DDN: Dual-domain Dynamic Normalization for
Non-stationary Time Series Forecasting

Tao Dai'’; Beiliang Wu''} Peiyuan Liu® | Naiqi Li>'] Xue Yuerong?, Shu-Tao Xia2, Zexuan Zhu'
LCollege of Computer Science and Software Engineering, Shenzhen University, China
2Tsinghua Shenzhen International Graduate School, Tsinghua University, China
{daitao.edu, peiyuanliu.edu, linaiqi.thu} @gmail.com; xiast@sz.tsinghua.edu.cn

Abstract

Deep neural networks (DNNs) have recently achieved remarkable advancements in
time series forecasting (TSF) due to their powerful ability of sequence dependence
modeling. To date, existing DNN-based TSF methods still suffer from unreliable
predictions for real-world data due to its non-stationarity characteristics, i.e., data
distribution varies quickly over time. To mitigate this issue, several normalization
methods (e.g., SAN) have recently been specifically designed by normalization in
a fixed period/window in the time domain. However, these methods still struggle
to capture distribution variations, due to the complex time patterns of time series
in the time domain. Based on the fact that wavelet transform can decompose
time series into a linear combination of different frequencies, which exhibits
distribution variations with time-varying periods, we propose a novel Dual-domain
Dynamic Normalization (DDN) to dynamically capture distribution variations in
both time and frequency domains. Specifically, our DDN tries to eliminate the
non-stationarity of time series via both frequency and time domain normalization
in a sliding window way. Besides, our DDN can serve as a plug-in-play module,
and thus can be easily incorporated into other forecasting models. Extensive
experiments on public benchmark datasets under different forecasting models
demonstrate the superiority of our DDN over other normalization methods. Code
is available at https://github. com/Hank0626/DDN.

1 Introduction

Deep neural networks (DNNs) with powerful dependency modeling capability have recently been
widely used in time series forecasting (TSF) applications, including weather prediction [1], energy
consumption estimation [2], and traffic flow forecasting [3]. Despite the great advancements of
DNN-based TSF methods [4, 5, 6, 7], they still suffer from unreliable predictions for real-world data
due to its non-stationary nature of real-world time series, i.e., data distribution within the series varies
quickly over time (a.k.a, distribution drift [8, 9, 10]). Such non-stationary challenge limits the real
applications of DNN-based TSF methods.

To mitigate the problem of distribution drift, the classic reversible normalization [11] has recently
been proposed with a two-stage pipeline of normalization and de-normalization. The former stage
of normalization eliminates non-stationary factors for converting a non-stationary sequence into a
stationary sequence, which has to acquire the mean and standard deviation of the sequence before.
The latter stage of de-normalization reconstructs non-stationary information from the distribution
prediction model or directly reuses the mean and standard deviation acquired in normalization.

*Equal contribution
"Correspondence to: Peiyuan Liu and Naigqi Li

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

108490 https://doi.org/10.52202/079017-3444

https://github.com/Hank0626/DDN

i i Dual-Domain Dynamic Normalization (Ours)
me Domain 1
(Existing Methods) 1 § i . 1
1 Time Domain Frequency Domain |
1 Window Size 1
1 Low Frequency Large Window Size 1
1
1 Sliding !
Decouple Normalization 1
1 -1 — 1
| o |
}
. 1 Slid
Fine-grained Coarse-grained Normalizat !
Normalization Normalization 1 I
| ViR ey Small Window Size .
! 1
1 Sliding 1
1 Normalization
. > > 1
1
! 1
\ /
I e e e I T I T e e e e e -
(a) (b)

Figure 1: (a) Existing methods with a fixed period/window normalization struggle to capture dis-
tribution variations. (b) Our method dynamically captures distribution variations in both time and
frequency domains.

Later, several advanced variants of reversible normalization [12, 13, 14] have achieved impressive
performance by further alleviating the non-stationary property of real-world time series.

Despite the great success of normalization methods, existing methods are limited in capturing
distribution variations by performing normalization with a fixed period/window. As shown in Figure
1a, either existing coarse-grained (e.g., RevIN [11]) or fine-grained normalization (e.g., SAN [14]) in
single time domain tends to produce sub-optimal performance. On the other hand, it is known that
wavelet transform can decompose time series into a time-dependent sum of frequency components,
which exhibits distribution variations with time-varying periods (see Figure 1b). Thus, making full
use of such frequency information is helpful to capture distribution variations with time-varying
periods and intensities. These observations motivate us to develop a more powerful normalization
strategy to dynamically capture distribution variations.

In this paper, we propose a novel Dual-domain Dynamic Normalization (DDN) framework to
dynamically capture distribution variations in both times and frequency domains in a sliding window
way. Specifically, our DDN decomposes the original time series into different frequency components,
including low-frequency and high-frequency components, based on Discrete Wavelet Transform
(DWT) [15, 16]. Followed by performing sliding normalization in an individual frequency component
with proper window size (see Figure 1b), which is helpful to capture distribution variations with
time-varying periods and intensities. Besides, time domain normalization is developed to compute
local sliding statistics [17], including sliding mean and sliding standard deviation. Unlike the previous
works that process a coarse-grained level, our DDN leverages fine-grained a more informative sliding
window to calculate distribution characteristics for every time step.

Our main contributions can be summarized as: (i) We propose a novel Dual-domain Dynamic Normal-
ization (DDN) to dynamically capture distribution variations in both time and frequency domains with
sliding statistics. Compared with previous works, our DDN is capable of dynamically reflecting the
rapid variations to time series. (ii) Our DDN aims to eliminate non-stationary factors with frequency
domain normalization and time domain normalization. Benefiting from the complementary properties
of the time and frequency domain information, it allows our DDN to further clarify non-stationary
factors and reconstruct non-stationary information. (iii) Extensive experiments demonstrate the effec-
tiveness of our DDN, by achieving significant performance improvements across various baseline
models on seven real-world datasets.

2 Related Works

2.1 Deep Models for Time Series Forecasting

Reviewing the development of time series forecasting based on deep models, early methods [18, 19,
20] often integrated cross-dimension information in embedding module, then modeling cross-time

https://doi.org/10.52202/079017-3444 108491

information. In contrast, recent Sota methods indicate that two modeling ways can be better: CI
(Channel Independent) and CD (Channel Dependent). The primary distinction between the two
approaches lies in the former focusing only on cross-time features but the latter incorporating cross-
dimension features. Theoretically, the latter can leverage more information and achieve higher
prediction accuracy [21, 22, 23]. In practice, for relatively short input series, CD methods [24, 25]
achieve comparable or even better performance than the CI methods. However, for longer input
sequences, the situation is often the opposite[26, 4, 27]. In recent research, this difference can be
attributed to the CD having higher capacity but often lacking robustness in predicting distributional
drift than CI [28, 29], while longer series typically experience more severe distributional drift. The
superior performance of CI highlights the importance of handling distribution drift, and it is a valuable
direction in the current research on time series forecasting.

2.2 Stationary for Time Series Forecasting

RevIN [11] was the first work to apply reversible normalization for time series forecasting, which
assumes that history and future sequences share the same distribution. It counts distribution statistics
of historical sequence for both normalization and de-normalization. Due to its simplicity and
impressive effectiveness, it has been widely used in recent works [30, 31]. However, RevIN overlooks
the distributional differences between historical and future sequences. Building upon RevIN, Dish-
TS [12] proposes different distribution characteristics for historical and future sequences, using a
distribution forecasting model to predict mean and standard deviation. Concurrently, NST [13]
employs a module to provide more consistent distribution with future distribution, which can refer to
appendix B. Furthermore, SAN [14] notes that existing distribution assumptions may not adapt to the
scenario that time series points rapidly change over time [32, 33] and proposes a more fine-grained
method, which supposes the distribution characteristics of time points is different between slices
but same within a slice. Nevertheless, SAN still stops at the slice level, rather than the time series
point level. Meanwhile, existing works lack consideration of the discrepancies between low and high
frequencies, leading to insufficient consideration of non-stationary information.

3 Methodology

In the realm of multivariate time series forecasting, we consider a historical sequence X € RM* I

and aim to predict the corresponding future sequence Y € RM*T) is the number of channels.
DDN is a model-agnostic plugin designed to align the distribution characteristics of X and accurately
estimate the distribution of Y. In this section, we will comprehensively outline the pipeline of the
entire framework and elaborate on how to remove and reconstruct non-stationary factors of time
series. To enhance clarity and facilitate understanding of subsequent chapters, the key notations used
in this paper are summarized in Table 1, and the framework can be referred to in Figure 2.

Notation Description

LT The time steps of the historical/future sequences
x',y' The i-th historical or future series
x.,y. The x" after normalization and it predicted series
pn', o' The i-th mean or standard deviation series of x*
My, 0y The i-th mean or standard deviation series of y*
pl, ol The distribution forecasting of p* or o*

Table 1: Summary of key mathematical notations

3.1 Overall Framework

As depicted in Figure 2, we first eliminate non-stationary factors via both the Frequency Domain
Normalization (FDN) and the Time Domain Normalization (TDN). These processes output two
stationary sequences and two sets of distribution characteristics. Two stationary sequences weighted to
a sequence and input to the time series Forecasting Model (FM) for future sequence forecasting, while
two sets of non-stationary factors input to Distribution Prediction Model (DPM) and predict future
non-stationary factors. Finally, these factors are weighted together and incorporated with forecasting

108492 https://doi.org/10.52202/079017-3444

g g g

/ . 0 . N
/ Stationary [—i - f _;" Stationary \
{ atonary x 4.[Forecasting Model ¥ Prediction ‘|

| |
|
|

i Non-stationa w,o Non-stationat 1 i
¢ S N BN ry | I [N ry > i
x | : Elimination i Reconstruction ! Y
Non-sta!]o ¥ l N T T o o - o o - - - - o . A ___.. . _ & _ T - - - - - - . 4 :Non-stationary
Series | | Prediction

: Time Domain 0, :

: Normalization B Distribution :

| Frequency Domain 2 Prediction Model |

‘\ Normalization)

N - P e
pu
Weighing by a, B Non-Stationary Factors De-Normalization

Figure 2: The comprehensive time series forecasting framework comprises a time series forecasting
model and an auxiliary module designed for handling non-stationary factors. This auxiliary module
consists of two sub-modules: one for eliminating non-stationary factors and another for reconstructing
them. The non-stationary factor elimination sub-module includes Time Domain Normalization
and Frequency Domain Normalization, while the non-stationary factor reconstruction sub-module
incorporates a distribution prediction module.

output to reconstruct non-stationary factors by de-normalization. Here, §; and 6 correspond to the
parameters of DPM and FM, and the training strategy can be seen in the section 3.4.

3.2 Non-stationarity Elimination

For each series %, we perform a sliding window along the temporal dimension to acquire distribution
characteristics, then replicate padding that will align the length of sliding statistics to the original
series. Finally, sliding mean p’ and sliding standard deviation o represent to the distribution
characteristics of *. This process can be described as follows:

k k
i 1 i i 2 1 7 7 2
0= gy 2 e (00 = gy 2 (e — i) n

M’Z = Pad({ﬂ;c+1a e 7:U’ZLfk})> o-z = Pad({o';chh e 702—k})'
Here 2k + 1 is the size of the sliding window, and stride is 1. After that, the size of sliding statistics
is L — 2k. Where p1;° and o represent the mean value and standard deviation value of the 5
time point respectively, where j € {k + 1,--- , L — k}. To make sure each time point possesses
corresponding sliding statistics. We copy the sliding statistics closest in time by Pad (-) operation,
the obtaining p; and o; are used to achieve the transformation from non-stationary sequences to
stationary sequences. The process is as follows:
) 1))
T’ =— O (' —p' €>0. 2

o' +e (W), 2
Here, Z* is the stationary series, € is a positive number to prevent the denominator from zero, and ©®
denotes the element-wise product. By this sliding normalization, annotated as SlidingNorm (-), we
can acquire the non-stationary factors of each time point and convert non-stationary sequences to
stationary sequences.

Frequency Domain Normalization. In this branch, to exhaustively unveil non-stationary factors
and eliminate them accurately. Discrete Wavelet Transform (DWT) is conducted on x; to separate
the low-frequency component x; and high- frequency component xj,. Subsequently, we acquire and
eliminate their non-stationary factors. The process is as follows:

a:;? m;l = DWTd)l,h (wl)’ (3)
Zi, u;, of = SlidingNorm(x}), &}, u},,o} = SlidingNorm(z},),

Here, ¢; 5, is a pair of learnable wavelet bases. Z!, i, and o represent the stationary sequence
sliding mean, and sliding standard deviation of the low-frequency component. While Zj, u;} , and o,

https://doi.org/10.52202/079017-3444 108493

denote those of the high-frequency component. In practice, different types of DWT have different
padding lengths and lead to different output lengths. To ensure a consistent and clear output length,
Inverse Discrete Wavelet Transform (IDWT) performs to restore a definite size. The process is as
follows:

537; = IDWT¢z,h(i§7 a_’.;L)’ [”Z = IDWT¢L,h (“?7 N;:z)’ &Z = IDWT@,h(U;’ o';z) 4)

Where &', f1', and &' encompass the stationary sequences, sliding means, and sliding standard
deviations of different frequency components. Through these operations, the output stationary
sequence and distribution statistics maintain consistency with the dimensions of the input non-
stationary sequence.

Time Domain Normalization. We conduct the same manners in the time domain without frequency
decomposition. The process can be formulated as follows:

z', u', 0" = SlidingNorm(z*), 5)

The wavelet transform in FDN typically involves padding, which can potentially distort the statistical
distribution information of the decomposed sequences. To address this, we implement sliding
normalization directly on the original sequence. Consequently, the resulting distribution information
is utilized for predicting future distributions, while the output stationary sequence is weighted with
the stationary sequence derived from FDN.

Stationary Sequences Weighting. Two stationary sequences from FDN and TDN will be weighted
to a stationary output, which can be expressed as follows:

=z +3 a (6)

Here, « is a trainable parameter and 3 = 1 — . The weighted Z° serves as the final stationary
sequence, which is then inputted into FM for stable forecasting.

3.3 Non-stationarity Reconstruction

We acquire two sets of sliding statistics reflecting distribution variations after FDN and TDN.
Later, we refer to the structure of existing distribution prediction works [34, 12] to predict future
distribution. Initially, we calculate the mean value of each sliding statistic to compute the statistical
differences. Subsequently, the difference and original series are inputted for future difference
prediction. Ultimately, these predicted differences added to the mean value as future sliding statistics.

Frequency Domain Prediction. As shown in Figure 3, for the distribution statistics of FDN, we
predict future statistics by distribution prediction model and formulate as:

64 =SP (6" —o},2'), 6L=6h+0], o
fia =MP (@' — i, a’ — pf), L= p + ph.
Here, ,u’]} and o} are the mean values of i* and 6. While ﬂi and &i denote the prediction of j' and

&". The MP is a mean prediction branch, and the SP is a standard deviation prediction branch. They
are affiliated with DPM and adopt the same network structure.

Time Domain Prediction As the above frequency domain prediction process, for the distribution

statistics of TDN, this prediction process can be formulated as follows:
o'y =SP (O'i — Ué,wi) , ol=0\+o., ®
pa = MP (u' — pl @ — pl), ph = pl + ph

Here, i/, and o} are the mean values of i’ and o, respectively. Likewise, p’. and o denote the
prediction of ' and o*. The SP and the MP are noted in frequency domain prediction.

108494 https://doi.org/10.52202/079017-3444

FC
FIC Linear
LeakyRelu
T LeakyRelu
Mean F;: Activation
. . X, H
Prediction e F Function

FC FC Concat
i i

Distribution Prediction Model (DPM) Prediction Branch

Figure 3: The architecture of the distribution prediction model primarily consists of two predictive
branches: the Mean Prediction branch and the Standard Deviation (Std) Prediction branch. The
specific network structure of these branches is illustrated in the Prediction Branch.

De-normalization. After the aforementioned distribution predictions, two sets of estimated distri-
bution statistics will be gained. Which are weighted to reconstruct the non-stationary information of
the output of the time series forecasting model. This process can be described as follows:

pe=pl-B+pl-a, ol=0l-B+6,-a T = p+i o
Y. = 9.0 (ol +e) +pl.
Where ¢ is the output of the time series forecasting model, and ° represents the predicted sequence
after reconstructing non-stationary information. While «, (3, and ¢ mentioned before.

&)

3.4 Collaborative Training

Distribution prediction and future series forecasting are essentially a bi-level optimization problem
[35, 36, 37], where distribution outputs significantly impact the future series output. To enhance the
training effects of our models, we pre-train the DPM to yield a relatively well-trained DPM. This
procedure can be formulated as follows:

Oa = argmin ((p}, o) , (1y, 0,) . 0a) - (10)

Where 64 represents the parameters of the DPM, it is noteworthy that the wavelet bases ¢; ;, and the
weighted factor « belong to 6. We select the mean square error (MSE) as our loss function between
the predicted distribution and the ground truth of the distribution, acquired from the future sequence
through TDN. Subsequently, assuming a total training duration of 7" epochs, the parameters 6, of
the DPM will be frozen, then we train FM for 77 epochs. Finally, DPM and FM will be subject to
collaborative training during the remaining 7" — 7T epochs. The process is as follows:

0y = argr&lsi{:l (yi,yly,Of) , ift < Ty,

i . (11)
{04,605} = arg min (y*,yy, {Qd,Qf}) , otherwise.

Where ¢ denotes the t** epoch during the training process, and ¢ represents the parameters of the
FM. We train DPM and FM concurrently to mitigate potential errors in the pretraining stage, as the
ground truth of distribution is drived from future sequences based on distritution assumption. This
ground truth is somewhat inconsistent with the actual situation and fails to account for high-frequency
distribution changes. Consequently, we pretrain the DPM using assumption-based distribution ground
truth, and then collaborative train it jointly based on the loss derived from the future sequences.

4 Experiments

In this section, we conduct comprehensive experiments on multiple real-world time series datasets to
assess the effectiveness of our proposed reversible normalization method DDN.

https://doi.org/10.52202/079017-3444 108495

Datasets We conduct extensive experiments on these seven popular real-world datasets [18],
including Electricity Transformer Temperature (ETT) with its four subsets (ETThl, ETTh2,
ETTml, ETTm2), Weather, Electricity, and Traffic. The setting of these datasets following original
works [18, 20], and more descriptions about these datasets present in appendix A.1l.

Baselines. DDN is a model-agnostic method that can be applied to any mainstream time series
forecasting model. To demonstrate its versatility, we integrate DDN into several representative
models, including the earlier proposed models FEDformer [19] and Autoformer [20], the CI model
DLinear [27], and the CD model iTransformer [24].

Implementation details. Our experiments were conducted three times with a consistent random
seed and averaged to mean values. The Mean Square Error (MSE) and Mean Absolute Error (MAE)
are chosen as evaluation metrics, with MSE serving as the training loss. All models use the same
prediction lengths T = {96,192, 336, 720}. For the look-back window L, Autoformer [20] and
FEDformer [19] use . = 96, while DLinear [27] and iTransformer [24] utilize L. = 336 and
L = 720 respectively. The wavelet bases initialize to the “coiflet” bases, the default size of our
sliding window is set to 7 for information content and temporal locality balance, and « starts at zero.
More implementation details of our experiments can be referred to appendix A.2.

4.1 Main Results

As illustrated, the DDN method significantly enhances the predictive performance of the four different
baselines across nearly all datasets. For the MSE metric, this improvement is particularly evident in the
three relatively large datasets: Weather, Electricity, and Traffic. Utilizing DDN, Autoformer achieves
a relative error reduction of 19.2%, 24.7%, and 25.6%, respectively, while FEDformer achieves a
relative error reduction of 13.1%, 16.2%, and 22.3%. Similarly, incorporating the DDN into the other
models also results in substantial performance gains. Additionally, Autoformer, FEDformer, and
DLinear do not employ reversible normalization in official implements. While iTransformer utilizes
the RevIN [11] normalization technique based on static statistics. However, replacing the RevIN
module in iTransformer with the DDN module still yields significant performance improvements.
These results strongly demonstrate that DDN makes the baseline model more robust in forecasting.

Methods Autoformer +DDN FEDformer +DDN DLinear +DDN iTransformer +DDN

Metric MSE MAE MSE MAE‘MSE MAE MSE MAE ‘ MSE MAE MSE MAE ‘ MSE MAE MSE MAE

96 |0.458 0.448 0.427 0.424 |0.371 0411 0.385 0.408 | 0.377 0.399 0.372 0.396 | 0.392 0.422 0.377 0.405
192 | 0.481 0.474 0.472 0.452|0.420 0.443 0.415 0.452 | 0417 0.426 0.406 0.416 | 0.428 0.448 0.414 0.430
336 [0.508 0.485 0.498 0.466 | 0.446 0.459 0.458 0.452 | 0464 0.461 0.432 0.434 | 0.467 0.475 0.453 0.456
720 | 0.525 0.516 0.502 0.483 | 0.482 0.495 0.490 0.479 | 0.493 0.505 0.462 0.474 | 0.568 0.547 0.553 0.530

ETThl

96 |0.493 0470 0.354 0.390 | 0.362 0.408 0.313 0.364 | 0.301 0.344 0.288 0.342 | 0.322 0.371 0.301 0.355
192 [0.546 0.498 0.397 0.408 | 0.395 0.427 0.361 0.396 | 0.335 0.366 0.324 0.364 | 0.353 0.392 0.339 0.378
336 [0.658 0.543 0.429 0.433 | 0.441 0.454 0.417 0.430 | 0.370 0.387 0.356 0.385 | 0.385 0.410 0.370 0.396
720 [0.626 0.532 0.488 0.464 | 0.488 0.481 0.470 0.472 | 0425 0421 0.415 0.419 | 0.441 0.443 0.426 0.426

ETTml

96 |0.247 0.320 0.190 0.243 | 0.246 0.328 0.174 0.237 | 0.175 0.237 0.146 0.201 | 0.177 0.228 0.148 0.210
192 | 0.302 0.366 0.231 0.282 | 0.281 0.341 0.233 0.294 | 0.217 0.275 0.190 0.247 | 0.223 0.266 0.191 0.252
336 [0.362 0.394 0.289 0.327 | 0.337 0.376 0.307 0.349 | 0.263 0.314 0.239 0.288 | 0.287 0.310 0.237 0.290
720 | 0.427 0.433 0.369 0.375|0.414 0.426 0.399 0.405 |0.325 0.366 0.311 0.343|0.364 0.365 0.301 0.336

Weather

96 |0.195 0.309 0.150 0.254 | 0.185 0.300 0.146 0.251 | 0.140 0.237 0.131 0.228 | 0.133 0.229 0.127 0.225
192 | 0.215 0.325 0.173 0.275|0.196 0.310 0.168 0.268 | 0.153 0.250 0.148 0.246 | 0.154 0.250 0.146 0.246
336 | 0.237 0.344 0.185 0.288 | 0.215 0.330 0.174 0.280 | 0.168 0.267 0.164 0.264 | 0.170 0.266 0.156 0.257
720 [0.292 0.375 0.201 0.304 | 0.244 0.352 0.216 0.312 | 0.203 0.301 0.201 0.299 | 0.192 0.287 0.179 0.282

96 | 0.654 0.403 0.453 0.296 | 0.579 0.363 0.442 0.288 | 0.411 0.283 0.375 0.261 | 0.348 0.254 0.336 0.248
192 | 0.654 0.410 0.462 0.304 | 0.608 0.376 0.462 0.300 | 0.423 0.289 0.396 0.272 | 0.364 0.264 0.347 0.254
336 | 0.629 0.391 0.486 0.315|0.620 0.385 0.474 0.306 | 0.437 0.297 0.411 0.279 | 0.381 0.272 0.363 0.263
720 | 0.657 0.402 0.529 0.344 | 0.630 0.387 0.512 0.329 | 0.467 0.316 0.448 0.298 | 0.421 0.290 0.412 0.286

Electricity

Traffic

Table 2: Multivariate long-term forecasting results. The best results are highlighted in bold. More
results can be found in Appendix D.1.

108496 https://doi.org/10.52202/079017-3444

4.2 Comparison With Reversible Normalization Methods

Quantitative evaluation. In this part, we compare recent representative reversible normalization
methods using the average MSE metric across four prediction lengths in {96, 192, 336, 720}. Detailed
descriptions of these methods and links for access are provided in the Appendix B. As shown in Table
3, DDN not only significantly enhances the predictive performance of the baseline models, including
RevIN [11], NTS [13], and Dish-TS [12], but also demonstrates superior results when compared
to existing reversible normalization methods. For instance, taking the recent slice-level SAN [14]
method as an example, DDN achieves substantial improvements even upon its solid foundation.
Further comparative details are detailed in Appendix D.2.

Autoformer FEDformer
+DDN +RevIN +NST +Dish-TS +SAN IMP | +DDN +RevIN +NST +Dish-TS +SAN IMP

ETThl 0.475 0.519 0.521 0.521 0518 3.7% 0.437 0.463 0.456 0.461 0.447 -1.6%
ETTh2 0.403 0.489 0.465 1.175 0411 9.6% 0.385 0.465 0.481 1.004 0.404 9.8%
ETTml 0.417 0.562 0.535 0.567 0.406 28.2% | 0.390 0.415 0.411 0.422 0377 7.6%
ETTm2 0.283 0.325 0.331 0.894 0311 15.0% | 0.282 0.310 0.315 0.759 0287 6.6%
‘Weather 0.270 0.290 0.290 0.433 0.305 19.2% | 0.278 0.268 0.267 0.398 0279 13.1%
Electricity | 0.177 0.219 0.213 0.231 0204 24.7% | 0.176 0.200 0.198 0.203 0.191 16.2%
Traffic 0.483 0.666 0.664 0.677 0.594 25.6% | 0.473 0.647 0.649 0.652 0572 22.3%

Methods

Table 3: Comparison between DDN and existing reversible normalization methods of varying
granularities. IMP represents the relative percentage improvement of DDN over the original
sequence. The best results are highlighted in bold.

DLinear iTransformer

Methods +SAN +DDN +SAN +DDN

Metric MSE MAE MSE MAE ‘ MSE MAE MSE MAE
96 | 0.152 0210 0.146 0201 | 0.150 0.208 0.148 0.210

£ 192|019 0253 0190 0247 | 0.195 0253 0191 0.252
§ 336 | 0246 0296 0239 0288 | 0248 0295 0237 0.290
= 720 | 0315 0.346 0311 0.343 | 0311 0342 0301 0.336
z 9 | 0.137 0234 0131 0228 | 0.130 0229 0.127 0.225
:g 192 | 0.152 0248 0.148 0.246 | 0.148 0247 0.146 0.246
3 336 | 0167 0264 0.164 0264 | 0.158 0259 0.156 0.257
m 720 | 0202 0296 0201 0299 | 0.183 0.284 0.179 0.282

96 | 0412 029 0375 0261 | 0363 0269 0336 0.248
:;:j 192 | 0431 0.299 0396 0.272 | 0374 0.274 0347 0.254
E—E 336 | 0447 0308 0.411 0279 | 0.389 0281 0.363 0.263

720 | 0.475 0.320 0.448 0.298 | 0418 0294 0412 0.286

Table 4: Comparison of forecasting errors between the DDN
and SAN. The best results are highlighted in bold.

Considering that early models often lacked robust generalizability as their naive modeling strategies,
we additionally included comparisons with two recent representative models: DLinear [27] (modeling
features with CI) and iTransformer [24] (modeling features with CD). These methods already have
good non-stationary adaptability, so they can better reflect the performance upper limit of fine-grained
normalization methods. As illustrated in table 4, DDN significantly outperforms the recent state-
of-the-art model SAN in handling non-stationary information. Overall, DDN almost achieves the
best performance compared to SAN in every forecasting case. Specifically, on the Traffic dataset,
SAN [14] struggles to achieve satisfactory predictive performance and even performs worse than the
original predictive model. In contrast, DDN demonstrates effects by a finer-grain non-stationarity
processing.

Qualitative Evaluation. As shown in the figure 4, we compare DDN with reversible normalization
methods at different granularities. It can be observed that there are significant differences among
the various reversible normalization methods, which are related to their specific implementations.
From subplots (a) and (b), it is evident that RevIN [1 1] reconstructs non-stationary information based
on the distribution characteristics of historical sequences, making the distribution of the predicted
sequence closer to that of the historical sequence rather than future sequence. However, as significant

https://doi.org/10.52202/079017-3444 108497

‘‘‘‘‘‘‘‘

— GroundTruth
prediction

° 100 200 300 40 [100 20

(a)DLinear

(b)+RevIN

300 %0

100 20 300

(C)+SAN

%0

(d)+DDN

Figure 4: Comparison of reversible normalization methods, samples from DLiner [27] weather
dataset forecasting. Green solid lines represent the mean of the historical and predicted sequences.

distribution differences between historical and future sequences, this approach may even degrade
the predictive accuracy. Comparing subplots (c) and (d), although slice level SAN [14] significantly
improves overall predictive performance, it still lags behind point level DDN in terms of fine-grained
variations. Additionally, it is worth highlighting that the fine-grained capability of DDN enables the
reconstructed sequence to exhibit rapid local fluctuations flexibly. More comparisons can be found in

Appendix C.

4.3 Dual-domain Dynamic Normalization Analysis

To validate the effectiveness of FDN and TDN, we conducted ablation studies comparing the predictive
performance when only using FDN or TDN for non-stationary processing. It is important to note
that when using FDN only for non-stationary processing, the ground truth of DPM pretraining comes
from the non-stationary factors of FDN on future sequences. Correspondingly, wavelet bases will
be set to nonlearnable parameters when we use FDN only. Meanwhile, for a fair comparison, both
FDN and TDN in DDN utilize the same prediction model and share parameters, thereby avoiding
the misconception that the superior performance of DDN stems from a larger parameter space in the

prediction model.

The results of the ablation studies, as shown in Table 5, indicate that both FDN and TDN achieved
outstanding performance, with FDN often reaching comparable or even superior predictive results
compared to TDN alone. Furthermore, when we use FDN and TDN simultaneously, the predictive
performance of DDN approaches even surpasses the best performance of FDN or TDN alone. It
validates the effectiveness of TDN in capturing fine-grained non-stationarity at the point level in the
time domain while confirming the robustness of FDN separating frequency components with different
rapid changes in the frequency domain, thus enabling more refined non-stationary processing.

Method: DLinear iTransformer
ethods DDN TDN Only FDN Only DDN TDN Only FDN Only
Metric MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE
.9 | 0146 0201 0.50 0203 0.49 0206 | 0.148 0210 0.53 0212 0153 0216
2 192 | 0190 0247 0196 0251 0192 0250 | 0191 0252 0198 0256 0.193 0256
§ 336 | 0239 0288 0247 0294 0242 0293 | 0237 0290 0249 0302 0245 0305
720 | 0311 0343 0316 0344 0313 0345 | 0301 0336 0325 0361 0308 0.350
> 96 | 0131 0228 0133 0230 0132 02290 | 0127 0225 0130 0227 0126 0226
S 192 | 0048 0246 0050 0249 0.149 0246 | 0.146 0246 0.148 0250 0144 0.244
S 336 | 0164 0264 0165 0264 0166 0264 | 0156 0257 0.160 0259 0.156 0.257
B 720 | 0201 0299 0201 0295 0200 0296 | 0.179 0282 0185 0287 0.181 0283
96 | 0375 0261 0378 0263 0375 0263 | 0336 0248 0338 0250 0338 0.249
2 192 | 0396 0272 0399 0278 0298 0274 | 0347 0254 0352 0257 0351 0256
E 336 | 0411 0279 0420 0290 0412 0281 | 0363 0263 0365 0266 0364 0.263
720 | 0448 0298 0460 0310 0450 0300 | 0412 0286 0418 0288 0408 0.282

Table 5: Ablation study of FDN and TDN. “TDN Only" and “FDN Only" indicate normalization
using TDN only and FDN only, respectively. The best results are highlighted in bold.

108498

https://doi.org/10.52202/079017-3444

5 Conclusion

In this work, we propose Dual-domain Dynamic Normalization (DDN), a novel method that dy-
namically captures non-stationary factors in time series forecasting, addressing sudden changes and
distribution drifts in both time and frequency domains. Specifically, DDN employs sliding normaliza-
tion in the time domain to eliminate and reconstruct non-stationary factors at a fine-grained level. In
the frequency domain, it decomposes time series into high and low frequencies, effectively capturing
rapid variations and sudden changes. As a model-agnostic auxiliary module, DDN significantly
enhances the predictive performance of various forecasting models. Extensive experiments on seven
real-world datasets validate the superiority of DDN, demonstrating its effectiveness in addressing
distribution drift and improving the reliability of time series predictions.

6 Acknowledgments

This work is supported in part by the National Natural Science Foundation of China, under Grant
(62302309, 62171248), Shenzhen Science and Technology Program (JCYJ20220818101014030,
JCYJ20220818101012025), and the PCNL KEY project (PCL2023AS6-1).

References

[1] Zahra Karevan and Johan AK Suykens. Transductive Istm for time-series prediction: An
application to weather forecasting. Neural Networks, 125:1-9, 2020. 1

[2] Chirag Deb, Fan Zhang, Junjing Yang, Siew Eang Lee, and Kwok Wei Shah. A review on time
series forecasting techniques for building energy consumption. Renewable and Sustainable
Energy Reviews, 74:902-924, 2017. 1

[3] Marco Lippi, Matteo Bertini, and Paolo Frasconi. Short-term traffic flow forecasting: An
experimental comparison of time-series analysis and supervised learning. IEEE Transactions
on Intelligent Transportation Systems, 14(2):871-882, 2013. 1

[4] Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia.
Periodicity decoupling framework for long-term series forecasting. In The Twelfth International
Conference on Learning Representations, 2024. 1, 3

[5] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020. 1

[6] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019. 1

[7] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-
horizon quantile recurrent forecaster. arXiv preprint arXiv:1711.11053,2017. 1

[8] Tonya Fields, George Hsieh, and Jules Chenou. Mitigating drift in time series data with noise
augmentation. In 2019 International Conference on Computational Science and Computational
Intelligence (CSCI), pages 227-230. IEEE, 2019. 1

[9] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under
concept drift: A review. IEEE transactions on knowledge and data engineering, 31(12):2346—
2363, 2018. 1

[10] Wendi Li, Xiao Yang, Weiqing Liu, Yingce Xia, and Jiang Bian. Ddg-da: Data distribution
generation for predictable concept drift adaptation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 4092-4100, 2022. 1

[11] Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo.

Reversible instance normalization for accurate time-series forecasting against distribution shift.
In International Conference on Learning Representations, 2021. 1,2,3,7, 8,21, 22

https://doi.org/10.52202/079017-3444 108499

[12] Wei Fan, Pengyang Wang, Dongkun Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu.
Dish-ts: a general paradigm for alleviating distribution shift in time series forecasting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 75227529,
2023. 2,3,5,8,21,22

[13] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers:
Exploring the stationarity in time series forecasting. Advances in Neural Information Processing
Systems, 35:9881-9893, 2022. 2, 3, 8, 21, 22

[14] Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen.
Adaptive normalization for non-stationary time series forecasting: A temporal slice perspective.
Advances in Neural Information Processing Systems, 36,2024. 2,3, 8,9, 21, 22

[15] Pimwadee Chaovalit, Aryya Gangopadhyay, George Karabatis, and Zhiyuan Chen. Discrete
wavelet transform-based time series analysis and mining. ACM Computing Surveys (CSUR),
43(2):1-37,2011. 2

[16] Shyh-Jier Huang and Cheng-Tao Hsieh. Coiflet wavelet transform applied to inspect power
system disturbance-generated signals. IEEE Transactions on Aerospace and Electronic Systems,
38(1):204-210, 2002. 2

[17] Eric Zivot, Jiahui Wang, Eric Zivot, and Jiahui Wang. Rolling analysis of time series. Modeling
financial time series with S-Plus®, pages 299-346, 2003. 2

[18] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106-11115,
2021. 2,7,20

[19] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In International
conference on machine learning, pages 27268-27286. PMLR, 2022. 2,7, 21, 26

[20] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419-22430, 2021. 2, 7, 20, 21, 26

[21] Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. Exploiting multi-channels deep
convolutional neural networks for multivariate time series classification. Frontiers of Computer
Science, 10:96-112, 2016. 3

[22] Andreia Dionisio, Rui Menezes, and Diana A Mendes. Mutual information: a measure of
dependency for nonlinear time series. Physica A: Statistical Mechanics and its Applications,
344(1-2):326-329, 2004. 3

[23] Stefan Frenzel and Bernd Pompe. Partial mutual information for coupling analysis of multivari-
ate time series. Physical review letters, 99(20):204101, 2007. 3

[24] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
Long. itransformer: Inverted transformers are effective for time series forecasting. In The
Twelfth International Conference on Learning Representations, 2023. 3,7, 8, 20, 21

[25] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2022. 3

[26] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Conference
on Learning Representations, 2022. 3

[27] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121-11128, 2023. 3,7, 8,9, 21, 24, 25

108500 https://doi.org/10.52202/079017-3444

[28] Qingsong Wen, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan, et al.
Onenet: Enhancing time series forecasting models under concept drift by online ensembling.
Advances in Neural Information Processing Systems, 36, 2024. 3

[29] Lu Han, Han-Jia Ye, and De-Chuan Zhan. The capacity and robustness trade-off: Revisiting
the channel independent strategy for multivariate time series forecasting. arXiv preprint
arXiv:2304.05206, 2023. 3

[30] Luo donghao and wang xue. ModernTCN: A modern pure convolution structure for general

time series analysis. In The Twelfth International Conference on Learning Representations,
2024. 3

[31] Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel
aligned robust blend transformer for time series forecasting. In The Twelfth International
Conference on Learning Representations, 2023. 3

[32] Shohreh Deldari, Daniel V Smith, Hao Xue, and Flora D Salim. Time series change point detec-
tion with self-supervised contrastive predictive coding. In Proceedings of the Web Conference
2021, pages 3124-3135,2021. 3

[33] Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting
time series outlier detection: Definitions and benchmarks. In Thirty-fifth conference on neural
information processing systems datasets and benchmarks track (round 1), 2021. 3

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016. 5

[35] Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level
optimization for learning and vision from a unified perspective: A survey and beyond. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(12):10045-10067, 2021. 6

[36] El-Ghazali Talbi. A taxonomy of metaheuristics for bi-level optimization. In Metaheuristics for
bi-level optimization, pages 1-39. Springer, 2013. 6

[37] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and
Edison Guo. On differentiating parameterized argmin and argmax problems with application to
bi-level optimization. arXiv preprint arXiv:1607.05447, 2016. 6

[38] Graham Elliott, Thomas J Rothenberg, and James H Stock. Efficient tests for an autoregressive
unit root, 1992. 20

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 20

https://doi.org/10.52202/079017-3444 108501

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly outlined the main contributions of this paper in the abstract
and introduction sections.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

108502 https://doi.org/10.52202/079017-3444

Justification: We have mentioned it in both the methods and experimental analysis sections.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have clearly outlined the assumption and proof of this paper in the
Introduction, Method, and Appendix sections.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have clearly outlined the experiment details in the Experiments and
Appendix sections.

Guidelines:

https://doi.org/10.52202/079017-3444 108503

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the code link in the abstract.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

108504 https://doi.org/10.52202/079017-3444

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have clearly outlined the experiment details in the Experiments and
Appendix sections.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have conducted relevant analysis in both the experimental and appendix
sections and the experimental results were obtained by averaging three times.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have clearly outlined the GPU version, programming languages and main
libraries in the Appendix sections.

Guidelines:

* The answer NA means that the paper does not include experiments.

https://doi.org/10.52202/079017-3444 108505

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conducted in the paper conform the ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

108506 https://doi.org/10.52202/079017-3444

https://neurips.cc/public/EthicsGuidelines

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have clearly outlined the links of these assets in the Appendix sections.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

https://doi.org/10.52202/079017-3444 108507

paperswithcode.com/datasets

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

108508 https://doi.org/10.52202/079017-3444

A Experiments Setting

A.1 Dataset Details

Our comprehensive experiments are conducted on seven time series datasets. Consistent with the
methodologies of [18, 20, 24], we partition all datasets chronologically into training, validation, and
testing subsets. Specifically, for the ETT dataset, we adopted a 6:2:2 split ratio, while a 7:1:2 ratio
was utilized for the other datasets. Detailed descriptions of these datasets are as follows:

(1) ETT-small® (Electricity Transformer Temperature) dataset: Comprises data from electricity
transformers in two regions of China, collected between July 2016 and July 2018. It offers
two different granularities: ETTh (1 hour) and ETTm (15 minutes). Each data point includes
the value of oil temperature and six external power load features.

(2) Weather* dataset: Comprises 21 distinct meteorological measurements in Germany,
recorded every 10 minutes throughout 2020. It features key indicators such as air tem-
perature and visibility, providing an in-depth view of weather patterns.

(3) Electricity’ dataset: Contains hourly electricity consumption data in kilowatt-hours (kWh)
for 321 clients from 2012 to 2014, sourced from the UCI Machine Learning Repository.

(4) Traffic® dataset: Features hourly data on road occupancy rates from 862 detectors in the
San Francisco Bay area freeways, covering 2015 to 2016.

We provide access to all datasets through https://github.com/thuml/iTransformer. Detailed
statistics for these datasets, including time steps, channels, and ADF test [38] results (evaluate the
stationarity of a time series; a smaller value indicates greater non-stationarity.), are presented in Table
Al

Table 6: The statistics of datasets.

Datasets | Timesteps Variates Granularity =~ ADF
Electricity 26304 321 1 hour -8.44
Weather 52696 21 10 min -26.68
Traffic 17544 862 1 hour -15.02
ETThl 17420 7 1 hour -5.91
ETTh2 17420 7 1 hour -4.13
ETTml1 69680 7 15 min -5.91
ETTm2 69680 7 15 min -5.66

A.2 Setting Details

All experiments were conducted using PyTorch on a single NVIDIA 3090 24GB GPU. We utilize
the ADAM optimizer [39] with an initial learning rate of 1e~* for the distribution prediction model
and employing Mean Squared Error (MSE) loss. The batch size, training epochs, and other baseline
settings remain consistent with iTransformer [24]. The network for mean or standard deviation
prediction comprises two feedforward Neural Network (FFN) layers, with dimensions of 512 for the
first layer and 1024 for the second layer. We initialize the wavelet as Coiflet3, with « starting from O.
We conduct pre-training for 5 epochs and commence collaborative training from either the first or
second epoch based on specific settings and datasets, aiming for improved training and model fitting.

*https://github.com/zhouhaoyi/ETDataset

*https://www.bgc- jena.mpg.de/wetter/
Shttps://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
*https://pems.dot.ca.gov/

https://doi.org/10.52202/079017-3444 108509

https://github.com/thuml/iTransformer
https://github.com/zhouhaoyi/ETDataset
https://www.bgc-jena.mpg.de/wetter/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://pems.dot.ca.gov/

A.3 Baseline Methods
Our baseline methods are described as follows:

* Autoformer [20] is a transformer-based approach that adopts a decomposition strategy to
learn complex temporal patterns in long-term prediction scenarios, decomposing time series
into trend, cycle, and seasonal components, reflecting the long-term and seasonal aspects
of the sequence data, respectively. The source code is available at https://github.com/
thuml/Autoformer.

* FEDformer [19] is a hybrid Transformer-based model that integrates seasonal-trend de-
composition and frequency enhancements. It can efficiently capture both global variations
and intricate patterns. The source code is available at https://github.com/MAZiqing/
FEDformer.

* DLinear [27] is a one-layer linear model challenging the efficacy of Transformer-based
approaches in long-term time series forecasting, demonstrating superior performance on
multiple datasets. The source code is available at https://github.com/cure-lab/
LTSF-Linear.

e iTransformer [24] is a transformer-based model. The time series serve as variable tokens,
utilizing self-attention mechanisms to capture correlations between multiple variables and
using feedforward networks to encode the sequence representation. The source code is
available at https://github.com/thuml/iTransformer.

B Reversible Normalization

Related reversible normalization methods are described in table 7, and they are described as follows:

* RevIN [11] introduces a data normalization method that addresses the limitations of simply
eliminating non-stationary information, which can result in the loss of valuable data that
the model needs to learn effectively. Unlike traditional methods that may lead to the
model’s inability to capture these critical non-stationary factors, this work proposes, for
the first time, an explicit restoration of non-stationary information after the model’s output.
This ensures that while the model can learn without being affected by data drift, it also
retains the essential non-stationary information. The source code is available at https:
//github.com/ts-kim/RevIN.

e NST [13] unlikes traditional time series forecasting methods that reduce non-stationarity
by stabilizing the original data, this approach contradicts the importance of predicting
sudden events in time series forecasting and overlooks the prevalence of non-stationary data
in real-world scenarios, ultimately leading to overly stabilized modeling and prediction.
To address this, this paper proposes a novel network architecture composed of sequence
stabilization and inverse stabilization attention mechanisms. The source code is available at
https://github.com/thuml/Nonstationary_Transformers.

* Dish-TS [12] notes that existing work on distribution shift in time series is often limited by
distribution quantization and tends to overlook the potential distribution shift between the
look back window and the horizon. To address this, this paper proposes using an MLP-based
network to predict mean and standard deviation separately for the look back and horizon
windows. The source code is available at https://github.com/weifantt/Dish-TS.

* SAN [14] indicates previous efforts on addressing non-stationarity have attempted to re-
duce it through normalization techniques. However, these methods typically overlook the
distributional differences between input sequences and horizon sequences, assuming that
all time points within the same instance share identical statistical properties. This overly
idealistic approach can lead to suboptimal improvements. To address this issue, this paper
introduces a novel slice-level adaptive normalization method. The source code is available
athttps://github.com/icantnamemyself/SAN.

Although NST [13] claims that non-stationary information can enhance feature diversity, previous

methods have suffered from over-stationarization and inadequate consideration of non-stationary
information utilization. However, it is noteworthy that, upon reviewing the current implementation

108510 https://doi.org/10.52202/079017-3444

https://github.com/thuml/Autoformer
https://github.com/thuml/Autoformer
https://github.com/MAZiqing/FEDformer
https://github.com/MAZiqing/FEDformer
https://github.com/cure-lab/LTSF-Linear
https://github.com/cure-lab/LTSF-Linear
https://github.com/thuml/iTransformer
https://github.com/ts-kim/RevIN
https://github.com/ts-kim/RevIN
https://github.com/thuml/Nonstationary_Transformers
https://github.com/weifantt/Dish-TS
https://github.com/icantnamemyself/SAN

= GroundTruth 0.75 1 —— GroundTruth
= Prediction —— Prediction
05 050 1
0.25 1
0.0
0.00 1
—os 0251
-0.50 1
-1.0 -0.751
-1.004 w
=1.5
T T T T -1.254
0 100 200 300 400 0 100 200 300 400
No Merge Merge

Figure 5: The comparison of NST [13], "Merge” means using non-stationary factors extraction
module and merge to feature, "No Merge” is the opposite.

Method Granularity Estimation
RFIVII]N Series Level Statistics
IEIIS;{ Input/Output Level Prediction
Dl[s lh 2_5[S Input/Output Level Prediction
SAN Slice Level Prediction
[14]
DDN Point Level Prediction
(Ours)

Table 7: Comparative overview of non-stationary processing techniques in time series forecasting.
“Granularity” and “Estimation” denote the normalization fineness and the prediction derivation
method, respectively.

of the non-stationary transformer, the designed non-stationary information extraction module and
the corresponding integration of this information into intermediate feature learning can essentially
be seen as a mode that employs a distribution prediction network to estimate future non-stationary
information and learns through the prediction network. Figure 5 presents a visual comparison of the
effects with and without the integration of non-stationary information extraction. It is evident that the
non-stationary information extraction and integration module fundamentally enables more accurate
reconstruction of non-stationary information, such as mean value.

https://doi.org/10.52202/079017-3444 108511

B.1 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) offers a nuanced approach to signal analysis by decomposing
a time series into distinct frequency bands at multiple resolutions. This method is particularly adept
at pinpointing both frequency and temporal aspects of a signal, making it invaluable for analyzing
non-stationary time series. Initially, the general DWT of a time series x(¢) is expressed through the

wavelet coefficients:
t—2>
—_ 12
zo(a,b) = fZ (-) (12)

where a and b denote the scaling and translation parameters, respectively, and ¢ is the mother wavelet
function. Building upon this foundation, the DWT isolates the approximation coefficients (AC) and
detail coefficients (DC), which capture distinct signal characteristics:

Toe = DWT¢1OW (ml) = Z x(t) ’ ¢low(t)7
t
"I"Zc = DWT¢high (xl) = Zx(t) ’ ¢high(t)7
t
where @jow (t) represents the low-pass filter and qﬁhlgh() the hlgh pass filter. Together, these filters
facilitate the separation of the input time series into z,, and x%,,. The AC coefficients z’ . embody
the low-frequency components that outline the overarching trends within the time series, whereas the
DC coefficients z7;,, encompass the high-frequency components, often associated with transient or
noise elements in the signal.

13)

The Inverse Discrete Wavelet Transform (IDWT) is then utilized to reconstruct the signal from its
wavelet coefficients. The IDWT is the process that combines the AC and DC to form the original
signal or an approximation of it. The reconstruction using IDWT can be written as:

z'(t) = IDWT(zl,, 21, Zwac) - Gacla,t) + dec) - dae(b,t) (14)

llC7

where ¢uc(a,t) and ¢4.(b,t) are the reconstruction functions from the approximation and detail
coefficients, respectively. The wavelet transform, with its ability to localize both frequency and time,
provides a powerful framework for signal analysis, particularly for signals like time series that contain
non-stationary elements.

108512 https://doi.org/10.52202/079017-3444

0200 0200

.

0075

0050 0050 0050
— Groundu — GroundTutn

— predictior

=k \N /\W\

r icton
0.025 et 0025 0025 0025
5 3 150 200 %0 40

()DLlnear (b)+RevIN (c)+SAN d)+DDN

Figure 6: Comparison of reversible normalization methods, samples from DLiner [27] weather
dataset forecasting.

(a)DLinear (b)+RevIN (c)+SAN (d)+DDN

Figure 7: Comparison of reversible normalization methods, samples from DLiner [27] weather

dataset forecasting.
. VMW
20

0025

0118

2 ¥ :::M MU
LEIN

] 100 200 300 400 3 150 200 3%0 00 3 100 20 300 400 0 100

(a)DLinear (b)+RevIN (c)+SAN (d)+DDN

Figure 8: Comparison of reversible normalization methods, samples from DLiner [27] weather
dataset forecasting.

C Visualization of Experiments

As illustrated in Figure 4, we present visual comparisons of predictions between different reversible
normalization methods on the Weather dataset using DLinear [27]. The look-back window L is 336,
and the prediction length 7" is 192. As discussed in Section 4.2, Figures 6, 7, and 8 highlight the
necessity of a distribution change prediction module. Meanwhile, Figures 9 and 10 demonstrate
the DDN method’s superior capability in capturing details compared to the SAN method. This is
particularly evident in the richer rapid changes present in its predictive output, allowing for dynamic
adaptation and alignment with the rapidly changing data series in specific datasets.

To further substantiate this point, we conducted a visual comparison on the relatively smooth Traffic
dataset in Figure 11, where these rapid changes also corresponded well with those in the original
sequence, contrasting with the Weather dataset. This comparison underscores the enhanced detail
and adaptability of the DDN method across different datasets.

https://doi.org/10.52202/079017-3444 108513

—— GroundTruth
= Prediction

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

200

(1)+SAN

300 400

—— GroundTruth
== Prediction

200

(11)+DDN

300 400

Figure 9: Comparison with slice level reversible normalization, samples from DLiner [27] weather

dataset forecasting.

1 — GroundTruth
—— Prediction

0.08

0.06

0.04

0.02

0.12

0.10

0.08

0.06

0.04

0.02

200

(1)+SAN

300 400

—— GroundTruth
~——— Prediction

200

(11)+DDN

300 400

Figure 10: Comparison with slice level reversible normalization, samples from DLiner [27] weather

dataset forecasting.

-2

= GroundTruth
~—— Prediction

-1

= GroundTruth
—— Prediction

0 100 200

300

+DDN

400 500 600

700

100 200

300

+DDN

400 500 600 700

Figure 11: Our DDN reversible normalization method, samples from DLiner [27] Traffic dataset

forecasting.

D Quantitative Evaluation Supplement

D.1 Multivariable Forecasting Results of ETT

As illustrated in table 8, we present the comprehensive multivariate forecasting results on the
ETT dataset in Table 5, encompassing the hourly datasets ETTh1 and ETTh2, as well as the 15-

108514

https://doi.org/10.52202/079017-3444

minute datasets ETTm1 and ETTm2. The data clearly indicate that DDN demonstrates substantial
enhancements across these datasets when applied to various backbone models.

Methods Autoformer +DDN FEDformer +DDN DLinear +DDN iTransformer +DDN

Metric MSE MAE MSE MAE‘MSE MAE MSE MAE‘MSE MAE MSE MAE ‘ MSE MAE MSE MAE

96 |0.458 0.448 0.427 0.424|0.371 0411 0.385 0.408|0.377 0.399 0.372 0.396 | 0.392 0.422 0.377 0.405
192 | 0.481 0.474 0.472 0.452 | 0420 0443 0.415 0.452|0.417 0426 0.406 0.416 | 0.428 0.448 0.414 0.430
336 | 0.508 0.485 0.498 0.466 | 0.446 0.459 0.458 0.452 | 0.464 0.461 0.432 0.434 | 0.467 0475 0453 0.456
720 | 0.525 0.516 0.502 0.483 | 0.482 0.495 0.490 0.479 |0.493 0.505 0.462 0.474 | 0.568 0.547 0.553 0.530

96 |0.384 0.420 0.350 0.385|0.341 0.382 0.312 0.357 | 0.292 0.356 0.279 0.340 | 0.315 0.366 0.279 0.342
192 | 0.457 0.454 0.398 0.413 | 0.426 0.436 0.384 0.403 | 0.383 0.418 0.341 0.379 | 0.394 0.416 0.341 0.384
336 | 0.468 0.473 0.428 0.444 | 0.481 0.479 0.421 0.437 | 0473 0477 0.364 0.402 | 0.430 0.445 0.369 0.410
720 | 0.473 0.485 0.437 0.460 | 0.458 0.477 0.424 0.450 | 0.708 0.599 0.396 0.434 | 0.443 0.469 0.406 0.447

96 |0.493 0470 0.354 0.390 | 0.362 0.408 0.313 0.364 | 0.301 0.344 0.288 0.342 | 0.322 0.371 0.301 0.355
192 | 0.546 0.498 0.397 0.408 | 0.395 0.427 0.361 0.396 | 0.335 0.366 0.324 0.364 | 0.353 0.392 0.339 0.378
336 | 0.658 0.543 0.429 0.433 | 0.441 0.454 0.417 0.430 | 0.370 0.387 0.356 0.385| 0.385 0.410 0.370 0.396
720 | 0.626 0.532 0.488 0.464 | 0.488 0.481 0.470 0.472|0.425 0421 0415 0419 | 0.441 0.443 0.426 0.426

96 |0.261 0329 0.177 0.262]0.191 0.283 0.171 0.255|0.169 0.263 0.167 0.257 | 0.187 0279 0.162 0.253
192 [0.282 0.339 0.240 0.304 | 0261 0.326 0.240 0.298 | 0.232 0.310 0.225 0.298 | 0.246 0318 0217 0.291
336 |0.350 0.378 0.306 0.344 | 0.327 0365 0.306 0.342|0.303 0361 0.286 0.339 |0.300 0354 0.269 0.327
720 | 0438 0428 0.409 0421|0428 0423 0.413 0410 | 0403 0424 0371 0.391 [0.378 0.403 0350 0.380
Table 8: Forecasting results comparison under different prediction lengths 7' € {96, 192, 336, 720}
on ETT dataset. The input sequence length L. = 96 for Autoformer and FEDformer, L = 336 for

DLinear, and L = 720 for iTransformer. The bold values indicate best performance.

ETTh1

ETTh2

ETTml

ETTm2

D.2 Comparison between DDN and Reversible Normalization Methods

This section comprehensively compares DDN with existing reversible normalization methods. As
shown in Table 9, our method consistently achieves state-of-the-art performance across almost all
datasets, with a slight under-performance on the ETTm1 dataset compared to SAN. This demonstrates
the versatility and effectiveness of our approach.

D.3 Collaborative Training Ablation

Although recent works have shown that the two-stage training strategy effectively enhances the
training of distribution prediction models, this training overly relies on the distribution ground truth
obtained through distribution assumptions, which often contain inaccuracies. To address this, we
introduce a collaborative training strategy that adjusts the distribution prediction model using the
MSE loss between the actual sequence and the prediction during training. As illustrated in table 10,
collaborative training generally yields superior training outcomes, and its lower bound in performance
is comparable to that of the two-stage training strategy. This indicates that collaborative training
can better mitigate the errors introduced by distribution assumptions and improve the accuracy of
distribution prediction models.

D.4 Univariate Forecasting Results

Following the same settings as our main experiment, we present the univariate forecasting results
of Autoformer [20] and FEDformer [19] across three datasets, including Weather, Electricity, and
Traffic, in Table 11. Similar to the multivariate forecasting results, DDN consistently enhances the
performance of mainstream forecasting models in nearly all cases. It demonstrates that DDN is
applicable in both multivariate time series forecasting and univariate forecasting.

https://doi.org/10.52202/079017-3444 108515

Methods

Metric

Autoformer

+DDN +RevIN +NST +Dish-TS +SAN

FEDformer

+DDN +RevIN +NST +Dish-TS +SAN

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE‘

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96
192
336
720

ETThl

0.427 0.424 0.491 0.463 0.550 0.503 0.456 0.454 0.522 0.474
0.472 0.452 0.513 0.478 0.530 0.492 0.495 0.480 0.498 0.472
0.498 0.466 0.528 0.485 0.524 0.484 0.539 0.496 0.571 0.509
0.502 0.483 0.543 0.510 0.510 0.491 0.563 0.522 0.555 0.514

0.385 0.408 0.392 0.413 0.394 0.414 0.390 0.424 0.383 0.409
0.415 0.452 0.443 0.444 0.441 0.442 0.441 0.458 0.431 0.438
0.458 0.452 0.495 0.467 0.485 0.466 0.495 0.486 0.471 0.456
0.490 0.479 0.520 0.498 0.505 0.496 0.519 0.509 0.504 0.488

96
192
336
720

ETTh2

0.350 0.385 0.411 0.410 0.394 0.398 1.100 0.670 0.316 0.366
0.398 0.413 0.478 0.450 0.473 0.450 0.976 0.672 0.413 0.426
0.428 0.444 0.545 0.493 0.528 0.490 1.521 0.783 0.446 0.457
0.437 0.460 0.523 0.490 0.524 0.498 1.105 0.745 0.471 0.474

0.312 0.357 0.380 0.402 0.381 0.403 0.806 0.589 0.300 0.355
0.384 0.403 0.457 0.433 0.478 0.453 0.936 0.659 0.392 0.413
0.421 0.437 0.515 0.479 0.561 0.499 1.039 0.702 0.459 0.462
0.424 0.450 0.507 0.487 0.502 0.481 1.237 0.759 0.462 0.472

96
192
336
720

ETTml

0.354 0.390 0.458 0.446 0.468 0.448 0.477 0.460 0.343 0.378
0.397 0.408 0.560 0.491 0.526 0.468 0.545 0.488 0.390 0.400
0.429 0.433 0.607 0.508 0.786 0.559 0.650 0.533 0.415 0.418
0.488 0.464 0.623 0.526 0.564 0.501 0.595 0.518 0.476 0.453

0.313 0.364 0.340 0.385 0.336 0.382 0.348 0.397 0.311 0.355
0.361 0.396 0.390 0.411 0.386 0.409 0.406 0.428 0.351 0.383
0.417 0.430 0.432 0.436 0.438 0.441 0.438 0.450 0.390 0.407
0.470 0.472 0.497 0.466 0.483 0.460 0.497 0.481 0.456 0.444

96
192
336
720

ETTm2

0.177 0.262 0.233 0.307 0.253 0.323 0.976 0.57 0.236 0.317
0.240 0.304 0.288 0.337 0.289 0.335 0.532 0.485 0.260 0.329
0.306 0.344 0.345 0.370 0.339 0.365 0.795 0.592 0.330 0.376
0.409 0.421 0.434 0.419 0.426 0.432 1.271 0.768 0.417 0.428

0.171 0.255 0.192 0.272 0.191 0.272 0.394 0.395 0.175 0.266
0.240 0.298 0.270 0.320 0.270 0.321 0.552 0.472 0.246 0.315
0.306 0.342 0.348 0.367 0.353 0.371 0.808 0.601 0.315 0.362
0.413 0.410 0.430 0.415 0.445 0.422 1.282 0.771 0.412 0.422

96
192
336
720

Weather

0.190 0.243 0.212 0.257 0.211 0.254 0.268 0.338 0.194 0.256
0.231 0.282 0.264 0.300 0.265 0.301 0.376 0.421 0.258 0.316
0.289 0.327 0.309 0.329 0.303 0.324 0.475 0.486 0.329 0.367
0.369 0.375 0.377 0.367 0.366 0.357 0.612 0.560 0.440 0.438

0.174 0.237 0.187 0.234 0.187 0.234 0.244 0.317 0.179 0.239
0.233 0.294 0.235 0.272 0.235 0.272 0.320 0.980 0.234 0.296
0.307 0.349 0.287 0.307 0.289 0.308 0.424 0.452 0.304 0.384
0.399 0.405 0.361 0.353 0.359 0.352 0.604 0.553 0.400 0.404

96

192
336
720

Electricity

0.150 0.254 0.179 0.286 0.179 0.285 0.197 0.290 0.172 0.281
0.173 0.275 0.216 0.316 0.209 0.309 0.215 0.318 0.195 0.300
0.185 0.288 0.233 0.331 0.246 0.335 0.244 0.343 0.211 0.316
0.201 0.304 0.246 0.341 0.252 0.354 0.286 0.370 0.236 0.335

0.146 0.251 0.172 0.278 0.172 0.279 0.175 0.284 0.164 0.272
0.168 0.268 0.185 0.289 0.187 0.291 0.188 0.296 0.179 0.286
0.174 0.280 0.200 0.304 0.202 0.307 0.209 0.319 0.191 0.299
0.216 0.312 0.243 0.337 0.230 0.326 0.239 0.343 0.230 0.334

96
192
336
720

Traffic

0.453 0.296 0.643 0.354 0.654 0.354 0.652 0.363 0.569 0.350
0.462 0.304 0.659 0.373 0.643 0.367 0.669 0.374 0.594 0.364
0.486 0.315 0.662 0.371 0.665 0.363 0.683 0.376 0.591 0.363
0.529 0.344 0.700 0.384 0.667 0.373 0.703 0.392 0.623 0.380

0.422 0.288 0.613 0.347 0.612 0.348 0.613 0.350 0.536 0.330
0.462 0.300 0.637 0.356 0.641 0.357 0.644 0.362 0.565 0.345
0.474 0.306 0.652 0.363 0.654 0.363 0.659 0.370 0.580 0.354
0.512 0.329 0.686 0.382 0.688 0.380 0.693 0.388 0.607 0.367

Table 9: Comparison of forecasting errors between different reversible normalization methods. The
bold values indicate best performance.

Methods DLinear iTransformer
cthods Co-train Wo Co-train Co-train Wo Co-train
Metric MSE MAE MSE MAE | MSE MAE MSE MAE
< 96 | 0.146 0201 0.151 0.209 | 0.148 0.210 0.149 0.212
é) 192 | 0.190 0.247 0.193 0.251 | 0.191 0.252 0.191 0.252
S 336 | 0239 0.8 0241 0291 | 0237 0290 0.236 0.289
& 720 | 0311 0.343 0.308 0.343 | 0301 0.336 0.301 0.337
z 9% 0.131 0.228 0.135 0.231 | 0.127 0.225 0.130 0.229
2 192 | 0148 0246 0.150 0.247 | 0.146 0.246 0.147 0.246
3 336 | 0164 0264 0.167 0266 | 0.156 0.257 0.157 0.258
m 720 | 0201 0.299 0210 0.309 | 0.179 0.282 0.184 0.286
96 | 0375 0.261 0395 0279 | 0336 0.248 0.344 0.254
§ 192 | 0396 0272 0412 0.286 | 0.347 0.254 0.354 0.261
[s::‘ 336 | 0411 0279 0425 0.291 | 0.363 0.263 0.370 0.268
720 | 0.448 0.298 0452 0.308 | 0.412 0.286 0410 0.288

Table 10: Comparison between

the collaborative training

strategy and the conventional two-stage training strategy.
"Co-train" denotes the use of the collaborative training strat-
egy, while "Wo Co-train" signifies the approach where the
distribution prediction model’s parameters are frozen after
pre-training, and only the time series forecasting model is

trained. The bold values indicate

108516

best performance.

https://doi.org/10.52202/079017-3444

Methods Autoformer +DDN FEDformer +DDN

Metric MSE MAE MSE MAE | MSE MAE MSE MAE

96 | 0.004 0.047 0.003 0.044 | 0.002 0.037 0.003 0.040
£ 192 | 0.003 0.045 0.003 0.039 | 0.005 0.058 0.004 0.052
§ 336 | 0008 0068 0.003 0.041 | 0.003 0.045 0.002 0.031
720 | 0058 0176 0.003 0.044 | 0011 0080 0.004 0.052
Z 96 | 0442 0490 0.346 0.424 | 0302 0413 0213 0.330
:g 192 | 0.555 0550 0.342 0423 | 0.377 0459 0252 0.357
3 336 | 0617 0.620 0.380 0.447 | 0.673 0.636 0.313 0.401
B 720 | 0.645 0.624 0.463 0.505 | 0.575 0.575 0.410 0.454
96 | 0.265 0.375 0.153 0.239 | 0.179 0282 0.137 0.217

é 192 | 0.266 0372 0.156 0.242 | 0.211 0.316 0.142 0.220
[;_“S 336 | 0.284 0.371 0.164 0.256 | 0.369 0.458 0.140 0.222
720 | 0.260 0369 0.187 0.279 | 0.300 0.407 0.157 0.242

Table 11: Univariate forecasting results. The bold values
indicate best performance.

https://doi.org/10.52202/079017-3444 108517

