent message-passing layers) and

Eq. (Init) becomes:
by (i) = INITy (xv (i), pv (i), Bp(i) = INITe (xe (i, §) , Pe(i, ). (15)
or alternatively, it can be performed at all layers, where Eqs. and (Upd) become:

hi, (i) = UPD}, (b7 (0), mi, (i), py (1)) a7
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Challenge 3 - Incorporating positional encodings into scale equivariant layers. Although
the above formulation allows for the preservation of valid permutation symmetries, special treat-
ment is needed to preserve valid scaling symmetries as well. Since the positional encodings
are fixed across datapoints, they do not have the same scaling symmetries as vertex/edge rep-
resentations. Therefore, message-passing components do not need to be equivariant to scal-
ing of the positional encodings. In particular, the following should hold: INITy (¢x,p) =
qINITV (X7 P)’ INITg (qe7 p) = qINITE (ev P)’ MSGy (%X» qyy, quy_lev Pz; Py pe) =
¢:MSGy (x,y,€, Ps, Py, Pe) and UPDy (g%, ¢z m, p) = ¢, UPDy (x, m, p).

Therefore, Egs. (T3), (16), introduce a new challenge (apart from those discussed in Section [3)):
being scale equivariant w.r.t. one argument and not equivariant. w.r.t. another one. Interestingly,
our ScaleNet formalism can straightforwardly deal with this case, by defining the canonicalisation
function for the non-symmetric argument to be the identity (since in the absence of symmetry
equivalent points must be equal). To discern this from the classical scale invariant/equivariant layers,
we will refer to it augmented scale invariant/equivariant layer and it is formalised as follows:

AugScalelnv® (X, p) = p* (X1,...,%,,p), X; = canon(x;) or X; = symm(x;) (18)
AugScaleEq = f¥ o o f', f¥(X) = (I'¥x,...,T¥x,) @ AugScalelnv*(X,p).  (19)

Concluding, we obtain the new learnable functions, by simply replacing scale equivariant with
augmented scale equivariant layers:

INITy (x,p) = AugScaleEq (x,p), INITg (e,p) = AugScaleEq (e, p), (20)
MSGy (x,y,€, Pz, Py, Pe) = AugScaleEq ([x, ReScaleEq (y, e)], [Pz, Py, Pe]), (2D
UPDy (x,m, p,.) = AugScaleEq ([x,m],p,). (22)

A.1.3 Edge Updates.

To respect the symmetries given by Eq. (5)), for edges (i, j), with layer (i) € {2,...,L — 1}
the edge update function should have the following property: UPD E(qwx,qyy,qwqy_ le) =

Qxqy LUPDE(x,y,e). Observe, that this is once again reminiscent of the rescaling problems dis-
cussed in SectionE], but with the difference that g, appears both as a multiplier and as a divisor. The
most straightforward solution would be to elementwise invert y and then proceed as in the message
function of Eq. (§), i.e. :

UPDpg (x,y,€e) = ScaleEq ([e, ReScaleEq (x,1 @ y)]) . (23)

In our experiments though, we opt for a simpler solution due to the numerical instabilities (high-
magnitude gradients) produced by the element-wise division and choose an invariant layer for the
arguments x,y. Formally:

UPDpg (x,y,e) = AugScaleEq (e, Scalelnv (x,y)) . (24)
When we include positional encodings into the edge updates, Eq. (Upd) (RHS) becomes:
B0, ) = UPDY: (B4 (0), g (5), Wi (5,), Py (D), Py (7), P, ) ). (25)
and Eq. (24) is further modified into:
UPDg (X7 Y,€, Pz, Py, pe) = AugScaIeEq (e, [Scalelnv (xa Y) y Pz, Py, pe]) . (26)

A.1.4 Updates on input and output vertices

So far, we have only discussed how vertex/edge representations corresponding to hidden neurons
are updated, since Egs. @), (3) do not hold for input and output neurons. In particular, there exist
no valid scaling or permutation symmetries for these neurons, while for the corresponding edges,
permutations and scalings are unilateral - see Eq. (3)). Therefore, we require the following:

hi, (i) = hy (1), ¢ =Ilayer(i) € {0,L}, (No equivariance) (27)
b (i, §) = g (me (D) b (me (i) 5), €= layer (i) = 1, (28)
hiz(4,§) = hp (i, 71 (j)) ge-1 (me-1 (§)), € =layer (i) = L. (29)
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This implies that the conditions for the learnable functions should change for i/o neurons. In
particular, the following should be non-scale-equivariant: INITy o, MSGy o'l UPDy o, INITy 1,
UPDy 1. The same should hold for MSGy, 1, but with the additional requirement of invariance to

rescaling: MSGy, 1. (X, ¢y¥, ¢, '€, Pes Py, Pe) = MSGy (X, Y, €, Pas Py, Pe)

In traditional GNNs, where only permutation symmetries are taken into account, symmetry-breaking
can be efficiently handled by positional encodings as discussed in Appendix However, this
is not the case here, since positional encodings only break permutation symmetries, but not scaling
symmetries. Instead, we resort to a simpler solution (albeit incurring an increased number of
parameters): we use different initialisation, message and update functions for input/output
neurons. INITy o, MSGyg, UPDy o, INITy, 1, UPDy ;, are general function approximators (MLPs),
while MSGy, (X, Y, €, Pz, Py, Pe) = MLP (x, ReScaleEq (y, €) , Py, Py, Pe)-

As for the i/o edge representations, the following should hold at initialisation:

INITz 1(gz€,p) = ¢.INITg (e, p),INIT; (g, 'e,p) = ¢, 'INITg (e,p), and for
the edge updates: UPDl?fl(qgcxyy7Qaceapzapyape) = QJ;UPDEI(Xv}’vea pacapyape),
UPDE.L(XaquaQ;leavapyvpe) = qglePDE,L(xay7e7p$7py7p€)' Therefore’ edge ini-

tialisation should be equivariant to the edge scale and therefore can remain as is - Eq. (20). The
same holds for the edge updates - Eq. (26)), which allows us to retain the same architecture in our
experiments, although the interested reader may observe that one can use more powerful architectures
since there is no need for rescaling here.

A.1.5 Readout
Regarding the readout, we devise a permutation and scale invariant aggregator as follows:

READy (X) = MLP ([DeepSets (X1, ... ,X,) , X0, X1]) ,X; = canon(x;) or X; = symm(x;).
(30)

This means that we aggregate all scale canonicalised/symmetrised representations of hidden neurons
with a permutation invariant aggregator (Deepsets [81]]), concatenate the result with all i/o neuron
representations (that cannot be permuted or scaled) and transform the result with a universal function
approximator. A simpler alternative is to only concatenate the output neuron representations (or
also the input for the bidirectional version) since after sufficient message-passing iterations they are
expected to have collected information from the entire graph. We include and evaluate both choices
in our hyperparameter grid.

A.2 Bidirectional ScaleGMN

Undoubtedly, using only forward neighbourhoods, although convenient and aligned with the com-
putational graph of the input datapoint, may restrict the expressive power of ScaleGMN. This is
self-explanatory since vertices receive information only from parts of the graph that belong to earlier
layers. This might be detrimental, especially for equivariant tasks (operators). Additionally, it is
contrary to the first works on weight space networks [54}[86]], where vertices/edges collect information
from the entire graph, while backward neighbourhoods are crucial for GMNs to express NP-NFN
[86] as shown in Proposition 3 in Lim et al. [44]].

However, making bidirectional message passing scale equivariant is challenging since back-
ward messages have different symmetries than forward ones. In particular, preserving the
same assumptions for the symmetries of vertex/edge representations, the input triplet to a mes-
sage function hy (7),hy(5),hg(j,7), with 5 € Np(i) and £ = layer(:) is equivalent to
qe()hy (i), ge1 () v (5), ge+1(5)hE (4, i)g, * (i) (We have omitted permutations here for simplic-
ity). Therefore, doing the same rescaling as before is inappropriate since it does not preserve the
desired scaling coefficient gp(7).

There are several options one may follow to circumvent this discrepancy. However, most involve an
elementwise division of a certain representation, which we experimentally observed to face numerical

"This is redundant in the forward ScaleGMN since input neurons do not have any forward neighbours. In the
backward case - see Appendix@ we use a layer similar to MSGy/ 1.
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instabilities. The simplest one is to add backward edges and initialise them with inverted features:

(31)

In this case, we have that INITg (¢e+1(5)q; ' (i)xE (4,1)) = qe(i)q; ) (§)INITg (xg (4, 1)), and
thus (j,¢) are initialised with the same symmetries as (4, j). Now one can proceed as before with the
message and update functions. In particular, we introduce a backward message function to discern
the two message directions (alternatively this can be done with edge positional encodings to reduce
the number of parameters):

m{pw(i) = €D MSGy gy (hi (i), bl ' (4), by (7, 4), pv (i), v (4), PE (), 1))
JENEB ()
MSGy gw(X, Y, €, Pz, Py, Pe) = AugScaleEq ([x, ReScaleEq (y, )], [Pz, Py, Pe) -
It is easy to see that:
MSGV,BW(QmXa qyy, qy_l(]mev Pz, Py, pe) = QIMSGV,BW (X, Y,€, Pz, Py, pe)~

Now to incorporate backward messages into the update function we simply concatenate the outputs
of the two message functions and apply a scale equivariant layer as usual:

i, (i) = UPDY (B (1), m gy (1), mi g (1), PV (),

UPDy (x, mpw, mpw, pz) = AugScaleEq ([x, mpw, mpw], pz) -

(32)

Once, again the desired symmetries are preserved:

UPDy (X, ¢oMgw, ¢;Mpw, Pe) = ¢ UPDy (X, mpw, mpw, Py ).

Bidirectional ScaleGMN for sign symmetries. Importantly, the above edge weight inversion of
Eq. is not necessary when dealing with sign symmetries. In particular, for any ¢ € {—1,1}
it holds that % = ¢. Therefore, one can proceed with the above formulation but initialise the edge
weights as before -Eq. (IZ). We found this crucial in our experimental evaluation since weight
inversion led to an unusual distribution of input features: since typically the weight distribution
was nearly Gaussian, the distribution of the inverses was close to reciprocal normal distribution,
a bimodal distribution with undefined mean and higher-order moments. This frequently led to
numerical instabilities as well (albeit less so compared to computing reciprocals of neuron/edge
representations), which explains why it was easier to train bidirectional models for sign symmetric
NNs compared to positive-scale symmetric ones.

A.3 Extension to CNNs

A similar methodology to Section [5] can be applied to Convolutional Neural Networks with only
a few changes. As observed by prior works on metanetworks (Zhou et al. [85], Kofinas et al.
[33]), the permutation symmetries in a CNN arise similarly to MLPs; permuting the filters (output
channels) of a hidden convolutional layer, while also permuting the input channels of each filter
in the subsequent layer does not alter the underlying function of the network. This is easy to see
since convolution is nothing else but a linear layer with weight sharing. Weight sharing constrains
the valid permutations as far as pixels/input coordinates are concerned (e.g. one cannot permute
the representations corresponding to different pixels), but allows for permutations of input/output
channels, except for the input/output layers as always.

Similar rules apply to scaling: one may scale the output channels of a hidden convolutional layer,
while also scaling the input channels of each filter in the subsequent layer as per Proposition 4.1}
Note here that, again, all weights corresponding to the same input channel can only be scaled with
the same multiplier for all pixels/input coordinates, due to weight sharing. Below, we describe our
implementation for all CNN layers, which closely follows [33]].

Convolution. Being the main building block of CNNs, convolutional layers consist of kernels and
biases. For a hidden layer i we can write the former as W; € R%*d¢-1xke and the latter as b; € R%
following the FFNN notation. Aligning with the procedure of [33]], we construct one vertex for
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each i/o channel and the input graph has the following node and edge features: xy (i) = b(i) € R,
xg(i,j) = W(i, j) € Rwmahmax respectively, where wiax, Amax are the maximum width and height
of the kernels across layers (zero-padding is used to allow for fixed-size edge representations across
all vertices in the graph). Again here, the positional encodings are responsible for the permutation
symmetry breaking mechanisms within the CNN. As with FFNNs, the CNN input and output neurons
are not permutable, while the hidden neurons are permutable only within the layer they belong. Given
that filter positions are not permutable and are associated with a single neuron, they are represented
as vectors on the edge features.

Average Pooling. Average pooling is commonly placed after the last convolutional layer (typical in
modern CNNs instead of flattening + linear layer to allow for variable-size images) and is responsible
for pooling the output feature map in a single feature vector. First off, since it is a linear operation, it
is amenable to scaling symmetries. It is easy to see this by perceiving average pooling as a Kz K
convolution with no learnable parameters (equal to %, where K the dimension of the image, and a
single output channel. Hence, no additional modifications are required, similarly to [33].

Linear layer. Commonly used as the last layer of CNNs to extract a vector representation of an
image, linear layers require a different approach within CNNs compared to the one in MLPs, as in
the former case the edge features are vectors, while in the latter scalars. Aligning with the method
proposed by [33], the simplest solution is to zero-pad the linear layers to the maximum kernel size and
consequently flatten them to meet the dimension of the rest of the edge features. By handling linear
layers this way, no additional measures are needed to ensure permutation and scale equivariance.

A.4 Implementation Details
A.4.1 INR Classification

Datasets: We evaluated our method on three INR datasets. Provided as open-source by Navon et al.
[54], the datasets MNIST and FashionMNIST contain a single INR for each image of the datasets
MNIST [38]] and FashionMNIST [76] respectively. The selection of these datasets was encouraged
by the fact that they were also selected by prior works, establishing them as a useful first benchmark
on INR metanetworks. As a third INR dataset, we use CIFAR-10, publicly available by Zhou et al.
[85]], which contains one INR per image from CIFAR10 [35]. Regarding the last dataset, the authors
also provide an augmented training dataset, consisting of 20 additional copies of each INR network,
but with different initializations. Training on such a bigger dataset allows them to achieve better
results, probably because it allows them to counteract overfitting. To demonstrate the capabilities
of our method we train ScaleGMN both on the "original" dataset as well as on the augmented one,
achieving better results in both cases. In the latter case we carefully follow the training and evaluation
procedure used in [85], i.e. we train for 20000 steps and evaluate every 3000 steps. In all the above
datasets, we use the same splits as in prior works, we train for 150 epochs and report the test accuracy
based on the validation split, following the same procedure as Navon et al. [54].

Hyperparameters: The GNN used for ScaleGMN is a traditional Message Passing Neural Network
[24], with carefully designed update and message functions that ensure sign equivariance. We opti-
mise the following hyperparameters: batch size in {64, 128, 256}, hidden dimension for node/edge
features in {64, 128,256}. We also search learning rates in {0.001, 0.0005, 0.0001}, weight decay
in {0.01,0.001}, dropout in {0,0.1,0.2} and number of GNN layers in {2, 3,4, 5}. Moreover, we
experiment with using only vertex positional encodings or also employing edge positional encodings.
We apply layer normalization within each MLP and use skip connections between each GNN layer.
The last two steps were proven valuable to stabilise training. Finally, for each MLP within the
architecture we use SiL.U activation function, one hidden layer and no activation function after the
last layer. All the experiments were conducted on NVIDIA GeForce RTX 4090.

As mentioned above, the core of all building blocks, i.e. Scale Invariant Net is designed to be
invariant to sign flips. In our experiments, we explore two means of designing sign equivariance,
either by elementwise absolute value |x| (canonicalization only in 1-dimension), or symmetrisation,
symm(x) = MLP(x) + MLP(—x). Although the former leads to reduced expressivity, in some cases
we observed better performance. A possible explanation could point to the extra training parameters
that are added because of the additional MLP.

Results: As shown in table Table [T} our method is able to push the state-of-the-art in all the datasets
considered. Notably, many additional techniques that were employed by previous works in order to
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achieve good results were not required in our method. Specifically, probe features when inserted into
the node features as in [33]] were proven to boost the performance much higher, and could potentially
enhance the performance of ScaleGMN too. In the reported results we compare with variants of [33]]
that do not use probe features and rely solely on the parameters of the input network, although our
method outperforms even the probe features variants. Moreover, [85] and [33]] also apply random
Fourier features during the initialization of the weight and bias features, which in our experiments
showcased better performance when used in a traditional MPNN framework, but were not employed
for our method. In our framework, we also do not include any normalization of the input as conducted
by previous works, where the normalization is applied either on parameter level ([85], [54]]) or on
layer level [33]], computing the mean and standard deviation. Although this step typically leads
to better performance, it could not be applied in our scale and permutation equivariant framework.
Nevertheless, even without all the above techniques, ScaleGMN achieves remarkable results. Finally,
opting for a Transformer, as in [33]], instead of a GNN layer is also an orthogonal to our work addition
that could enhance the performance of ScaleGMN.

A4.2 Predicting CNN Generalization from weights

For evaluating our method on the CNN Generalization task, we select CIFAR-10-GS and SVHN-GS
datasets from [74], following the evaluation of prior works (Zhou et al. [85]], Zhou et al. [86]], Lim
et al. [44]], Kofinas et al. [33]). The above datasets contain CNNs trained with ReLLU and Tanh
activation functions. In order to assess our method separately for each of these activation functions,
as they introduce different symmetries, we distinguish two different types of experiments. In the first
case we deviate from the path of previous evaluations and split each of these datasets into two subsets.
The first one contains CNNs trained with ReLU activation function and the second networks with
Tanh. In order to compare with previous methods, we train them on each subset and report Kendall’s
correlation 7 metric [30] as originally proposed by Zhou et al. [85].

Heterogeneous activation functions: In the second case, we evaluate ScaleGMN on the whole
CIFAR-10-GS and SVHN-GS datasets. We are able to do so, as our method does not impose any
limitations regarding the homogeneity of the activation functions of the input neural networks. The
sole necessary modification lies in the construction of the invariant layer. Specifically, following
the notation of Eq. (Scale Equiv. Net)), each equivariant layer f* is now equipped with two invariant
nets, Scalelnv”,,,, and Scalelnv}, ., to be applied on the datapoints with ReLU and Tanh activation

relu
functions respectively. The rest of the architecture remains the same.

Hyperparameters: For the ReLU datasets we implement scale equivariant update and message
functions, while for the Tanh sign equivariant. In all of our experiments we use MSE training loss. Re-
garding the hyperparameters we search: batch size in {32, 64, 128}, hidden dimension for node/edge
features in {64, 128,256}. We also search learning rates in {0.001, 0.0005, 0.0001}, weight decay
in {0.01,0.001}, dropout in {0,0.1,0.2} and number of GNN layers in {2,3,4,5}. Again, we
experiment with using only node positional encodings or also employing edge positional encodings
and apply layer normalization within each MLP. For the Tanh datasets, we also experiment with the
applying canonicalization or symmetrization of the sign symmetry. Finally, for the experiments with
heterogeneous activation functions, we apply the same hyperparameter search as above.

A.4.3 INR editing

To evaluate the performance of ScaleGMN on equivariant tasks we opted for the task of INR editing.
Aligning with the setup of [33]], we utilize the MNIST INR dataset provided by Navon et al. [54]]
and evaluate our method on dilating the encoded MNIST digits. Specifically, for each image 7 of
the dataset, where ¢ € [N], we compute the ground truth dilated image using the OpenCV image
processing library and denote it as f;, where f; : R? — R. Let 8; denote the INR parameters of
the i-th image and fsren the encoded function. Then, fsiren(z,y;0;) is the output of the INR
at the (x, y) coordinates, when parameterized by 6;. The updated INR weights are computed as:
0] = 0, + -y - ScaleGMN(8; ), where ~y a learned scalar initialized to 0.01. Finally, we minimize the
mean squared error on the function space, that is:

1 N d
L= 30Dl fwen(e, 500 — file,p)l3 (33)

=1 z,y
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Simply put, we compare the reconstructed new INR with the dilated ground truth image. Again,
we do not apply any normalizations nor feed the model samples of the encoded input image (probe
features).

Hyperparameters: The GNN used for ScaleGMN is a traditional Message Passing Neural Network
[24], with carefully designed update and message functions that ensure sign equivariance. In contrast
to the above experiments we do not add a final readout layer, as we do not compute any final
graph embedding. We optimise the following hyperparameters: batch size in {64, 128, 256}, hidden
dimension for node/edge features in 64, 128, 256 and number of GNN layers in {8,9,10,11}. We
also search learning rates in {0.001, 0.0005, 0.0001}, weight decay in {0.01,0.001} and dropout in
{0,0.1,0.2}. Moreover, we experiment with using only vertex positional encodings or also employing
edge positional encodings. We apply layer normalization within each MLP and use skip connections
between each GNN layer. The last two steps were proven valuable to stabilise training. Finally, for
each MLP within the architecture we use SiLU activation function, one hidden layer and no activation
function after the last layer. The learned scalar v, also used in previous work Zhou et al. [85]], was
always initialized at the same value 0.001 and consistently led to better results. All the experiments
were conducted on NVIDIA GeForce RTX 4090.

Results: As shown in Table (3} the bidirectional variant achieves better results than all the previous
works on metanetworks, without incorporating any of the additional techniques described above.
Notably, ScaleGMN-B surpasses the performance of the graph-based permutation equivariant baseline
NG-GNN equipped with 64 probe features [33]. Interestingly, our method demonstrated much better
results as we added more GNN layers. This experimental observation possibly corroborates with the
findings of Theorem[5.2] Regarding our forward variant, we can see that although it is able to perform
on par with the previous baselines, it struggles to match the results achieved by the bidirectional
variant. This behaviour, observed exclusively in this task, is theoretically anticipated for equivariant
tasks. Specifically, in the forward case, neurons of layer ¢ only receive information from layers £ < ¢,
which hinders the computation of meaningful embeddings for nodes of the first layers. Taking into
account that the INR models are rather shallow (only 2 hidden layers of 32 neurons each), then a big
proportion of the whole set of nodes is being updated with less meaningfull information.

A.4.4 Extra symmetries of the sine activation function

Regarding the sine activation function, one can easily show the presence of an additional symmetry
due to the periodicity of harmonic functions. To see this, recall from Eq. (I} the formula for a
feedforward L-layer SIREN:

Xo =X, x¢(i)=sin (wOWg(i, Dxe_1 + bg(i)).

We will prove that the following guarantees function preservation:

W, = QcWe, by = Qeby + Opm = (Wi, bi)iy ~ (W, b)iy, (34)

with Q defined as diagonal sign matrices, O, = 2M, + inv-sign(Qg), where M, =
>

diag(my(1),...mye(de)), me(i) € Z and we defined inv-sign(q) = {(1)’ Z ; 8 for compactness

(we have omitted permutation matrices here for brevity). Observe here that the matrix transformations
are “‘single-sided”, contrary to Eq. . We show by induction that, when Eq. (34) holds, then x), = x.

Base case: x(, = xq by defintion. Induction step: Assume x, , = X,—_1. In order to have
X) = Xy, Vx € X, it suffices that Imy(i) € Z, qo(i) € {—1,1}:
woW (i, :)xe—1 + b} (1) = (woW (4, :)x¢—1 + by (7)) qe(7) + (ng + inv—sign(qg(i)))ﬂ
EW(i,:) = qe(i)Wy(i,:), by (1) = qe(i)by (i) + (2me(i) + inv-sign(ge(i))) .
This can be straightforwardly extended to include permutations.

To account for those symmetries, in this paper, we opted for a simple solution, based on the observation
that they cannot exist if the biases are bounded. In particular, if bj (i), b(i) € (—n/2,7/2], then m
must be 0 and q must be 1 in all cases: For qo(i) = 1, since 0 < |by(i) — by(4)| < 7, it must be that
0<]2me(i)] <1< 0<|me(i)] <1/2=m =0.Forq(i) = —1,since —m < by(i)+by(i) <,
it must be that —1 < 2my(i) +1 < 1 & —1 < my(i) < 0 = my(i) = 0. Further, since the
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Algorithm 1: Bias shift (elimination of symmetries due to periodicity)

1: Input: b: bias by(i), w: weight row W (i, :)

if b < 0 then
by < —b;wy < —w; qp « —1// sin(wow] x¢_1 +b1) = —sin(wow ' x¢_1 + b)
else

by bywi +—w;qq < 1
end if// Now b; > 0.
if b, > 27 then
bg < b1 mod 27T;W2 — Wi, q2 < 1
// by =21k + by = sin(wowy X1 + by) = sin(wow; x¢_1 + by)
9: else
10: bg(—bl;WQ(—Wl;QQ(—l
11: end if// Now 0 < by < 27.
12: if 1 < by < 27 then
13: b3+ by —m, W3 Wo;q3 < —1// sin(wOW;—Xg,l + b3) = —sin(wowy X¢_1 + b2)
14: else
15: b3 < boy; w3 +— W2,q3 < 1
16: end if// Now 0 < b3 < 7.
17: if 0 < b3 < 7/2 then
18: b4(*b3;W4 — W3, Q4 < 1
19:  Return: (by, wy,q4)
20: else
210 by by —m Wy & W3 qq < —1// sin(wow] xp_1 + by) = —sin(wow3 X,_1 + b3)
22:  Return: (by, w4, qs)
23: end if// Now —7/2 <by <m/2.

24: Output: New bias by (i) < [ ¢; * by and new weight row W (i, :) < [] ¢ * ws.
// sin([] iwowd xe—1+]1qibs) = [] qiqa sin(wow4 xp_1+b3) = - - - = sin(wow ' x,_1+b)

e A S ol

equality holds only when both biases are equal to 7/2, then the case ¢;(i) = —1, m = 0 reduces to
qe(i) =1,m=0.

Overall, by constraining the biases in the (—7 /2, /2] interval, these symmetries are eliminated.
In all datasets considered, this constraint was already satisfied. For completeness, we provide
Algorithm [T] that illustrates a method to shift biases in the desired interval.

A.5 Additional ablation studies

A.5.1 Distribution of Scaling coefficients

Empirically, accounting for a given symmetry might not prove fruitful if the given dataset is by
construction canonicalised, e.g. if all parameters were already positive or negative in the presence
of sign symmetries. To ensure the occurrence of the studied symmetries within the used datasets,
we explore their statistics. Regarding the positive-scaling symmetry, the distribution of norms of
weights and biases within each network layer in the CIFAR-10-GS-ReLU dataset is shown in Fig.
Concerning sign symmetries, we similarly plot the distribution of the sign values for the MNIST-INR
dataset in Fig. |2| and the CIFAR-10-GS-tanh dataset in Fig. [3] Observe that in the former case,
the distribution has relatively high variance, showcasing that the weights/biases are not by training
scale-normalised. Even more prominently, in the latter case, the probability of each sign value is
close to 1/2 which corroborates our claims on the need for sign equivariance/invariance.

A.6 Additional Considerations

In the following section, we explore key questions raised by the reviewers during the evaluation
process. These questions touch upon interesting aspects of our methodology that merit in-depth
exploration.

Complexity and performance (runtime) degradation between ScaleGMN and ScaleGMN-B
In the bidirectional case, we add backward edges to our graph and introduce a backward message
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Figure 1: Norm distribution on the weights and biases in the CIFAR-10-GS-ReLU dataset.
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Figure 3: Sign distribution of the weights and biases in the CIFAR-10-GS-tanh dataset.

function to discern the two message directions. Subsequently, we concatenate the outputs of the
two message functions and apply the UPD function. Consequently, the additional complexity of
ScaleGMN-B is introduced solely by the extra message function, with a complexity of O(E). Given
that ScaleGMN has the complexity of a standard GNN model O(V + E), the final complexity of
ScaleGMN-B is O(V + 2F).

Trainable parameters: GMN vs ScaleGMN(-B)? Going from a GMN model to ScaleGMN requires
adapting the MSG and UPD functions to be scale equivariant, leading to more learnable parameters, as

opposed to using plain MLPs. Another design choice of ScaleGMN that introduces more parameters
is using different MLPs for the I/O nodes (A.1.4).

Are there any limitations on the choice of activations of the ScaleGMN network? Importantly,
our method does not impose any limitations on the choice of the activation functions. We are able
to select any activation function, because these are only applied within the MLPs of the invariant
modules. As discussed in Section[5] the MLPs (equipped with non-linearities) are only applied after
the canonicalization/symmetrization function. In case one chose to place activations in a different
computational part of ScaleGMN, this would indeed limit their options so as not to compromise scale
equivariance. However, this is not the case in our method.

Canon/symm mappings for all activation functions. In general, we cannot guarantee that canon-
icalization/symmetrization mappings are easy to construct for any activation function, since it is
currently unknown if we can provide a general characterisation of the possible symmetries that may
arise. Our results extend to all positively homogeneous activations, o(Azx) = Ao (x), A > 0, and all
odd ones, o(—z) = —o(x). We refer the reviewer to Table 1 of Godfrey et al. [25]], where we can see
that LeakyReL U also falls in the first category. Regarding polynomial activations, which demonstrate
non-zero scaling symmetries, one option would be: (1) norm division to canonicalise scale, and (2)
sign symm/canon as discussed in this paper. The above, cover a fairly broad spectrum of common
activation functions.
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A.7 Deferred Proofs

A.7.1 Characterisation of symmetries

First we restate Proposition[4.1]and provided the detailed conditions for the activation function o.
Proposition A.1 (Propositiond.T|restated). Consider an activation function o : R — R.

* (Lemma 3.1. [23)].) If the matrix o (1) is invertible, then, forany d € {1,2, ...}, there exists
a (non-empty) group of matrices, called the intertwiner group of o, defined as follows:

I, ={A € R¥? :invertible | 3 B € R invertible, such that: (Ax) = Bo(x)},

and a group homomorphism ¢, q : Iq — GLq(R), such that B = ¢, 4(A) =
a(A)o(Iy) L

e (Theorem E.I14. [25|].) Additionally, if o is non-constant, non-linear and differentiable
on a dense open set with finite complement, then every A € I, q is of the form PQ,

where P: permutation matrix and Q = diag(ql, . qd) diagonal matrix, with ¢ 4(A) =
Pdiag($s1(q1), - - - ¢0,1(qa))

Note that I, is the identity matrix GL4(R) is the general linear group. The above two state-
ments are proven in [25]. The exact form of ¢, 4(A) is not precisely given, but it is easy
to derive: ¢, 4 is a group homomorphism and therefore ¢, 4(PQ) = ¢5.4(P)¢s4(Q) =
Pdialg(gi>(,,1(ql)7 . ..¢071(qd)), where we also used Lemma E.10. from [25] which states that
¢0,q4(P) = P for permutation matrices.

Proposition A.2 (restated). Hyperbolic tangent activation function o(x) = tanh(z) and SIREN
activation function, i.e. o(x) = sin(wz), satisfy the conditions of Proposition when (for the
latter) w # km,k € Z. Additionally, 1, 4 contains signed permutation matrices of the form PQ,

with Q = diag(q1, ..., q4), ¢ = £1 and ¢, 4(PQ) = PQ.

Proof. Example 1: o(z) = sin(wz), with w > 0 constant:

This is the most common activation function for INRs [70]]. We can easily find the conditions under
which o (1) is invertible invoking Lemma E.7. from Godfrey et al. [23]]. In particular, the latter states
thatif o(1) # 0(0), o(1) # —(d — 1)o(0), then o(1,) is invertible.

In our case, 0(0) = sin(w0) = 0,0(1) = sin(w). Therefore, it should hold that w # km, k € Z,
otherwise o (I;) is an all-zeros matrix. Additionally, o is non-constant, non-linear and differentiable

everywhere. Thus, as dictated by Proposition 4.1 we can characterise the intertwiner group, by
identifying the function ¢, 1(a). In particular, b = ¢, 1(a) if the following holds:

sin(waz) = bsin(wz) = sin?(wazx) = b? sin®(wr) = 1 — cos*(wax) = b*sin?(wz)
wa cos(wazx) = bw cos(wz) = a® cos? (wax) = b? cos?(wx),

where in the second line we took the derivative of each side since the equation holds for all x € R
and divided by w # 0. Now summing up the two equations we obtain:

2-1) =0 = cos’(waz)(a®* —1) =t —1=a®> —1=b"—1=0.

1+ cos?(waz) (a

The above is true because if a2 # 1, then one would conclude that cos2(wax) = constant. Thus,
a = +1 and b = +1. Additionally a cannot be different than b, since in that case we would have e.g.
sin(wz) = —sin(wz) = sin(wz) = 0. Therefore:

do1(a) =a, a={-1,1} and ¢, 4(PQ) =PQ, PQ : signed permutation matrices. (35)

Example 2: o(z) = tanh(z):

We can easily verify that o(I;) is invertible invoking the same Lemma E.7. from Godfrey et al.
[25] as before. We have, o(0) = tanh(0) = 0,0(1) = tanh(1) = Z;H # 0. Additionally, o is
non-constant, non-linear and differentiable everywhere. Thus, again as dictated by Proposition[d.T} we
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will characterise the intertwiner group, by identifying the function ¢, 1(a). In particular, b = ¢ 1(a)
if the following holds:

tanh(az) = btanh(z) = tanh?(azx) = b* tanh?(x)
a(1 — tanh*(az)) = b(1 — tanh®(x),

where in the second line we took the derivative of each side since the equation holds for all z € R.
Now summing up the two equations we obtain:

a+tanh2(a:17)(lfa) :b+tanh2(x)(b276) étanhg(x)(l—abequ) =b—a
=b=aandb’ —b+a—-1=0=b=aandb’=1=b=aandb==£1.

The above is true because if b2 — b+ a — 1 # 0, then one would conclude that tanh?(az) = constant.
Therefore:

bo1(a) =a, a={-1,1} and ¢, 4(PQ) =PQ, PQ: signed permutation matrices. (36)

O

A.7.2 Theoretical analysis of ScaleGMN

Proposition A.3 (Proposition [5.1|restated). ScaleGMN is permutation/scale equivariant or permuta-
tion/scale invariant when using a readout with the same symmetries.

Proof. We will prove this by induction. In particular, consider two equivalent parameterisations ', 6
as in Eq. (3). This implies that vertex/edge features will have the same symmetries, i.e. starting with
the hidden neurons:

X (i) = qo (0 (D)) xv (w0 (i), € =layer (i) € {1,..., L — 1}
xg(1,5) = qo (me (1)) xp (70 (8) s mo—1 (§)) @, (me—1 (§)), € =layer (i) € {2,...,L — 1},

We will show that these symmetries are propagated to representations for every ¢ > 0, i.e. that Eq. @)
and Eq. (3). Let us start with the base ¢ = 0.

B (i) = INITy (x{, (3) , pv (7)) = INITy (g (e (1)) xv (2 (3)) , By (7))
= e (e (D)) INITy (kv (w2 (3)) s DV (7)) = a0 (me () B (e (7)),
(i) = INIT (X (i, 1) , P (i, 7))
= INITz (e (me (i) X (e (3), mem1 (7)) 052 (me1 (7)) PG )
) @ity (re-1 () INITs (% (e (3), o1 (7)) s P (i)
= e (7 (0)) 42y (o1 (7)) B (e (3) o1 (7)) -
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This is due to the properties of the initialisation functions - see Eq. (20). Now we proceed with the
induction step. Suppose Eq. {@) and Eq. (B hold for ¢ — 1. We will show this implies they hold for ¢:

mi (i) =@ MGy (b i) by )b ()

=@ .. MGl (ar (me (D) by (w2 () e (mem () B (e ()
e (me () hig™ (e (8), w1 () 4y (-1 () )

=@ @ m@)MSGy (b (e (i) By (e (7)) B (e (0) mema (5)) )
=qe<m<z'>>eBew MSGY (b4 (me (1)) b () b (me ), 9) )
= a0 (e (i) mi (e (1)

B! (6) = UPDY, (/™" (i), m{ (i) = UPD} (g0 (e (8)) By (me (), e (e (3)) s (e ()
= g (m (6)) UPD{, (b (e (i), my (e (3))) = g (me (6)) B ()

W (i, ) = UPDY, (™ (), by~ (7). by~ (0..)
= UPDY, (qe (m¢ (i ))h@ (e (1)), qe—1 (me—1 (§)) b (o1 ()

e (mo () Bl (me () w1 (7)) 077 (et ()

= e (me (1)) iy (mems (7)) UPDY (05 (e (9)), ™ (e (), W™ (e (3) e () )
= qe (e () ¢y (e (4)) Wi (e (i), o1 () -

Therefore we have shown the desideratum for hidden neurons, where again we used the properties of
the message and update functions (we omitted positional encodings here for brevity). Now for the
input neurons, we have:

xy (i) = xy (i), ¢=layer(i)=1
xg(1,7) = qe (me (4)) xg (7 (i) , ), € = layer (i) = 1,
Further, we perform the induction again for Eq. (Z7) and Eq. (28) hold. Base case ¢ = 0.

h(3) = INITy.o (i, (3) Py (1)) = INITv.o (v (0), Py (1))

= INITyo (xv- (), pr()) = b (i)

E
(

Induction step:
m' (i) = 0 = mi, (i).
bt (3) = UPD{, (! (i), myf (7)) = UPD}, (b (3), mi, (1)) = b, (i),
since input vertices do not have any incoming edge. Finally, for the output neurons, we have:
xy (1) = xy (i), £ =layer(i)=1L
xp(i,5) = q;y (o1 (7)) % (i, 701 (§)) , € =layer (i) = L,
Induction for Eq. (27) and Eq. (29). Base case t = 0.

B (i) = INITy., (i (i) . Py (i) = INITy. (xv.(0), Py (7))
= INITy. ;. (xv (1), pr (1)) = b, (3,

h2(i) = INITp 1, (X5 (i, 5) , P
:INITEL(q (me-1 (7)) x5 (i, 71 (7)) , PE(, 1))
= g (o1 () INITp 1 (x (i e (7)) P, 9))

= ¢ (-1 () g (i, 71 (7)) -

106828 https://doi.org/10.52202/079017-3391



And the induction step:
mi(0) =@ MG (g 0) by ) ()
=@, MSGL (0 (@) e (ret ) B (-1 (),
B (i e () 6 (mea (7)) )
=@, MSGh (b (i), by (et () b (G ()
7@]6\“\ | MSGY, (ht (i), hi ! () bl G, ]))
= mv( )-
hy/ (i) = UPD{, (hy ™" (i), my{ (i) = UPDY, (h{ (i), mi, (i) = hi, (i)
hif (i, j) = UPD}, (™ (i), by (5), bt (4, 5))
= UPDY (hi 1 (3), go—1 (me—1 () i (e (5)),
Bl (i (7)) 4 (mee (7))
= g (me—1 (7)) UPDY (B (6), h (memy (), b (6, e (7))
(J

) b (i, 71 (7)) -

Again we used the properties of the message and update functions we defined in Appendix[A.T.4]
And with that, we conclude the proof. O

= Qg__ll (7T€ 1

Theorem A.4 (restated). Consider a FFNN as per Eq. (1) with activation functions respecting the
conditions of Proposition Assume a Bidirectional-ScaleGMN with vertex update functions that
can express the activation functions o, and their derivatives o). Further, assume that ScaleGMN
has access to the inputs xq and the gradients of an (optional) loss function L w.r.t. to the output
Vx, L, via its positional encodings. Then, ScaleGMN can simulate both a forward and a backward
pass of the FFNN, by storing pre-activations, post-activations and their gradients at the vertex
representations. In particular, to compute the forward pass at the FFNN layer ¢, t > £ ScaleGMN
layers are required, while for the corresponding backward, the requirement is t > 2L — /.

Proof. Consider a loss function £ : R%u« x R« — R, which is computed on the output of the FFNN
L(xr,"). The second argument is optional and is used when we have labelled data - we will omit it
in our derivations for brevity. Our proof strategy is based on two observations:

First, the pre-activations of each layer (denoted here as z;, = Wyxy_; + by) have the same
symmetries as the biases. This is straightforward to see by induction:

26 = xg = 2o, X6 = X (base case 1)

le = A1W1X0 + A1b1 = A1Z1, X/l =01 (A1Z1) = ¢01 (Al)Xl (base case 2)

z) = AWids,  (A71)xi_y + Ay = AW s, , (A7) o, (Ar1)xe—1 + Agby
=Ayzy, X,= bo, (Ar)xy (induction step)

Second, the gradients of £ w.r.t. the pre-activations of each layer (denoted here as V,, L(xr) =

T C . . .
(63‘%) \ L(x1,), where the dependence of x, on z, is implied - sometimes we will omit the

argument x, for brevity ) have the inverted + transpose symmetries of the biases. This is due to
the invariance of the output to the symmetries considered:

xr, (zy) = x1 (2¢) <= L (xr (2;)) = L (x (z0))
= Vg, L(x1(2))) = Va, L (X1 (20))

(9) 94, (51 (21)) = Vi (s (a)

= AV, L(xp (2) = Vi, £ (x1 (20) <= Vi £ = (A]) 'V, L,
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and similarly Vy, £ = (¢o, (Ag)T)flvxeﬁ.
Now recall that in the cases we consider in this work, ¢,,(A) = A and A = PQ. Therefore, given
that (PT)"! =Pand (Q")~! = Q', we have:

=PQuzi, X, =PiQuxi, VyuL=PQ;'V, L, VuLl=PQ'VyL (37

The latter is what motivates us to enforce vertex representations to have the same symmetries
with the biases: Assuming sufficient expressive power of ScaleGMN, we can anticipate that
vertex representations will be able to reconstruct (1) the pre- or post-activations and (2) the
elementwise-inverse of the pre- or post-activation gradients.

Now recall the formulas that we want to recover:

> Wi, )xe1() +be(i) = > Weli, j)or-1(ze-1(5)) + be(i)
JENF(4) JENF (i)

x(1) = o¢ (2¢ (i) = 00 Z W(i, 7)xe-1(5) + be(i)

JENF (i)
0] _ . .
VoL = (( ;Zl)TVzHl/j)(z) = oy (ze(7)) Z Wi(5,1)Vy, ()L
JENB(1)
0z T
vxz(i)[’: (( 8::;1) Vi ) Z Wo(j,1) Zg+1( )»C

JENB(3)

Now let us proceed to the proof. We will show that there exists a parameterization of ScaleGMN, such
that after ¢ = ¢ layers of message-passing, all vertices ¢ with layer (¢) < £ will have stored in a part of
their representation the pre-/post-activations for one or more inputs to the datapoint NN. Additionally,
we will show that after t = 2L — ¢ layers of message-passing, all vertices ¢ with layer (i) > ¢ will
have stored in a part of their representation the pre-/post-activation gradients for one or more inputs to
the datapoint NN. Therefore, L layers of (forward) message-passing are needed to compute the output
of the datapoint NN, and 2L layers of (bidirectional) message passing to calculate the gradients of
the output/loss w.r.t. the input.

For reasons that will become clearer as we proceed with the proof, we construct the below pa-
rameterization of ScaleGMN. First off, recall the input vertex and edge representations are given

by:
<o (5) = 1,layer (i) = 0,
v (@) {bldyem( os (1)), layer (i) € [L],

XE(iaj) = Wlayer(i)(pos (’L) , POS (])),Z >j XE(j7 ) =1 ®Wlayer(j)(pos( ) pos( ))72 >j

Then, we use the vertex positional encodings to store the information of the input values and the
gradients w.r.t the outputs:

(20 (pos (i) , xo (pos (i))] , layer (i) = 0
pV(l) = [Oa 0]7 layer (l) € [L - 1]
[(Var osin£) ™ (Vaep pos(iny £1) s layer (i) = L
Throughout the network, the vertex representations will be 5-dimensional: we will use one to relay
its neuron’s bias across ScaleGMN'’s layers, two for the pre-and post-activations and two for their
respective gradients. One can repeat the process for m inputs, in which case the dimension will be

m + 1. The edge representations will be I-dimensional and will be simply used to relay the NN'’s
weights throughout the network.

Now, let us define the vertex initialisation functions.
INITV,() (X7 pz) = MLP (X7 p) = [X[l]v pz[l} [2] 0 0] 3
INITy, 1, (X, pz) = MLP (x, p;) = [x[1], 0,0, pz[1], p=[2]]
INITy (x,p) = AugScaleEq (x, p) = [x[1],0,0,0,0].
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Regarding the first two functions, it is obvious that can be expressed by an MLP. Regarding
the third one, it can be expressed by AugScaleEq as follows: AugScaleEq(x,p) = T.x ®
AugScalelnv(x,p) = [1,0,0,0,0]"x[1] ® [1,1,1,1,1]7, where the the constant vector can be
expressed by AugScalelnv since it is invariant to the first argument. Further, for all edge initialisation
and update functions (forward and backward):

INITz . (e,p.) =e, UPD. (x,y,e)=e

which can both be expressed by AugScaleEq using the identity as linear transform and an AugScalelnv
with constant output.

We will not use positional encodings in the message and update functions, therefore we use their
definitions of Eq. (8), Eq. (9). In particular, the forward/backward message functions:

MSGY{, pw (X,y,e) = ScaleEq ([x, ReScaleEq (y, e)]) = y[3] - e[1]
MSGY pw (x, Y, e) = gm(y[4] - e[1]),

where ¢(-) = ScaleEq (+) an arbitrarily expressive scale equivariant function. In the first case, this
can be expressed as follows: zero linear transform on x (since it’s unnecessary), identity transform
on the output of ReScaleEq and a Scalelnv with constant output (ones). Then what remains is
ReScaleEq (y,e) =T,y ® T'.e =[0,0,1,0,0] "y - e[1] = y[3] - e[1].

Finally, the vertex update functions:

UPDQ{”(X, mpgw, mb) MLP(X mprgw, Mpw

)
= [x[1],x[2],x[3], (05(x[2]) " - g (mpw]1]), gv (mewl[1])]
UPD{, ; (x, mpw, mpy) = MLP(x, mgw, mgw)
= [x[1], x[1] + mpw(1], o (x[1] + mpw[1]) , x[4], x[5]]
UPD), (x, mpw, mpy) = ScaleEq([x, mpw, mpw])
= [x[1], x[1] + mew[1], o (x[1] + mew[1]) ,
(o' (x[2) ™" - gu (mpw(1]), gu (mpw[1])],

where gy (-) = ScaleEq(+) an arbitrarily expressive scale equivariant function. The first two can
obviously be expressed by an MLP (note also that usually oy, o, are the identity). Regarding the
third, first, we assumed a common activation function ¢ across hidden layers. In case the activation
is not shared, a different update function should be used per layer. This is because, as we will see
below, the activation and its derivative need to be learned for ScaleGMN to simulate the forward
and the backward passes. Now, let’s see how its element can be expressed by ScaleEq. Recall that
ScaleEq(a) = T'a ® Scalelnv(a). Here, I' € R®*7 (7 inputs, 5 outputs). The first element (which
will be the bias), the second (pre-activation) can be expressed by a Scalelnv with constant output
(ones) and I'(1) an all-zero vector except for the /st or the Ist and 6th coordinates respectively.

The third (post-activation), fourth (pre-activation gradient) and the fifth (post-activation gradient)
elements are not straightforward to simulate with elementary operations. However, one can observe
that all are scale equivariant. In particular, the third: o(qz + qy) = go(z + y) (by assumption about
the symmetries of the activation function). Additionally, the fourth (assuming a scale equivariant gg):

% = %;)y) - this is because the derivative of a scale equivariant activation function is scale

invariant The fifth is by definition scale equivariant. Therefore, if ScaleEq is sufficiently expressive,
so as to contain all scale equivariant functions, then it can express the third to fifth elements.

It remains to establish a few last statements that will be necessary in our induction. First, the edge
representations are constant throughout ScaleGMN and equal to the weights of the input NN:

hf,(i,5) = INIT}, , (x5 (i,5) , PE(i,4)) = XE (i, §) = Wiayer() (pos (i) , pos ()
hiy(i,j) = UPD, . (hi (i), hi ' (j), hly *(4,4)) = hiy ' (i,5) = --- = hi,(i, j).

80(qz) = qo(x) = qo'(qz) = g0’ (¥) = o' (qx) = o’ (x) for non-zero scalar multipliers.
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Second, the first element of the vertex representations is constant throughout ScaleGMN and equal to
the biases of the input NN:

hy, (i)[1] = INITY{, , (xv (i), pv (i) [1] = xv (i)[1] = {L:zir((;is(% layer (i) € [L].

hi, (1)[1] = UPD{, , (hy " (i), mi gy (i), my gy (0)) = hy ' (1)[1] = - = hy, (i)[1]

Now, our first induction hypothesis is the following: If for all vertices with layer (i) = £ and t > ¢

we have that hi,(i)[2 : 3] = [z¢(pos (7)), x¢(pos (i))], then the same should hold for vertices with
layer (i) = £+ 1 whent > { + 1.

* (Base case:) If layer (i) = 0:

h@(z)[2 3] = UPDv 0 (htil(i) ))
=hy '(§)[2:3] = =h°v<)[2 3]
=INITy, (xv (i),pv () [2 : 3]
= (2o (pos (7)) , Xo (pOS (9))]

Therefore, the hypothesis holds for ¢ > 0 = layer (¢) for the base case.
* (Induction step:) Suppose the hypothesis holds for vertices with layer (i) = ¢ — 1 < L.
Now, if layer (i) = ¢, for t > ¢ we have:
m%/’,FW(Z') = @ja\f’p(zﬁ MSGQ/,FW(ht (i), hi 1 (5), Y, j))
= Z,E\, (A)hﬁ/ Y3 - hi 6, ) [1] (layer (j) =€ — 1,6 —1>£—1)
JENF (2
=3 xe (pos (7)) - Wilpos (i), pos ()
JENTF (1)
hi,(i)[2 : 3] = UPD} (b (i), m, (i)) 2 : 3]
= [y (0)[1] + m{ gy (9), o (hy () [1] + mi, py (4)) ]
= [belpos (1) + " a1 (pos (7)) - Welpos (i), os (1),

o (hy ' (0)[1] + my e (0)) |
= [z (pos (1)) , o (z¢ (pos (1)) = [z (pos (4)) , x¢ (pos (2))]-

Similarly for the vertices with layer (i) = L

Our second induction hypothesis is the following: If for all vertices with layer (i) = ¢ and t > 2L — ¢

we have that hi, (i)[4 : 5] = [(Va,0s) L) ™ (Vo os(in) £) 1], then the same should hold for
vertices with layer (i) = { — 1 whent > 2L — {4+ 1.

* (Base case:) If layer (i) = L:

hi, (i)[4 : 5] = UPDY, | (i (i) [4 -
—hi (04 5]= =h°V(>[ 5]
=INITy ., (xv (i), pv (i) [4 : 5]
= [(Var(os(i)£) ™5 (Vg pos(in) £) ']

Therefore, the hypothesis holds for ¢t > L = layer () for the base case.
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* (Induction step:) Suppose the hypothesis holds for vertices with layer (i) = £ + 1. Now, if
layer (i) = ¢, for t > 2L — ¢ we have:

mj, gy (i) = @je\}(#)MSGQBW(ht (@), hi (), s, ]))
B Z;e vy I (hy ' ()[4] - b (6, 0)[1) (t— 1> 20 — (€ +1))
B Z}E \B(I)g ( zo41( pos(y))ﬁ) (pOS( ), pos (i )))
hi, (i)[4 : 5] = UPD{, (h{, " (¢), m{,(¢))[4 : 5]
_ | gulmipw (@)
oy (hy " ()[2])
_ 1 - £yt
— {az(m(pos())Vx[(pos(Z s (Vg (pos(in £) ]
= [(Vauosin L) ™" (Vg pos(in £) 1 -

In the last step, we assumed the following: g ( > gm(x)) is a sufficiently expressive scale
equivariant and permutation invariant function. This is in order to express the following:

—1
(VXZ(pOS(i))ﬁ)—l - (Z/e\BmVZul (pos(i)) L - We(pos (5) , pos (i ))) with:

7gU(mVBW( ))]

; —1
(Ve postin £) (qu TV osin L ngjl(‘)] JWi(pos (7)., pos (i )))
qe(2)
> Vi posin £ - We(pos (j) , pos (i)
= qo (1) (Vi (pos(in £) -

Therefore if all gu (Y- gim(qx)) = q - gu (> gm(z)) can be expressed by gy, g, then so
is the inverse of the gradient.

Following a similar rationale we can prove the case for the vertices with layer (i) = 0.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of this paper is the design and evaluation of an NN pro-
cessing architecture (metanetwork) that accounts not only for NN permutation symmetries
but also scaling. The abstract and introduction introduce the reader to scaling symmetries
for certain NN architectures (FFNNs and CNNs) and explain our main technical innovations
to achieve our goal. The importance of scaling symmetries as an inductive bias is showcased
in our theoretical and empirical results, as explained in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the limitations of our work (applicable input NN layers/architectures and
open questions regarding expressivity) are discussed thoroughly in the last paragraph before
the conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions, precise statements and detailed proofs of our theoretical
results are provided and presented thoroughly in Appendix[A.7.2]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our architecture in detail and all the details needed to fully
reproduce our results are provided in Section 6] Appendix [A.T|and Appendix [A.4] Addition-
ally, our code, including used configurations, and modified datasets will be made publicly
available at a later stage.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The datasets are already public (we simply split two datasets into two datasets
based on the contained activation functions). The code will be made publicly available at a
later stage after all the required steps are taken for proper documentation to make it easy to
use for the interested user.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, the training and testing procedure are carefully described in the Ap-
pendix[A.4]
Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Yes, each method we ran (including baselines) was tested for 3 different
random seeds and the mean and standard deviation were reported.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we provide sufficient technical details in Appendix[A.4]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]
Justification: Yes, we do.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: We do not foresee and negative societal impact and therefore it is not discussed
in the manuscript.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use existing assets. Regarding code and data, all works were
properly cited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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