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Abstract

We present a new random walk for uniformly sampling high-dimensional convex
bodies. It achieves state-of-the-art runtime complexity with stronger guarantees on
the output than previously known, namely in Rényi divergence (which implies TV,
W2, KL, χ2). The proof departs from known approaches for polytime algorithms
for the problem — we utilize a stochastic diffusion perspective to show contraction
to the target distribution with the rate of convergence determined by functional
isoperimetric constants of the stationary density.

1 Introduction

Generating random samples from a high-dimensional convex body is a basic algorithmic problem with
myriad connections and applications. The core of the celebrated result of [1], giving a randomized
polynomial-time algorithm for computing the volume of a convex body, was the first polynomial-time
algorithm for uniformly sampling convex bodies. In the decades since, the study of sampling has led to
a long series of improvements in its algorithmic complexity [2, 3, 4, 5, 6], often based on uncovering
new mathematical/geometric structure, establishing connections to other fields (e.g., functional
analysis, matrix concentration) and developing new tools for proving isoperimetric inequalities and
analyzing Markov chains. With the proliferation of data and the increasing importance of machine
learning, sampling has also become an essential algorithmic tool, with applications needing samplers
in very high dimension, e.g., scientific computing [7, 8, 9], systems biology [10, 11], differential
privacy [12, 13] and machine learning [14, 15].

Samplers for convex bodies are based on Markov chains (see §5 for a summary). Their analysis is
based on bounding the conductance of the associated Markov chain, which in turn bounds the mixing
rate. Analyzing the conductance requires combining delicate geometric arguments with (Cheeger)
isoperimetric inequalities for convex bodies. An archetypal example of the latter is the following: for
any measurable partition S1, S2, S3 of a convex body K ⊂ Rd, we have

vol(S3) ≥ d(S1,S2)
CK

min{vol(S1), vol(S2)} ,

where d(·, ·) is the (minimum) Euclidean distance, and CK is an isoperimetric constant of the uniform
distribution over K. (The KLS conjecture posits that CK = O(1) for any convex body K in isotropic
position, i.e., under the normalization that a random point from K has identity covariance). The
coefficient C2

K is bounded by the Poincaré constant of the uniform distribution over K (and they are
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in fact asymptotically equal). The classical proof of conductance uses geometric properties of the
random walk at hand to reduce the analysis to a suitable isoperimetric inequality (see e.g., [3, 16]).
The end result is a guarantee on the number of steps after which the total variation distance (TV
distance) between the current distribution and the target is bounded by a desired error parameter.
This framework has been widely used and effective in analyzing an array of candidate samplers, e.g.,
Ball walk [4], Hit-and-Run [17, 5], Riemannian Hamiltonian Monte Carlo [18] etc.

One successful approach, studied intensively over the past decade, is based on diffusion. The basic idea
is to first analyze a continuous-time diffusion process, typically modeled by a stochastic differential
equation (SDE), and then show that a suitable time-discretization of the process, sometimes together
with a Metropolis filter, converges to the desired distribution efficiently. A major success along this
line is the Unadjusted Langevin Algorithm and its variants, studied first in [19]. These algorithms
have strong guarantees for sampling “nice” distributions [20, 21, 22, 23], such as ones that are
strongly log-concave, or more generally distributions satisfying isoperimetric inequalities, while also
obeying some smoothness conditions. The analysis of these algorithms is markedly different from the
conductance approach, and typically yields guarantees in stronger metrics such as the KL-divergence.

Our starting point is the following question:

Can diffusion-based approaches be used for the problem of sampling convex bodies?

Despite remarkable progress, thus far, constrained sampling problems have evaded the diffusion
approach, except as a high-level analogy (e.g., the Ball walk can be viewed as a discretization of
Brownian motion, but this alone does not suggest a route for analysis) or with significantly worse
convergence rates (e.g., [24, 25]).

Contributions. Our main finding is a simple diffusion-based algorithm that can be mapped to
a stochastic process (and, importantly, to a pair of forward and backward processes), such that
the rate of convergence is bounded directly by an appropriate functional inequality for the target
distribution. As a consequence, for the first time, we obtain clean end-to-end guarantees in the
Rényi divergence (which implies guarantees in other well known quantities such asW2,TV,KL, χ

2

etc.), while giving state-of-the-art runtime complexity for sampling convex bodies (e.g., Ball walk
or Speedy walk [3, 4]). Besides being a stronger guarantee on the output, Rényi divergence is of
particular interest for differential privacy [13]. Perhaps most interesting is that our proof approach is
completely different from prior work on convex body sampling. In summary,

• The guarantees hold for the q-Rényi divergences while matching the rates of previous work (prior
work only had guarantees in the TV distance).

• The analysis is simple, modular, and easily extendable to several other settings.

Organization. In §2, we provide some relevant notions for understanding our results. We then
proceed to outline our algorithm in §3. The algorithmic guarantees are provided in §4, in which we
also outline our proof and compare it with the analysis of Ball walk,Speedy walk. Lastly, we provide
a detailed survey of the relevant literature in §5 before concluding.

2 Preliminaries

Unless otherwise specified, we will use ∥·∥ for the 2-norm on Rd. We write a = O(b), a ≲ b to mean
that a ≤ cb for some universal constant c > 0. Similarly, a ≳ b, a = Ω(b) for a ≥ cb, while a = Θ(b)

means a ≲ b, b ≲ a simultaneously. We will also use a = Õ(b) to denote a = O(bpolylog(b)).
Lastly, we will use measure and density interchangeably when there is no confusion.

To quantify the convergence rate, we introduce some common divergences between distributions.
Definition 1 (Distance and divergence). For two measures µ, ν on Rd, the total variation distance
between them is defined by

∥µ− ν∥TV := sup
B∈F
|µ(B)− ν(B)| ,

where F is the collection of all measurable subsets of Rd . The 2-Wasserstein distance is given by
W2

2 (µ, ν) := inf
γ∈Γ(µ,ν)

E(X,Y )∼γ [∥X − Y ∥2] ,

2
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Figure 1: Description of uniform samplers: (i) Ball walk: proposes a uniform random point z from
Bδ(x1), but z /∈ K so it stays at x1 = x2. (ii) Speedy walk: moves to x2 drawn uniformly at random
from K ∩ Bδ(x1). (iii) In-and-Out: first moves to y2 obtained by taking a Gaussian step from x1,
and then to x2 obtained by sampling the truncated Gaussian N (y2, hId)|K.

where Γ is the set of all couplings between µ, ν. Next, we define the f -divergence of µ towards ν with
µ≪ ν (i.e., µ is absolutely continuous with respect to ν) as, for some convex function f : R+ → R
with f(1) = 0 and f ′(∞) =∞,

Df (µ ∥ ν) :=
∫
f
(
dµ
dν

)
dν .

The KL-divergence arises when taking f(x) = x log x, the χq-divergence when taking f(x) = xq−1,
and the q-Rényi divergence is given by

Rq(µ ∥ ν) := 1
q−1 log

(
χq(µ ∥ ν) + 1

)
.

Definition 2. We say that a probability measure ν on Rd satisfies a Poincaré inequality (PI) with
parameter CPI(ν) if for all smooth functions f : Rd → R,

Varνf ≤ CPI(ν)Eν [∥∇f∥2] , (PI)

where Varνf := Eν [|f − Eνf |2].

The Poincaré inequality is implied by the log-Sobolev inequality.
Definition 3. We say that a probability measure ν on Rd satisfies a log-Sobolev inequality (LSI) with
parameter CLSI(ν) if for all smooth functions f : Rd → R,

Entν(f
2) ≤ 2CLSI(ν)Eν [∥∇f∥2] , (LSI-I)

where Entν(f
2) := Eν [f

2 log f2]− Eν [f
2] log(Eν [f

2]). Equivalently, for any probability measure
µ over Rd with µ≪ ν,

2KL(µ ∥ ν) ≤ CLSI(ν)FI(µ ∥ ν) , (LSI-II)

where FI(µ ∥ ν) := Eµ[∥∇ log dµ
dν ∥

2] is the Fisher information of µ with respect to ν.

3 Diffusion for uniform sampling

We propose the following In-and-Out1 sampler for uniformly sampling from K. Each iteration
consists of two steps, one that might leave the body and the second accepted only if it is (back) in K.

It might be illuminating for the reader to compare this algorithm to the well-studied Ball walk
(Algorithm 2); each proposed step is a uniform random point in a fixed-radius ball around the current
point, and is accepted only if the proposed point is in the body K. In contrast, each iteration of
In-and-Out is a two-step process, where the first step (Line 2) ignores the boundary of the body, and

1This name reflects the “geometry” of how the iterates are moving. As we elaborate in Remark 1, the name
‘proximal sampler’ may be more familiar to those from an optimization background.

3
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Algorithm 1 In-and-Out
Input: initial point x0 ∼ π0, convex body K ⊂ Rd, iterations T , threshold N , and h > 0.
Output: xT+1.

1: for i = 0, . . . , T do
2: Sample yi+1 ∼ N (xi, hId).
3: Repeat: Sample xi+1 ∼ N (yi+1, hId) until xi+1 ∈ K or #attemptsi ≥ N (declare Failure).
4: end for

the second step (Line 3) is accepted only if a proposal xi+1 is a feasible point in K. We will presently
elaborate on the benefits of this variation.

Each successful iteration of the algorithm, i.e., one that is not declared “Failure”, can be called
a proper step. We will see that the number of proper steps is directly bounded by isoperimetric
constants (such as Poincaré and log-Sobolev) of the target distribution. In fact, this holds quite
generally without assuming the convexity of K. The implementation of an iteration is based on
rejection sampling (Line 3), and our analysis of the efficiency of this step relies crucially on the
convexity of K. This is reminiscent of the Speedy walk in the literature on convex body sampling
(Algorithm 3), which is used as a tool to analyze proper steps of the Ball walk. We refer the reader to
Appendix C for a brief survey on these and related walks.

This simple algorithm can be interpreted as a composition of “flows” in the space of measures. This
view will allow us to use tools from stochastic analysis. In particular, we shall demonstrate how to
interpret the two steps of one iteration of In-and-Out as alternating forward and backward heat flows.
We begin by defining an augmented probability measure on Rd × Rd by

π(x, y) ∝ exp
(
− 1

2h∥x− y∥
2
)
1K(x) .

We denote by πX , πX|Y (·|y) the marginal distribution of its first component (resp. conditional
distribution given the second component), and similarly denote by πY , πY |X(·|x) for the second
component. In particular, the marginal in the first component πX is the uniform distribution over
K. Sampling from such a joint distribution to obtain the marginal on X (say), can be more efficient
than directly working only with πX . This idea was utilized in Gaussian Cooling [6] and later as the
restricted Gaussian Oracle (RGO) [26, 27].

Under this notation, Algorithm 1 corresponds to a Gibbs sampling scheme from the two marginals of
π(x, y). To be precise, Line 2 and Line 3 correspond to sampling from

yi+1 ∼ πY |X(·|xi) = N (xi, hId) and xi+1 ∼ πX|Y (·|yi+1) = N (yi+1, hId)|K .

We implement the latter step through rejection sampling; if the number of trials in Line 3 hits the
threshold N , then we halt and declare failure of the algorithm. It is well known that such a Gibbs
sampling procedure will ensure the desired stationarity of π(x, y). Note that, conditioned on the
event that the algorithm does not fail, the resulting iterate will be an unbiased sample from the correct
distribution.

Stochastic perspective: forward and backward heat flows. Our algorithm can be viewed through
the lens of stochastic analysis, due to an improved analysis for the proximal sampling [27]. This
view provides an interpolation in continuous-time, which is simple and powerful. To make this
concrete, we borrow an exposition from [28, §8.3]. We denote the successive laws of xi and yi
by µX

i and µY
i , respectively. Recall that the first step of sampling from πY |X(·|xi) (Line 2) yields

µY
i+1 =

∫
πY |X=x dµX

i (x). This is the result of evolving a probability measure under (forward) heat
flow of µX

i for some time h, given by the following stochastic differential equation: for Z0 ∼ µX
i ,

dZt = dBt (FH)

whereBt is the standard Brownian process. We write law(Zt) = µX
i Pt. In particular, Zh = Z0+ζ ∼

µX
i ∗ N (0, hId) = µY

i+1 for ζ ∼ N (0, hId). When µX
i = πX , the first step of Algorithm 1 gives

πY (y) = [πX ∗ N (0, hId)](y) =
1

vol(K) (2πh)d/2

∫
K
exp

(
− 1

2h
∥y − x∥2

)
dx . (3.1)

4
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Table 1: The Fokker-Planck equations for the forward and backward heat flow describe how the laws
of Zt and Z←t in (FH) and (BH) evolve over time. See Appendix B.2 for details.

Forward flow Backward flow

SDE dZt = dBt dZ←t = ∇ log(πXPh−t)(Z
←
t ) dt+ dBt

Fokker-Planck ∂tµt =
1
2∆µt ∂tµ

←
t = −div

(
µ←t ∇ log(πXPh−t)

)
+ 1

2∆µ
←
t

The second step of sampling from πX|Y (·|yi+1) can be represented by µX
i+1 =

∫
πX|Y=y dµY

i+1(y)
(Line 3). The continuous-time process corresponding to this step might not be obvious. However, let
us consider (FH) with Z0 ∼ πX . Then, Zh ∼ πY , so the joint distribution of (Z0, Zh) is simply π.
This implies that (Z0|Zh = y) ∼ πX|Y=y . Imagine there is an SDE reversing the forward heat flow
in a sense that if we are initialized deterministically at Zh ∼ δy at time 0, then the law of the SDE
at time h would be law(Z0|Zh = y) = πX|Y=y. Then, this SDE would serve as a continuous-time
interpolation of the second step.

Such a time reversal SDE is indeed possible! The following SDE on (Z←t )t∈[0,h] initialized at
Z←0 ∼ πY = πXPh ensures Zh−t ∼ law(Z←t ) = πXPh−t:

dZ←t = ∇ log(πXPh−t)(Z
←
t ) dt+ dBt for t ∈ [0, h] . (BH)

Although this is designed to reverse (FH) initialized by Z0 ∼ πX (so Zh = Z←0 ∼ πY ), its construc-
tion also ensures that if Z←0 ∼ δy , a point mass, then Z←h ∼ law(Z0|Zh = y) = πX|Y=y . Thus, if we
initialize (BH) with Z←0 ∼ µY

i+1, then the law of Z←h corresponds to
∫
πX|Y=y dµY

i+1(y) = µX
i+1.

Remark 1. We note that In-and-Out is exactly the proximal sampling scheme [26, 27, 29] for uniform
distributions. The proximal sampler with a target density proportional to exp(−V (x)) considers
an augmented distribution π(x, y) ∝ exp(−V (x) − 1

2h∥x − y∥
2) and then repeats the following

two steps: (1) yi+1 ∼ πY |X=xi = N (xi, hId) and then (2) xi+1 ∼ πX|Y=yi+1 . Naïvely, the
proximal sampler is implemented by performing rejection sampling, with the Gaussian centered at the
minimizer of log π·|Y=yi+1 as the proposal. Realizing this would require a projection oracle (to K),
which is only known to be implementable with O(d2) membership queries. In-and-Out completely
avoids the need for a projection oracle.

4 Results

Our computational model is the classical general model for convex bodies [30]. We assume vol(K) >
0 throughout this paper. Below, Br(x) denotes the d-dimensional ball of radius r centered at x.
Definition 4 (Convex body oracle). A well-defined membership oracle for a convex body K ⊂ Rd is
given by a point x0 ∈ K, a number D > 0, with the guarantee that B1(x0) ⊆ K ⊆ BD(x0), and an
oracle that correctly answers YES or NO to any query of the form “x ∈ K?”
Definition 5 (Warmness). A distribution µ is M -warm with respect to another distribution π if for
every x in the support of π, we have dµ(x) ≤M dπ(x).

We now summarize our main result, which is further elaborated in Appendix B.4 (Theorem 5). Below,
πK is the uniform distribution over K, and Rq is the Rényi-divergence of order q (see Definition 1).
Theorem 1 (Informal version of Theorem 5). For any given η, ε ∈ (0, 1), q ≥ 1, and any convex
body K given by a well-defined membership oracle, there exist choices of parameters h,N such
that In-and-Out, starting from an M -warm distribution, with probability at least 1 − η, returns
X ∼ µ such that Rq(µ ∥ πK) ≤ ε. The number of proper steps is Õ(qd2Λ log2 M

ηε ), and the expected

total number of membership queries is Õ(qMd2Λ log6 1
ηε ), where Λ is the largest eigenvalue of the

covariance of πK.
Remark 2. Despite our guarantee being in the much stronger “metric” of Rq compared to the TV
guarantees of Ball walk, we do not have to incur any additional asymptotic complexity.

To obtain this result, one should choose the following values for the parameters: h−1 =

Θ̃(d2 log qMΛ
η log log 1

ε ), N = Θ̃( qMd2Λ log5(1/ε)
η ). See Lemma 3 for more details.

5
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Finally, while the assumption of warmness for the initialization may seem strong at the outset, for
well-rounded convex bodies (EX∼π[∥X∥2] ≤ C2d for some constant C), it is possible to generate
an O(1) warm-start with complexity Õ(d3). See [6, 31] for details.

We note that for X ∼ πK,

∥Cov(πK)∥op ≤ tr(Cov(πK)) = E[∥X − EX∥2] ≤ D2 .

The above guarantee in the Rényi divergence immediately providesW2,TV,KL, and χ2 guarantees
as special cases. For two distributions µ and π, we have

1. KL(µ∥π) = limq↓1 Rq(µ∥π) ≤ Rq(µ∥π) ≤ Rq′(µ∥π) ≤ R∞(µ∥π) = log sup dµ
dπ , 1 < q ≤ q′.

2. 2 ∥µ− π∥2TV ≤ KL(µ ∥ π) ≤ log(χ2(µ ∥ π) + 1) = R2(µ ∥ π).
3. W2

2 (µ, π) ≤ 2CLSI(π)KL(µ ∥ π) (Talagrand’s T2-inequality) and CLSI(π
K) ≲ D2.

4. W2
2 (µ, π) ≤ 2CPI(π)χ

2(µ ∥ π) [32] and CPI(π
K) ≲ ∥Cov(πK)∥op log d.

The query complexity is better if the convex body is (near-)isotropic, i.e., the uniform distribution over
the body has (near-)identity covariance. This relies on recent estimates of the worst-case Poincaré
constant for isotropic log-concave distributions [33, 34]. The condition that the convex body is
isotropic can be achieved in practice through a rounding procedure [35]. See §5 for more details.
Corollary 1. Assume that πK is near-isotropic, i.e. the operator norm of its covariance is O(1).
Under the same setting as above, In-and-Out succeeds with probability 1− η, returning X ∼ µ such
that Rq(µ ∥ πK) ≤ ε. The number of proper steps is Õ(qd2 log2 M

ηε ), and the expected total number

of membership queries is Õ(qMd2 log6 1
ηε ).

Our analysis will in fact show that the bound on the number of proper steps holds for general non-
convex bodies and any feasible start in K. This is deduced under an M -warm start in Corollaries 2
and 3. We remark that such a bound for non-convex uniform sampling is not known for the Ball walk
or the Speedy walk.
Theorem 2. For any given ε ∈ (0, 1) and set K ⊂ BD(0) with vol(K) > 0, In-and-Out with
variance h and M -warm initial distribution achieves Rq(µ

X
m ∥ πX) ≤ ε after the following number

of iterations:

m = min

{
O
(
qh−1CPI(π

X) log M
ε

)
for q ≥ 2 ,

O
(
qh−1CLSI(π

X) log logM
ε

)
for q ≥ 1 .

We have two different convergence results above under (LSI-I) and (PI). Under (LSI-I) we have a
doubly-logarithmic dependence on the warmness parameter M . On the other hand, using (PI), which
is weaker than (LSI-I) (in general, CPI ≤ CLSI), the dependence on M is logarithmic. We discuss
implications of our results further in §4.2.

4.1 Outline of analysis.

We first record two fundamental lemmas, which introduce the mathematical formalism for our
analysis. The first is the existence of forward and backward heat flows (Lemma 12), which will
interpolate each line in Algorithm 1. These flow equations describe how the laws of Zt and Z←t in
(FH) and (BH) evolve respectively over time. All proofs are deferred to Appendix B.
Lemma 1. The forward heat flow equation with initial distribution µ0 is given by

∂tµt =
1
2∆µt ,

and its backward heat flow equation is given by

∂tµ
←
t = −div

(
µ←t ∇ log(πXPh−t)

)
+ 1

2∆µ
←
t with µ←0 = µh .

These admit (weak) solutions on [0, h] for any initial distribution µ0 with dµ0

dπX ≤M <∞.

One successful iteration of In-and-Out is exactly the same as the composition of running the forward
heat flow and then backward heat flow, both for time h.

6
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Lemma 2. Let µX
k be the law of the k-th iterate xk of In-and-Out. If (FH) is initialized with

law(Z0) = µX
k , then law(Zh) = µY

k+1. If (BH) is initialized with law(Z←0 ) = µY
k+1, then

law(Z←h ) = µX
k+1.

We summarize our proof strategy below, which requires us to demonstrate two facts: (i) The current
distribution should converge to the uniform distribution, (ii) within each iteration of the algorithm,
the failure probability and the expected number of rejections should be small enough. In this section
we provide the main claims within each of these parts, and defer the remaining details to Appendix B.

While each individual component resembles pre-existing work in the literature, in their synthesis
we will demonstrate how to interleave past developments in theoretical computer science, optimal
transport, and functional analysis. The combination of these in this domain yields elegant and
surprisingly simple proofs, as well as stronger results.

Part (i). Broadly speaking, we need to demonstrate that the corresponding Markov chain is rapidly
mixing. Here, we use the heat flow perspective to derive mixing rates under any suitable divergence
measure (such as KL, χ2, or Rq). This extends known results for the unconstrained setting [27].
To summarize the proof, by considering instead the solutions after small time t, we invoke known
contraction results from [27] and then use a continuity argument to conclude the proof.
Theorem 3. Let µX

k be the law of the k-th output of In-and-Out with initial distribution µX
0 . Let

CLSI be the (LSI-I) constant of the uniform distribution πX over K. Then, for any q ≥ 1,

Rq(µ
X
k ∥ πX) ≤ Rq(µ

X
0 ∥ πX)

(1 + h/CLSI)2k/q
.

For CPI the (PI) constant of πX ,

χ2(µX
k ∥ πX) ≤ χ2(µX

0 ∥ πX)

(1 + h/CPI)2k
.

Furthermore, for any q ≥ 2,

Rq(µ
X
k ∥ πX) ≤

Rq(µ
X
0 ∥ πX)− 2k log(1+h/CPI)

q if k ≤ q(Rq(µ
X
0 ∥π

X)−1)
2 log(1+h/CPI)

,

(1 + h/CPI)
−2(k−k0)/q if k ≥ k0 :=

⌈ q(Rq(µ
X
0 ∥π

X)−1)
2 log(1+h/CPI)

⌉
.

The final result reduces the problem of obtaining a mixing guarantee to that of demonstrating a
functional inequality on the target distribution. For this, it is not strictly necessary that K be convex.

Part (ii). Convexity of K is crucial this time unlike Part (i). We show in Appendix B.3 that the
failure probability remains under control by taking a suitable variance h and threshold N , and that
the expected number of trials per iteration is of order logN , not N . To do this, we apply a detailed
argument involving local conductance and the convexity of K, which relies on techniques from [36].
Lemma 3 (Per-iteration guarantees). Let K be any convex body in Rd presented by a well-defined
membership oracle, πX the uniform distribution over K, and µ an M -warm initial distribution
with respect to πX . For any given m ∈ N and η ∈ (0, 1), set Z = 9mM

η (≥ 9), h = log logZ
2d2 logZ and

N = Z log4 Z = Õ(mM
η ). Then, the failure probability of one iteration of In-and-Out is at most

η/m, and the expected membership queries per iteration is O
(
M log4 mM

η

)
.

4.2 Discussion

No need to be lazy. Previous uniform samplers like Ball walk are made lazy (i.e., with probability
1/2, it does nothing), to ensure convergence to the target stationary distribution. However, our
algorithm does not need this, as our sampler is shown to directly contract towards the target.

Unified framework. We remark that Theorem 2 places the previously known mixing guarantees for
Ball walk,Speedy walk in a unified framework. Existing tight guarantees for Speedy walk are in TV
distance and based on the log-Sobolev constant, assuming an oracle for implementing each step [37].

7
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The known convergence guarantees of Ball walk (see Appendix C for details), namely the mixing
time of Õ(Md2D2 log 1

ε ) for TV distance, are for the composite algorithm [Speedy walk+rejection
sampling]. Here Speedy walk records only the accepted steps of Ball walk, so its stationary distri-
bution differs slightly from the uniform distribution (and can be corrected with a post-processing
step). On the other hand, In-and-Out actually converges to πK without any adjustments and achieves
stronger Rényi divergence bounds in the same asymptotic complexity. Our analysis shows that the
mixing guarantee is determined by isoperimetric constants of the target (Poincaré or log-Sobolev).

Effective step size. The Ball walk’s largest possible step size is of order 1/
√
d (see Appendix C)

to keep the rejection probability bounded by a constant. This bound could also be viewed as an
“effective” step size of In-and-Out, since the ℓ2-norm of the Gaussian N (0, hI) is concentrated
around

√
hd and we will set the variance h of In-and-Out to Õ(1/d2), so we have

√
hd ≈ 1/

√
d.

What has really changed? In-and-Out has clear similarities to both Ball walk and Speedy walk.
What then are the changes that allow us to use continuous-time interpolation? One step of Ball walk is
[random step (y ∈ Bδ(x)) + Metropolis-filter (accept if y ∈ K)]. This filtering is an abrupt discrete
step, and it is unclear how to control contraction. It could be replaced by a step of Speedy walk
(x ∼ Unif(Bδ(y) ∩ K)). Then, each iteration of In-and-Out can be viewed as a Gaussian version of
a Ball walk′s proposal+ Speedy walk algorithm.

How can we compare In-and-Out with Speedy walk? Iterating speedy steps leads to a biased distribu-
tion. As clarified in Remark 3, one step of (a Gaussian version of) Speedy walk can be understood as
a step of backward heat flow. Therefore, if one can control the isoperimetric constants of the biased
distribution along the trajectory of the backward flow, then contraction of Speedy walk toward the
biased distribution will follow from the simultaneous backward analysis.

5 Related work

Sampling from constrained log-concave distributions is a fundamental task arising in many fields.
Uniform sampling with convex constraints is its simplest manifestation, which was first studied as a
core subroutine for a randomized volume-computation algorithm [1]. Since then, this fundamental
problem has been studied for over three decades [2, 3, 4, 38, 5, 25, 24]. We review these algorithms,
grouping them under three categories — geometric random walks, structured samplers, and diffusion-
type samplers. Below, K is convex.

Geometric random walk. We discuss two geometric random walks – Ball walk [3, 4] and
Hit-and-Run [39, 17]. Ball walk is a simple metropolized random walk; it draws y uniformly
at random from a ball of radius δ centered at a current point x, and moves to y if y ∈ K and stays
at x otherwise. In the literature, Ball walk actually refers to a composite algorithm consisting of
[Speedy walk+ rejection sampling], where Speedy walk records only the accepted steps of Ball walk
(see Appendix C for details). The step size δ should be set to O(d−1/2) to avoid stepping outside
of K. [4] showed that Ball walk needs Õ(Md2D2 log 1

ε ) membership queries to be ε-close to πK in
TV, where D is the diameter of K, and the warmness parameter M measures the closeness of the
initial distribution to the target uniform distribution πK.

Hit-and-Run is another zeroth-order algorithm that needs no step size; it picks a uniform random line
ℓ passing a current point, and move to a uniform random point on ℓ ∩ K. [5] shows that, if we define
the second moment as R2 := EX∼πK [∥X − EX∥2], then Hit-and-Run requires O(d2R2 log M

ε )
queries. Notably, this algorithm has a poly-logarithmic dependence on M as opposed to Ball walk.

Both algorithm are affected by skewed shape ofK (i.e., largeD orR), so these samplers are combined
with pre-processing step called rounding. This procedure finds a linear transformation that makes the
geometry ofK less skewed and so more amenable to sampling. In literature, there exists a randomized
algorithm [35] that rounds K and generates a good warm start (i.e., M = O(1)), with Ball walk used
as a core subroutine. This algorithm takes up Õ(d3.5) queries in total, and in such position with the
good warm start, Ball walk only needs Õ(d2 log 1

ε ) queries to sample from πK.

Structured samplers. The aforementioned samplers based on geometric random walks require only
access to the membership oracle of the convex body without any additional structural assumptions.
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The alternate paradigm of geometry-aware sampling attempts to exploit the structure of convex
constraints, with the aim of expediting the convergence of the resultant sampling schemes. One
common assumption is to make available a self-concordant barrier function ϕ which has regularity
on its high-order derivatives and blows up when approaching the boundary ∂K. The Hessian of ϕ
encodes the local geometry of the constraint, and the samplers often work directly with∇2ϕ.

The first canonical example of such a zeroth-order sampler is Dikin walk used when K is given by m
linear constraints [40]; it draws a uniform sample from an ellipsoid (characterized by ∇2ϕ) of fixed
radius around a current point, and is often combined with a Metropolis adjustment. [40] shows that
Dikin walk mixes in O(md log M

ε ) steps, although each iteration is slightly more expensive than one
membership query. This algorithm requires no rounding, but still needs a good warm-start, which can
be achieved by an annealing-type algorithm using Õ(md) iterations of Dikin walk [41].

Riemannian Hamiltonian Monte Carlo is a structured sampler that exploits the first-order information
of the potential (i.e., ∇ log(1/π)) [42]; its proposal is given as the solution to the Hamilton’s
ODE equation, followed by the Metropolis-filter. In the linear-constraint setting above, it requires
O(md2/3 log M

ε ) many iterations to achieve ε-close distance to πK [18]. This sampler is further
analyzed for practical ODE solvers [43] and for more sophisticated self-concordant barriers [44].

Similarly, Mirror Langevin [45, 46, 47, 48] is a class of algorithms which converts the constrained
problem into an unconstrained one obtained by considering the pushforward of the constrained space
by ∇ϕ. The algorithm can also be metropolized [49]. The best known rate for this algorithm is
Õ(d log 1

ε ) under some strong assumptions on ϕ.

Diffusion-type samplers. Samplers based on discretizations of Itô diffusions, stochastic processes
which rapidly mix to π in continuous time, have long been used for sampling without constraints [19,
20, 21, 28]. While the underlying stochastic processes generalize easily to constrained settings, the
discretization analysis relies crucially on the smoothness of the target distribution. This is clearly
impossible to achieve in the constrained setting, so some techniques are required to circumvent this
difficulty. These algorithms, however, generalize easily to the more general problem of sampling
from distributions of the form π̃X ∝ e−f1K, by incorporating first order information from f .

The first approach for adapting diffusion-based samplers [50, 25, 51] iterates a two-step procedure.
First, a random step is taken, with xk+1/2 ∼ N (xk, 2hId) for some appropriately chosen step h,2

and then project it to K, i.e., xk+1 = projK(xk+1/2). The complexity is given in terms of queries to a
projection oracle, each call to which can be implemented with a polynomial number of membership
oracle queries; a total of Õ(d2D3

/ε4) queries are needed to be ε-close inW2 to πX . Another approach,
which uses an algorithmically designed “soft” penalty instead of a projection, was proposed in [52],
and achieves a rate estimate of Õ(d/ε10).
A second approach, suggested by [24], considers a different proximal scheme, which performs a
“soft projection” onto K, by taking steps like N ((1 − hλ−1)xk + hprojK(xk), 2hId). It is called
Moreau-Yosida regularized Langevin, named after an analogous regularization scheme for constrained
optimization. This scheme also relies on access to a projection oracle for K, and quantifies their query
complexity accordingly. Their final rate estimate is Õ(d5

/ε6) to be ε-close in TV distance to πX .

Observing the prior work integrating diffusion-based sampling with convex constraints, the de-
pendence on the key parameters d, ε, while polynomial, are many orders worse than the rates for
zeroth-order samplers such as Ball walk,Hit-and-Run. In contrast, our analysis not only recovers but
in some sense surpasses the known rates for Ball walk,Hit-and-Run, while harmonizing well with
the continuous-time perspective of diffusions.

Proximal schemes for sampling. The Gibbs sampling scheme used in this paper was inspired by
the restricted Gaussian oracle introduced in [26] (in turn inspired by Gaussian Cooling [6]), which
alternately iterates between a pure Gaussian step, and a “proximal” step (which we elaborate in our
exposition). This scheme was given novel interpretations by [27], which showed that it interpolates
the forward and backward heat flows, in the sense defined by [53]. The backward heat flow itself is
intimately related to stochastic localization schemes, invented and popularized in [54, 55].

2A gradient step can be added in the more general case, for sampling from π̃X .
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This formulation proved surprisingly powerful, allowing many existing rates in unconstrained sam-
pling to be recovered from a relatively simple analysis. This was further extended by [29] to achieve
the current state-of-the-art rate in unconstrained sampling. Finally, [56] suggest that this could be
applied to tackle some constrained problems. However, the assumptions in this final mentioned work
are not compatible with the uniform sampling problem on general convex bodies.

6 Conclusion

We propose In-and-Out for uniform sampling on convex bodies, and show that it obtains guarantees in
Rq divergence from an M -warm start, substantially stronger than prior work, and without increasing
the computational complexity. Notably, our proof technique is quite different and provides a direct
reduction to isoperimetric constants of the target distribution.

While the current work focuses on uniform sampling of convex bodies, there are a number of natural
extensions that may be considered. It may be possible to prove analogous results for general log-
concave distributions, and on non-log-concave distributions satisfying isoperimetric inequalities,
e.g., it is open to find a polytime algorithm for sampling a general distribution satisfying a Poincaré
inequality presented by a function oracle (with no smoothness assumptions).
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A Helpful lemmas

Before proceeding, we state two important lemmas which are needed for our proofs. The first is the
data-processing inequality for Rényi divergence and f -divergence, given below.

Lemma 4 (Data-processing inequality). For measures µ, ν, Markov kernel P , f -divergence Df , and
q ≥ 1, it holds that

Df (µP ∥ νP ) ≤ Df (µ ∥ ν) , and Rq(µP ∥ νP ) ≤ Rq(µ ∥ ν) .

Functional inequalities allow us to show exponential contraction of various divergences, through the
following helpful inequality.

Lemma 5 (Grönwall). Suppose that u, g : [0, T ]→ R are two continuous functions, with u being
differentiable on [0, T ] and satisfying

u′(t) ≤ g(t)u(t) for all t ∈ [0, T ] .

Then,

u(t) ≤ exp
(∫ t

0

g(s) ds
)
u(0) for all t ∈ [0, T ] .

B Analysis

Before proceeding, we first give the proof of Lemma 2 in the main text. A more general version of
Lemma 1 is proved in the form of Lemma 12.

Proof of Lemma 2. We explicitly show that the forward and backward heat flows indeed interpolate
the two discrete steps given in Algorithm 1. For the forward part, we have Zh = Z0 + ζ for
ζ ∼ N (0, hId), so

law(Zh) = law(Z0) ∗ N (0, hId) = µX
k ∗ N (0, hId) = µY

k+1 .

Regarding the backward part, it is known from [27, Lemma 14] that the construction of the time-
reversal SDE ensures that (Z←h , Z←0 ) and (Z0, Zh) have the same joint distribution, when Z0 ∼ πX

(and so Zh ∼ πY ). Hence, law(Z←h |Z←0 = y) = law(Z0|Zh = y) = πX|Y=y, where the last
equality follows from (Z0, Zh) ∼ π. Since we initialize (BH) with Z←0 = y ∼ µY

k+1, we have

law(Z←h ) =

∫
law(Z←h |Z←0 = y)µY

k+1(dy) =

∫
πX|Y (·|y)µY

k+1(dy) = µX
k+1 ,

where the last follows from the definition of Line 3.

B.1 Functional inequalities

The contraction of an outer loop of our algorithm is controlled by isoperimetry of the uniform
distribution πX , which is described precisely by a functional inequality. The most natural ones
to consider in this setting are the Poincaré inequality (PI) and log-Sobolev inequality (LSI-I). In
Appendix D, we provide a more detailed discussion of how these are related to other important
notions of isoperimetry, such as the Cheeger and log-Cheeger inequalities.

Below, we use µ, ν to denote two arbitrary probability measures over Rd. The relationship between a
Poincaré inequality and the χ2-divergence is derived by substituting f = dν

dµ into (PI).

Lemma 6. Assume that ν satisfies (PI) with parameter CPI(ν). For any probability measure µ over
Rd with µ≪ ν, it holds that

χ2(µ ∥ ν) ≤ CPI(ν)

2
Eν

[∥∥∇dµ

dν

∥∥2] .
The Poincaré inequality implies functional inequalities for the Rényi divergence.
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Lemma 7 ([23, Lemma 9]). Assume that ν satisfies (PI) with parameter CPI(ν). For any q ≥ 2 and
probability measure µ over Rd, it holds that

1− exp(−Rq(µ ∥ ν)) ≤
q CPI(ν)

4
RFq(µ ∥ ν) ,

where RFq(µ∥ν) := q Eν

[(
dµ
dν

)q∥∇ log dµ
dν ∥

2
]
/Eν

[(
dµ
dν

)q]
is the Rényi Fisher information of order

q of µ with respect to ν.

The log-Sobolev inequality paired with the KL-divergence (LSI-II) can be understood as a special
case of the following inequality3 paired with the q-Rényi divergence for q ≥ 1.

Lemma 8 ([23, Lemma 5]). Assume that ν satisfies (LSI-II) with parameter CLSI(ν). For any q ≥ 1
and probability measure µ over Rd, it holds that

Rq(µ ∥ ν) ≤
q CLSI(ν)

2
RFq(µ ∥ ν) .

Note that limq→1 Rq = KL and RF1 = FI.

We have collected below the functional inequalities used to establish the mixing of our algorithm (see
Appendix D for a detailed presentation).

Lemma 9. Let K ⊂ Rd be a convex body with diameter D, and π be the uniform distribution over K.
Then, CPI(π) ≲ ∥Cov(π)∥op log d and CLSI(π) ≲ D2. If π is isotropic, then CPI(π) ≲ log d and
CLSI(π) ≲ D.

B.2 Contraction and mixing

We start by analyzing how many outer iterations of In-and-Out are required to be ε-close to πX , the
uniform distribution over K. The contraction of Algorithm 1 comes from analyzing Lines 2 and 3
through the perspective of heat flows (see §3). To exploit this view, we first revisit the previous
contraction analysis in [27], which is carried out for distributions with smooth densities. Although the
uniform distribution is not even continuous, we prove a technical lemma (Lemma 12) that enables us
to extend previously known results to the uniform distribution. Lastly, combining the previous results
with our technical lemma, we obtain clean contraction results of Algorithm 1 toward the uniform
distribution πX in Theorem 3.

Part I: Contraction analysis for smooth distributions. In this part, we review the contraction
results for heat flow and its time-reversal [27], which are intimately connected with our algorithm.
We also provide key technical ingredients needed for its proof, such as the computations for measures
evolving under simultaneous forward/backward heat flows. We refer interested readers to Appendix E
for additional details. Only in Part I, we assume that ν denotes a probability measure with smooth
density.

Forward heat flow. We begin by introducing the “heat flow” equation (or also known as the
Fokker-Planck equation), which describes the evolution of the law of Zt under (FH),

∂tµt =
1

2
∆µt =

1

2
div(µt∇ logµt) . (FP-FH)

It is well known that one can realize this equation in discrete time through a Gaussian transition
density, in the sense that, for µh (the solution at time h > 0 to (FP-FH) with initial condition µ0),
and for any smooth function f : Rd → R,

Eµh
[f(x)] = Eµ0 [Phf(x)] ,

where Phf(x) = EN (x,hId)[f ].
4 By this we can formally identify µh = µ0Ph, and also write µh for

the law of Zh, where {Zh}h≥0 solves (FH).

3Such inequalities are often called Polyak-Łojasiewicz inequalities, which say for f : Rd → R, and all
y ∈ Rd that f(y) ≤ c ∥∇f(y)∥2 for some constant c, if min f(x) = 0.

4{Ph}h≥0 is often called the heat semigroup.
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Backward heat flow. Although there are many ways to define a “reversal” of Ph, we will use the
notion of adjoint introduced by [53], which is the most immediately useful.

Given some initial measure ν and some time horizon h, the adjoint corresponds to reversing (FH)
for times in [0, h] when the initial distribution under consideration is Z0 ∼ ν. For other measures, it
must be interpreted more carefully, and is given by the following partial differential equation starting
from some measure µ←0 (see (E.1) and its derivation):

∂tµ
←
t = −div

(
µ←t ∇ log(νPh−t)

)
+

1

2
∆µ←t for t ∈ [0, h] . (FP-BH)

Write µ←t = µ←0 Q
ν,h
t , where {Qν,h

t }t∈[0,h] is a family of transition densities. Write P0,h for the
joint distribution of the (Z0, Zh)-marginals of (FH), when Z0 ∼ ν, and P0|h for the conditional.
Note that Ph|0(·|x) = N (x, hId). It is also known that (FP-BH) gives a time-reversal of the heat
equation at the SDE level, in the sense that we can interpret δxQ

ν,h
h = P0|h(·|Zh = x). Thus

µ←0 Q
ν,h
h =

∫
P0|h(·|Zh = x)µ←0 (dx), and νPhQ

ν,h
t = νPh−t for all t ∈ [0, h].

The ultimate purpose of this machinery is to affirm our earlier description of the Gibbs sampling
procedure as alternating forward and backward heat flows. Indeed, notice that, if µX

i is the law of
the iterate at some iteration i, then µX

i Ph is precisely µY
i+1 under our scheme, while (µX

i Ph)Q
πX ,h
h

is µX
i+1, assuming QπX ,h

h is well defined for non-smooth measures πX . Thus, while Algorithm 1 is
implemented via discrete steps, it can be exactly analyzed through arguments in continuous time. We
shall see the benefits of this shortly.

Instead of considering the change in metrics along the evolution of µPt with respect to “fixed” ν,
it will be useful to consider the simultaneous evolution of µPt, νPt (and similarly µQt, (νPh)Qt).
This type of computation was carried out for specific metrics in earlier work [23, 27]. The following
is a more generalized form of one appearing in [57, Lemma 2]. In the lemma below, we consider an
arbitrary diffusion equation with corresponding Fokker-Planck equation:

dXt = bt(Xt) dt+ dBt and ∂tµt = −∇ · (btµt) +
1

2
∆µt (B.1)

where bt : Rd → Rd is smooth, Xt ∈ Rd, and µt = Law(Xt) if X0 ∼ µ0.
Lemma 10 (Decay along forward/backward heat flows). Let (µt)t≥0, (νt)t≥0 denote the laws of the
solutions to (B.1) starting at µ0, ν0 respectively. Then, for any differentiable function g,

∂tg
(
Df (µt ∥ νt)

)
= −1

2
g′
(
Df (µt ∥ νt)

)
× Eµt

〈
∇
(
f ′ ◦ µt

νt

)
,∇ log

µt

νt

〉
.

Proof. The case where g ̸= id is an application of the chain rule, so it suffices to take g = id and
simply differentiate an f -divergence.

For brevity, we drop the variable x of functions involved, and proceed as follows:

∂tDf (µt ∥ νt) =
∫ {(

f ◦ µt

νt

)
∂tνt +

(
f ′ ◦ µt

νt

)(µt

νt

)′
νt

}
dx

=

∫ {
∂tνt

((
f ◦ µt

νt

)
−

(
f ′ ◦ µt

νt

)µt

νt

)
+
(
f ′ ◦ µt

νt

)
∂tµt

}
dx

=
(i)

∫ [
−∇ · (btνt) +

1

2
∆νt

]((
f ◦ µt

νt

)
−
(
f ′ ◦ µt

νt

)µt

νt

)
dx

+

∫ [
−∇ · (btµt) +

1

2
∆µt

](
f ′ ◦ µt

νt

)
dx ,

where in (i) we substitute the F-P equation from (B.1). Integrating by parts (i.e.,
∫
f div(G) =

−
∫
⟨∇f,G⟩ for a real-valued function f and vector-valued function G), we have that∫ [

−∇ · (btνt)
](
f ◦ µt

νt

)
dx =

∫ 〈
btνt,

(
f ′ ◦ µt

νt

)
∇µt

νt

〉
dx . (B.2)

On the other hand, we have that

−
∫ [
−∇ · (btνt)

](
f ′ ◦ µt

νt

)µt

νt
dx = −

∫ 〈
btνt,

µt

νt
∇
(
f ′ ◦ µt

νt

)
+

(
f ′ ◦ µt

νt

)
∇µt

νt

〉
dx .
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The second term cancels with the RHS of (B.2). We have a similar cancellation for the 1
2∆νt term:∫

1

2
∆νt

(
f ◦ µt

νt

)
dx = −

∫
1

2

〈
∇νt,

(
f ′ ◦ µt

νt

)
∇µt

νt

〉
dx ,

and

−
∫

1

2
∆νt

(
f ′ ◦ µt

νt

)µt

νt
dx =

∫
1

2

〈
∇νt,

µt

νt
∇
(
f ′ ◦ µt

νt

)
+
(
f ′ ◦ µt

νt

)
∇µt

νt

〉
dx .

Combining these, we are left with∫ [
−∇ · (btνt)+

1

2
∆νt

]((
f ◦ µt

νt

)
−

(
f ′ ◦ µt

νt

)µt

νt

)
dx

= −
∫ 〈

btνt −
1

2
∇νt,∇

(
f ′ ◦ µt

νt

)µt

νt

〉
dx

= −
∫ 〈

btµt −
1

2
µt∇ log νt,∇

(
f ′ ◦ µt

νt

)〉
dx .

Finally, we note that∫ [
−∇ · (btµt) +

1

2
∆µt

](
f ′ ◦ µt

νt

)
dx =

∫ 〈
btµt −

1

2
∇µt,∇

(
f ′ ◦ µt

νt

)〉
dx

=

∫ 〈
btµt −

1

2
µt∇ logµt,∇

(
f ′ ◦ µt

νt

)〉
dx .

Putting it all together, noticing that the drift terms cancel, we are left with

∂tDf (µt ∥ νt) = −
∫

1

2

〈
µt∇ log

µt

νt
,∇

(
f ′ ◦ µt

νt

)〉
dx = −1

2
Eµt

〈
∇ log

µt

νt
,∇

(
f ′ ◦ µt

νt

)〉
,

which completes the proof.

To recover the decay result for the q-Rényi divergence, one can substitute g(x) = 1
q−1 log x and

f(x) = xq − 1. For the χ2-divergence, instead substitute g(x) = x and f(x) = x2 − 1. From this,
we can obtain a single step of decay for the Rényi and χ2-divergences under different functional
inequalities.

Before proceeding, we need a standard lemma on functional inequalities under (FH).

Lemma 11 (Functional inequalities under Gaussian convolutions, [58, Corollary 13]). The following
inequality holds for any π with finite log-Sobolev and Poincaré constants,

CPI(πPt) ≤ CPI(π) + t , and CLSI(πPt) ≤ CLSI(π) + t .

Combining the previous two lemmas, we can establish contraction between µPhQh and ν after one
forward/backward iteration.

Theorem 4 ([27, Theorem 3 and 4]). Assume ν, a measure with smooth density, satisfies (LSI-I)
with constant CLSI. For any q ≥ 1 and initial distribution µ with a smooth density, denoting again
Qh := Qν,h

h ,

Rq(µPhQh ∥ ν) ≤
Rq(µ ∥ ν)

(1 + h/CLSI)2/q
.

If ν satisfies (PI) with constant CPI, then it follows that

χ2(µPhQh ∥ ν) ≤
χ2(µ ∥ ν)

(1 + h/CPI)2
.

Moreover, for all q ≥ 2,

Rq(µPhQh ∥ ν) ≤

{
Rq(µ ∥ ν)− 2 log(1+h/CPI)

q if Rq(µ ∥ ν) ≥ 1 ,
Rq(µ∥ν)

(1+h/CPI)2/q
if Rq(µ ∥ ν) ≤ 1 .
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Proof. Since the SDE in (B.1) captures the forward heat flow (FH), we set µ0 and ν0 in Lemma 10
to µ and ν, respectively, obtaining contraction along the forward heat flow as follows: Substituting
the q-Rényi into Lemma 10, we have, from the definition of the Rényi divergence as Rq(µ ∥ ν) :=
1

q−1 log(Df (µ ∥ ν) + 1), with f(x) = xq − 1 and g(x) = 1
q−1 log(x+ 1),

∂tRq(µPt ∥ νPt) = −
q

2

EµPt

[〈
∇
(

µPt

νPt

)q−1
,∇ log µPt

νPt

〉]
(q − 1)EνPt

[(
µPt

νPt

)q]
=
(i)
−q
2

EµPt

[(
µPt

νPt

)q−2
⟨∇µPt

νPt
,∇ log µPt

νPt
⟩
]

EνPt

[(
µPt

νPt

)q]
=
(ii)
−q
2

EνPt

[(
µPt

νPt

)q

∥∇ log µPt

νPt
∥2
]

EνPt

[(
µPt

νPt

)q] = −1

2
RFq(µPt ∥ νPt) ,

where in (i), we use again that ∇
[
f ′
(
µt

νt

)
µt

νt

]
= ∇

(
f ′ ◦ µt

νt

)
· µt

νt
+ f ′

(
µt

νt

)
∇µt

νt
, and (ii) uses that

∇µPt

νPt
= µPt

νPt
∇ log µPt

νPt
, and the last equality recalls the definition of the Rényi Fisher information.

This yields

∂tRq(µPt ∥ νPt) = −
1

2
RFq(µPt ∥ νPt) ≤

(i)
−1

q

Rq(µPt ∥ νPt)

CLSI(νPt)
≤
(ii)
−1

q

Rq(µPt ∥ νPt)

CLSI + t
,

where we used Lemma 8 in (i) and Lemma 11 in (ii). Applying Grönwall’s inequality (Lemma 5),

Rq(µPh ∥ νPh) ≤ exp
(
−1

q

∫ h

0

1

CLSI + t
dt
)
Rq(µ ∥ ν) ≤

Rq(µ ∥ ν)
(1 + h/CLSI)1/q

.

Since the SDE (B.1) also captures the backward equation (BH), we set µ0 and ν0 in Lemma 10 to
µPh and ν̃ := νPh respectively, obtaining contraction along the backward heat flow:

∂tRq(µPhQt ∥ ν̃Qt) = −
1

2
RFq(µPhQt ∥ ν̃Qt)

≤ −1

q

Rq(µPhQt ∥ ν̃Qt)

CLSI(ν̃Qt)
≤
(i)
−1

q

Rq(µPhQt ∥ ν̃Qt)

CLSI + h− t
,

where (i) follows from that ν̃Qt = νPhQt = νPh−t andCLSI(ν̃Qt) ≤ CLSI+h−t due to Lemma 11.
Applying Lemma 5 again yields

Rq(µPhQh ∥ ν) ≤
Rq(µPh ∥ ν̃)

(1 + h/CLSI)1/q
.

Composing these two inequalities leads to the decay rate claimed in the theorem.

The result in the χ2-divergence can be derived entirely analogously. For instance, the decay from the
forward part can be shown as follows:

∂tχ
2(µPt ∥ νPt) = −

1

2
EνPt

[∥∥∥∇µPt

νPt

∥∥∥2] ≤
(i)
−χ

2(µPt ∥ νPt)

CPI(νPt)
≤ −χ

2(µPt ∥ νPt)

CPI + t
,

where (i) follows from Lemma 6. Applying Grönwall’s inequality then gives

χ2(µPh ∥ νPh) ≤ exp
(
−
∫ h

0

1

CPI + t
dt
)
χ2(µ ∥ ν) ≤ χ2(µ ∥ ν)

1 + h/CPI
.

The decay along the backward heat flow in χ2 is entirely analogous to the Rényi case. Then we
combine two contraction results from the forward and backward flows, completing the proof.

The result in the Rq under (PI) can be shown in a similar manner. Only difference is that in forward
and backward computations, one should use the functional inequality in Lemma 7 and the following
standard inequalities:

1− exp
(
−Rq(µ ∥ ν)

)
≥

{
1
2 if Rq(µ ∥ ν) ≥ 1 ,
1
2Rq(µ ∥ ν) if Rq(µ ∥ ν) ≤ 1 .
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Part II: Extension to constrained distributions. We now prove a technical lemma that extends
the contraction results to constrained distributions. This lemma guarantees the existence of weak
solutions to two stochastic processes that describe the evolution of distributions involved in Line 2
and 3 in In-and-Out, in addition to lower-semicontinuity of f -divergence. We shall prove it for any
measure that is absolutely continuous with respect to πX , since this imposes no additional technical
hurdles.

Lemma 12. Let ν be a measure, absolutely continuous with respect to the uniform measure πX . The
forward and backward heat flow equations given by

∂tµt =
1

2
∆µt ,

∂tµ
←
t = −div

(
µ←t ∇ log(νPh−t)

)
+

1

2
∆µ←t with µ←0 = µh ,

admit solutions on (0, h], and the weak limit limt→h µ
←
t = µ←h exists for any initial measure µ0 with

bounded support. Moreover, for any f -divergence with f lower semi-continuous,

Df (µ
←
h ∥ ν) ≤ lim

t↓0
Df (µ

←
h−t ∥ νt) .

Proof. The existence of weak solutions for the forward equation is well-known, since µ0 can be
weakly approximated by measures with continuous density, for which the heat equation admits a
unique solution for all time. In particular, the weak solution is C∞ for t > 0.

The reverse SDE is more subtle, since∇ log νPt will in general cease to be Lipschitz as t→ 0. On
the other hand, for any h > 0, we can write explicitly

µh(x) =
1

(2πh)d/2

∫
exp

(
−∥x− y∥

2

2h

)
dµ0(y) .

If one considers the system started at µ̃0 = µϵ = νPϵ and solve the forward-backward Fokker-Planck
equations on times [0, h− ϵ], then µ̃h−ϵ = µh = µ←0 = µ̃←0 and

µ←h−ϵ(x) = µ̃←h−ϵ(x) =

∫ exp
(
−∥x−y∥

2

2(h−ϵ)
)
νPϵ(x)∫

exp
(
−∥z−y∥

2

2(h−ϵ)
)
νPϵ(z) dz

dµh(y) .

This follows from that if we consider system started at time ϵ > 0, with initial distribution µϵ, then
we obtain the above through the Bayesian perspective on the forward and reverse heat semigroups,
elaborated in Appendix E.

We now show that the following integral is indeed integrable, so µ̃←h is well-defined:

µ̃←h (x) :=

∫
exp

(
−∥x−y∥

2

2h

)
ν(x)∫

exp
(
−∥z−y∥

2

2h

)
ν(z) dz

dµh(y) .

For fixed x and ϵ < h/2,∫
exp

(
−∥z − y∥

2

2(h− ϵ)
)
ν(z) dz ≳ exp

(
− (∥y − x0∥+D)2

2(h− ϵ)
)
,

as the support of ν is constrained to K ⊂ BD(x0). Since µ0 has bounded support, µh(y) ≲

exp(−∥y∥
2

a ) for some constant a > 0. Thus,

exp
(
−∥x−y∥

2

2(h−ϵ)
)
µh(y)∫

exp
(
−∥z−y∥

2

2(h−ϵ)
)
νPϵ(z) dz

≲
exp

(
−∥x−y∥

2

2(h−ϵ)
)
µh(y)

exp(− (∥y−x0∥+D)2

2(h−ϵ) )

≲ exp
( ⟨2(x− x0), y⟩+ 2D∥y − x0∥

h
− ∥y∥

2

a

)
,

and the last bound is integrable in y.
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We then show the pointwise convergence of µ̃←h−ϵ to µ̃←h as ϵ→ 0. Note that νPϵ → ν, as ν has a
bounded support. Also, the denominator is independent of ϵ due to

1

(2π(h− ϵ))d/2

∫
exp

(
−∥z − y∥

2

2(h− ϵ)
)
νPϵ(z) dz = N (0, (h− ϵ)I) ∗ νPϵ = ν ∗ N (0, hI) .

Hence, for ϵ ≤ d−1,

exp
(
−∥x−y∥

2

2(h−ϵ)
)∫

exp
(
−∥z−y∥

2

2(h−ϵ)
)
νPϵ(z) dz

≤
( h

h− ϵ

)d/2 exp
(
−∥x−y∥

2

2h

)∫
exp

(
−∥z−y∥

2

2h

)
ν(z) dz

≲
exp

(
−∥x−y∥

2

2h

)∫
exp

(
−∥z−y∥

2

2h

)
ν(z) dz

.

As shown above, the last bound is integrable with respect to µh, so the dominated convergence
theorem implies

lim
ϵ→0

∫ exp
(
−∥x−y∥

2

2(h−ϵ)
)∫

exp
(
−∥z−y∥

2

2(h−ϵ)
)
νPϵ(z) dz

dµh(y) =

∫
exp

(
−∥x−y∥

2

2h

)∫
exp

(
−∥z−y∥

2

2h

)
ν(z) dz

dµh(y) ,

Thus, the pointwise convergence follows. Note that if we take ν(x) = πX(x) = 1K(x)
vol(K) , then µ̃←h

is the distribution of the backwards step of our algorithm. In particular, this corresponds to first
sampling x ∼ µh, then y ∼ Qν,h

h (·|x), which is precisely the law of µ←h given by (FP-BH).

As for the second statement, it follows from Scheffé’s lemma [59, Theorem 16.12] that the pointwise
convergence of µ←h−ε → µ←h leads to its TV-convergence, which in turn implies the weak convergence.
It follows from lower semicontinuity of Df [60, Theorem 2.34] that the weak convergence ensures
Df (µ

←
h ∥ ν) ≤ limt↓0Df (µ

←
h−t ∥ ν←h−t).

In the sequel, we will only consider ν = πX . Since the Rényi divergence is a continuous func-
tion of the χq divergence (see Definition 1), which itself is an f -divergence, it enjoys the same
lower-semicontinuity properties. Using this lower-semicontinuity together with the decay results in
Theorem 4, we can easily derive the contraction results of In-and-Out in Rq and χq for any q ≥ 1.
We remark that this result does not require convexity of K.

Proof of Theorem 3. Let us set µ0 = µX
0 and π0 = πX . Then, µh = µ←0 = µY

1 , πh = π←0 = πY ,
and µ←h = µX

1 , π←h = πX . For small ϵ > 0, as µϵ = (µX
0 )ϵ = µX

0 ∗ N (0, ϵId) is C∞-smooth, we
can now invoke the decay results with step size h− ϵ in Theorem 4. Thus, for contraction constants
Cϵ = (1 + h−ϵ

CLSI+ϵ )
−2/q and Cϵ = (1 + h−ϵ

CPI+ϵ )
−2 respectively when Φ = Rq and Φ = χ2,

Φ(µ←h−ϵ ∥ πϵ) ≤ Cϵ · Φ(µϵ ∥ πϵ) ≤ Cϵ · Φ(µ0 ∥ π0) ,
where we used the data-processing inequality for the last inequality. By the second result of Lemma 12,
sending ϵ→ 0 leads to

Φ(µX
1 ∥ πX) = Φ(µ←h ∥ π0) ≤ C · Φ(µ0 ∥ π0) = C · Φ(µX

0 ∥ πX) .

Repeating this argument k times completes the proof.

B.3 Failure probability and wasted steps

We begin by defining a suitable version of local conductance [4].
Definition 6 (Local conductance). The local conductance ℓ on Rd is defined by

ℓ(x)
def
=

∫
K exp(− 1

2h∥x− y∥
2) dy∫

Rd exp(− 1
2h∥x− y∥2) dy

=

∫
K exp(− 1

2h∥x− y∥
2) dy

(2πh)d/2
.

The local conductance at y quantifies the success probability of the proposal at y in Line 3. Then the
expected number of trials until the first success of Line 3 is 1/ℓ(y). Revisiting (3.1), we can notice
πY (y) = ℓ(y)/ vol(K).
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Naïve analysis for expected number of trials. Starting from πX , when we just naïvely sample
from πY |X(·|x) for all x without imposing any failure condition, the expected number of trials for
one iteration is that for the probability density px of N (x, hId),∫

K

∫
Rd

1

ℓ(y)
px(dy)π

X(dx) =

∫
Rd

1

ℓ(y)
πY (dy) =

∫
Rd

1

ℓ(y)

ℓ(y)

vol(K)
dy =∞ .

This suggests that one should consider the algorithm as having “failed” if the number of trials exceeds
some threshold.

Refined analysis under a failure condition. Going forward, we assume an M -warm start as in
previous work for uniform sampling algorithms. By induction we have dµX

i

dπX ≤M for all i.

Lemma 13 (Propagation of warm-start). From an M -warm start, we have dµX
i /dπX ≤M for all i.

Proof. Assume that µX
i satisfies the M -warm start. Then, for any measurable S and the transition

kernel Tx of Algorithm 1 at x,

µX
i+1(S) =

∫
K
Tx(S) dµ

X
i (x) ≤M

∫
K
Tx(S) dπ

X(x) =MπX(S) ,

where the last equality follows from the stationarity of π. Hence, dµX
i+1/dπ

X ≤M .

We now establish a lemma that comes in handy when analyzing the failure probability of the algorithm.
In essence, this lemma bounds the probability that taking a Gaussian step from πX in Line 2 gets
δ-distance away from K. Let us denote the δ-blowup of K by Kδ := {x ∈ Rd : d(x,K) ≤ δ}.
Lemma 14. For a convex body K ⊂ Rd containing a unit ball B1(0),

πY (Kc
δ) ≤ exp

(
− δ

2

2h
+ δd

)
.

Proof. For y ∈ ∂Kδ, we can take the supporting half-space H(y) at projK(y) containing K, due to
convexity of K. Then,

πY (Kc
δ) =

1

vol(K)

∫
Kc

δ

∫
K

exp(− 1
2h∥y − x∥

2)

(2πh)d/2
dx dy

≤ 1

vol(K)

∫
Kc

δ

∫
H(y)

exp(− 1
2h∥y − x∥

2)

(2πh)d/2
dxdy

=
1

vol(K)

∫
Kc

δ

∫ ∞
d(y,K)

exp(− z2

2h )√
2πh

dz dy . (B.3)

Let us denote the tail probability of the 1-dimensional Gaussian with variance h by

T(s) := PN (0,h)(Z ≥ s) = 1− Φ(h−1/2s) ,

where Φ is the CDF of the standard Gaussian. By the co-area formula and integration by parts,∫
Kc

δ

∫ ∞
d(y,K)

exp(− 1
2hz

2)
√
2πh

dzdy =

∫ ∞
δ

T(s) vol(∂Ks) ds

=
[
T(s)

∫ s

0

vol(∂Kz) dz︸ ︷︷ ︸
=:F

]∞
δ

+

∫ ∞
δ

1√
2πh

exp
(
− s

2

2h

) ∫ s

0

vol(∂Kz) dz ds . (B.4)

Recall that T(s) ≤ 1
2 exp(−

1
2 (h
−1/2s)2) for h−1/2s ≥ 0 due to a standard tail bound on a Gaussian

distribution. This tail bound, combined with∫ s

0

vol(∂Kz) dz = vol(Ks)− vol(K) ≤ vol
(
(1 + s)K

)
− vol(K) =

(
(1 + s)d − 1

)
vol(K) ,
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ensures that F vanishes at s =∞. Hence, bounding the first term in (B.4) by 0 results in∫
Kc

δ

∫ ∞
d(y,K)

exp(− 1
2hz

2)
√
2πh

dz dy ≤ 1√
2πh

∫ ∞
δ

exp
(
− s

2

2h

)(
(1 + s)d︸ ︷︷ ︸
≤exp(sd)

−1
)
vol(K) ds

≤ vol(K)√
2πh

exp(hd2/2)

∫ ∞
δ

exp
(
− 1

2h
(s− hd)2

)
ds

≤
(i)

vol(K) exp(hd2/2) exp
(
− (δ − hd)2

2h

)
= vol(K) exp

(
− δ

2

2h
+ δd

)
,

where in (i) we used the tail bound for a Gaussian.

This core lemma suggests taking δ = t/d and h = c/d2 for some t, c > 0, under which we have

πY (Kc
δ) ≤ exp

(
− t

2

2c
+ t

)
.

Now we choose a suitable threshold N for bounding the failure probability. Following (B.3) in the
proof, one can notice that for y ∈ Kc

δ , δ = Ω(1/d), and h = Θ(d−2),

ℓ(y) ≤
∫ ∞
d(y,K)

exp(− 1
2hz

2)
√
2πh

dz = PZ∼N (0,h)(Z ≥ δ) ≤ exp(−Ω(t2)) .

Thus, the expected number of trials from Kc
δ for the rejection sampling in Line 3 is ℓ(y)−1 ≥

exp(Ω(t2)). Intuitively, one can ignore whatever happens in Kc
δ , since Kδ takes up most of measure

of πY . As the number of trials fromKc
δ is at least exp(Ω(t2)) in expectation, the most straightforward

way to ignore algorithmic behaviors fromKc
δ is simply to set the threshold to N = Õ(exp(t2)). Even

though the threshold is N , the expected number of trials is much lower.

Lemma 3 bounds the failure probability and expected number of trials per iteration.

Proof of Lemma 3. For µh := µ ∗ N (0, hId), the failure probability is Eµh
[(1 − ℓ)N ]. Since

dµ/dπX ≤M implies dµh/d(π
X)h = dµh/dπ

Y ≤M , it follows that

Eµh
[(1− ℓ)N ] ≤M EπY [(1− ℓ)N ] .

Then, ∫
Rd

(1− ℓ)N dπY︸ ︷︷ ︸
=:A

=

∫
Kc

δ

A+

∫
Kδ∩[ℓ≥N−1 log(3mM/η)]

A+

∫
Kδ∩[ℓ<N−1 log(3mM/η)]

A

≤ πY (Kc
δ) +

∫
[ℓ≥N−1 log(3mM/η)]

exp(−ℓN) dπY

+

∫
Kδ∩[ℓ<N−1 log(3mM/η)]

ℓ(y)

vol(K)
dy

≤ exp
(
− t

2

2c
+ t

)
+

η

3mM
+

log(3mM/η)

N

vol(Kδ)

vol(K)

≤ exp
(
− t

2

2c
+ t

)
+

η

3mM
+
et

N
log

3mM

η
,

where we used vol(Kδ) ⊂ vol
(
(1 + δ)K

)
= (1 + δ)d vol(K) ≤ et vol(K). Taking c = log logZ

2 logZ ,
t =
√
8 log logZ, and N = Z(logZ)4, we can bound the last line by η

mM . Therefore,

Eµh
[(1− ℓ(·))N ] ≤M EπY [(1− ℓ(·))N ] ≤ η

m
.
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We now bound the expected number of trials per iteration. Let X be the minimum of the threshold N
and the number of trials until the first success. Then the expected number of trials per step is bounded
by MEπY X since dµh/dπ

Y ≤M . Thus,∫
Rd

(1
ℓ
∧N

)
dπY ≤

∫
Kδ

1

ℓ
dπY +NπY (Kc

δ) =
vol(Kδ)

vol(K)
+NπY (Kc

δ)

≤ et +N exp
(
− t

2

2c
+ t

)
≤ (logZ)3 + 3(logZ)4 = O

(
log4

mM

η

)
.

Therefore, the expected number of trials per step is O(M log4 mM
η ), and the claim follows since

each trial uses one query to the membership oracle of K.

B.4 Putting it together

We can now show that In-and-Out subsumes previous results on uniform sampling from convex
bodies (such as Ball walk and Speedy walk), providing detailed versions of the main results in §4.

We first establish that the query complexity of In-and-Out matches that of the Ball walk under
stronger divergences. Recall that 2∥ · ∥2TV ≤ KL ≤ log(1 + χ2) ≤ χ2.
Theorem 5. For any given η, ε ∈ (0, 1), q ≥ 1, m ∈ N defined below and any convex body K given
by a well-defined membership oracle, consider In-and-Out (Algorithm 1) with an M -warm initial
distribution µX

0 , h = (2d2 log 9mM
η )−1, and N = Õ(mM

η ). For πX the uniform distribution over K,

• It achieves Rq(µ
X
m ∥πX) ≤ ε after m = Õ(qd2∥Cov(πX)∥op log2 M

ηε ) iterations. With probability

1−η, the algorithm iterates this many times without failure, using Õ(qMd2∥Cov(πX)∥op log6 1
ηε )

expected number of membership queries in total.

• For isotropic πX , with probability 1 − η, the algorithm achieves Rq(µ
X
m ∥ πX) ≤ ε with m =

Õ(qd2 log2 M
ηε ) iterations, using Õ(qMd2 log6 1

ηε ) membership queries in expectation.

Proof. We just put together Lemma 3 and Theorem 3. For target accuracy ε > 0, we use the Rq-decay
under (PI) for q ≥ 2 in Theorem 3. TheM -warm start assumption guarantees Rq(µ

X
0 ∥πX) ≲ logM .

Due to CPI(π
X) = O(∥Cov(πX)∥op log d) (Lemma 9), In-and-Out can achieve Rq(µ

X
m ∥ πX) ≤ ε

after m = Õ(qd2∥Cov(πX)∥op log2 M
ηε ) iterations. Since each iteration has η/m-failure probability

by Lemma 3, the union bound ensures that the total failure probability is at most η throughout
m iterations. Lastly, each iteration requires Õ(M log4 1

ηε ) membership queries in expectation by

Lemma 3. Therefore, In-and-Out uses Õ(qMd2 min(D2, ∥Cov(πX)∥op) log6 1
ηε ) expected number

of membership queries over m iterations. Since Rq is non-decreasing in q, we can obtain the desired
bound on Rq for q ∈ [1, 2).

For isotropic πX , we have Cov(πX) = Id, so the claim immediately follows from CPI(π
X) =

O(log d) (see Lemma 9).

We now show that the number of proper steps is bounded as claimed for general non-convex bodies
and any feasible start in K. We first establish this result under an M -warm start (Theorem 2).

Proof of Theorem 2. By the Rényi-decay under (LSI-I) in Theorem 3, In-and-Out can achieve ε-
distance to πX after O

(
qh−1CLSI(π

X) log
Rq(µ

X
1 ∥π

X)
ε

)
iterations for q ≥ 1.

For q ≥ 2, we use the decay result under (PI). In this case, In-and-Out decays under two different
rates depending on the value of Rq(· ∥ πX). It first needs O(qh−1CPI(π

X)Rq(µ
X
0 ∥ πX)) iterations

until Rq(· ∥ πX) reaches 1. Then, In-and-Out additionally needs O(qh−1CPI(π
X) log 1

ε ) iterations,
and thus it needs O(qh−1CPI(π

X)
(
Rq(µ

X
0 ∥ πX) + log 1

ε

)
) iterations in total. By substituting

Rq(µ
X
0 ∥ πX) ≲ logM , we complete the proof.

Next, we show that In-and-Out mixes from any start.
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Corollary 2. For any given ε ∈ (0, 1) and set K ⊂ BD(0), In-and-Out with variance h and
any feasible start x0 ∈ K achieves Rq(µ

X
m ∥ πX) ≤ ε after m = Õ(qh−1CLSI(π

X) log d+D2/h
ε )

iterations.

Proof. We first bound the warmness of µX
1 w.r.t. πX when µX

0 = δx0
. One can readily check that

µX
1 (x) = 1K(x) ·

∫
exp

(
− 1

2h∥y − x∥
2
)
exp

(
− 1

2h∥y − x0∥
2
)

(2πh)d/2
∫
K exp

(
− 1

2h∥y − x∥2
)
dx

dy .

By Young’s inequality, ∥y − x∥2 ≤ (∥y∥+D)2 ≤ 3
2∥y∥

2 + 3D2 for x ∈ K. Hence,∫
exp

(
− 1

2h∥y − x∥
2
)
exp

(
− 1

2h∥y − x0∥
2
)∫

K exp
(
− 1

2h∥y − x∥2
)
dx

dy

≤exp(2h−1D2)

vol(K)

∫
exp

(
− 1

2h

(
∥y − x∥2 + ∥y − x0∥2 −

3

2
∥y∥2

))
dy

=
exp(2h−1D2)

vol(K)

∫
exp

(
− 1

2h

(1
2
∥y − 2(x+ x0)∥2 + (∥x∥2 + ∥x0∥2 − 2∥x+ x0∥2)

))
dy

≤exp(5h−1D2)

vol(K)

∫
exp

(
− 1

4h
∥y − 2(x+ x0)∥2

)
dy

=
exp(5h−1D2)

vol(K)
(4πh)d/2 .

Therefore, M = ess sup
µX
1

πX ≤ 2d/2 exp(5h−1D2). By Theorem 2 under (LSI-I), In-and-Out needs

Õ(qh−1CLSI(π
X) log d+D2/h

ε ) iterations.

We then obtain the following corollary for a convex body K.

Corollary 3. For any given ε ∈ (0, 1) and convex body K ⊂ BD(0), In-and-Out with variance
h and an M -warm initial distribution achieves Rq(µ

X
m ∥ πX) ≤ ε after m = Õ(qh−1D2 log 1

ε )

iterations. If πX is isotropic, then In-and-Out only needs Õ(qh−1D log d+d2/h
ε ) iterations.

Proof. For convex K, it follows from Lemma 9 that CLSI(π
X) = O(D2) and CLSI(π

X) = O(D) for
isotropic K. The rest of the proof can be completed in a similar way.

For h = Θ̃(d−2), In-and-Out requires Õ(qd2D2) iterations and in particular Õ(qd2D) iteration for
isotropic uniform distributions. These results match those of Speedy walk [61, 37] (see Theorem 7).

C Ball walk and Speedy walk

We restate the previously known guarantees for uniform sampling by Ball walk and Speedy walk.
Below, let Br(x) denote the d-dimensional ball of radius r centered at x.

Algorithm 2 Ball walk

Input: initial distribution π0, convex body K ⊂ Rd, iterations T , step size δ > 0.
1: Sample x0 ∼ π0.
2: for i = 1, . . . , T do
3: Sample y ∼ Unif(Bδ(xi−1)).
4: If y ∈ K, then xi ← y. Else, xi ← xi−1.
5: end for

Ball walk is particularly simple; draw a uniform random point from Bδ around the current point,
and go there if the drawn point is inside of K and stay at the current point otherwise. Its stationary
distribution can be easily seen to be π ∝ 1K, the uniform distribution over K.
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In the literature, there are two approaches to analyzing the convergence rate of this sampler: (i) a
direct analysis via the s-conductance of Ball walk and (ii) an indirect approach which first passes
through Speedy walk.

Direct analysis. The following TV-guarantee is obtained by lower bounding the s-conductance of
Ball walk, which requires a one-step coupling argument and the Cheeger inequality for π. We refer
interested readers to [16, §5].
Theorem 6 (Convergence of Ball walk). For any ε ∈ (0, 1) and convex body K ⊂ Rd presented by a
well-defined membership oracle, let πt be the distribution after t steps of Ball walk with an M -warm
initial distribution π0. Then, Ball walk with step size δ = Θ( ε

M
√
d
) achieves ∥πt − π∥TV ≤ ε for

t ≳ d2D2M2

ε2 log M
ε . If π is isotropic, then Ball walk needs O(d2M2

ε2 log d log M
ε ) iterations.

The mixing time of Ball walk under this approach has a polynomial dependence on 1/ε, rather than a
polylogarithmic dependence.

Indirect analysis through Speedy walk. [4] introduced Speedy walk, which could be viewed as
a version of Ball walk and converges to a speedy distribution (see Proposition 1), which is slightly
biased from π. Then, Speedy walk is used together with another algorithmic component (rejection
sampling) [4, Algorithm 4.15] that converts the speedy distribution to the uniform distribution. In
the literature, Ball walk often refers to ‘Speedy walk combined with the conversion step’, rather than
a direct implementation of Algorithm 2. Strictly speaking, a mixing guarantee of this combined
algorithm should not be referred to as a provable guarantee of Ball walk.

Algorithm 3 Speedy walk

Input: initial distribution π0, convex body K ⊂ Rd, iterations T , step size δ > 0.
1: Sample x0 ∼ π0.
2: for i = 1, . . . , T do
3: Sample xi ∼ Unif(K ∩Bδ(xi−1)).
4: end for

As opposed to Ball walk, Speedy walk always takes some step at each iteration. However, the problem
of sampling from xi ∼ Unif(K ∩Bδ(xi−1)) in Line 3 is not straightforward. This step admits the
following implementation based on rejection sampling, via a procedure denoted by (∗):

• Propose y ∼ Unif(Bδ(xi−1)).
• Set xi+1 ← y if y ∈ K. Otherwise, repeat the proposal.

Each actual step (indexed by i) in Speedy walk is called a proper step, and rejected steps during (∗)
are called improper steps. For example, if x1, x1, x2, x3, x3, x3, x4, . . . are the positions produced
by Ball walk, then only proper steps x1, x2, x3, x4, . . . are recorded by Speedy walk.

To describe the theoretical guarantees of Speedy walk, we define the local conductance ℓ(x) at x ∈ K,
which measures the success probability of the rejection sampling scheme in (∗):

ℓ(x) :=
vol(K ∩Bδ(x))

vol(Bδ(x))
,

and define the average conductance:

λ := Eπℓ =
1

vol(K)

∫
K
ℓ(x) dx .

Proposition 1 ([4]). The stationary distribution ν of Speedy walk has density

ν(x) =
ℓ(x)1K(x)∫
K ℓ(x) dx

.

The speedy distribution ν is indeed different from the uniform distribution π, and this discrepancy is
quantified in terms of the average conductance.
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Proposition 2 ([4, Page 22]). ∥ν − π∥TV ≤ 1−λ
λ .

One can relate the step size δ to the average conductance.

Proposition 3 (Bound on average conductance, [4, Corollary 4.5]). λ ≥ 1− δ
√
d

2 .

The best known result for Speedy walk’s mixing is due to [61] devising the blocking conductance
and using the log-Cheeger inequality. When ν is isotropic (i.e., it has covariance proportional to the
identity matrix), [37] improves the mixing bound via the log-Cheeger constant.
Theorem 7 (Mixing of Speedy walk). For any ε ∈ (0, 1) and convex body K ⊂ Rd presented by a
well-defined membership oracle, let νt be the distribution after t proper steps of Speedy walk started
at any feasible point x0 ∈ K. Then, Speedy walk with step size δ = Θ(d−1/2) achieves ∥νt−ν∥TV ≤
ε for t ≳ (D2 + log(D

√
d)) d2 log 1

ε . From an M -warm start, the expected number of improper
steps during t iterations is Õ(tM). When ν is isotropic, Speedy walk needs O(d2D log 1

ε log logD)
proper steps to achieve ε-TV distance to ν.

Then, [4] uses the following post-processing step to obtain an approximately uniform distribution on
K, with a provable guarantee.

A: Call Speedy walk to obtain a sample X ∼ νt until 2d
2d−1 X ∈ K. If so, return X̄ = 2d

2d−1 X .

Proposition 4 ([4, Theorem 4.16]). Under the same setting above, assume ∥νt − ν∥TV ≤ ε for step
size δ ≤ (8d log d

ε )
−1/2 and fixed t ∈ N. For ν̄ = law(X̄) given by A, it holds that ∥ν̄ − π∥TV ≤ ε,

and the expected number of calls on the conversion algorithm is at most 2.

Combining the previous two results, we conclude that the total expected number of membership
queries to obtain a sample ε-close to π in TV is Õ(Md2D2 log 1

ε ), which now has a poly-logarithmic
dependence on 1/ε.
Remark 3 (Backward heat flow analysis of Speedy walk). Consider a Gaussian version of
Speedy walk, whose one-step corresponds to xi+1 ∼ N (xi, hId)|K, and this transition kernel ex-
actly matches integrating (BH) for time h. Thus, νQπX ,h

h = ν due to the stationarity of ν under

Speedy walk, where QπX ,h
h is the transition kernel defined by the backward heat flow for time h that

reverses πX ∗N (0, hId) to πX . Hence, if we can control the LSI/PI constants of ν along the backward
heat-flow’s trajectory, then we could directly analyze Speedy walk by emulating computations in
Lemma 4.

D Functional inequalities

We provide full details on functional inequalities omitted in Appendix B.1. We use µ and µLC to
denote a probability measure and log-concave probability measure over Rd, respectively.

Cheeger and PI constants. The Cheeger isoperimetric constant CCh(µ) measures how large
surface area a measurable subset with larger volume has, defined by

CCh(µ) := inf
S⊂Rd

µ+(S)

min(µ(S), µ(Sc))
,

where the infimum is taken over all measurable subsets S, and µ+(S) is the Minkowski content of S
under µ defined as, for Sε := {x ∈ X : d(x, S) < ε},

µ+(S) := lim inf
ε→0

µ(Sε)− µ(S)
ε

.

[62] established CPI(µ) ≲ C−2Ch (µ)
5, and then [33] showed that for covariance matrix Σµ :=

Eµ[(· − EµX)(· − EµX)T],

CCh(µLC) ≳
1

(EµLC
[∥X − EµLC

X∥2])1/2
=

1

(trΣµLC
)1/2

. (D.1)

5The opposite direction CPI(µLC) ≳ C−2
Ch (µLC) also holds for log-concave distributions due to [63], while

CPI(µ) ≳ C−2
Ch (µ)/d for general distributions due to [64].
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This immediately leads to CPI(π) ≲ (Eπ[∥X − EπX∥2])1/2 ≤ D2 for the uniform distribution π
over a convex body K with diameter D > 0.

Kannan et al. proposed the KLS conjecture in the same paper, which says that for the spectral norm
∥ · ∥2,

CCh(µLS) ≳
1

∥ΣµLS
∥1/22

.

While the original result in [33] ensures CCh ≳ d−1/2 for an isotropic log-concave distribution
(due to Σ = Id), this conjecture indeed claims CCh ≳ 1 for such case. Following a line of work
[37, 55, 65, 34], the current bound is

CCh(µLS) ≳
(log d)−1/2

∥ΣµLS
∥1/22

,

which implies that CPI(π) ≲ log d when π is isotropic for convex K.

Log-Cheeger and LSI constants. Just as the Cheeger and PI constants are related above, there are
known connections between LSI and log-Cheeger constants. The log-Cheeger constant ClogCh(µ) of
a distribution µ ∈ P(Rd) is defined as

ClogCh(µ) := inf
S⊂Rd:µ(S)≤ 1

2

µ+(S)

µ(S)
√
log 1

µ(S)

.

[64] established that CLSI(µ) ≲ C−2logCh(µ)
6, and [61] showed that any log-concave distributions

with support of diameter D > 0 satisfy ClogCh(µLS) ≳ D−1. Later in 2016, [37] improved this to
ClogCh(µLS) ≳ D−1/2 under isotropy. Therefore, for convex K, it follows that CLSI(π) ≲ D2 and
that CLSI(π) ≲ D if π is isotropic.

E The Wasserstein geometry

We present additional technical background on the Wasserstein geometry and Markov semigroup
theory. Interested readers can refer to [66, 67, 28] for standard references on Wasserstein spaces and
applications to sampling.

Wasserstein gradient. Let P2,ac(Rd) be the space of probability measures admitting densities on
Rd with finite second moment. Although there are many ways to metrize P2,ac(Rd), the geometry
induced by the Wasserstein-2 distanceW2 is a particularly useful structure for analysis.

Under theW2-geometry, one can define a “gradient” of a functional defined over P2,ac(Rd). Specifi-
cally, for a functional F : P2,ac(Rd)→ R ∪ {∞}, the Wasserstein gradient of F at µ ∈ P2,ac(Rd)
is defined as∇W2

F(µ) = ∇(δF)(µ) ∈ L2(µ), where∇ is the standard gradient and δF is the first
variation of F7. Equipped with thisW2-gradient, one can define the Wasserstein gradient flow of F
that describes the evolution of a measure {µt}t≥0, from some initial measure µ0, as follows:

∂tµt = div
(
µt∇W2F(µt)

)
.

More generally, we can identify the Wasserstein “velocity” for some measure µt as vt if the time
derivative of µt can be written in the form

∂tµt = −div(µtvt) .

Under this identification, the time derivative of a functional F on P2,ac(Rd) with smooth Wasserstein
gradient under these dynamics can be written as

∂tF(µt) = Eµt
⟨∇W2

F(µt), vt⟩ ,
6The opposite direction holds under dimension-scaling due to [64]: CLSI(µ) ≳ C−2

logCh(µ)/d.
7The first variation can be defined, for any measures ν0, ν1 ∈ P2,ac(Rd), as limt↓0

F((1−t)ν0+tν1)−F(ν0)
t

=
⟨δF(ν0), ν1 − ν0⟩. This definition is unique up to an additive constant, which is irrelevant as we are only
concerned with its gradient.
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when vt ∈ {∇ψ : ψ ∈ C∞c (Rd)}
L2(µt)

, where {·}
L2(µt)

denotes the closure of a set with respect to
L2(µt). This is the appropriate notion of tangent space in this geometry.

For instance, when we take the functional to be the entropy of the measure, H(µ) := 1
2

∫
µ logµ,

one can verify ∇W2
H(µ) = 1

2∇ logµ. The heat flow equation can be written as ∂tµt =
1
2∆µt =

1
2 div(∇µt) =

1
2 div(µt∇ logµt), which indicates that the velocity of measures µt under the heat

flow is vt = − 1
2∇ logµt. Hence, we can notice that ∇W2H(µt) = −vt, and thus recover the heat

flow as the Wasserstein gradient flow of the entropy of the measure.

Fokker-Planck equation and time-reversal of SDE. Consider a stochastic differential equation
(Xt) given by

dXt = −at(Xt) dt+ dBt with X0 ∼ µ0 . (E.1)
It is well known that measures µt described by

∂tµt = div(µtat) +
1

2
∆µt , (E.2)

correspond to law(Xt). In this context, (E.2) is referred to as the Fokker-Planck equation correspond-
ing to (E.1).

From this equation, one can deduce the Fokker-Planck equation of the time reversal µ←t := µT−t:

∂tµ
←
t = −div(µ←t aT−t)−

1

2
∆µ←t = −div

(
µ←t (aT−t +∇ logµT−t)

)
+

1

2
∆µ←t

In particular, this describes the evolution of law(Xt) of the stochastic differential equation:

dXt =
(
aT−t(Xt) +∇ logµT−t(Xt)

)
dt+ dBt with X0 ∼ µ←0 = µT . (E.3)

While the law of this process will give µ←T = µ0 at time T , it is also true that it will give µ0|T (·|z) if
one starts (E.3) at X0 = z. This is a subtle fact, whose justification requires the introduction of a tool
called Doob’s h-transform. The presentation of this subject is beyond the scope of this paper, and we
refer interested readers to [53] as a reference to its application in this context.

28

108381https://doi.org/10.52202/079017-3440



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
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Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The primary claim is that we are presenting a new algorithm for uniform sampling
convex bodies, with guarantees in Rényi divergence. This is achieved by Algorithm 1 through
Theorem 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The primary limitations of this work are due to the assumptions. The assumptions
are clearly given when presenting our main results, and some potential extensions or relaxations
are given in our conclusion.

Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions are provided for each theorem, and the full proofs can be found in
Appendix B. A brief proof overview of the proofs are found in the main text, following the results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The contribution of this paper is primarily theoretical, and the paper does not contain
any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [NA]
Justification: The paper does not contain experiments and therefore does not require data or code.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [NA]
Justification: The paper does not contain experiments.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not contain experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [NA]
Justification: The paper does not contain experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the Code of Ethics and the guidelines prescribed therein.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: The impact of this paper is primarily theoretical, and it is therefore difficult to
quantify societal impact directly. The discussion surrounding the main theorems contains the
benefits and limitations of our analysis, which we would hope also captures their societal impact.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: The paper does not release data or models.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
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Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper involves neither crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA] .
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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