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Abstract
Optimal transport (OT) barycenters are a mathematically grounded way of averag-
ing probability distributions while capturing their geometric properties. In short,
the barycenter task is to take the average of a collection of probability distributions
w.r.t. given OT discrepancies. We propose a novel algorithm for approximating the
continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions. Our ap-
proach is built upon the dual reformulation of the EOT problem based on weak OT,
which has recently gained the attention of the ML community. Beyond its novelty,
our method enjoys several advantageous properties: (i) we establish quality bounds
for the recovered solution; (ii) this approach seamlessly interconnects with the
Energy-Based Models (EBMs) learning procedure enabling the use of well-tuned
algorithms for the problem of interest; (iii) it provides an intuitive optimization
scheme avoiding min-max, reinforce and other intricate technical tricks. For valida-
tion, we consider several low-dimensional scenarios and image-space setups, includ-
ing non-Euclidean cost functions. Furthermore, we investigate the practical task of
learning the barycenter on an image manifold generated by a pretrained generative
model, opening up new directions for real-world applications. Our code is available
at https://github.com/justkolesov/EnergyGuidedBarycenters.

1 Introduction
Averaging is a fundamental concept in mathematics and plays a central role in numerous applications.
While it is a straightforward operation when applied to scalars or vectors in a linear space, the
situation complicates when working in the space of probability distributions. Here, simple
convex combinations can be inadequate or even compromise essential geometric features, which
necessitates a different way of taking averages. To address this issue, one may carefully select a
measure of distance that properly captures similarity in the space of probabilities. Then, the task is
to find a procedure which identifies a ‘center’ that, on average, is closest to the reference distributions.
One good choice for comparing and averaging probability distributions is provided by the family of
Optimal Transport (OT) discrepancies [110]. They have clear geometrical meaning and practical
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(a) The unfolded sphere. (b) The sphere viewed from different viewpoints.

Figure 1: Entropic barycenter Q∗ (5) of N = 4 von Mises distributions Pn on the sphere (see M5.1) estimated
with our barycenter solver (Algorithm 1). The used transport costs are ck(xk, y) =

1
2

(
arccos ⟨xk, y⟩

)2.

interpretation [89, 97]. The corresponding problem of averaging probability distributions using OT
discrepancies is known as the OT barycenter problem [1]. OT-based barycenters find application in
various practical domains: domain adaptation [79], shape interpolation [98], Bayesian inference
[101, 102], text scoring [18], style transfer [80], reinforcement learning [77].
Over the past decade, the substantial demand from practitioners sparked the development of various
methods tackling the barycenter problem. The research community’s initial efforts were focused
on the discrete OT barycenter setting, see Appendix B.1 for more details. The continuous setting
turns out to be even more challenging, with only a handful of recent works devoted to this setup
[72, 17, 59, 55, 32, 82, 14]. Most of these works are devoted to specific OT cost functions, e.g., deal
with ℓ22 barycenters [59, 55, 32, 82]; while others require non-trivial a priori selections [72] and have
limiting expressivity and generative ability [17, 14], see §3 for a detailed discussion.

Contributions. We propose a novel approach for solving Entropy-regularized OT (EOT) barycenter
problems, which alleviates the aforementioned limitations of existing continuous OT solvers.
1. We reveal an elegant reformulation of the EOT barycenter problem by combining weak dual form

of EOT with the congruence condition (§4.1); we derive a simple optimization procedure which
closely relates to the standard training algorithm of Energy-Based models (§4.2).

2. We establish the generalization bounds as well as the universal approximation guarantees for our
recovered EOT plans, which push the reference distributions to the barycenter (§4.3).

3. We validate the applicability of our approach on various toy and large-scale setups, including the
RGB image domain (§5). In contrast to previous works, we also pay attention to non-Euclidean
OT costs. Specifically, we conduct a series of experiments looking for a barycenter on an image
manifold of a pretrained GAN. In principle, the image manifold support may contribute to the
interpretability and plausibility of the resulting barycenter distribution in downstream tasks.

Notations. We write K = {1, 2, . . . ,K}. Throughout the paper X ⊂ RD′
,Y ⊂ RD and Xk ⊂ RDk

(k ∈ K) are compact subsets of Euclidean spaces. Continuous functions on X are denoted as C(X ).
Probability distributions on X are P(X ). Absolutely continuous probability distributions on X are
denoted by Pac(X ) ⊂ P(X ). Given P ∈ P(X ),Q ∈ P(Y), we use Π(P,Q) to designate the set of
transport plans, i.e., probability distributions on X × Y with the first and second marginals given by
P and Q, respectively. The density of P ∈ Pac(X ) w.r.t. the Lebesgue measure is denoted by dP(x)

dx .

2 Background

First, we recall the formulations of EOT (§2.1) and the barycenter problem (§2.2). Next, we clarify
the computational setup of the considered EOT barycenter task (§2.3).

2.1 Entropic Optimal Transport
Consider distributions P ∈ Pac(X ), Q ∈ Pac(Y), a continuous cost function c : X × Y → R and a
regularization parameter ϵ > 0. The entropic optimal transportation (EOT) problem between P and
Q [15, 78] consists of finding a minimizer of

EOTc,ϵ(P,Q)
def
= min
π∈Π(P,Q)

{
E

(x,y)∼π
c(x, y)− ϵE

x∼P
H(π(·|x))

}
. (1)

Note that (1) is not the only way to formulate EOT. One more popular and equivalent formulation
[19, 83, 36] substitutes the conditional entropy term Ex∼PH(π(·|x)) in (1) with full entropy H(π).
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A minimizer π∗ ∈ Π(P,Q) of (1) is called the EOT plan; its existence and uniqueness are guaranteed,
see, e.g., [16, Th. 3.3]. In practice, we usually do not require the EOT plan π∗ but its conditional
distributions π∗(·|x) ∈ P(Y) as they prescribe how points x ∈ X are stochastically mapped to Y
[42, §2]. We refer to π∗(·|x) as the conditional plans.
Weak OT dual formulation of the EOT problem. The EOT problem permits several dual formula-
tions. In our paper, we use the one derived from the weak OT theory [39, Theorem 9.5]:

EOTc,ϵ(P,Q) = sup
f∈C(Y)

{
E

x∼P
fC(x) + E

y∼Q
f(y)

}
, (2)

where fC : X → R is the so-called weak entropic c-transform [9, Eq. 1.2] of the function (potential)
f . The transform is defined by

fC(x)
def
= min

µ∈P(Y)

{
E

y∼µ
c(x, y)− ϵH(µ)− E

y∼µ
f(y)

}
. (3)

We use the capital C in fC to distinguish the weak transform from the classic c-transform [89, §1.6]
or (c, ϵ)-transform [76, §2]. In particular, formulation (2) is not to be confused with the conventional
EOT dual, see [78, Appendix A].

For each x ∈ X , the minimizer µf
x ∈ P(Y) of the weak c-transform (3) exists and is unique. Its

density has particular form [78, Theorem 1]. Let Zc(f, x)
def
=
∫
Y exp

( f(y)−c(x,y)
ϵ

)
dy, then

dµf
x(y)

dy

def
=

1

Zc(f, x)
exp

(
f(y)− c(x, y)

ϵ

)
. (4)

By substituting (4) into (3) and carrying out straightforward manipulations, we arrive at an explicit
formula fC(x) = −ϵ logZc(f, x), see [78, Equation (14)].

2.2 Entropic OT Barycenter
Consider distributions Pk ∈ Pac(Xk) and continuous cost functions ck(·, ·) : Xk×Y → R for k ∈ K.
Given weights λk > 0 with

∑K
k=1 λk = 1, the EOT Barycenter problem is:

L∗ def
= inf
Q∈P(Y)

K∑
k=1

λkEOTck,ϵ(Pk,Q), (5)

The case where ϵ = 0 corresponds to the classical OT barycenter [1] and falls out of the scope of this
paper. Note that the majority of previous research [20, 22, 30, 25, 68, 67] consider a bit different but
equivalent EOT barycenter formulation, i.e., which has the same minimizers. The objective (5) is
known as Schrödinger barycenter problem [15, Table 1], see the extended discussion in Appendix
B.3. It is worth noting that under mild assumptions the barycenter Q∗ which delivers optimal value
of (5) exists and is unique, see Appendix A.7.

2.3 Computational aspects of the EOT barycenter task
Barycenter problems, such as (5), are known to be challenging in practice [2]. To our knowledge,
even when P1, . . . ,PK are Gaussian distributions, there is no direct analytical solution neither for
our entropic case (ϵ > 0), see the additional discussion in App. C.4, nor for the unregularized case
[3, ϵ = 0]. Moreover, in real-world scenarios, the distributions Pk (k ∈ K) are typically not available
explicitly but only through empirical samples (datasets). This aspect leads to the next learning setup.

We assume that each Pk is accessible only by a limited number of i.i.d. empirical samples
Xk = {x1

k, x
2
k, . . . x

Nk

k } ∼ Pk. Our aim is to approximate the optimal conditional plans π∗
k(·|xk)

between the entire source distributions Pk and the entire (unknown) barycenter Q∗ solving (5). The
recovered plans should provide the out-of-sample estimation, i.e., allow generating samples from

π∗
k(·|xnew

k ), where xnew
k is a new sample from Pk which is not necessarily present in the train sample.

This setup corresponds to continuous OT [72, 59]. It differs from the discrete OT setup [19, 20]
which aims to solve the barycenter task for discrete empirical distributions. Discrete OT are not
well-suited for the out-of-sample estimation required in the continuous OT setup.

3 Related works
The taxonomy of OT solvers is large. Due to space constraints, we discuss here only methods
within the continuous OT learning setup that solve the (E-)OT barycenter problem. These methods
approximate OT maps or plans between the distributions Pk and the barycenter Q∗ rather than just
their empirical counterparts that are available from the training samples. A broader discussion of
general-purpose discrete/continuous (E-)OT solvers is in Appendix B.1.
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Method

[72]

[17]
[59]
[32]
[55]
[82]
[14]

Ours

Admissible
OT costs

general

general
only l22
only l22
only l22
only l22
general
general

Learns
OT plans

yes

no
yes
yes
yes
yes
yes
yes

Max considered
data dim

8D, no images

1x32x32 (MNIST)
256D, no images

1x28x28 (MNIST)
3x64x64 (CelebA, etc.)

1x28x28 (MNIST)
256D, Gaussians only

3x64x64 (CelebA)

Regularization

Entropic/Quadratic
with fixed prior

Entropic (Sinkhorn)
requires fixed prior

no
no

Entropic
Entropic/Quadratic

Entropic

Table 1: Comparison of continuous OT bary solvers

Continuous OT barycenter solvers are
based on the unregularized or regular-
ized OT barycenter problem within the
continuous OT learning setup. The
works [59, 32, 82, 55] are designed ex-
clusively for the quadratic Euclidean cost
ℓ2(x, y)

def
= 1

2∥x − y∥22. The OT prob-
lem with this particular cost exhibits sev-
eral advantageous theoretical properties
[4, §2] which are exploited by the afore-
mentioned articles to build efficient pro-
cedures for barycenter estimation algorithms. In particular, [59, 32] utilize ICNNs [6] which parame-
terize convex functions, and [82] relies on a specific tree-based Schrödinger Bridge reformulation. In
contrast, our proposed approach is designed to handle the EOT problem with arbitrary cost functions
c1, . . . , cK . In [72], they also consider regularized OT with non-Euclidean costs. Similar to our
method, they take advantage of the dual formulation and exploit the so-called congruence condition
(§4). However, their optimization procedure substantially differs. It necessitates selecting a fixed
prior for the barycenter, which can be non-trivial. The work [14] takes a step further by directly
optimizing the barycenter distribution in a variational manner, eliminating the need for a fixed prior.
This modification increases the complexity of optimization and requires specific parametrization
of the variational barycenter. In [17], the authors also parameterize the barycenter as a generative
model. Their approach does not recover the OT plans, which differs from our learning setup (§2.3).
A summary of the key properties is provided in Table 1, highlighting the fact that our approach
overcomes many imperfections of competing methods. We are also aware of the novel continuous
OT barycenter solver [52]. This approach is more recent than ours and is significantly based on the
ideas from our article. Because of this, we exclude it from our comparisons.

4 Proposed Barycenter Solver
In the first two subsections, we work out our optimization objective (§4.1) and its practical implemen-
tation (§4.2). In §4.3, we alleviate the gap between the theory and practice by offering finite sample
approximation guarantees and universality of NNs to approximate the solution.

4.1 Deriving the optimization objective
In what follows, we analyze (5) from the dual perspectives. We introduce L : C(Y)K → R:

L(f1, . . . , fK)
def
=

K∑
k=1

λk

{
E

xk∼Pk

fCk

k (xk)
} [

= −ϵ
K∑

k=1

λk

{
E

xk∼Pk

logZck(fk, xk)
}]

.

Here fCk

k denotes the weak entropic ck-transform (3) of fk. Following §2.1, we see that it coincides
with −ϵ logZck(fk, xk). Below we formulate our main theoretical result, which will allow us to
solve the EOT barycenter task without optimization over all distributions on Y .
Theorem 4.1 (Dual formulation of the EOT barycenter problem [proof ref.]). Problem (5) permits
the following dual formulation: L∗ = sup

f1, . . . , fK ∈ C(Y);∑K
k=1 λkfk = 0

L(f1, . . . , fK). (6)

We refer to the constraint
∑K

k=1 λkfk = 0 as the congruence condition w.r.t. weights {λk}Kk=1. The
potentials fk appearing in (6) play the same role as in (2). Notably, when L(f1, . . . , fK) is close
to L∗, the conditional optimal transport plans π∗

k(·|xk), xk ∈ Xk, between Pk and the barycenter
distribution Q∗ can be approximately recovered through the potentials fk. This intuition is formalized
in Theorem 4.2 below. First, for fk ∈ C(Y), we define

dπfk(xk, y)
def
=dµfk

xk
(y)dPk(xk)

and set Qfk ∈ P(Y) to be the second marginal of πfk .
Theorem 4.2 (Quality bound of plans recovered from dual potentials [proof ref.]). Let {fk}Kk=1, fk ∈
C(Y) be congruent potentials. Then we have

L∗ − L(f1, . . . , fK) = ϵ

K∑
k=1

λkKL
(
π∗
k∥πfk

)
≥ ϵ

K∑
k=1

λkKL
(
Q∗∥Qfk

)
, (7)

where π∗
k ∈ Π(Pk,Q∗), k ∈ K are the EOT plans between Pk and the barycenter distribution Q∗.

4

107516https://doi.org/10.52202/079017-3416



Algorithm 1: EOT barycenters via Energy-Based Modelling
Input: Distributions Pk, k ∈ K accessible by samples; cost functions ck(xk, y) : Xk × Y → R; the

regularization coeff. ϵ > 0; barycenter averaging coeff. λk > 0 :
∑K

k=1 λk = 1; MCMC procedure
MCMC_proc; batch size S > 0; NNs fθ,k : Y → R, s.t.

∑K
k=1 λkfθ,k ≡ 0 (see §4.2).

Output: Trained NNs fθ∗,k recovering the conditional OT plans between Pk and barycenter Q∗.

for iter = 1, 2, . . . do
for k = 1, 2, . . . ,K do

Sample batch {xs
k}Ss=1 ∼ Pk;

Draw Yk = {ys
k}Ss=1 with MCMC:

ys
k = MCMC_proc( fθ,k(·)−ck(x

s
k,·)

ϵ
);

L̂k ← −λk
1
S

[∑S
s=1 fθ,k (y

s
k)

]
;

L̂←
∑K

k=1 L̂k; Update θ by using ∂L̂
∂θ

;

According to Theorem 4.2, an approximate solution {fk}Kk=1 of (6) yields distributions πfk which
are close to the optimal plans π∗

k. Each πfk is formed by conditional distributions µfk
xk

, c.f. (4),
with closed-form energy function, i.e., the unnormalized log-likelihood. Consequently, one can
generate samples from µfk

xk
using standard MCMC techniques [7]. In the next subsection, we stick

to the practical aspects of optimization of (6), which bears certain similarities to the training of
Energy-Based models [69, 100, EBM].

Relation to prior works. Works [72, 59] also aim to first get the dual potentials and then recover the
barycenter, see the discussion in §3 for more details.

4.2 Practical Optimization Algorithm
To maximize the dual EOT barycenter objective (6), we replace the potentials fk ∈ C(Y) for k ∈ K
with neural networks fθ,k , θ ∈ Θ. In order to eliminate the constraint in (6), we parametrize
fθ,k as gθk −

∑K
k′=1 λk′gθk′ , where {gθk : RD → R, θk ∈ Θk}Kk=1 are neural networks. This

parameterization automatically ensures the congruence condition
∑K

k=1 λkfθ,k ≡ 0. Note that
Θ=Θ1 × · · · ×ΘK and θ=(θ1, . . . , θK) ∈ Θ. Our objective function for (6) is

L(θ)
def
= −ϵ

K∑
k=1

λk

{
E

xk∼Pk

logZck(fθ,k, xk)
}
. (8)

The direct computation of the normalizing constant Zck may be infeasible. Still, the gradient of L
with respect to θ can be derived similarly to [78, Theorem 3]:
Theorem 4.3 (Gradient of the dual EOT barycenter objective [proof ref]). The gradient of L satisfies

∂

∂θ
L(θ) = −

K∑
k=1

λk E
xk∼Pk

{
E

y∼µ
fθ,k

xk

[
∂

∂θ
fθ,k(y)

]}
. (9)

With this result, we can describe our proposed algorithm which maximizes L using (9).

TRAINING. To perform stochastic gradient ascent step w.r.t. θ, we approximate (9) with Monte-Carlo
by drawing samples from dπfθ,k(xk, y) = dµ

fθ,k
xk (y)dPk(xk). Analogously to [78, §3.2], this can be

achieved by a simple two-stage procedure. At first, we draw a random vector xk from Pk. This is
done by picking a random empirical sample from the available dataset Xk. Then, we need to draw a
sample from the distribution µ

fθ,k
xk . Since we know the negative energy (unnormalized log density)

of µfθ,k
xk by (4), we can sample from this distribution by applying an MCMC procedure which uses

the negative energy function ϵ−1(fθ,k(y) − ck(xk, y)) as the input. Our findings are summarized
in Algorithm 1. Note that typical MCMC needs the energy functions, in particular, costs ck, to be
differentiable. Otherwise, one can consider gradient-free procedures, e.g., [92, 104].
In all our experiments, we use ULA [86, §1.4.1] as a MCMC_proc. It is a conventional MCMC
algorithm. Specifically, in order to draw a sample yk ∼ µ

fθ,k
xk , where xk ∈ Xk, we initialize y

(0)
k

from the D−dimensional distribution N (0, ID) and then iterate the discretized Langevin dynamics:

y
(l+1)
k ←y

(l)
k +

η

2ϵ
∇y

(
fθ,k(y)−c(xk, y)

)∣∣∣
y=y

(l)
k

+
√
ηξl ,

5
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where ξl ∼ N (0, ID), l ∈ {0, 1, 2, . . . , L}, L is a number of steps, and η > 0 is a step size. Note
that the iteration procedure above could be straightforwardly adapted to a batch scenario, i.e., we can
simultaneously simulate the whole batch of samples Y (l)

k conditioned on X
(l)
k . The particular values

of number of steps L and step size η are reported in the details of the experiments, see Appendix C.
An alternative importance sampling-based approach for optimizing (9) is presented in Appendix D.

INFERENCE. We use the same ULA procedure for sampling from the recovered optimal conditional
plans πfθ∗,k(·|xk), see the details on the hyperparameters L, η in §5.
Relation to prior works. Learning a distribution of interest via its energy function (EBMs) is a
well-established direction in generative modelling research [69, 111, 28, 100]. Similar to ours, the
key step in most energy-based approaches is the MCMC procedure which recovers samples from
a distribution accessible only by an unnormalized log density. Typically, various techniques are
employed to improve the stability and convergence speed of MCMC, see, e.g., [27, 34, 113]. The
majority of these techniques can be readily adapted to complement our approach. At the same time,
the primary goal of this study is to introduce and validate the methodology for computing EOT
barycenters in an energy-guided manner. Therefore, we opt for the simplest MCMC algorithm, even
without the replay buffer [46], as it serves our current objectives.

4.3 Generalization Bounds and Universal Approximation with Neural Nets
In this subsection, we answer the question of how far the recovered plans are from the EOT plan
π∗
k between Pk and Q. In practice, for each distribution Pk we know only the empirical samples

Xk = {x1
k, x

2
k, . . . x

Nk

k } ∼ Pk, i.e., finite datasets. Besides, the available potentials fk, k ∈ K come
from restricted classes of functions and satisfy the congruence condition. More precisely, we have
fk = gk −

∑K
k=1 λkgk (§4.2), where each gk is picked from some class Gk of neural networks.

Formally, we write (f1, . . . , fK) ∈ F to denote the congruent potentials constructed this way from
the functional classes G1, . . . ,GK . Hence, in practice, we optimize the empirical version of (8):

max
(f1,...,fK)∈F̂

L(f1, . . . , fK)
def
= max
(f1,...,fK)∈F

K∑
k=1

λk

Nk

Nk∑
n=1

fCk

k (xn
k );

(f̂1, . . . f̂K)
def
= argmax
(f1,...,fK)∈F

L̂(f1, . . . , fk).

A natural question arises: How close are the recovered plans πf̂k to the EOT plans π∗
k between Pk

and Q∗? Since our objective (8) is a sum of integrals over distributions Pk, the generalization error
can be straightforwardly decomposed into the estimation and approximation parts.
Proposition 4.4 (Decomposition of the generalization error [proof ref.]). The following bound holds:

ϵE
K∑

k=1

λkKL
(
π∗
k∥πf̂k

)
≤

Estimation error (upper bound)︷ ︸︸ ︷
2
∑K

k=1
λkERepXk

(FCk

k ,Pk)+

Approximation error︷ ︸︸ ︷[
L∗ − max

(f1,...,fK)∈F
L(f1, . . . , fK)

]
, (10)

where FCk

k

def
= {fCk

k | (f1, . . . , fK) ∈ F}, and the expectations are taken w.r.t. the random real-
ization of the datasets X1∼P1, . . . , XK∼PK . Here RepXk

(FCk

k ,Pk) is the standard notion of the
representativeness of the sample Xk w.r.t. functional class FCk

k and distribution Pk, see App. A.5.

To bound the estimation error, we need to further bound the expected representativeness
ERepXk

(FCk

k ,Pk). Doing preliminary analysis, we found that it does not depend that much on the
complexity of the functional class Fk. However, it seems to heavily depend on the properties of
the cost ck. We derive two bounds: a general one for Lipschitz (in x) costs and a better one for the
feature-based quadratic costs.
Theorem 4.5 (Bound on ERep w.r.t. Ck-transform classes [proof ref.]). (a) Let Fk ⊂ C(Y). Assume
that ck(x, y) is Lipschitz in x with the same Lipschitz constant for all y∈Y . Then

ERepXk
(FCk

k ,Pk) ≤ O
(
N

−1/(Dk+1)
k

)
. (11)

(b) Let ck(xk, y) =
1
2∥uk(xk)− v(y)∥2, Fk be a bounded (w.r.t. the supremum norm) subset of

C(Y), uk : Xk → RD′′
and v : Y → RD′′

be continuous functions. Then

ERepXk
(FCk

k ,Pk) ≤ O
(
N

−1/2
k

)
. (12)

6
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Substituting (11) or (12) to (10) immediately provides the statistical consistency when
N1, . . . , NK →∞, i.e., vanishing of the estimation error when the sample size grows.

The case (a) here is not very practically useful as the rate suffers from the curse of dimensionality.
Still, this result points to one intriguing property of our solver. Namely, we may take arbitrarily large
set Fk (even Fk = C(Y)!) and still have the guarantees of learning the barycenter. This happens
because of Ck-transforms: informally, they make functions fk ∈ Fk smoother and "simplify" the set
Fk. In our experiments, we always work with the costs as in (b). As a result, our estimation error is
O(

∑K
k=1 N

−1/2
k ); this is a standard fast and dimension-free convergence rate. In practice, Fk are

usually neural nets. They are indeed bounded, as required in (b), if their weights are constrained.

While the estimation error usually decreases when the sample sizes tend to infinity, it is natural to
wonder whether the approximation error can be also made arbitrarily small. We positively answer
this question when the standard fully-connected neural nets (multi-layer perceptrons) are used.

Theorem 4.6 (Vanishing Approximation Error [proof ref.]). Let σ : R→ R be an activation function.
Assume that it is non-affine and there is an x̃ ∈ R at which σ is differentiable and σ′(x̃) ̸= 0. Then
for every δ > 0 there exist K multi-layer perceptrons gk : RD → R with activations σ for which the
congruent functions fk = gk −

∑K
k=1 λkgk satisfy

K∑
k=1

λkKL
(
π∗
k∥πfk

)
= (L∗ − L(f1, . . . , fK))/ϵ < δ/ϵ.

Furthermore, each gk has width at-most D + 4.

Importantly, our Theorem 4.6 is more than just result on universal approximation since it deals with
(i) congruent potentials and (ii) entropic Ck-transforms. In particular, only specific properties of the
entropic Ck-transforms allow deriving the desired universal approximation statement, see the proof.
Summary. Our results of this section show that both the estimation and approximation errors can be
made arbitrarily small given a sufficient amount of data and large neural nets, allowing to perfectly
recover the EOT plans π∗

k.
Relation to prior works. To our knowledge, the generalization and the universal approximation are
novel results with no analogues established for any other continuous barycenter solver. Our analysis
shows that the EOT barycenter objective (8) is well-suited for statistical learning and approximation
theory tools. This aspect distinguishes our work from the predecessors, where complex optimization
objectives may not be as amenable to rigorous study.

4.4 Learning EOT barycenter on data manifold
Averaging complex data distributions by means of EOT barycenter directly in the data space may be
undesirable. In particular, for image data domain:

• the entropic barycenter contains noisy images, see, e.g., our MNIST 0/1 experiment, §5.2. This is
due to the “blurring bias” bias [15, 49] of our entropic barycenter setup and reliance on MCMC.

• searching for (entropic) barycenter is not very practical for standard OT cost functions like ℓ2. It is
known that the true unregularized (ϵ = 0) ℓ2-barycenter of several image domains consists of just
some pixel-wise averages of images from these source domains, which is not practically useful.

To alleviate the problem, we propose solving the (entropic) barycenter problem on some a priori
known data manifoldM, where we want the barycenter to be concentrated on. In our experiments
(§5.2, §5.3) these manifolds are given by pre-trained StyleGAN [50] generator models G : Z → Y;
Z is the latent space,M = G(Z). Technically speaking, to adapt our Alogithm 1 for manifold-
constrained setup, we propose solving the barycenter problem in latent space Z with modified cost
functions ck,G(xk, z) := ck(xk, G(z)). We emphasize that such costs are general (not ℓ2 cost!)
because G is a non-trivial StyleGAN generator. Hence, while our proposed manifold-constrained
barycenter learning setup could be used on par with other OT barycenter solvers, these barycenter
solvers should support general costs. In particular, the majority of competitive methods from Table 1
are not adjustable to the manifold setup as they work exclusively with ℓ2.
Relation to prior works. While the utilization of data manifolds given by pre-trained (foundational)
models is ubiquitous in generative modeling, the adaptation of this technique for Optimal Transport
barycenter is a novel idea. Apart from our work, this idea is exploited in follow-up paper [52].
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5 Experiments
We assess the performance of our barycenter solver on small-dimensional illustrative setups (§5.1)
and in image spaces (§5.2, §5.3). The source code for our solver is written in the PyTorch
framework and available at https://github.com/justkolesov/EnergyGuidedBarycenters.
The experiments are issued in the form of convenient *.ipynb notebooks. Reproduc-
ing the most challenging experiments (§5.2, §5.3) requires less than 12 hours on a single
TeslaV100 GPU. The details of the experiments, extended experimental results are in Appendix
C, additional experiments with single-cell data are given in Appendix C.5.
Disclaimer. Evaluating how well our solver recovers the EOT barycenter is challenging because
the ground truth barycenter is typically unknown. In some cases, the true unregularized barycenter
(ϵ = 0) can be derived (see below). The EOT barycenter for sufficiently small ϵ > 0 is expected to be
close to the unregularized one. Therefore, in most cases, our evaluation strategy is to compare the
computed EOT barycenter (for small ϵ) with the unregularized one. In particular, we use this strategy
to quantitatively evaluate our solver in the Gaussian case, see Appendix C.4.

5.1 Barycenters of Toy Distributions

(a) The true unregularized
barycenter for the twisted cost.

(b) Our EOT barycenter for the
twisted cost (map from P1).

(c) The true unregularized
barycenter for ℓ2 cost.

(d) Our EOT barycenter for ℓ2

cost (map from P1).

Figure 2: 2D twister example: The true barycenter of 3 comets vs. the one computed by our solver with
ϵ = 10−2. Two costs ck are considered: the twisted cost (2a, 2b) and ℓ2 (2c, 2d).

2D Twister. Consider the map u : R2 → R2 which, in the polar coordinate system, is represented by
R+ × [0, 2π) ∋ (r, θ) 7→

(
r, (θ − r) mod 2π

)
. The cartesian version of u is presented in Appendix

C.1. Let P1,P2,P3 be 2-dimensional distributions as shown in Fig. 2a. For these distributions and
uniform weights λk = 1

3 , the unregularized barycenter (ϵ = 0) for the twisted cost ck(xk, y) =
1
2∥u(xk) − u(y)∥2 can be derived analytically, see Appendix C.1. The barycenter is the centered
Gaussian distribution which is also shown in Fig. 2a. We run the experiment for this cost with
ϵ = 10−2, and the results are recorded in Fig. 2b. We see that it qualitatively coincides with the
true barycenter. For completeness, we also show the EOT barycenter computed with our solver
for ℓ2(x, y) = 1

2∥x − y∥2 costs (Fig. 2c) and the same regularization ϵ. The true ℓ2 barycenter is
estimated by using the free_support_barycenter solver from POT package [33]. We stress that
the twisted cost barycenter and ℓ2 barycenter differ, and so do the learned conditional plans: the
ℓ2 EOT plan (Fig. 2d) expectedly looks more well-structured while for the twisted cost (Fig. 2b) it
becomes more chaotic due to non-trivial structure of this cost.

Figure 3: Samples from
the StyleGAN G defining
the polluted manifoldM.

Sphere. In this experiment, we look for the barycenter of four von
Mises distributions Pn supported on 3D sphere, see Figure 1. The cost
functions are ck(xk, y) = 1

2 arccos
2⟨xk, y⟩, the regularization is ϵ =

10−2. The learned potentials fθ,k operate with ambient R3 vectors. When
performing MCMC, we project each Langevin step to the sphere. Our
qualitative results are shown on Figure 1. While the ground truth solution
to the considered problem is unknown, the learned barycenter looks
reasonable. This showcases the applicability of our approach to non-
standard non-quadratic experimental setups.

5.2 Barycenters of MNIST Classes 0 and 1
A classic experiment considered in the continuous barycenter literature
[32, 55, 82, 17] is averaging of distributions of MNIST 0/1 digits with
weights ( 12 ,

1
2 ) in the grayscale image space X1 =X2 =Y = [−1, 1]32×32. The true unregularized

(ϵ = 0) ℓ2-barycenter images y are direct pixel-wise averages x1+x2

2 of pairs of images x1 and x2
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(a) Maps from P1 to the barycenter. (b) Maps from P2 to the barycenter. (c) Maps from P3 to the barycenter.

Figure 4: Experiment on the Ave, celeba! barycenter dataset. The plots compare the transported inputs xk ∼ Pk

to the barycenter learned by various solvers. The true unregularized ℓ2 barycenter of P1,P2,P3 are the clean
celebrity faces, see [55, §5].

(a) Learned plans from P1 (zeros) to the barycenter. (b) Learned plans from P2 (ones) to the barycenter.

Figure 5: Qualitative comparison of barycenters of MNIST 0/1 digit classes computed with barycenter solvers
in the image space w.r.t. the pixel-wise ℓ2. Solvers SCWB and WIN only learn the unregularized barycenter
(ϵ = 0) directly in the data space. In turn, our solver learns the EOT barycenter in data space as well as it can
learn EOT barycenter restricted to the StyleGAN manifold (ϵ = 10−2).

coming from the ℓ2 OT plan between 0’s (P1) and 1’s (P2). In Fig. 5, we show the unregularized ℓ2

barycenter computed by [32, SCWB], [55, WIN].

Data space EOT barycenter. To begin with, we employ our solver to compute the ϵ-regularized
EOT ℓ2-barycenter directly in the image space Y for ϵ = 10−2. We emphasize that the true entropic
barycenter slightly differs from the unregularized one. To be precise, it is expected that regularized
barycenter images are close to the unregularized barycenter images but with additional noise. In Fig.
5, we see that our solver (data space) recovers the noisy barycenter images exactly as expected.

Manifold-constrained EOT barycenter. Following the reasoning from §4.4, we propose to restrict
the search space for our algorithm to some pre-defined manifold M. As discussed earlier, the
support of the image-space unregularized ℓ2-barycenter is a certain subset ofM′ def

= {x1+x2

2 | x1 ∈
Supp(P1), x2 ∈ Supp(P2)}. To achieve this, we train a StyleGAN [50] model G : Z → Y with
Z = R512 to generate some even larger manifoldM = G(Z) which is expected to containM′.
Namely, we use all possible pixel-wise half-sums x1+x2

2 of digits 0 as x1 and {1, 4, 7} as x2, see
Figure 3 with the trained StyleGAN samples. That is, our final constructed manifoldM is polluted
with additional samples (e.g., averages of digits 0 and 7) which should not to lie in the support of
the barycenter. Then, we use our solver with ϵ = 10−2 to search for the barycenter of 0/1 digit
distributions on X1,X2 which lies in the latent space Z w.r.t. costs ck,G(x, z)

def
= 1

2∥x − G(z)∥2.
This can be interpreted as learning the EOT ℓ2-barycenter in the ambient space but constrained to
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the StyleGAN-parameterized manifold G(Z). The barycenter Q∗ is some distribution of the latent
variables z, which can be pushed to the manifold G(Z) ⊂ Y via G(z).

The results are in Fig. 5. There is (a) no noise compared to the data-space EOT barycenter because of
the manifold constraint, and (b) our solvers correctly ignores polluted samples fromM.

5.3 Evaluation on the Ave, celeba! Dataset

Solver FID↓ of plans to barycenter
k=1 k=2 k=3

SCWB [32] 56.7 53.2 58.8
WIN [55] 49.3 46.9 61.5

Ours 8.4 (.3) 8.7 (.3) 10.2 (.7)

Table 2:FID scores of images mapped
from inputs Pk to the barycenter.

In [55], the authors developed a theoretically grounded
methodology for finding probability distributions whose un-
regularized ℓ2 barycenter is known by construction. Based
on the CelebA faces dataset [73], they constructed an Ave,
celeba! dataset containing 3 degraded subsets of faces. The
true ℓ2 barycenter w.r.t. the weights ( 14 ,

1
2 ,

1
4 ) is the distri-

bution of Celeba faces itself. This dataset is used to test
how well our approach recovers the barycenter.

We follow the EOT manifold-constrained setup (§4.4) and train the StyleGAN on unperturbed celeba
faces. This might sound a little bit unfair, but our goal is to demonstrate the learned transport
plan to the constrained barycenter rather than unconditional barycenter samples (recall the setup
in §2.3). Hence, we learn the constrained EOT barycenter with ϵ = 10−4. In Fig. 4, we present
the results, depicting samples from the learned plans from each Pk to the barycenter. Overall, the
map is qualitatively good, although sometimes failures in preserving the image content may occur.
This is presumably due to MCMC inference getting stuck in local minima of the energy landscape.
For comparison, we also show the results of the solvers by [32, SCWB], [55, WIN]. Additionally,
we report the FID score [45] for images mapped to the barycenter in Table 2 (std. deviations
for our method correspond to running the inference with different random seeds). Owing to the
manifold-constrained setup, the FID score of our solver is significantly smaller.

6 Potential Impact, Limitations and Broader Impact
Potential impact. In our work, we propose a novel approach for solving EOT barycenter problems
which is applicable to general OT costs. From the practical viewpoint, we demonstrate the ability to
restrict the sought-for barycenter to the image manifold by utilizing a pretrained generative model.
Our findings may be applicable to a list of important real-world applications, see Appendix B.2. We
believe that our large-scale barycenter solver will leverage industrial & socially-important problems.

Methodological limitations. The methodological limitations of our approach are mostly the same as
those of EBMs. It is worth mentioning the usage of MCMC during the training/inference. The basic
ULA algorithm which we use in §4.2 may poorly converge to the desired distribution µf

x. In addition,
MCMC sampling is time-consuming. We leave the search for more efficient sampling procedures for
our solver, e.g., [71, 99, 43, 81, 47, 108, 66, 26], for future research. We also note that our theoretical
analysis in §4.3 does not take into the account the optimization errors appearing due to the gradient
descent and MCMC. The analysis of these quantities is a completely different domain in machine
learning and out of the scope of our work. As the most generative modelling research, we do not
attempt to analyse these errors.

Problem setup limitations. Our paper aims at solving Entropic OT barycenter problem. In the image
data space, due to utilization of the Entropy, the learned barycenter distribution may contain noisy
images. However, the utilization of our proposed StyleGAN-inspired manifold technique entirely
alleviates the problem with the noise. This is demonstrated by our latent-space experiments with
MNIST 0/1 (manifold space) and Ave Celeba! dataset.

Broader impact. This paper presents work whose goal is to advance the field of Machine Learning.
There are many potential societal consequences of our work, none which we feel must be specifically
highlighted here.
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A Proofs

A.1 Auxiliary Statements

We start by showing some basic properties of the C-transform which will be used in the main proofs.
Proposition A.1 (Properties of the C-transform). Let f1, f2 : Y → R be two measurable functions
which are bounded from below. It holds that

(i) Monotonicity: f1 ≤ f2 implies fC
1 ≥ fC

2 ;

(ii) Constant additivity: (f1 + a)C = fC
1 − a for all a ∈ R;

(iii) Concavity: (λf1 + (1− λ)f2)
C ≥ λfC

1 + (1− λ)fC
2 for all λ ∈ [0, 1];

(iv) Continuity: f1, f2 bounded implies supx∈X |fC
1 (x)− fC

2 (x)| ≤ supy∈Y |f1(y)− f2(y)|.

Proof of Proposition A.1. We recall the definition of the C-transform

fC
1 (x) = inf

µ∈P(Y)

{
C(x, µ)−

∫
Y
f1(y)dµ(y)

}
,

where C(x, µ)
def
=

∫
Y c(x, y)dµ(y) − ϵH(µ). Monotonicity (i) and constant additivity (ii) are

immediate from the definition.

To see (iii), observe that the dependence of
∫
Y f1(y)dµ(y) on f1 is linear. Thus, fC

1 is the pointwise
infimum of a family of linear functionals and thus concave.

Finally, to show (iv) we have by monotonicity of the integral that∣∣∣∣∫
Y
f1(y)dµ(y)−

∫
Y
f2(y)dµ(y)

∣∣∣∣ ≤ sup
y∈Y
|f1(y)− f2(y)| (13)

for any µ ∈ P(Y). For fixed x ∈ X we have

fC
1 (x)− fC

2 (x) = inf
µ∈P(Y)

[
C(x, µ̃)−

∫
Y
f1(y)dµ̃(y)

]
− inf

µ∈P(Y)

[
C(x, µ)−

∫
Y
f2(y)dµ(y)

]
= sup

µ∈P(Y)

inf
µ̃∈P(Y)

[
C(x, µ̃)− C(x, µ)−

∫
Y
f1(y)dµ̃(y) +

∫
Y
f2(y)dµ(y)

]
.

By setting µ̃ = µ we increase the value and obtain

fC
1 (x)− fC

2 (x) ≤ sup
µ∈P(Y)

∫
Y
[f2(y)− f1(y)] dµ(y) ≤ sup

y∈Y
|f1(y)− f2(y)|, (14)

where the last inequality follows from (13). For symmetry reasons, we can swap the roles of f1 and
f2 in (14), which yields the claim.

A.2 Proof of Theorem 4.1

Proof. By substituting in (5) the primal EOT problems (1) with their dual counterparts (2), we obtain
a dual formulation, which is the starting point of our analysis:

L∗ = min
Q∈P(Y)

sup
f1,...,fK∈C(Y)

K∑
k=1

λk

{∫
Xk

fCk

k (xk)dPk(xk) +

∫
Y
fk(y)dQ(y)

}
︸ ︷︷ ︸

def
=L̃

(
Q,{fk}K

k=1

)
. (15)

Here, we replaced inf with min because of the existence of the barycenter (§2.2). Moreover, we refer
to the entire expression under the min sup as a functional L̃ : P(Y)× C(Y)K → R. For brevity, we
introduce, for (f1, . . . , fK) ∈ C(Y)K , the notation

f̄
def
=

K∑
k=1

λkfk and M
def
= inf

y∈Y
f̄(y) = inf

Q∈P(Y)

∫
f̄(y)dQ(y), (16)
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where the equality follows from two elementary observations that (a) M ≤
∫
f̄(y)dQ(y) for any

Q ∈ P(Y) and (b) f̄(y) =
∫
f̄(y′)dδy(y

′) where δy denotes a Dirac mass at y ∈ Y .

On the one hand, P(Y) is compact w.r.t. the weak topology because Y is compact, and for fixed
potentials (f1, . . . , fK) ∈ P(Y)K we have that L̃(·, (fk)Kk=1) is continuous and linear. In particular,
L̃(·, (fk)Kk=1) is convex and l.s.c. On the other hand, for a fixed Q, the functional L̃

(
Q, ·

)
is concave

by (iii) in Proposition A.1. These observations allow us to apply Sion’s minimax theorem [96,
Theorem 3.4] to swap min and inf in (15) and obtain using (16)

L∗ = sup
f1,...,fK∈C(Y)

min
Q∈P(Y)

K∑
k=1

λk

{∫
Xk

fCk

k (xk)dPk(xk) +

∫
X
fk(y)dQ(y)

}

= sup
f1,...,fK∈C(Y)

{ K∑
k=1

λk

∫
Xk

fCk

k (xk)dPk(xk) + min
Q∈P(Y)

∫
X
f̄(y)dQ(y)

}

= sup
f1,...,fK∈C(Y)

{ K∑
k=1

λk

∫
Xk

fCk

k (xk)dPk(xk) + min
y∈Y

f̄(y)

}
︸ ︷︷ ︸

def
=L̃(f1,...,fK)

. (17)

Next, we show that the sup in (17) can be restricted to tuplets satisfying the congruence condition∑K
k=1 λkfk = 0. It remains to show that for every tuplet (f1, . . . , fK) ∈ C(Y)K there exists a

congruent tuplet (f̃1, . . . , f̃K) ∈ C(Y)K such that L̃(f̃1, . . . , f̃K) ≥ L̃(f1, . . . , fK).

To this end, fix (f1, . . . , fK) and define the congruent tuplet

(f̃1, . . . , f̃K)
def
=

(
f1, . . . , fK−1, fK −

f̄

λK

)
. (18)

We find M̃
def
= infy∈Y

∑K
k=1 λkf̃k = 0 by the congruence and derive

L̃(f̃1, . . . , f̃K)− L̃(f1, . . . , fK) = λK

∫
XK

[
f̃CK

K (xK)− fCK

K (xK)
]
dPK(xK)−M

≥ λK

∫
XK

[(
fK −

M

λK

)CK

(xK)− fCK

K (xK)

]
dP(xK)−M

= λK

∫
XK

M

λK
dP(xK)−M = 0,

where the first inequality follows from f̃K = fK − f̄
λK
≤ fK − M

λK
combined with monotonicity

of the C-transform, see (i) in Proposition A.1. The second to last equality follow from constant
additivity, see (ii) in Proposition A.1.

In summary, we obtain
L∗ = sup

f1,...,fk∈C(Y)∑K
k=1 fk=0

L̃(f1, . . . , fK). (19)

Finally, observe that for congruent (f1, . . . , fK) we have L̃(f1, . . . , fK) = L(f1, . . . , fK). Hence,
we can replace L̃ by L in (19), which yields (6).

A.3 Proof of Theorem 4.2

Proof. Write Q∗ for the barycenter and π∗
k for the optimizer of EOTck,ϵ(Pk,Q∗). Consider congruent

potentials f1, . . . , fK ∈ C(Y) and define the probability distribution

dπfk(xk, y)
def
= dµfk

xk
(y) dPk(xk),

where
dµfk

xk
(y)

dy

def
=

1

Zck(fk, xk)
exp

(
fk(y)− ck(xk, y)

ϵ

)
, (20)
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Zck(fk, xk)
def
= log

(∫
Y
e

fk(y)−ck(xk,y)

ϵ dy

)
. (21)

Then we have by [78, Thm. 2]:

EOTck,ϵ(Pk,Q∗)−
(∫

Xk

fCk(xk)dP(xk) +

∫
Y
f(y)dQ∗(y)

)
= ϵKL

(
π∗
k∥πfk

)
. (22)

Multiplying (22) by λk and summing over k yields

ϵ

K∑
k=1

λkKL
(
π∗
k∥πfk

)
=

∑
k=1

λk

{
EOTck,ϵ(Pk,Q∗)−

∫
Xk

fCk

k (xk)dPk(xk)

}
−

∫
Y

K∑
k=1

λkf(y)︸ ︷︷ ︸
=0

dQ∗(y)

= L∗ − L(f1, . . . , fk), (23)

where the last equality follows by congruence, i.e.,
∑K

k=1 λkfk ≡ 0.

The remaining inequality in (7) is a consequence of the data processing inequality for f -divergences
which we invoke here to get

KL
(
π∗
k∥πfk

)
≥ KL

(
Q∗∥Qfk

)
,

where Q∗ and Qfk are the second marginals of π∗
k and πfk , respectively.

A.4 Proof of Theorem 4.3

Proof. The desired equation (9) could be derived exactly the same way as in [78, Theorem 3].

A.5 Proof of Proposition 4.4 and Theorem 4.5

The derivations of the quantitative bound for Proposition 4.4 and Theorem 4.5 relies on the following
standard definitions from learning theory, which we now recall for convenience (see, e.g. [93, §26]).
Consider some class S of functions s : X → R and a distribution µ on X . Let X = {x1, . . . , xN}
be a sample of N points in X .

The representativeness of the sample X w.r.t. the class S and the distribution µ is defined by

RepX(S, µ) def
= sup

s∈S

[ ∫
X
s(x)dµ(x)− 1

N

N∑
n=1

s(xn)
]
. (24)

The Rademacher complexity of the class S w.r.t. the distribution µ and sample size N is given by

RN (S, µ) def
=

1

N
E
{
sup
s∈S

N∑
n=1

s(xn)σn

}
, (25)

where {xn}Nn=1 ∼ µ are mutually independent, {σn}Nn=1 are mutually independent Rademacher
random variables, i.e., Prob

(
σn = 1

)
= Prob

(
σn = −1

)
= 0.5, and the expectation is taken with

respect to both {xn}Nn=1, {σn}Nn=1. The well-celebrated relation between (25) and (24), as shown in
[93, Lemma 26.2], is

ERepX(S, µ) ≤ 2 · RN (S, µ), (26)
where the expectation is taken w.r.t. random i.i.d. sample X ∼ µ of size N .

Proposition 4.4. Observe that by (23) we may write

ϵ

K∑
k=1

λkKL
(
π∗
k∥πf̂k

)
= L∗ − L(̂f) =

[
L∗ −max

f∈F
L(f)

]
︸ ︷︷ ︸

Approximation error

+

[
max
f∈F
L(f)− L(̂f)

]
︸ ︷︷ ︸

Estimation error

. (27)

Let f be a maximizer of L(f) within F . Analysing the estimation error in (27) yields

max
f∈F
L(f)− L(̂f) = L(f)− L(̂f)
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=
[
L(f)− L̂(f)

]
+
[
L̂(f)− L̂(̂f)

]︸ ︷︷ ︸
≤0

+
[
L̂(̂f)− L(̂f)

]
(28)

≤ 2 sup
f∈F

∣∣L(f)− L̂(f)∣∣, (29)

where central term in line (28) is bounded above by 0 due the maximality of f̂, that is, L̂(̂f) =

maxf∈F L̂(f) ≥ L̂(f). Due to (29), we can bound the estimation error using the Rademacher
complexity

sup
f∈F

∣∣L(f)− L̂(f)∣∣ ≤ K∑
k=1

λk sup
fk∈Fk

[∫
Xk

fCk

k (xk)dPk(xk)−
1

Nk

Nk∑
n=1

fCk

k (xn
k )

]
=

K∑
k=1

λkRepXk
(FCk

k ,Pk).

Proof of Theorem 4.5. Case (a) - Lipschitz costs: Assume that, for k ∈ K, x 7→ ck(x, y) is Lipschitz
with constant Lk ≥ 0 for every y ∈ Y . Recall that fCk

k is defined as the pointwise supremum of
Lk-Lipschitz functions and, therefore, Lipschitz continuous with the same constant. Since the value
of the representativeness of a sample w.r.t. a function class is invariant under translating individual
elements of said class, we have that RepX(FCk

k ,Pk) coincides with RepX(Gk,Pk) where

Gk
def
= {fCk − fCk(x̃k) : f ∈ C(Y)},

for some fixed x̃k ∈ Xk. All the functions in this class are Lk-Lipschitz and, therefore, bounded by
Lk · diam(Xk). We may therefore apply [38, Theorem 4.3] to the class Gk and obtain

EX∼Pk
RepX(FCk

k ,Pk) = EX∼Pk
RepX(Gk,Pk) ≤ 2RN (Gk,Pk) ≤ O(N

− 1
Dk+1

k ).

Case (b) - Feature-based quadratic costs 1
2∥uk(·)− v(·)∥22: Alternatively, consider the case where

ck(xk, y) =
1
2∥uk(xk)− v(y)∥22 and Fk ⊆ C(Y) is bounded (w.r.t. the supremum norm).

To this end, recall that for a measurable and bounded function f : Y → R, the weak entropic
ck-transform satisfies

fCk(xk) = −ϵ log(Zck(f, xk)),

where Zck(f, xk) =
∫
Y exp

( f(y)−ck(xk,y)
ϵ

)
dy. Recall that RD′′×RD′′ ∋ (a, b) 7→ exp

(
−∥a−b∥2

2ϵ

)
is a positive definite kernel which is widely known as the Gaussian kernel. This means that there
exists a Hilbert spaceH and a feature map ϕ : RD′′ → H such that exp

(
−∥a−b∥2

2ϵ

)
= ⟨ϕ(a), ϕ(b)⟩H.

Due to the particular form of ck, we may write

exp
(
− ck(xk, y)

ϵ

)
= exp

(
− ∥uk(x)− v(y)∥2

2ϵ

)
= ⟨ϕ(uk(xk)), ϕ(v(y))⟩H. (30)

Notice that {ϕ(uk(xk)) : xk ∈ Xk} ⊆ {v ∈ H : ∥v∥H = 1} since ∥ϕ(a)∥2H = ⟨ϕ(a), ϕ(a)⟩H = 1

for every a ∈ RD′′
.

Using the identity in (30), we can express Zck(f, xk) by

Zck(f, xk) =

∫
Y
⟨ϕ(uk(xk)), ϕ(v(y))⟩H e

f(y)
ϵ dy =

〈
ϕ
(
uk(xk)

)
,

∫
Y
ϕ(v(y))e

f(y)
ϵ dy

〉
H
,

where the last equality is justified as Y is compact; furthermore, we note the integrals are well-defined
by the measurability of ϕ, uk and v. Moreover, using the boundedness of each Fk and compactness
of Y , we get

R
def
= max

k=1,...,K
sup
f∈Fk

∥∥∥∫
Y
ϕ(v(y))e

f(y)
ϵ dy

∥∥∥
H

<∞. (31)

Define Gk
def
= {Zck(f, ·) : f ∈ Fk} and observe that Gk ⊆ G′k

def
= {⟨ϕ

(
uk(·)

)
, w⟩H : ∥w∥H ≤ R}.

This implies that RNk
(Gk,Pk) ≤ RNk

(G′k,Pk) by the properties of the Rademacher complexity.
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In turn, the latter Rademacher complexity can be bounded by [10, Lemma 22]. Indeed, write
P′
k

def
= (uk)#Pk such that

RNk
(G′k,Pk) = RNk

({⟨ϕ(·), w⟩H : ∥w∥H ≤ R},P′
k),

which can be directly seen from the definition of the Rademacher complexity. Thus, we can apply
[10, Lemma 22] to the right-hand side, and summarizing obtain

RNk
(Gk,Pk) ≤

R√
Nk

.

Since the functions in Gk are bounded uniformly away from zero by some constant κ > 0 (depending
on the bound of Fk and ϵ), and since the logarithm restricted to [κ,∞) is 1/κ-Lipschitz, we have that

RNk
(FCk

k ,Pk) ≤
ϵ

κ
RNk

(Gk,Pk) ≤
ϵ

κ

R√
Nk

.

We can now bound the expected representativeness of FCk

k with the Rademacher complexity by (26),
yielding the claim.

A.6 Proof of Theorem 4.6

Proof of Theorem 4.6. Let σ ∈ C(R) be a non-affine activation function which is differentiable at
some point x0 ∈ R and for which σ′(x0) ̸= 0. Let δ > 0, λ1, . . . , λK > 0, and K ∈ N be given. By
Theorem 4.1, there exist K congruent continuous functions f ′

1, . . . , f
′
K such that

L∗ − L(f̃1, . . . , f̃K) <
δ

2
. (32)

Applying [29, Theorem 4.1] we deduce that for each k = 1, . . . ,K, there exist a continuous extension
f ′
k : RD → R for f̃k to all of RD; i.e. f ′

k(y) = f̃k(y) for each y ∈ Y . In particular, (32) can be
rewritten as

L∗ − L(f ′
1, . . . , f

′
K) <

δ

2
. (33)

Set δk
def
= δ/(4λk) for each k = 1, . . . ,K. Since Y is a compact subset of RD, and since we have

assumed that σ ∈ C(R) is non-affine activation function which is differentiable at some point x̃ ∈ R
and for which σ′(x̃) ̸= 0 then the special case of [62, Theorem 9] given in [62, Proposition 53] ,
implies that for any there exist feedforward neural networks gk : RDk → R (k ∈ K) with activation
function σ, such that

∥gk − f ′
k∥∞

def
= sup

y∈Y
|gk(y)− f ′

k(y)| = sup
y∈Y
|gk(y)− f ′

k(y)| < δk,

each gk width at-most D + 4. Pick δk = δ
4 for all k ∈ K and suitable neural networks g1, . . . , gK .

Next, we define the congruent sums of neural networks fk
def
= gk −

∑K
k=1 λkgk. We derive∥∥∥ K∑

k=1

λkgk

∥∥∥
∞

=
∥∥∥ K∑

k=1

λkgk −
K∑

k=1

λkf
′
k︸ ︷︷ ︸

=0

∥∥∥
∞
≤

K∑
k=1

λk

∥∥∥gk − f ′
k

∥∥∥
∞

<

K∑
k=1

λk
δ

4λk
=

δ

4
. (34)

Using (34) we obtain for fixed k ∈ K

∥f ′
k − fk∥∞ = ∥f ′

k − gk +

K∑
k′=1

λk′gk′∥∞ ≤ ∥f ′
k − gk∥∞︸ ︷︷ ︸

< δ
4

+ ∥
∑K

k′=1
λk′gk′∥∞︸ ︷︷ ︸

< δ
4

<
δ

2
. (35)

By (iv) in Proposition A.1 together with (35) we find

∥fCk

k − (f ′
k)

Ck∥∞ ≤ ∥fk − f ′
k∥∞ <

δ

2
. (36)
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Now we use (36) to derive

|L(f1, . . . , fK)− L(f ′
1, . . . , f

′
K)| ≤

K∑
k=1

λk

∣∣∣∣∫
Xk

fCk

k (xk)dPk(xk)−
∫
Xk

(f ′
k)

Ck(xk)dPk(xk)

∣∣∣∣
≤

K∑
k=1

λk

∫
Xk

|fCk

k (xk)− (f ′
k)

Ck(xk)|dPk(xk)

≤
K∑

k=1

λk∥fCk

k − (f ′
k)

Ck∥∞ < (

K∑
k=1

λk)︸ ︷︷ ︸
=1

δ

2
=

δ

2
. (37)

Next we combine (33) with (37) to get

L∗ − L(f1, . . . , fK) ≤ [L∗ − L(f ′
1, . . . , f

′
K)]︸ ︷︷ ︸

<δ/2

+ |L(f1, . . . , fK)− L(f ′
1, . . . , f

′
K)|︸ ︷︷ ︸

<δ/2

< δ. (38)

By using (38) together with Theorem 4.2 we obtain

ϵ

K∑
k=1

λkKL
(
π∗
k∥πfk

)
= L∗ − L(f1, . . . , fK) < δ

which completes the proof.

A.7 Existence and uniqueness of the barycenter distribution which solves (5)

We introduce an auxiliary functional which is the argument of minimization problem (5):

B(Q)
def
=

K∑
k=1

λkEOTck,ϵ(Pk,Q), (39)

i.e. the optimal value of (5) could be defined as L∗ = inf
Q∈P(Y)

B(Q).

Note that the functional Q 7→B(Q) is strictly convex and lower semicontinuous (w.r.t. the weak topol-
ogy) as each component Q 7→EOTck,ϵ(Pk,Q) is strictly convex and l.s.c. (lower semi-continuous)
itself. The latter follows from [9, Th. 2.9] by noting that on P(Y) the map µ 7→Ey∼µck(x, y)−H(µ)
is l.s.c, bounded from below and strictly convex thanks to the entropy term. Since P(Y) is weakly
compact (as Y is compact due to Prokhorov’s theorem, see, e.g., [89, Box 1.4]), it holds that B(Q)
admits at least one minimizer due to the Weierstrass theorem [89, Box 1.1], i.e., a barycenter Q∗

exists. In the paper, we work under the reasonable assumption that there exists at least one Q for
which B(Q)<∞. In this case, the barycenter Q∗ is unique due to the strict convexity of B.

B Extended discussions

B.1 Extended discussion of related works

Discrete OT-based solvers provide solutions to OT-related problems between discrete distributions.
A comprehensive overview can be found in [83]. The discrete OT methods for EOT barycenter
estimation are [20, 98, 11, 21, 22, 30, 63, 49, 68]. An alternative formulation of the barycenter
problem based on weak mass transport and corresponding discrete solver could be found in [12]. In
spite of sound theoretical foundations and established convergence guarantees [64], these approaches
can not be directly adapted to our learning setup, see §2.3.

Continuous OT solvers. Beside the continuous EOT solvers discussed in §3, there exist a variety
of neural OT solver for the non-entropic (unregularized, ϵ = 0) case. For example, solvers such as
[44, 74, 54, 58, 57, 32, 35, 88, 5, 31], are based on optimizing the dual form, similar to our (2), with
neural networks. We mention these methods because they serve as the basis for certain continuous
unregularized barycenter solvers. For example, ideas of [55] are employed in the barycenter method
presented in [59]; the solver from [74] is applied in [32]; max-min solver introduced in [58] is used
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in [55]. It is also worth noting that there exist several neural solvers that cater to more general OT
problem formulations [61, 60, 31, 8, 84]. These can even be adapted to the EOT case [42] but require
substantial technical effort and the usage of restrictive neural architectures.
Continuous EOT solvers aim to recover the optimal EOT plan π∗ in EOT problems like (1)
between unknown distributions P and Q which are only accessible through a limited number of
samples. One group of methods [37, 91, 23] is based on the dual formulation of OT problem
regularized with KL divergences [37, Eq. (Pϵ)] which is equivalent to (1). Another group of methods
[109, 24, 13, 41, 106, 94] takes advantage of the dynamic reformulation of EOT via Schrödinger
bridges [70, 76]. In turn, [51] solve EOT with conditional flow matching [106].
In [78], the authors propose an approach to tackle (1) by means of Energy-Based models [69, 100,
EBM]. They develop an optimization procedure resembling standard EBM training which retrieves
the optimal dual potential f∗ appearing in (2). As a byproduct, they recover the optimal conditional
plans µf∗

x = π∗(·|x). Our approach for solving the EOT barycenter (5) is primarily inspired by this
work. In fact, we manage to overcome the theoretical and practical difficulties that arise when moving
from the EOT problem guided with EBMs to the EOT barycenter problem (multiple marginals,
optimization with respect to an unfixed marginal distribution Q), see §4 for details of our method.

Other related works. Another relevant work is [95], where the authors study the barycenter problem
and restrict the search space to a manifold produced by a GAN. This idea is also utilized in §5.2
and §5.3, but their overall setting drastically differs from our setup and actually is not applicable.
We search for a barycenter of K high-dimensional image distributions represented by their random
samples (datasets). In contrast, they consider K images, represent each image as a 2D distribution
via its intensity histogram and search for a single image on the GAN manifold whose density is the
barycenter of the input images. To compute the barycenter, they use discrete OT solver. In summary,
neither our barycenter solver is intended to be used in their setup, nor their method is targeted to
solve the problems considered in our paper.

B.2 Extended discussion of potential applications

It is not a secret that despite considerable efforts in developing continuous barycenter solvers
[72, 59, 55, 32, 82, 14], these solvers have not found yet a real working practical application. The
reasons for this are two-fold:

1. Existing continuous barycenter solvers (Table 1) are yet not scalable enough and/or work exclu-
sively with the quadratic cost (ℓ2), which might be not sufficient for the practical needs.

2. Potential applications of barycenter solvers are too technical and, unfortunately, require substantial
efforts (challenging and costly data collection, non-trivial design of task-specific cost functions,
unclear performance metrics, etc.) to be implemented in practice.

Despite these challenges, there exist rather inspiring practical problem formulations where the
continuous barycenter solvers may potentially shine and we name a few below. These potential
applications motivate the research in the area. More generally, we hope that our developed solver
could be a step towards applying continuous barycenters to practical tasks that benefit humanity.

1. Solving domain shift problems in medicine (Fig. 6a). In medicine, it is common that the
data is collected from multiple sources (laboratories, clinics) and using different equipment from
various vendors, each with varying technical characteristics [40, 65, 53, 103, 112]. Moreover, the
data coming from each source may be of limited size. These issues complicate building robust and
reliable machine learning models by using such datasets, e.g., learning MRI segmentation models to
assist doctors.

A potential way to overcome the above-mentioned limitations is to find a common representation of
the data coming from multiple sources. This representation would require translation maps that can
transform the new (previously unseen) data from each of the sources to this shared representation.
This formulation closely aligns with the continuous barycenter learning setup (§2.3) studied in our
paper. In this context, the barycenter could play the role of the shared representation.

To apply barycenters effectively to such domain averaging problems, two crucial ingredients are
likely required: appropriate cost functions ck and a suitable data manifoldM in which to search for
the barycenters. The design of the cost itself may be a challenge requiring certain domain-specific
knowledge that necessitates involving experts in the field. Meanwhile, the manifold constraint is
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(a) Domain averaging of MRI scans’ sources. (b) Mixing geological simulators.

Figure 6: A schematical presentation of potential applications of barycenter solvers.

required to avoid practically meaningless barycenters such as those considered in §5.2. Nowadays,
with the rapid growth of the field of generative models, it is reasonable to expect that soon the new
large models targeted for medical data may appear, analogously to DALL-E [85], StableDiffusion [87]
or StyleGAN-T [90] for general image synthesis. These future models could potentially parameterize
the medical data manifolds of interest, opening new possibilities for medical data analysis.

2. Mixing geological simulators (Fig. 6b). In geological modeling, variuos simulators exist to
model different aspects of underground deposits. Sometimes one needs to build a generic tool which
can take into account several desired geological factors which are successfully modeled by separate
simulators.

Flumy1 is a process-based simulator that uses hydraulic theory [48] to model specific channel
depositional processes returning a detailed three-dimensional geomodel informed with deposit
lithotype, age and grain size. However, its result is a 3D segmentation field of facies (rock types) and
it does not produce the real valued porosity field needed for hydrodynamical modeling.

Petrel2 software is the other popular simulator in the oil and gas industry. It is able to model complex
real-valued geological maps such as the distribution of porosity. The produced porosity fields may
not be realistic enough due to paying limited attention to the geological formation physics.

Both Flumy and Petrel simulators contain some level of stochasticity and are hard to use in conjunction.
Even when conditioned on common prior information about the deposit, they may produce maps of
facies and permeability which do not meaningfully correspond to each other. This limitation provides
potential prospects for barycenter solvers which could be used to get the best from both simulators
by mixing the distributions produced by each of them.

From our personal discussions with the experts in the field of geology, such task formulations are
of considerable interest both for scientific community as well as industry. Applying our barycenter
solver in this context is a challenge for future research. We acknowledge that this would also require
overcoming considerable technical and domain-specific issues, including the data collection and the
choice of costs ck.

B.3 Extended discussion on doubly-regularized OT barycenters

The objective (5) is not the only way to formulate Entropic OT barycenter problem. Recent studies
[15, 82] consider the so-called doubly-regularized Entropic OT barycenters. Following the notations
from [15], for λ ≥ 0 and τ ≥ 0 we define:

EOTdr
c,λ,τ (P,Q)

def
= min
π∈Π(P,Q)

{
E

(x,y)∼π
c(x, y) + λKL(π∥P⊗Q) + τH(Q)

}
.

The corresponding doubly-regularized EOT barycenter problem is as follows:

L∗,dr def
= inf
Q∈P(Y)

Bdr(Q)
def
= inf
Q∈P(Y)

K∑
k=1

λkEOTdr
c,λ,τ (Pk,Q). (40)

1https://flumy.minesparis.psl.eu
2https://www.software.slb.com/products/petrel
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It turns out that our considered EOT barycenter (5) with regularization strength ϵ is the particular
case of (40) with λ = τ = ϵ. According to the classification [15, Table 1], this case is known
as Schrödinger barycenter. The natural question arizes: Is it possible to adapt our energy-guided
methodology for the case λ ̸= τ?

To answer this question, in what follows, we have a closer look at the differences between general
doubly-regularized formulations and our particular Schrödinger specification. The important property
of our case is that the entropy term H(Q) completely disappears from the barycenter objective. In all
the other regularized cases, when λ ̸= τ , this entropy term immediately reappears (either with the
plus or minus sign). The presence of H(Q) term notably differs from ours and seems like to be not
suitable for our solver. In what follows, we explain the reasons.

In the Schrödinger case, the barycenter problem can be solved via optimizing conditional distributions
πk(y|xk). Namely, we use potentials fk combined with costs ck to approximate the energy functions
(unnormalized log-densities) of these conditionals. We employ EBM-based techniques to compute
the gradient of the learning objective which avoids the direct computation of the entropy terms
H(πk(y|xk)) appearing in the Ck-transforms.

Experiment training
time

inference
time

Toy 2D (Ours) 3h 20s
Gaussians (Ours) 6h 40s

Sphere (Ours) 3h 20s
MNIST 0/1 manifold (Ours) 10h 1m

MNIST 0/1 data (Ours) 20h 1m
Ave Celeba manifold (Ours) 60h 2m

Ave Celeba data (Ours) 60h 2m
Ave Celeba data (WIN) 160h 10s

Ave Celeba data (SCWB) 200h 10s

Table 3: Computational complexity for Ours (all
experiments) and baselines (Ave Celeba).

If we further add the non-zero term H(Q) to the
barycenter objective, this will presumably require
(in the dual objective) a separate computation of
the entropy terms H(πk(y)) of second marginals
πk(y) of each πk. This is highly non-trivial and
it seems like our solver does not easily generalize
to this case. In our framework, we can get samples
of πk(y) by MCMC (via sampling xk ∼ Pk and
then running MCMC for π(y|xk)). However, esti-
mation of entropy of πk(y) from raw samples still
remains infeasible. In particular, EBM-like tech-
niques (which we employ) can not be used here to
derive the gradient of the objective. This is because the required unnormalized density of πk(y) is
itself unknown (we only know it for conditional distributions πk(y|x)).

C Experimental Details

The hyperparameters of our solver are summarized in Table 4. Some hyperparameters, e.g., L, S, iter,
are chosen primarily from time complexity reasons. Typically, the increase in these numbers positively
affects the quality of the recovered solutions, see, e.g., [42, Appendix E, Table 16]. However, to
reduce the computational burden, we report the figures which we found to be reasonable. Working
with the manifold-constraint setup, we parameterize each gθk(z) in our solver as hθk ◦G(z), where
G is a pre-trained (frozen) StyleGAN and hθk is a neural network with the ResNet architecture. We
empirically found that this strategy provides better results than a direct MLP parameterization for the
function gθk(z).

Experiment D K ϵ λ1 λ2 λ3 λ4 fθ,k lrgθ,k iter
√
η L S

Toy 2D 2 3 10−2 1/3 1/3 1/3 - MLP 10−2 200 1.0 300 256
MNIST 0/1 1024 2 10−2 0.5 0.5 - - ResNet 10−4 1000 0.1 500 32
MNIST 0/1 512 2 10−2 0.5 0.5 - - ResNet 10−4 1000 0.1 250 32
Ave, celeba!
(Data) 3*642 3 10−2 0.25 0.5 0.25 - ResNet 10−4 5000 0.1 500 64

Ave, celeba!
(Manifold) 512 3 10−4 0.25 0.5 0.25 - ResNet 10−4 1000 0.1 250 128

Gaussians 2-64 3 10−2, 1 0.25 0.25 0.5 - MLP 10−3 50000 0.1 700 1024
Sphere 3 4 10−2 0.25 0.25 0.25 0.25 MLP 3 ×10−3 1000 1.0 300 256
Singlle-cell 1000 2 10−2 0.25 0.75 - - MLP 5 ×10−4 1000 0.05 1000 1024

Table 4: Hyperparameters that we use in the experiments with our Algorithm 1.

To train the StyleGAN for MNSIT01 & Ave, celeba! experiments, we employ the official code from
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https://github.com/NVlabs/stylegan2-ada-pytorch

Computational complexity. We report the (approximate) time for training and inference (batch
size S = 128) of our method on different experimental setups, see Table 3 (the hardware is a single
V100 gpu). For Ave Celeba experiment, we additionally report the computational complexity of the
competitors. As we can see, all the methods in this experiment (Ave Celeba) require a comparable
amount of time for training. The inference with our approach is expectedly costlier than competitors
due to the reliance on MCMC.

C.1 Barycenters of 2D/3D Distributions

Cartesian representation of twister map. In §5.1 we define twister map u using polar coordinate
system. For clearness, we give its form on cartesian coordinates. Let x ∈ R2, x = (x(1), x(2)). Note

that ∥x∥ =
√
x2
(1) + x2

(2) Then,

u(x) = u(x(1), x(2)) =

(
cos

(
∥x∥

)
− sin

(
∥x∥

)
sin

(
∥x∥

)
cos

(
∥x∥

) )(
x(1)

x(2)

)
,

i.e., the twister map rotates input points x by angles equal to ∥x∥.
Analytical barycenter distribution for 2D Twister experiment. Below, we provide a mathematical
derivation that the true unregularized barycenter of the distributions P1,P2,P3 in Fig. 2a coincides
with a Gaussian.

We begin with a rather general observation. Consider Xk = Y = RD (k ∈ K) and let OTc
def
=

EOTc,0 denote the unregularized OT problem (ϵ = 0) for a given continuous cost function c. Let
u : RD → RD be a measurable bijection and consider P′

k ∈ P(RD) for k ∈ K. By using the change
of variables formula, we have for all Q′ ∈ P(RD) that

OTc◦(u×u)(u
−1
# (P′), u−1

# (Q′)) = OTc(P′,Q′), (41)

where # denotes the pushforward operator of distributions and [c ◦ (u× u)](x, y) = c
(
u(x), u(y)

)
.

Note that by (41) the barycenter of P′
1, . . . ,P′

K for the unregularized problem with cost c coincides
with the result of applying the pushforward operator u−1

# to the barycenter of the very same problem
but with cost c ◦ (u× u).

Next, we fix u to be the twister map (§5.1). In Fig. 2a we plot the distributions P1
def
=

u−1
# P′

1, u
−1
# P′

1, u
−1
# P′

3 which are obtained from Gaussian distributions P′
1 = N

(
(0, 4), I2

)
,P′

2 =

N
(
(−2, 2

√
3), I2

)
,P′

3 = N
(
(2, 2
√
3), I2

)
by the pushforward. Here I2 is the 2-dimensional iden-

tity matrix. For the unregularized ℓ2 barycenter problem, the barycenter of such shifted Gaussians
can be derived analytically [3]. The solution coincides with a zero-centered standard Gaussian
Q′ = N

(
0, I2

)
. Hence, the barycenter of P1, . . . ,PK w.r.t. the cost ℓ2 ◦ (u × u) is given by

Q∗ = u−1
# Q′. From the particular choice of u it is not hard to see that Q∗ = Q′ = N

(
0, I2

)
as well.

C.2 Barycenters of MNIST Classes

Additional qualitative examples of our solver’s results are given in Figure 7.

Details of the baseline solvers. For the solver by [32, SCWB], we run their publicly available code
from the official repository

https://github.com/sbyebss/Scalable-Wasserstein-Barycenter

The authors do no provide checkpoints, and we train their barycenter model from scratch. In turn, for
the solver by [55, WIN], we also employ the publicly available code

https://github.com/iamalexkorotin/WassersteinIterativeNetworks

Here we do not train their models but just use the checkpoint available in their repo.
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(a) Learned plans from P1 (zeros, 1st column) to the barycenter.

(b) Learned plans from P2 (ones, first column) to the barycenter.
Figure 7: Experiment with averaging MNIST 0/1 digit classes. The plot shows additional examples
of samples transported with our solver to the barycenter.

C.3 Barycenters of the Ave, Celeba! Dataset

Additional qualitative examples of our solver’s results are given in Figure 8.

Extra experiment in Data Space. Our method in the manifold constrained setup on MNIST dataset
performs better than in the data space setup (see Figure 5). It generates less noised images and
demonstrates better perceptual quality. For this reason, we provide only Manifold-constrained setting
for experiment with Ave, Celeba! dataset in M5.3.

For completeness, here we also test our method directly in the data space setup for Ave, Celeba!
dataset. Hyperparameters of our solver are listed in Table 4. In Figure 10, we show images obtained
in Data space setup. As expected, the FID scores in Data space are not that good as the images are
more noised since we solve the entropy-regularized problem. But we stress one more time that our
method permits StyleGAN manifold trick, which greatly improves the performance, see the images
in Figure 4 for the manifold-constrained setup.

Convergence at training. We provide the behaviour of L2-UVP metric (between the unregularized
ground truth barycenter mapping and the entropic barycenter mapping for our learned πfk(y|xk))
for Ave Celeba experiment §5.3, see Figure 9 . We emphasize that L2-UVP directly measures (by
computing pointwise MSE) how the learned mapping differs from the true mapping.
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(a) Maps from P1 to the barycenter. (b) Maps from P2 to the barycenter. (c) Maps from P3 to the barycenter.

Figure 8: Experiment on the Ave, celeba! barycenter dataset. The plots show additional examples of
samples transported with our solver to the barycenter.

Figure 9: Training curves of L2-UVP vs. time for OUR proposed method in Manifold-constrained
setup with Style-GAN on Ave, Celeba! dataset. The duration of the training is 100 h (1 GPU V100).

Convergence at inference. Since Langevin Dynamics is at the heart of our method for sampling
from a conditional plan, it is important to demonstrate the dependence of the inference times/quality
on the number of L Langevin steps in Manifold constrained as well as in the Data space setup. We
demonstrate Tables 5 and 6, where we show the trade-off between number of Langevin steps L and
the obtained quality. To provide the comprehensive analysis, we report FID scores as well as sampling
time for different number of steps L. Expectedly, inference time linearly depends on L both setups.

Our results testify that (in Manifold constrained setting) our method achieves good quality even
with rather small number of Langevin steps, i.e., the computational burden of our approach could be
considerably reduced with rather little trade-off in quality.

Details of the baseline solvers. For the [55, WIN] solver, we use their pre-trained checkpoints
provided by the authors in the above-mentioned repository. Note that the authors of [32, SCWB] do
not consider such a high-dimensional setup with RGB images. Hence, to implement their approach
in this setting, we follow [55, Appendix B.4].
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FID
k=0 k=1 k=2 L t, sec

15.8 15.3 18.3 50 15
11.3 11.2 14.3 150 45
8.4 8.7 10.2 250 75
8.3 8.2 9.9 500 150
8.2 8.2 9.8 1000 300

Table 5: The dependence of running time of
ULA on number of Langevin steps during in-
ference mode and the trade-off between the
steps and the quality of obtained images in
Ave, Celeba! dataset in Manifold constrained
setting.

FID
k=0 k=1 k=2 L t, sec

125.3 122.3 187.6 10 7
119.4 120.0 169.7 150 105
118.5 120.4 168.8 250 175
118.3 120.1 168.9 500 350
118.8 121.2 170.2 1000 700

Table 6: The dependence of running time of
ULA on number of Langevin steps during
inference mode and the trade-off between
the steps and the quality of obtained images
in Ave, Celeba! dataset in Data space setup.

(a) Maps from P1 to the barycenter. (b) Maps from P2 to the barycenter. (c) Maps from P3 to the barycenter.

Figure 10: Experiment on the Ave, celeba! barycenter dataset. The plots represent transported
inputs xk ∼ Pk to the barycenter learned by our algorithm in Data space . The true unregularized ℓ2

barycenter of P1,P2,P3 are situated in figure 4a,4b and 4c correspondingly.

C.4 Barycenters of Gaussian Distributions

We note that there exist many ways to incorporate the entropic regularization for barycenters [15,
Table 1]; these problems do not coincide and yield different solutions. For some of them, the
ground-truth solutions are known for specific cases, such as the Gaussian case. For example, [75,
Theorem 3] examines barycenters for OT regularized with KL divergence. They consider the task

inf
Q∈P(Y)

K∑
k=1

λk

( ∫
X×Y

∥x− y∥2

2
dπk(x, y) + ϵKL(πk∥Pk ×Q)

)
=

inf
Q∈P(Y)

K∑
k=1

λk

( ∫
X×Y

∥x− y∥2

2
dπk(x, y)− ϵ

∫
X
H(πk(·|x))dPk(x) + ϵH(Q)

)
=

inf
Q∈P(Y)

{ K∑
k=1

λkEOTℓ2,ϵ(Pk,Q)︸ ︷︷ ︸
= our objective inside (5)

+ϵH(Q)

}
.

This problem differs from our objective (5) with c(x, y) = 1
2∥x − y∥2 by the non-constant Q-

dependent term ϵH(Q); this problem yields a different solution. The difference with the majority of
other mentioned approaches can be shown in the same way. In particular, [67] tackles the barycenter
for inner product Gromov-Wasserstein problem with entropic regularization, which is not relevant for
us. In turn, the authors of [49] demonstrate significant progress towards GT results for barycenter
problem with our considered regularization, but only for univariate (1D) case. To our knowledge, the
general Gaussian ground-truth solution for our problem setup (5) is not yet known, although some of
its properties seem to be established [25].

Still, when ϵ ≈ 0, our entropy-regularized barycenter is expected to be close to the unregularized
one (ϵ = 0). In the Gaussian case, it is known that the unregularized OT barycenter for ck(x, y) =
1
2∥x− y∥2 is itself Gaussian and can be computed using the well-celebrated fixed point iterations of
[3, Eq. (19)]. This gives us an opportunity to compare our results with the ground-truth unregularized
barycenter in the Gaussian case. As the baseline, we include the results of [55, WIN] solver which
learns the unregularized barycenter (ϵ = 0).
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We consider 3 Gaussian distributions P1,P2,P3 in dimensions D = 2, 4, 8, 16, 64 and compute the
approximate EOT barycenters πf̂k

k for ϵ = 0.01, 1 w.r.t. weights (λ1, λ2, λ3) = ( 14 ,
1
4 ,

1
2 ) with our

solver. To initialize these distributions, we follow the strategy of [55, Appendix C.2]. The ground truth
unregularized barycenter Q∗ is estimated via the above-mentioned iterative procedure. We use the
code from WIN repository available via the link mentioned in Appendix C.2. To assess the WIN solver,
we use the unexplained variance percentage metrics defined asL2-UVP(T̂ ) = 100·[∥T̂−T ∗∥]2P where
T ∗ denotes the optimal transport map T ∗, see [54, §5.1]. Since our solver computes EOT plans but not
maps, we evaluate the barycentric projections of the learned plans, i.e., T̂ k(x) =

∫
Y yπf̂k

k (y|x), and

calculate L2-UVP(T̂ k, T
∗
k ). We evaluate this metric using 104 samples. To estimate the barycentric

projection in our solver, we use 103 samples y ∼ πf̂k
k (y|xk) for each xk. To keep the table with the

results simple, in each case we report the average of this metric for k = 1, 2, 3 w.r.t. the weights λk.

Dim / Method Ours (ϵ = 1) Ours (ϵ = 0.01) [55, WIN]
2 1.12 0.02 0.03
4 1.6 0.05 0.08
8 1.85 0.06 0.13
16 1.32 0.09 0.25
64 1.83 0.84 0.75

Table 7: L2-UVP for our method with ϵ = 0.01, 1 and WIN, D = 2, 4, 8, 16, 64.

We see that for small ϵ = 0.01 and dimension up to D = 16, our algorithm gives the results even
better than WIN solver designed specifically for the unregularized case (ϵ = 0). As was expected,
larger ϵ = 1 leads to the increased bias in the solutions of our algorithm and L2-UVP metric increases.

Effect of the batch size. In order to test how our method is affected by batch size, we conduct
an additional empirical study with varying batch size. We follow our Gaussian experimental setup
from above and pick (D, ϵ) = (2, 0.1), (D, ϵ) = (16, 0.01). As the batch sizes, we consider
2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. As we can see in Table 9, the quality of the recovered plans
πfk between reference and barycenter distributions naturally grows with the batch size. In all our other
experiments, we typically choose the batch size to be a reasonable number which, on the one hand,
allows achieving sufficient quality and, on the other hand, provides reasonable computational burden.
In the image experiments, we use batch size ≤ 128 as it already provides reasonable performance.
Going beyond that is challenging due to the computational restrictions.

Figure 11: The training curves of L2-UVP vs.
iterations for OUR proposed method for the

barycenter of Gaussian distributions depending on
number of Langevin steps L.

Effect of sampling steps number at training. We
conducted an ablation study testing how our method
is affected by chosen number of discretized Langevin
dynamic steps (L from §4.2) at training, the results
are presented in Figure 11. In this experiment, we try
to learn the barycenter of Gaussian distributions; we
pick the dimensionality D = 64 (which is the highest-
dimensional case among the considered); ϵ = 10−1.
As we can see, performance drops when the number
of steps is insufficient. Overall, in all our experiments,
the number of Langevin steps is chosen to achieve
reasonable qualitative/quantitative results.

C.5 Single-cell experiment

We consider the problem of predicting the interpo-
lation between single cell populations at multiple
timepoints from [107]. The objective is to interpolate
the distribution of cell population at any intermediate point in time, call it ti, given the cell population
distributions at past and future time-points ti+1 and ti−1. Since this is an interpolation problem, it is
natural to expect that the intermediate population is a (entropy-regularized) barycentric average (with
ℓ2 cost) of both the population distributions available at the nearest preceding and future times. We
leverage the data pre-processing and metrics from paper [56], wherein the authors provide a complete
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Solver/DIM 50 100 1000
OUR 2.32± 0.12 2.26± 0.09 1.34± 0.12

LightSB-M [2] 2.33± 0.09 2.172± 0.08 1.33± 0.05
SFM-sink [3] 2.66± 0.18 2.52± 0.17 1.38± 0.05
EGNOT [1] 2.39± 0.06 2.32± 0.15 1.46± 0.20

Table 8: Energy distance (averaged for two setups and 5 random seeds) on the MSCI dataset along
with 95%-confidence interval (±-intervals). The best solver according to the mean value is bolded.

(D, ϵ) Batch size 2 4 8 16 32 64 128 256 512 1024
(2,0.1) L2-UVP ↓ 0.20 0.14 0.07 0.05 0.05 0.04 0.02 0.03 0.02 0.02
(16,0.01) 0.56 0.40 0.37 0.30 0.25 0.22 0.20 0.17 0.15 0.13

Table 9: Influence of the batch size on the performance of our approach in the case of computing the
barycenters of Gaussian distributions.

notebook with the code to launch the setup similar to [107]. There are 3 experimental settings with
dimensions D = 50, 100, 1000, each setting contains two setups: predicting day 3 given days 2 and 4
and predicting day 4 given days 3 and 7. The metric is MMD; see [107] or Section 5.3 from [56] for
additional experimental details. We report the result in Table 8 where we find that in most cases, our
general-purpose entropic barycenter approach nearly matches the performance of leading baselines.
This underscores the scope of problems in which our barycentric optimal transport technology can
act as a viable foundation model, directly out-of-the-box.

D Alternative EBM training procedure

(a) The true unregularized
barycenter for the twisted cost.

(b) Our EOT barycenter for the
twisted cost (map from P1).

(c) The true unregularized
barycenter for ℓ2 cost.

(d) Our EOT barycenter for ℓ2

cost (map from P1).

Figure 12: 2D twister example. Trained with importance sampling: The true barycenter of 3 comets
vs. the one computed by our solver with ϵ = 10−2. Two costs ck are considered: the twisted cost
(12a, 12b) and ℓ2 (12c, 12d). We employ the simulation-free importance sampling procedure for

training.

In this section, we describe an alternative simulation-free training procedure for learning EOT
barycenter distribution via our proposed methodology. The key challenge behind our approach is to
estimate the gradient of the dual objective (4.3). To overcome the difficulty, in the main part of our
manuscript, we utilize MCMC sampling from conditional distributions µfθ,k

xk and estimate the loss
with Monte-Carlo. Here we discuss a potential alternative approach based on importance sampling
(IS) [105]. That is, we evaluate the internal integral over Y in (4.3):

I(xk)
def
=

∫
Y

[
∂

∂θ
fθ,k(y)

]
dµ

fθ,k
xk (y) (42)

with help of an auxiliary proposal (continuous) distribution accessible by samples with the known
density q(y). Let Y q = {yq1, . . . , y

q
P } be a sample from q(y). Define the weights:

ωk(xk, y
q
p)

def
= exp

(
fθ,k(y

q
p)− c(xk, y

q
p)

ϵ

)
q(yqp).

Then (42) permits the following stochastic estimate:

31

107543 https://doi.org/10.52202/079017-3416



I(xk) ≈
∑P

p=1

[
∂
∂θfθ,k(y)

]
ωk(xk, y

q
p)∑P

p=1 ωk(xk, y
q
p)

. (43)

Experimental illustration. To demonstrate the applicability of IS-based training procedure to our
barycenter setting, we conduct the experiment following our 2D Twister setup, see §5.1. We employ
zero-mean 16I-covariance Gaussian distribution as q and pick the batch size P = 1024. Our results
are shown in Figure 12. As we can see, the alternative training procedure yields similar results as
Figure2 but converges faster (≈ 1 min. VS ≈ 18 min. of the original MCMC-based training).

Concluding remarks. We note that IS-based methods requires accurate selection of the proposal
distribution q to reduce the variance of the estimator [105]. It may be challenging in real-world
scenarios. We leave the detailed study of more advanced IS approaches in the context of energy-based
models and their applicability to our EOT barycentric setup to follow-up research.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
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2. Limitations
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Answer: [Yes]
Justification: We discuss limitations in Section 6.
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Answer: [Yes]
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are discussed in Appendix C. Code for the experiments is
available at publicly accessible github. All the datasets are available in public.
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Answer: [Yes]
Justification:Code is publicly available at a github repository. Experimental details are
provided in Appendix C. All the datasets are publicly available.

6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental details are discussed in Appendix C; the hyperparameters and
peculiarities are hard-coded in our publicly available source code.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Not all of the experiments are conducted following the statistical significance
protocol due to computational restrictions.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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provided alongside the assets?
Answer: [Yes]
Justification: New code is available at public github repository, the code is self-documented
and follows our experimental protocol from the manuscript. The license is MIT.
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