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Abstract

State-of-the-art (SOTA) semi-supervised learning techniques, such as FixMatch
and it’s variants, have demonstrated impressive performance in classification tasks.
However, these methods are not directly applicable to regression tasks. In this
paper, we present RankUp, a simple yet effective approach that adapts existing semi-
supervised classification techniques to enhance the performance of regression tasks.
RankUp achieves this by converting the original regression task into a ranking
problem and training it concurrently with the original regression objective. This
auxiliary ranking classifier outputs a classification result, thus enabling integration
with existing semi-supervised classification methods. Moreover, we introduce
regression distribution alignment (RDA), a complementary technique that further
enhances RankUp’s performance by refining pseudo-labels through distribution
alignment. Despite its simplicity, RankUp, with or without RDA, achieves SOTA
results in across a range of regression benchmarks, including computer vision,
audio, and natural language processing tasks. Our code and log data are open-
sourced at https://github.com/pm25/semi-supervised-regression.

1 Introduction

The effectiveness of deep learning models heavily depends on the availability of labeled data.
However, obtaining labeled data can be challenging in various scenarios. For instance, tasks like
quality assessment often require multiple human annotators to label a single data point [15, 8, 19],
resulting in a labor-intensive and time-consuming process. In domains where expert annotation
is frequently required, such as medical data, the cost of acquiring labeled data can be extremely
expensive [14, 21, 36]. To address these challenges, semi-supervised learning provides a powerful
approach to reduce reliance on labeled data for training deep learning models [22, 34, 17, 24, 7]. By
effectively leveraging the unlabeled data during model training, semi-supervised learning provides a
means to enhance model performance while minimizing the need for extensive labeled data.

Recent state-of-the-art (SOTA) semi-supervised learning methods, such as FixMatch and its variants,
use a confidence threshold technique to obtain high-quality pseudo-labels [22, 34, 27, 4, 31]. This
approach involves generating pseudo-labels from unlabeled data and then filtering out those with low
confidence scores. The model is then trained to produce predictions consistent with these high-quality
pseudo-labels. Despite its success across various classification tasks, directly applying this technique
to regression tasks encounters several challenges. First, unlike classification models, regression
models typically lack confidence measures for their predictions, making the confidence threshold
technique unfeasible. Additionally, one of the motivations behind using pseudo-labels is to increase
the model’s confidence in its predictions for unlabeled data, based on the low-density assumption
[6, 25]. However, as there are no confidence measures in the predictions of regression models, relying
on the low-density assumption and increasing the confidence of unlabeled data becomes unfeasible.
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Figure 1: Illustration of using FixMatch on the Auxiliary Ranking Classifier (ARC). This diagram
uses the age estimation task as an example, where the goal is to predict the age of a person in an
image. The auxiliary ranking classifier transforms this task into a ranking problem by comparing two
images to determine which person is older. (Image sourced from the UTKFace dataset [37]).

In this paper, we introduce RankUp, a simple yet effective semi-supervised regression framework
that leverages existing semi-supervised classification methods. RankUp achieves this by using an
auxiliary ranking classifier, which concurrently solves a ranking task alongside the original regression
task. The ranking task is derived from the original regression problem, where the objective is to
compare the labels of pairs of samples to determine their relative rank (i.e., which one is larger
or smaller). Since ranking problem is a type of classification problem, existing semi-supervised
classification methods can be applied to assist in training the auxiliary ranking classifier (see Fig. 1).

Our empirical results demonstrate that enhancing the performance of the auxiliary ranking classifier
also improves the performance of the original regression task, as measured by metrics, such as mean
absolute error (MAE) [29], coefficient of determination (R2) [23], and Spearman rank correlation
coefficient (SRCC) [33]. Furthermore, we show that applying existing semi-supervised classification
methods to the auxiliary ranking classifier can effectively utilize unlabeled data, leading to further
improvements in the classifier’s performance. This improvement, in turn, translates to enhanced
performance in the original regression task, showcasing the potential of applying semi-supervised
classification techniques to enhance regression models.

One of the key advantages of using the auxiliary ranking classifier is its ability to enhance the ranking
relationship of pseudo-labels. Building upon this effect, we propose a novel Regression Distribution
Alignment (RDA) method, designed to further improve RankUp’s performance by refining the
distribution of regression pseudo-labels. RDA adjusts the distribution of these pseudo-labels to better
align with the true underlying distribution of the unlabeled data. This approach assumes that the
distributions of labeled and unlabeled data are similar, allowing us to estimate the distribution of the
unlabeled data based on that of the labeled data distribution. This assumption holds true in many
cases, especially when labeled data are randomly sampled from the same pool as the unlabeled data.
By aligning these distributions, RDA improves the quality of the pseudo-labels, ultimately leading to
better model performance when training with these refined pseudo-labels.

Our experimental results demonstrate that RankUp, even without RDA, achieves state-of-the-art
(SOTA) results across a variety of regression datasets, including tasks in computer vision, audio,
and natural language processing. Moreover, integrating RDA with RankUp provides an additional
performance boost, leading to the highest performance observed in our experiments. For example,
RankUp alone achieves at least a 13% improvement in MAE and a 28% improvement in R2 compared
to SOTA methods on the image age estimation dataset (UTKFace) with 50 labeled samples. The
addition of RDA further boosts these results by an additional 6% and 7% in MAE and R2, respectively.
The empirical results of our experiments demonstrate that existing semi-supervised classification
methods can be effectively leveraged to improve the performance of semi-supervised regression
tasks. These findings bridge the gap between future research in semi-supervised regression and
classification, paving the way for further advancements in the field.

2

107445https://doi.org/10.52202/079017-3413



2 Related Works

In this section, we review related research in semi-supervised learning. We categorize the literature
into two groups: methods applicable to regression tasks, which will be discussed in Section 2.1, and
methods applicable only to classification tasks, detailed in Section 2.2.

2.1 Semi-Supervised Regression

In semi-supervised regression, methods commonly rely on the smoothness assumption [6, 25],
which suggests that nearby data points in the feature space should share similar labels. Consistency
regularization is a popular technique employed to achieve this assumption. It encourages models to
generate consistent predictions for slightly perturbed data.

For example, the Π-model [17] applies data augmentation to unlabeled data and minimizes the
squared difference between the predictions of the augmented data and their original counterparts.
Techniques like Mean Teacher [24] involve model-weight ensembling to align the predictions of the
model with its ensemble counterpart. Similarly, UCVME [10] employs a bayesian neural network
to ensure consistency in uncertainty predictions across co-trained models. Additionally, CLSS [11]
utilizes contrastive learning to encourage features of similar labels to be closer together.

2.2 Semi-Supervised Classification

In semi-supervised classification, in addition to the smoothness assumption, another commonly relied-
upon assumption is the low-density assumption [6, 25]. This assumption suggests that a classifier’s
decision boundary should ideally pass through low-density regions in the feature space. Pseudo-
labeling [18] is a common approach used to achieve this assumption, where the highest probability
class predictions on unlabeled data are utilized as pseudo-labels for training. By incorporating
pseudo-labels, the model’s confidence in predicting unlabeled data is increased, effectively pushing
the decision boundary away from high-density regions towards low-density regions.

Recent SOTA semi-supervised learning methods combine pseudo-labeling with consistency regular-
ization to achieve both the low-density and smoothness assumptions, leading to improved performance.
For example, MixMatch [3] utilizes a mixup [35] technique and averages predictions from multiple
augmented instances to ensure consistency, while also using a sharpening technique to boost predic-
tion confidence on unlabeled data. Similarly, FixMatch [22] builds on this concept by generating
high-quality pseudo-labels from weakly augmented unlabeled data using a confidence threshold and
enforcing consistency between weakly and strongly augmented versions of the same input.

Despite the success of these methods on classification tasks. The low-density assumption doesn’t
directly translate to regression tasks, as regression models lack explicit confidence measures and
decision boundaries like those in classification models. As a result, existing semi-supervised learning
methods based on the low-density assumption cannot be directly applied in regression settings.

3 Method

The proposed framework, RankUp, introduces two additional components: ARC and RDA. The
design of ARC is inspired by RankNet [5]. To provide a clear understanding of the ARC’s implemen-
tation, we first present background information on RankNet in Section 3.1. Subsequently, we will
detail the implementation of ARC in Section 3.2 and introduce RDA in Section 3.3. Furthermore, we
propose a warm-up scheme and techniques for reducing the computational time of RDA in Sections
3.4 and 3.5, respectively. Lastly, we outline the complete RankUp framework in Section 3.6.

3.1 Background: RankNet

RankNet [5] is a deep learning model designed to predict the relevance scores of documents. The
core idea behind RankNet is the use of a pairwise ranking loss. It compares two samples and predicts
their relative ranking (i.e., which document is more relevant). This approach effectively transforms
the relevance score prediction task into a pairwise classification problem. In the following, we will
provide a detailed explanation of how the pairwise ranking prediction is performed and how the
corresponding loss is calculated.
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Pairwise Ranking Prediction. The output of RankNet is a single scalar value indicating the ranking
score of the sample, where a higher score indicates greater relevance. To obtain the pairwise ranking
prediction, two samples are fed separately into the model to get their respective ranking scores.
The difference between these scores is then passed through a sigmoid function, which generates a
prediction in the range [0, 1]. This prediction indicates the likelihood that the first sample is more
relevant than the second. If the output is greater than 0.5, the model predicts that the first sample
has higher relevance; if the output is less than 0.5, the second sample is considered more relevant.
Mathematically, for two samples, xi and xj , and the RankNet model g, the formula to obtain the
pairwise ranking prediction pij is as follows:

pij = sigmoid(g(xi)− g(xj)) =
1

1 + e−(g(xi)−g(xj))
(1)

Here, g(xi) and g(xj) represent the ranking scores for samples xi and xj , respectively. A higher
value of pij indicates a higher likelihood that the ranking of xi will be higher than that of xj .

Pairwise Ranking Loss. The pairwise ranking loss is calculated by comparing the model’s predicted
pairwise ranking pij with the ground truth label yij . The label yij indicates the true relative ranking
between samples xi and xj . Specifically, yij = 1 indicates that sample xi is ranked higher than
sample xj , yij = 0 indicates that sample xi is ranked lower than xj , and yij = 0.5 suggests the two
samples are equally ranked. Since this is fundamentally a binary classification task, the pairwise
ranking loss is calculated using the cross-entropy loss function. Mathematically, the pairwise ranking
loss for a batch of data is defined as follows:

ℓranknet =
1

N2

N∑
i=1

N∑
j=1

CE(yij , pij) (2)

Here, N denotes the batch size, CE is the cross-entropy loss function, pij is the predicted pairwise
ranking between samples xi and xj , and yij is the corresponding ground truth label. The loss iterates
through all possible pairs of samples in the batch to calculate the average loss for the entire batch.

3.2 Auxiliary Ranking Classifier (ARC)

The Auxiliary Ranking Classifier (ARC) is designed to solve a ranking task alongside the primary
regression task. It can be easily integrated into existing regression model architectures like ResNet
[13], BERT [12], or Whisper [20]. ARC is implemented as an additional output layer that shares the
same hidden layers with the original regression model. This transforms the model into a multi-task
architecture with two output tasks: the original output header continues to provide the regression
output, while ARC generates a ranking score for the sample.

The core idea behind ARC is to transform the original regression task into a multi-class classification
problem, allowing existing semi-supervised classification methods to assist in its training. To achieve
this, ARC’s design is inspired by RankNet, which can effectively convert the regression task into a
binary classification task. However, since a multi-class classification output is required, we introduce
two key modifications to RankNet to adapt it for this purpose:

1. The scalar output value of RankNet is changed to a two-class output, where each output class
indicates which sample in a pair has a relatively greater ranking score.

2. The sigmoid function is replaced with softmax, which converts the model’s output into a
multi-class classification probability distribution.

Specifically, for the auxiliary ranking classifier r, which outputs a two-class output, the formula to
obtain the pairwise ranking prediction p̂ij of two data samples, xi and xj , is as follows:

p̂ij = softmax(r(xi)− r(xj)) (3)

Here, p̂ij represents a two-class prediction that indicates which sample in the pair has a relatively
higher regression label. The loss calculation for ARC remains the same as described in Equation 2.
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This output format enables the integration of existing semi-supervised classification methods. We
utilize FixMatch [22] as the semi-supervised classification technique for training ARC. An illustrative
example of applying FixMatch to ARC can be found in Figure 1, with further details in Algorithm 1.

Algorithm 1 Auxiliary Ranking Classifier (with FixMatch)

Input: Labeled batch X = { (xi, yi) }Nlb
i=1, unlabeled batch U = { ui }Nulb

i=1 , confidence threshold τ ,
unlabeled loss weight ωulb, weak augmentation Aw, strong augmentation As

1: ℓlb = 1
(Nlb)2

∑Nlb

i=1

∑Nlb

j=1 CE
(

softmax
(
r(Aw(xi)) − r(Aw(xj))

)
, 1{yi > yj}

)
{ Compute

cross-entropy labeled loss }
2: ℓulb = 0 { Initialize unlabeled loss }
3: for i = 1 to Nulb do
4: for j = 1 to Nulb do
5: p̂wij = softmax(r(Aw(ui))− r(Aw(uj))) { Predict weak pairwise ranking }
6: p̂sij = softmax(r(As(ui))− r(As(uj))) { Predict strong pairwise ranking }
7: ℓulb = ℓulb + 1{max(p̂wij) > τ} CE(argmax(p̂wij), p̂

s
ij) { Accumulate unlabeled loss }

8: end for
9: end for

10: ℓulb =
1

(Nulb)2
ℓulb { Average unlabeled loss }

11: return ℓarc = ℓlb + ωulb · ℓulb

3.3 Regression Distribution Alignment (RDA)

Distribution alignment is a commonly used technique in semi-supervised classification [2, 16, 28, 4],
where pseudo-labels are refined by aligning their distribution with that of the labeled data. Training
semi-supervised models with these refined pseudo-labels can lead to performance improvements.
However, existing distribution alignment methods are designed for classification tasks involving
discrete label distributions, making them unsuitable for regression settings. Moreover, applying
distribution alignment to ARC is impractical, as the two output classes always have equal proportions.
To address these challenges, we propose Regression Distribution Alignment (RDA), enabling the
direct application of distribution alignment to regression tasks.

The RDA process involves three key steps: (1) extracting the labeled data distribution, (2) generating
the pseudo-label distribution, and (3) aligning the pseudo-label distribution with the labeled data
distribution. These steps correspond to the orange, blue, and yellow parts of Figure 2, respectively.

Step 1: Extracting the Labeled Data Distribution. The labeled data is sorted according to its label
values. To ensure a one-to-one correspondence with the pseudo-labels, the labeled data distribution
must contain the same number of data points as the pseudo-label set. We use linear interpolation to
extend the labeled distribution to match the size of the pseudo-labels.

Step 2: Generating the Pseudo-Label Distribution. The model generates pseudo-labels for all the
unlabeled data. These pseudo-labels are then sorted by their values, either in ascending or descending
order, as long as the sorting direction is consistent with that of the labeled data distribution.

Step 3: Aligning the Distributions. Once both distributions have been sorted and resized to the
same size, the alignment is performed by replacing each pseudo-label value with its corresponding
value from the labeled data distribution.

In each training iteration, RDA is applied to refine the pseudo-labels. The loss is then computed
between the model’s predictions and the RDA-aligned pseudo-labels to minimize their difference.
For an unlabeled data point ui with its corresponding regression prediction ŷi and RDA-aligned
pseudo-label ỹi, the RDA loss ℓrda for a batch of unlabeled data is defined as:

ℓrda =
1

Nulb

Nulb∑
i=1

Lreg (ŷi, ỹi) (4)

Here, Nulb denotes the batch size of unlabeled data, Lreg represents a regression loss function (e.g.,
MAE, MSE).
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Figure 2: Illustration of RDA: This example includes three labeled data pairs {(xi, yi)}2i=0 and five
unlabeled data points with corresponding pseudo-labels {(ui, ŷi)}4i=0. Each data pair is represented
by a single bar in the graph. The x-axis indicates the sample indices, while the y-axis represents their
corresponding regression label values. The orange bars demonstrate the process of obtaining the
labeled data distribution, the blue bars illustrate how the pseudo-label distribution is formed, and the
yellow bars show the aligned pseudo-labels after applying RDA.

The design of RDA is based on two key assumptions. First, it assumes that the distributions of labeled
and unlabeled data are similar, which is often true since labeled data is typically randomly sampled
from the unlabeled pool. Second, it assumes that the ranking of the pseudo-labels is reasonably
accurate. Integrating RDA with ARC can reinforce this assumption, as ARC enhances the ranking
relationships of pseudo-labels. Both assumptions are crucial for ensuring that RDA works properly.

3.4 Warm-Up Scheme for RDA

In the early stages of training, the pseudo-label rankings may be poorly predicted, which can degrade
the quality of the pseudo-labels refined through RDA. To address this, we introduce a linear warm-up
scheme to stabilize the RDA process. The adjusted RDA loss, ℓ′rda, is defined as follows:

ℓ′rda = min

(
iter

αwarm
, 1.0

)
· ℓrda (5)

Here, iter denotes the current training iteration, and αwarm is a hyperparameter that controls the
duration of the warm-up phase. The min function ensures that the warm-up factor does not exceed
1.0, smoothly transitioning the model toward the full effect of ℓrda.

3.5 Reducing Computational Time of RDA

Applying RDA can be computationally expensive, as it requires inference all unlabeled data and
sorting all pseudo-labels at every training iteration. This significantly increases the computational
load compared to the original training process, especially when dealing with a large volume of
unlabeled data, making the implementation of RDA impractical. To mitigate this challenge, we
propose several techniques aimed at reducing the computational burden of RDA.

Pseudo-label table. RDA creates a table of the same size as the unlabeled dataset. This table stores
the model’s predicted pseudo-labels for each instance of unlabeled data. For each training iteration,
the model generates new pseudo-labels, which are stored and updated within this table. This approach
eliminates the need to rerun inference on all unlabeled data when applying RDA, as it only requires a
simple lookup from the pseudo-label table.

Applying RDA only every T steps. To further reduce computational costs, RDA is applied only every
T steps, where T is a hyperparameter. This is achieved by creating a second table of the same size as
the unlabeled dataset, which stores the previously aligned results of the pseudo-labels generated by
applying RDA. Between RDA updates, the model uses these stored aligned pseudo-labels, thereby
avoiding the need to run RDA in every iteration. This strategy effectively reduces the computational
cost associated with the RDA process to 1/T .
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3.6 Putting It All Together - RankUp

We introduce the term RankUp to describe our proposed framework, which integrates two key
components: ARC and RDA. The use of RDA is optional, depending on whether its underlying
assumptions are satisfied. The final loss for RankUp is a combination of the regression loss and the
ARC loss. The regression loss consists of the original labeled regression loss plus the unlabeled RDA
loss. Specifically, the RankUp loss ℓrankup is defined as follows:

ℓrankup = (ℓreg + ωrda · ℓ′rda) + (ωarc · ℓarc) (6)

In this equation, ℓreg represents the loss from the original labeled regression task, while ℓ′rda denotes
the RDA loss, as defined in Equation 5. The hyperparameter ωrda controls the weight of the RDA
loss. If RDA is not employed, the term ωrda · ℓ′rda can be excluded from the equation. The term
ℓarc corresponds to the loss from the ARC module, as detailed in Algorithm 1. Additionally, the
hyperparameter ωarc regulates the weight of the ARC loss.

4 Experiments

In this section, we evaluate RankUp’s performance across various tasks. The experimental settings
are described in Section 4.1. The main results for RankUp under different label configurations are
presented in Section 4.2, while Section 4.3 provides additional results on audio and text datasets.
Section 4.4 explores the use of alternative semi-supervised classification methods in place of FixMatch.
Lastly, we discuss potential reasons why the smoothness and low-density assumptions are also
effective for regression tasks in Section 4.5.

4.1 Settings

Evaluation Metrics. We use three evaluation metrics: MAE, R2, and SRCC, to assess the per-
formance of semi-supervised regression methods. MAE measures the average absolute difference
between the model’s predictions and the actual values. The R2 score indicates the proportion of
variance in the data explained by the model. SRCC evaluates the correlation between the predicted
rankings and the actual rankings.

Evaluation Robustness. To ensure the reliability of our evaluation results, each experiment is
executed three times using fixed random seeds (0, 1, and 2). We report both the mean and standard
deviation of each metric.

Fair Comparison. To ensure a fair comparison between our proposed methods and related works, we
implement and evaluate all methods within the same codebase. Specifically, we adapt the popular semi-
supervised classification framework USB [26], modifying it for regression tasks to implement both our
proposed methods and related works. Weak augmentation is applied consistently to the labeled data
across all semi-supervised and supervised methods. For specific details on the modifications made to
USB, please refer to Appendix A.5. The code and full training logs of the experiments presented in
this paper are open-sourced at https://github.com/pm25/semi-supervised-regression.

Hyperparameters. We use the hyperparameters of USB as the base for fine-tuning. We first fine-tune
the hyperparameters in the supervised baseline setting and find the hyperparameters that lead to lowest
MAE score. These same hyperparameters are then applied to all semi-supervised regression methods
to ensure a fair comparison. Only the additional hyperparameters specific to each semi-supervised
method are further tuned. For more details on the hyperparameters, please refer to Appendix A.13.

Base Model. The base model used in our experiments varies depending on the data type. For image
data, we use Wide ResNet-28-2 [32], which is not pre-trained. For audio data, we use the pre-trained
Whisper-base [20], and for text data, we use the pre-trained Bert-Small [12].

Dataset. To simulate the semi-supervised setting, we randomly sample a portion of the dataset as
labeled data, treating the remainder as unlabeled. To evaluate performance, we use three diverse
datasets: UTKFace [37], an image age estimation dataset; BVCC [8], an audio quality assessment
dataset; and Yelp Review [1], a text sentiment analysis (opinion mining) dataset. For more detailed
information about these datasets, please refer to Appendix A.11.

7

107450 https://doi.org/10.52202/079017-3413

https://github.com/pm25/semi-supervised-regression


Table 1: Comparison of RankUp with and without RDA against other methods on the UTKFace
dataset, evaluated under two settings: 50 and 250 labeled samples, with the remaining images treated
as unlabeled. The original UTKFace dataset comprises 18,964 training images.

UTKFace (Image Age Estimation)
Labels = 50 Labels = 250

MAE↓ R2↑ SRCC↑ MAE↓ R2↑ SRCC↑
Supervised 14.13±0.56 0.090±0.092 0.371±0.071 9.42±0.16 0.540±0.014 0.712±0.010

Π-Model 13.82±1.02 0.100±0.086 0.387±0.092 9.45±0.30 0.534±0.030 0.706±0.015

Mean Teacher 13.92±0.20 0.127±0.037 0.423±0.023 8.85±0.25 0.586±0.020 0.745±0.013

CLSS 13.61±0.92 0.138±0.101 0.447±0.074 9.10±0.15 0.586±0.016 0.737±0.014

UCVME 13.49±0.95 0.157±0.110 0.412±0.127 8.63±0.17 0.626±0.006 0.767±0.007

MixMatch 11.44±0.45 0.401±0.028 0.674±0.035 7.95±0.15 0.692±0.013 0.832±0.008

RankUp (Ours) 9.96±0.62 0.514±0.043 0.703±0.019 7.06±0.11 0.751±0.011 0.835±0.008

RankUp + RDA (Ours) 9.33±0.54 0.552±0.041 0.770±0.009 6.57±0.18 0.782±0.012 0.856±0.005

Fully-Supervised 4.85±0.01 0.875±0.000 0.910±0.001 4.85±0.01 0.875±0.000 0.910±0.001

4.2 Main Results

To evaluate the performance of RankUp under different labeled data settings, we conducted experi-
ments using the UTKFace dataset with 50 and 250 labeled samples. We tested two configurations of
RankUp: one incorporating the RDA (RankUp + RDA) and the other without it (RankUp). Their
performance was compared against other semi-supervised regression methods, with MixMatch specif-
ically representing the consistency regularization component of the approach. Additionally, we
included a supervised setting that used only the labeled data without incorporating any unlabeled
data during training, as well as a fully-supervised setting that used all available data (both labeled and
unlabeled), assuming the unlabeled data had known true labels. We also conducted experiments with
a 2000 labeled samples setting; however, due to space limitations, the results for this configuration
can be found in Appendix A.2.

The results are presented in Table 1. We observed that RankUp (without RDA) consistently outper-
forms existing semi-supervised regression methods, especially when the amount of labeled data is
scarce. Specifically, in the 50-label setting, RankUp achieves at least a 12.9% improvement in MAE,
a 28.2% improvement in R2, and a 4.3% improvement in SRCC compared to other semi-supervised
regression methods. In the 250-label setting, RankUp shows at least an 11.2% improvement in MAE,
an 8.5% improvement in R2, and a 0.4% improvement in SRCC.

Furthermore, the integration of RDA with RankUp further enhances the performance of RankUp.
Specifically, in the 50-label setting, RankUp + RDA achieves an additional 6.3% improvement in
MAE, a 7.4% improvement in R2, and a 9.5% improvement in SRCC compared to RankUp alone.
Similarly, in the 250-label setting, RankUp + RDA achieves an additional 6.9% improvement in
MAE, a 4.1% improvement in R2, and a 2.5% improvement in SRCC relative to RankUp.

These empirical results demonstrate the effectiveness of RankUp and RDA across different labeled
settings. Another notable observation is that RankUp + RDA in the 50-label setting outperforms the
supervised model that utilizes five times the labeled data (in the 250-label setting) across all three
metrics. Specifically, RankUp + RDA achieves a 1.0% improvement in MAE, a 2.2% improvement in
R2, and an 8.1% improvement in SRCC while using only one-fifth of the labeled data, demonstrating
its effectiveness in reducing labeling costs.

4.3 Additional Results on Audio and Text Data

To further assess the performance of RankUp across different data types and tasks, we evaluated
it on the BVCC and Yelp Review datasets using 250 labeled samples. The results are presented in
Table 2. The table demonstrates that RankUp also consistently outperforms existing semi-supervised
regression methods on both audio and text datasets. Specifically, on the BVCC dataset, RankUp
(without RDA) achieves at least a 5.6% improvement in MAE, a 6.3% improvement in R2, and a
0.3% improvement in SRCC compared to other semi-supervised regression methods. On the Yelp
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Table 2: Comparison of RankUp with and without RDA against other methods on the BVCC and
Yelp Review datasets, evaluated under the 250-labeled samples setting. The BVCC dataset consists of
4,975 training audio samples, while the Yelp Review dataset contains 250,000 training text comments.

BVCC (Audio Quality Assessment) Yelp Review (NLP Opinion Mining)
Labels = 250 Labels = 250

MAE↓ R2↑ SRCC↑ MAE↓ R2↑ SRCC↑
Supervised 0.533±0.006 0.490±0.018 0.741±0.009 0.723±0.023 0.566±0.019 0.769±0.010

Π-Model 0.534±0.008 0.489±0.021 0.740±0.009 0.730±0.024 0.565±0.019 0.769±0.009

Mean Teacher 0.532±0.006 0.492±0.018 0.742±0.008 0.730±0.024 0.565±0.019 0.769±0.009

CLSS 0.499±0.010 0.534±0.027 0.748±0.008 0.721±0.010 0.543±0.011 0.748±0.002

UCVME 0.498±0.003 0.553±0.011 0.774±0.008 0.775±0.006 0.540±0.005 0.763±0.005

MixMatch 0.597±0.017 0.353±0.044 0.626±0.031 0.886±0.004 0.381±0.008 0.660±0.004

RankUp (Ours) 0.470±0.012 0.588±0.028 0.776±0.010 0.661±0.018 0.645±0.013 0.829±0.002

RankUp + RDA (Ours) 0.463±0.013 0.598±0.027 0.783±0.011 0.632±0.009 0.651±0.007 0.810±0.005

Fully-Supervised 0.351±0.003 0.764±0.002 0.874±0.001 0.418±0.003 0.799±0.002 0.896±0.001

Table 3: Comparison of using different semi-supervised classification methods for training RankUp’s
ARC component. Results are evaluated on the UTKFace dataset with a setting of 250 labeled samples.

MAE↓ R2↑ SRCC↑
None 9.42±0.16 0.540±0.014 0.712±0.010

Supervised 9.03±0.09 0.588±0.018 0.746±0.008

Π-Model 8.81±0.11 0.591±0.013 0.751±0.012

Mean Teacher 8.76±0.13 0.607±0.018 0.750±0.005

FixMatch 7.06±0.11 0.751±0.011 0.835±0.008

Review dataset, RankUp shows at least a 8.3% improvement in MAE, a 14.2% improvement in R2,
and a 7.8% improvement in SRCC relative to other semi-supervised regression methods.

Moreover, integrating RDA with RankUp further enhances RankUp’s performance on both datasets.
In the BVCC dataset, RankUp + RDA achieves an additional 1.5% improvement in MAE, a 1.7%
improvement in R2, and a 0.9% improvement in SRCC. In the Yelp Review dataset, RankUp + RDA
shows an additional 4.4% improvement in MAE and a 0.9% improvement in R2. However, in the
Yelp Review dataset, RankUp + RDA did not improve SRCC compared to RankUp without RDA,
resulting in a 2.3% decrease in SRCC. This decline is likely due to the limited distinct label values
(only five distinct values) in the Yelp Review dataset; applying RDA may cause many pseudo-labels
to align with the same value, thereby disrupting the ranking relationships and leading to a degradation
in SRCC performance.

4.4 Analysis of Different Semi-Supervised Classification Methods on ARC

To better understand the effect of RankUp’s ARC component and its ability to utilize the unlabeled
data, we analyzed ARC by training it with various semi-supervised classification methods. In this
evaluation, we did not apply RDA to isolate its effect on ARC. Additionally, we compared these
methods against a baseline with no ARC (denoted as "None") and a supervised setting where only
labeled data was used to train ARC (denoted as "Supervised").

The results are presented in Table 3. The table indicates that using an ARC without any unlabeled
data can already improve performance, with a 4.1% improvement in MAE, an 8.9% improvement in
R2, and a 4.8% improvement in SRCC compared to the "None" setting. This suggests the beneficial
impact of training ARC concurrently with the original regression head, even without leveraging
unlabeled data.
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Figure 3: Comparison of t-SNE visualizations of feature representations for different semi-supervised
regression methods on evaluation data. The supervised model is displayed on the left, MixMatch is in
the center, and RankUp (without RDA) is shown on the right.

Furthermore, using different semi-supervised classification methods to utilize the unlabeled data
further boost performance compared to using only labeled data. Specifically, we tested the Π-Model,
Mean Teacher, and FixMatch, all of which demonstrated improvements over the "Supervised" setting
across MAE, R2, and SRCC metrics. Among these methods, FixMatch achieved the best results,
showing a 21.8% improvement in MAE, a 27.7% improvement in R2, and an 11.9% improvement
in SRCC compared to the "Supervised" setting. This highlights the effectiveness of leveraging
unlabeled data and semi-supervised classification techniques to improve ARC and RankUp’s overall
performance.

4.5 Understanding Smoothness and Low-Density Assumptions in Regression

The low-density assumption is crucial for understanding the effectiveness of semi-supervised learning
methods. However, it does not directly apply to regression tasks due to the absence of decision
boundaries and confidence measures. In this section, we explore why RankUp performs well in
regression tasks by leveraging semi-supervised classification techniques that utilize the low-density
assumption. This understanding can broaden our perspective on these assumption.

We adopt a broader interpretation of the smoothness and low-density assumptions. Rather than
viewing them solely in the context of classification, we interpret the smoothness assumption as an
effort to group features with similar labels together, while the low-density assumption aims to
separate features with dissimilar labels. These perspectives align with RankUp’s approach. By
training ARC with pseudo-labels, the model is encouraged to have greater confidence in the pairwise
ranking predictions of the unlabeled data, thus pushing the features with dissimilar pseudo-labels
further apart. Additionally, ensuring consistent predictions between weakly and strongly augmented
data assists in grouping features with similar labels. The t-SNE visualization demonstrated in Figure
3 supports this claim, showing that within RankUp, similar labels are closer together, while dissimilar
labels are pushed further apart in the feature space.

5 Conclusion

Recent advancements in semi-supervised learning have achieved impressive results across various
classification tasks; however, these methods are not directly applicable to regression tasks. In this
work, we investigate the potential of leveraging existing semi-supervised classification techniques for
regression tasks. We propose a novel framework, RankUp, which introduces two key components: the
Auxiliary Ranking Classifier (ARC) and Regression Distribution Alignment (RDA). The empirical
results of our experiments demonstrate the effectiveness of our methods across various labeled data
settings (50, 250, and 2000 labeled samples) and different types of datasets (image, audio, and text).
These findings show that semi-supervised classification techniques can be effectively adapted to
regression tasks, bridging the gap between research in semi-supervised regression and classification,
and paving the way for more advanced research in this area.
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A Appendix / supplemental material

A.1 Limitations

One of the limitations of RDA is that it relies on two key assumptions: the labeled and unlabeled data
have similar label distributions, and the ranking of the pseudo-labels is accurate. If either of these
assumptions is not met, the performance of RDA can be significantly impacted.

Another limitation of RDA is that it may not perform well in tasks where distinct label values are few.
As shown in Table 2, in the Yelp Review dataset, SRCC decreases when RankUp is combined with
RDA compared to using RankUp alone. This is likely because the limited number of distinct label
values causes many pseudo-labels to align to the same value, disrupting the ranking relationships.

Despite these limitations, RDA is still a powerful component that can work with RankUp to further
boost its performance. However, users should carefully evaluate their dataset characteristics to
determine whether applying RDA is an appropriate choice.

A.2 Analysis on UTKFace 2000 Labeled Setting

In Table 1, we present the results of RankUp against other methods using 50 and 250 labeled samples
settings on the UTKFace dataset. Here, we further investigate the performance of RankUp in a 2000-
label setting, with the results shown in Table 4. Notably, RankUp continues to exhibit performance
improvements over other semi-supervised regression methods in a 2000-label setting. Specifically,
RankUp (without RDA) demonstrates a 7.0% improvement in MAE, a 1.7% improvement in R2,
and a 0.5% improvement in SRCC. Meanwhile, RankUp with RDA demonstrates an additional 1.8%
improvement in MAE, a 0.7% improvement in R2, and a 0.3% improvement in SRCC compared to
RankUp alone. Comparing the results in Table 1 (50 and 250 labeled samples) with those in Table
4 (2000 labeled samples), we observe that RankUp with or without RDA continue to outperform
other methods as the number of labeled samples increases. However, as expected, the advantages of
semi-supervised learning diminish with the availability of more labeled training data.

Table 4: Comparison of RankUp with and without RDA against other methods on the UTKFace
dataset with 2000 labeled samples.

UTKFace (Image Age Estimation)
Labels = 2000

MAE↓ R2↑ SRCC↑
Supervised 6.28±0.06 0.794±0.004 0.862±0.001

Π-Model 6.31±0.10 0.790±0.006 0.860±0.003

Mean Teacher 6.29±0.03 0.793±0.004 0.862±0.001

CLSS 6.29±0.01 0.794±0.003 0.862±0.001

UCVME 5.90±0.07 0.821±0.007 0.877±0.002

MixMatch 6.03±0.07 0.824±0.004 0.883±0.002

RankUp (Ours) 5.61±0.07 0.838±0.003 0.887±0.003

RankUp + RDA (Ours) 5.51±0.07 0.844±0.004 0.890±0.003

Fully-Supervised 4.85±0.01 0.875±0.000 0.910±0.001

A.3 Analysis of Different Semi-Supervised Regression Methods on RankUp

We evaluated the impact of different semi-supervised regression methods on training RankUp’s
regression output. The ARC was trained using FixMatch, while the regression output was trained
with various semi-supervised regression techniques. We compared these results with a supervised
setting, where only labeled data was used for training the regression output (denoted as "Supervised").
The results, shown in Table 5, indicate that using different semi-supervised regression methods can
further improve performance in MAE, R2, and SRCC metrics compared to the supervised method
alone. Demonstrating the effectiveness of leveraging unlabeled data to directly train the regression
head.
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Among all the semi-supervised regression methods we tested, our proposed RDA achieves the best
performance in terms of MAE and R2, with at least a 7.7% improvement in MAE and a 1.7%
improvement in R2 compared to other methods. However, it shows a decrease in SRCC compared
to MixMatch, with a 1.1% drop. In theory, RDA can also be used alongside the Π-Model, Mean
Teacher, and MixMatch, as it focuses on refining pseudo-labels, which is distinct from the approaches
of these methods. However, due to increased computational expense and the goal of maintaining a
simpler framework, our proposed RankUp only uses a supervised method or RDA for training the
regression output.

Table 5: Comparison of using different semi-supervised regression methods for training RankUp’s
regression output. Results are evaluated on UTKFace dataset with a setting of 250 labeled samples.

MAE↓ R2↑ SRCC↑
Supervised 7.06±0.11 0.751±0.011 0.835±0.008

Π-Model 6.95±0.16 0.758±0.010 0.837±0.005

Mean Teacher 7.01±0.17 0.752±0.013 0.831±0.004

MixMatch 7.12±0.09 0.769±0.006 0.866±0.002

RDA (Ours) 6.57±0.18 0.782±0.012 0.856±0.005

A.4 Ablation Studies on RankUp Components: ARC and RDA

To further understand the effect of ARC and RDA in RankUp, we conducted ablation studies
comparing the performance of a supervised baseline, RDA only, ARC only, and ARC + RDA on the
UTKFace dataset, using settings of 50 and 250 labeled samples.

The results, as shown in Table 6, demonstrate that RDA alone does not consistently outperform the
supervised baseline, particularly in the 50 labeled samples setting (as reflected in the MAE and R2

values). This may be due to one of the assumptions of RDA not being met, where it requires the
pseudo-labels to have reasonably accurate ranking (the supervised baseline with 50 labeled samples
only has an SRCC score of 0.371). In contrast, ARC alone ("RankUp" in the table) significantly
improves performance over both the supervised baseline and RDA alone. The combination of ARC
and RDA yields the best performance, highlighting their synergistic relationship, where it is beneficial
to use RDA with ARC.

Table 6: Ablation studies on the ARC and RDA components introduced in RankUp. In this table,
"RankUp" refers to the use of the ARC component only, while "RDA" refers to the use of the RDA
component only. "RankUp + RDA" refers to the combined use of both ARC and RDA. Results are
evaluated on the UTKFace dataset with 50 and 250 labeled samples.

UTKFace (Image Age Estimation)
Labels = 50 Labels = 250

MAE ↓ R2 ↑ SRCC ↑ MAE ↓ R2 ↑ SRCC ↑
Supervised 14.13±0.56 0.090±0.092 0.371±0.071 9.42±0.16 0.540±0.014 0.712±0.010

RDA (Ours) 14.34±1.27 0.060±0.125 0.442±0.104 8.64±0.22 0.609±0.023 0.772±0.012

RankUp (Ours) 9.96±0.62 0.514±0.043 0.703±0.019 7.06±0.11 0.751±0.011 0.835±0.008

RankUp + RDA (Ours) 9.33±0.54 0.552±0.041 0.770±0.009 6.57±0.18 0.782±0.012 0.856±0.005

A.5 Modifications for Adapting USB Codebase for Regression Tasks

The USB [26] codebase is originally designed for semi-supervised classification tasks and includes
implementations of various existing semi-supervised classification methods. To adapt it for regression
tasks, enabling the implementation of our proposed framework RankUp and other semi-supervised
regression methods, we made the following key modifications:

1. Replaced the cross entropy loss function with the MAE loss function.
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2. Adjusted the output layer to produce a single continuous output instead of multiple outputs
used for multi-class classification.

3. Removed one-hot encoding from the codebase.

4. Normalized the regression labels to the 0-1 range.

5. For methods like Mean Teacher [24] and Π-Model [17], no changes were needed to the core
algorithms, as they are inherently applicable to regression tasks.

6. For MixMatch [3], we excluded components specifically designed for classification, such as
sharpening and one-hot label encoding, while retaining the input mixing and consistency
regularization aspects, which are valuable for regression tasks.

A.6 Influence of Data Augmentation on Labeled Data

To further analyze the effect of weak augmentation on labeled data, we conducted experiments on the
UTKFace dataset with a setting of 250 labeled samples, comparing the results with and without weak
augmentation applied to the labeled data.

Table 7 presents a comparison of the results, illustrating the significance of weak augmentation. The
performance metrics (MAE, R2, SRCC) show a decline when weak augmentation is not applied (note
that weak augmentation was applied to all the baselines in the paper). Despite the observed drop in
performance when weak augmentation is not applied, the relative order of effectiveness among the
methods remains consistent, regardless of the application of weak augmentation. This consistency
further underscores the robustness of our proposed method.

Table 7: Analysis of the effect of weak augmentation on labeled data. Results are evaluated on the
UTKFace dataset with a setting of 250 labeled samples. Best results for applying or not applying
weak augmentation for each method are highlighted in bold.

Weak Augmentation MAE ↓ R2 ↑ SRCC ↑

Supervised
Yes 9.42±0.16 0.540±0.014 0.712±0.010

No 11.73±0.17 0.315±0.012 0.556±0.020

Π-Model
Yes 9.45±0.30 0.534±0.030 0.706±0.015

No 11.97±0.39 0.319±0.029 0.567±0.026

MixMatch
Yes 7.95±0.15 0.692±0.013 0.832±0.008

No 10.80±0.09 0.446±0.021 0.716±0.003

RankUp + RDA (Ours)
Yes 6.57±0.18 0.782±0.012 0.856±0.005

No 7.16±0.25 0.742±0.022 0.843±0.010

Fully-Supervised
Yes 4.85±0.01 0.875±0.000 0.910±0.001

No 5.58±0.02 0.837±0.002 0.888±0.000

A.7 Data Augmentation Operators

We followed the settings in the USB [26] codebase for augmentation operators, with an adjustment to
the strong augmentation for audio data. This adjustment was necessary because our task involves
quality assessment, and the original strong augmentation method would have affected the quality of
the data. Specifically, we used the following augmentation techniques:

Image

• Weak augmentation: Random Crop, Random Horizontal Flip

• Strong augmentation: RandAugment [9]

Audio

• Weak augmentation: Random Sub-sample

• Strong augmentation: Random Sub-sample, Random Mask, Random Trim, Random Padding
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Text

• Weak augmentation: None

• Strong augmentation: Back-Translation [30]

A.8 Hardware Specifications

All experiments reported in this paper were conducted using an Nvidia Titan XP with 12 GB of
VRAM and an Nvidia GeForce RTX 2080 Ti, also equipped with 12 GB of VRAM.

A.9 More Feature Visualization Results

Additional feature visualization results beyond those presented in this paper are available. This
includes t-SNE and UMAP visualizations, in both 2D and 3D, for different semi-supervised regression
methods, all accessible at https://github.com/pm25/semi-supervised-regression.

A.10 Dataset Processing

In our experiments, if the dataset provides a pre-defined train-eval-test split, we utilize the training
split to train the model and evaluate its performance on the evaluation or test split. If the dataset does
not provide such a split, we randomly sample 80% of the data as the training set and the remaining
20% as the test set. We open-source the train-test splits used for conducting the experiments in this
paper at https://github.com/pm25/regression-datasets.

A.11 Datasets

Three datasets are utilized in the experiments conducted in this paper: UTKFace [37], BVCC [8],
and the Yelp Review [1] dataset. Below, we provide a brief introduction to each dataset.

UTKFace. The UTKFace dataset is an image age estimation dataset, where the goal is to predict
the age of the person in an image. The labels range from 1 to 116 years old. The dataset consists of
23,705 face images, which we split into 18,964 training samples and 4,741 test samples. The dataset
is available in two versions: the original images and an aligned and cropped version. The experiments
conducted in this paper use the aligned and cropped version of the UTKFace dataset.

BVCC. The VoiceMOS2022 (BVCC) dataset is an audio quality assessment dataset, where the
objective is to predict the quality of an audio sample. The labels, ranging from 1 to 5, are obtained by
averaging the scores provided by multiple listeners. The dataset is split into training (4,974 samples),
evaluation (1,066 samples), and testing (1,066 samples) sets. In the experiments reported in this
paper, we utilize only the training and evaluation splits to evaluate performance.

Yelp Review. The Yelp Review dataset is a text opinion mining task, where the goal is to predict
the rating of customers based on the comments they leave on the Yelp website. There are only
five distinct ratings (0 to 4). We use the processed Yelp Review data provided by the USB [26]
codebase. The dataset comprises training (250,000 samples), evaluation (25,000 samples), and testing
(10,000 samples) sets. We only utilize the training split for model training and the evaluation set for
evaluation.

A.12 Hyperparameter Fine-Tuning

We began by fine-tuning the hyperparameters of the supervised baseline for each dataset, initially
setting them based on the configurations provided in the USB [26] codebase. We then fine-tuned
the learning rate, weight decay, and layer decay hyperparameters for the supervised baseline model
to identify the optimal set of hyperparameters that produced the lowest MAE score. The same
hyperparameter settings were subsequently applied to all other methods evaluated in this study.
Additionally, each method underwent further fine-tuning by adjusting its own specific additional
hyperparameters, distinct from those used in the supervised setting.
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A.13 Hyperparameters

In this section, we list the hyperparameters used in each experimental setting presented in the paper. Ta-
ble 8 provides the common hyperparameters for the base models: Wide ResNet-28-2 (for image data),
Whisper-Base (for audio data), and Bert-Small (for text data). Specific hyperparameter configurations
for each semi-supervised regression method are detailed in Table 9. The full code and hyperparameters
are open-sourced at https://github.com/pm25/semi-supervised-regression.

Table 8: Common hyperparameters for the base models: Wide ResNet-28-2 (for image data),
Whisper-Base (for audio data), and Bert-Small (for text data).

Wide ResNet-28-2 Whisper-Base Bert-Small
Training Iterations 262,144 102,400 102,400
Evaluation Iterations 1,024 1,024 1,024
Training Batch Size 32 8 8
Optimizer SGD AdamW AdamW
Momentum 0.9 - -
Criterion MAE MAE MAE
Weight Decay 1e-03 2e-05 5e-04
Layer Decay 1.0 0.75 0.75
Learning Rate 1e-02 2e-06 1e-05
EMA Weight 0.999 - -
Pretrained False True True
Sampler Random Random Random
Image Resize 40x40 - -
Max Length Seconds - 6.0 -
Sample Rate - 16,000 -
Max Length - - 512

Table 9: Specific hyperparameters for each semi-supervised regression methods.

Π-Model,
MeanTeacher

MixMatch UCVME CLSS RankUp
RankUp
+RDA

Unlabeled Batch Ratio 1.0 1.0 1.0 0.25 7.0 7.0
Regression Unlabeled Loss Ratio 0.1 0.1 0.05 - - 1.0
Regression Unlabeled Loss Warmup 0.4 0.4 - - - 0.4
Mixup Alpha - 0.5 - - - -
Dropout Rate - - 0.05 - - -
Ensemble Number - - 5 - - -
CLSS Lambda - - - 2.0 - -
Labeled Contrastive Loss - - - 1.0 - -
Unlabeled Contrastive Loss - - - 0.05 - -
Unlabeled Rank Loss Ratio - - - 0.01 - -
ARC Unlabeled Loss Ratio - - - - 1.0 1.0
ARC Loss Ratio - - - - 0.2 0.2
Confidence Threshold - - - - 0.95 0.95
Temperature - - - - 0.5 0.5
RDA Refinement Steps - - - - - 1,024

18

107461https://doi.org/10.52202/079017-3413

https://github.com/pm25/semi-supervised-regression


NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim aligns with our contribution, which is that existing semi-
supervised classification methods can be successfully adapted for use in semi-supervised
regression tasks. Our empirical results demonstrate the effectiveness of our proposed
framework in achieving this adaptation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our proposed method in Section A.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided a detailed implementation of our proposed framework in
Section 3, including the hyperparameters used in our experiments, which can be found in
Appendix A.13. This information can be used to reproduce the results presented in the
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided details about the datasets used in our experiments in
Section A.11. These datasets can be easily downloaded from the internet. If a dataset
did not come with predefined splits, we manually created the train-test splits. The
splits we used are open-sourced at https://github.com/pm25/regression-datasets.
The code used in the experiments is also open-sourced at https://github.com/pm25/
semi-supervised-regression, and can be used to reproduce the results presented in
the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and testing details of our experiments are outlined in Appendix
A.12.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All of our experimental results were obtained by running each experiment
three times with fixed random seeds 0, 1, and 2. We have provided the mean and standard
deviation for our experimental results.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: For more detailed information about the computer resources used for conduct-
ing our experiments, please refer to Appendix A.8.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have thoroughly reviewed and ensured that we have met all the statement
outlined in the ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all the code, data, and models used in this paper to
ensure proper attribution and transparency.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The documentation, along with the code used in the paper, is open-sourced
at https://github.com/pm25/semi-supervised-regression. It provides detailed
instructions on how to use the code. The code is derived from the USB[26] codebase, and
both our modifications and the original USB code are licensed under the MIT license, which
allows for modification and redistribution. More details about the license can be found at
https://github.com/pm25/semi-supervised-regression/blob/main/LICENSE.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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