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Abstract

This paper explores the realm of infinite horizon average reward Constrained
Markov Decision Processes (CMDPs). To the best of our knowledge, this work
is the first to delve into the regret and constraint violation analysis of average
reward CMDPs with a general policy parametrization. To address this challenge,
we propose a primal dual-based policy gradient algorithm that adeptly manages
the constraints while ensuring a low regret guarantee toward achieving a global
optimal policy. In particular, our proposed algorithm achieves @(T‘V %) objective
regret and O(T*/%) constraint violation bounds.

1 Introduction

The framework of Reinforcement Learning (RL) is concerned with a class of problems where an agent
learns to yield the maximum cumulative reward in an unknown environment via repeated interaction.
RL finds applications in diverse areas, such as wireless communication, transportation, and epidemic
control [} 2} 3]. RL problems are mainly categorized into three setups: episodic, infinite horizon
discounted reward, and infinite horizon average reward. Among them, the infinite horizon average
reward setup is particularly significant for real-world applications. It aligns with most of the practical
scenarios and captures their long-term goals. Some applications in real life require the learning
procedure to respect the boundaries of certain constraints. In an epidemic control setup, for example,
vaccination policies must take the supply shortage (budget constraint) into account. Such restrictive
decision-making routines are described by constrained Markov Decision Processes (CMDP) [4, 15, 16].
Existing papers on CMDPs utilize either a tabular or a linear MDP structure. This work provides the
first algorithm for an infinite horizon average reward CMDP with general parametrization and proves
its sub-linear regret and constraint violation bounds.

There are two primary ways to solve a CMDP problem in the infinite horizon average reward setting.
The first one, known as the model-based approach, involves constructing estimates of the transition
probabilities of the underlying CMDP, which are subsequently utilized to derive policies [6l [7} 5.
The caveat of this approach is the large memory requirement to store the estimated parameters, which
effectively curtails its applicability to CMDPs with large state spaces. The alternative strategy, known
as the model-free approach, either directly estimates the policy function or maintains an estimate
of the @) function, which is subsequently used for policy generation [8]. Model-free algorithms
typically demand lower memory and computational resources than their model-based counterparts.
Although the CMDP has been solved in a model-free manner in the tabular [8]] and linear [9] setups,
its exploration with the general parameterization is still open and is the goal of this paper.

General parameterization indexes the policies by finite-dimensional parameters (e.g., weights of
neural networks) to accommodate large state spaces. The learning is manifested by updating these

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

108566 https://doi.org/10.52202/079017-3447



Algorithm Regret Violation | Model-free Setting
Algorithm 1 in [6] O(T) OWT) No Tabular
Algorithm 2 in [6] O(T?/3) O(T?/3) No Tabular

UC-CURL and PS-CURL [5] O(VT) 0 No Tabular
Algorithm 2 in [9] O((dT)*/*) | O((dT)3/*) No Linear MDP
Algorithm 3 in [9] O(T) OWT) No Linear MDP

Triple-QA [8] O(T5/9) 0 Yes Tabular
This paper O(T3) O(T3) Yes General Parameterization

Table 1: This table summarizes the different model-based and mode-free state-of-the-art algorithms available in
the literature for average reward CMDPs. We note that our proposed algorithm is the first to analyze the regret
and constraint violation for average reward CMDP with general parametrization. Here, the parameter d refers to
the dimension of the feature map for linear MDPs.

parameters using policy gradient (PG)-type algorithms. Note that PG algorithms are primarily studied
in discounted reward setups. For example, [[L0] characterizes the sample complexities of the PG
and the Natural PG (NPG) algorithms with softmax and direct parameterization. Similar results
for general parameterization are obtained by [11,[12]. The regret analysis of a PG algorithm with
the general parameterization has been recently performed for an infinite horizon average reward
MDP without constraints [[13]]. Similar regret and constraint violation analysis for the average reward
CMDP is still missing in the literature. In this paper, we bridge this gap.

Challenges and Contribution: We propose a PG-based algorithm with general parameterized
policies for the average reward CMDP and establish its sublinear regret and constraint violation
bounds. In particular, assuming the underlying CMDP to be ergodic, we demonstrate that our PG

algorithm achieves an average optimality rate of @(T‘é) and average constraint violation rate of
O(T~3). Invoking this convergence result, we establish that our algorithm achieves regret and

constraint violation bounds of @(Té ). Apart from providing the first sublinear regret guarantee for
the average reward CMDP with general parameterization, our work also improves the state-of-the-art

regret guarantee, O(7°/%) in the model-free tabular setup [8].

Despite the availability of sample complexity analysis of PG algorithms with constraints in the
discounted reward setup [[14} 4] and PG algorithms without constraint in average reward setup [[13]],
obtaining sublinear regret and constraint violation bounds for their average reward counterpart is
challenging.

*[14} 4] solely needs an estimate of the value function V' while we additionally need the estimate of
the gain function, J.

o[14} 4] assume access to a simulator to generate unbiased value estimates. In contrast, our algorithm
uses a sample trajectory of length H to estimate the values and gains and does not assume the
availability of a simulator.

*The first-order convergence analysis (Lemma 6) differs from that in [13]]. Note that both of these
papers use an ascent-like inequality. In [L13], this bounds the term J(0y4+1) — J(0%). The final
result is obtained by calculating a sum over k which cancels the intermediate terms and leaves us
with J(0x) — J(01). We would like to emphasize that the cancellation of the intermediate terms
is crucial to establishing the result. However, a similar effort in our case only leads to a bound of
JL(Og+1, Ak) — JL (0, Ak ). Note that directly performing a sum over this difference does not lead
to the cancellation of intermediate terms. We had to take a different route and apply the bounds of
the Lagrange multipliers and the estimate of the constraint function to achieve that goal.

*After solving the problems mentioned above, we prove O(T_%) convergence rate of the Lagrange
function. Unfortunately, the strong duality property, which is central to proving convergence results
of CMDPs for tabular and softmax policies, does not hold under the general parameterization. As a
result, the convergence result for the dual problem does not automatically translate to that for the
primal problem, which is a main difference from [13]]. We overcome this barrier by introducing
a novel constraint violation analysis and a series of intermediate results (Lemma [T6}{I8)) that help
disentangle the regret and constraint violation rates from the Lagrange convergence. It is important
to mention that although the techniques applied are inspired by the [[14], those techniques cannot be
directly adopted for average reward MDPs. This is primarily because the estimate J.(6y) is biased in
the average case. To the best of our knowledge, constraint violation analysis with a biased estimate
of the cost value is not available in the literature and is performed for the first time in our paper.
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*Due to the presence of the Lagrange multiplier, the convergence analysis of a CMDP is much more
convoluted than its unconstrained counterpart. The learning rate of the Lagrange update, /3, turns out
to be pivotal in determining the growth rate of regret and constraint violation. Low values of S push
the regret down while simultaneously increasing the constraint violation. Finding the optimal value
of 3 that judiciously balances these two competing goals is one of the cornerstones of our analysis.

Related work for unconstrained average reward RL: In the absence of constraints, both model-
based and model-free tabular setups have been widely studied for infinite horizon average reward
MDPs. For example, the model-based algorithms proposed by [[15, [16] achieve the optimal regret
bound of @(\/T) Similarly, the model-free algorithm proposed by [[17] for tabular MDP results
in (5(\/?) regret. Regret analysis for average reward MDP with general parametrization has been
recently studied in [13]], where a regret bound of @(T3/ 4) is derived.

Related work for constrained RL: The constrained reinforcement learning problem has been
extensively studied both for infinite horizon discounted reward and episodic MDPs. For example,
discounted reward CMDPs have been recently studied in the tabular setup [[18]], with both softmax
[14 [19], and general policy parameterization [14}[19] 4}, [12]]. Moreover, [20, 21} 22] investigated
episodic CMDPs in the tabular setting.

Recently, the infinite horizon average reward CMDPs have been investigated in model-based setups
(5L 6L [7], tabular model-free setting [8] and linear CMDP setting [9]]. For model-based CMDP setup,
[6] proposed a model-based online mirror descent algorithm in the ergodic setting which achieves
O(V/T) for regret and violation at the same time. [[7] proposed algorithms based on the posterior
sampling and the optimism principle that achieve O(+/T') regret with zero constraint violations in the
ergodic setting. However, the above model-based algorithms cannot be extended to large state space.
In the tabular model-free setup, the algorithm proposed by [8] achieves a regret of O(7°/9) with zero
constraint violations. Finally, in the linear CMDP setting, [9] achieves @(\/T) regret bound with
zero constraint violation. Note that the linear CMDP setting assumes that the transition probability
has a certain linear structure with a known feature map which is not realistic. Table[T]summarizes
all relevant works. Unfortunately, none of these papers study the infinite horizon average reward
CMDPs with general parametrization which is the main focus of our article.

Additionally, for the weakly communicating setting, [6] proposed a model-based algorithm achieving
@(T 2/3) for both regret and violation in tabular case. [9] further extends such result to linear MDP
setting with @(TS/ 4) regret and violation. In general, it is difficult to propose a model-free algorithm
with provable guarantees for Constrained MDPs (CMDPs) without considering the ergodic model.
[6]] pointed out several extra challenges in Weakly communicating MDP compared to the ergodic
case. For example, there is no uniform bound for the span of the value function for all stationary
policies. It is also unclear how to estimate a policy’s bias function accurately without the estimated
model, which is an important step for estimating the policy gradient.

2 Formulation

This paper analyzes an infinite-horizon average reward constrained Markov Decision Process (CMDP)
denoted as M = (S, A, r, ¢, P, p) where S denotes the state space, A is the action space of size
A, r: S x A—[0,1] is the reward function, ¢ : S x A — [—1, 1] is the constraint cost function,
P : S x A — AlSlis the state transition function where A!S! denotes a probability simplex with
dimension |S|, and p € AlSl is the initial distribution of states. A policy 7 € IT : S — A“ maps the
current state to an action distribution. The average reward and cost of a policy, 7, is,

=
J5, & lim TE[Zg(st,at)

t=0

30""/0777:| (1)

where g = r, ¢ for average reward and cost respectively. The expectation is calculated over the
distribution of all sampled trajectories {(s¢, at) }$2, where a; ~ m(st), st41 ~ P(:|st, ar), ¥Vt €
{0,1,--- }. For notational convenience, we shall drop the dependence on p whenever there is no
confusion. Our goal is to maximize the average reward function while ensuring that the average cost
is above a given threshold. Without loss of generality, we can mathematically write this problem as,

™ t. 7T‘>
max Jrost. JI >0 )
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However, the above problem becomes difficult to handle when the underlying state space, S is large.
Therefore, we consider a class of parametrized policies, {my|0 € O} whose elements are indexed by
a d-dimensional parameter, § € RY where d < |S||.A|. Thus, the original problem in Eq (2) can be
reformulated as the following parameterized problem.

max Jre st JIP >0 3)

We denote J ¢ = J4(0), g € {r, c} for notational convenience. Let, P™ : S — AlS! be a transition
function induced by 7y and defined as, P™ (s, s") = > . 4 P(s'|s,a)mg(als), Vs, s". If M is such
that for every policy 7, the function, P™ is irreducible and aperiodic, then M is called ergodic.
Assumption 1. The CMDP M is ergodic.

Ergodicity is a common assumption in the literature [23}24]]. If M is ergodic, then V6, there exists a
unique stationary distribution, d™ € AlS! given as follows.
T—1

1
4"(5) = fim 7 3 Prlou = slon ~ 7o) @

Ergodicity implies that d™ is independent of the initial distribution, p, and obeys P™°d™ = d"°.
Hence, the average reward and cost functions can be expressed as,

Jy(a) =E, g 7¢1~7r9(s)[.g($a a)] = (dﬂg)Tgﬂg )

where g™ (s) £ 3 - 4 9(s,a)mg(als), g € {r,c}. Note that the functions J4(6), g € {r, c} are also
independent of the initial distribution, p. Furthermore, V6, there exist a function Q;re :SxA—R
such that the following Bellman equation is satisfied V(s,a) € S x A.

Q_ge (Sv a’) = 9(57 a) - Jg(o) =+ Es’~P(-|s,a) [‘/gﬂe (5/)] (6)
where g € {r,c}and V™ : S — Riis given as V7 (s) = > 4 ma(als)Q7°(s,a), Vs € S. Note
that if Q7° satisfies @ then it is also satisﬁed by Q3° + c for any arbitrary, c. To uniquely define

the Value functions, we assume that ™0 (s)V;7(s) = 0. In this case, V" (s) is given by,

oo

Vi) = 30 3 [P s ) — a0 ()] g7 () = 3B [{o(se,a) — Jy(0)) |50 =

t=0 s’eS t=0

sES

(N
where the expectation is computed over all 7y-induced trajectories. In a similar way, V(s, a), one can
uniquely define Q7 (s, a), g € {r, c} as follows.

Q”" (s,a) ZE {g (st,at) }|so =S, a9 7(1] ®)

Moreover, the advantage function A7¢ : S x A — R is defined such that A7 (s, a) = £ Qy°(s,a) —
Ve (s), V(s,a), Vg € {r,c}. Assumpnon 1] also implies the existence of a finite mixing time.

Spe01ﬁcally, for an ergodic MDP, M, the mixing time is defined as follows.
Deﬁnltlon 1. The mixing time, tmlx, of the CMDP M for a parameterized policy, 779, is defined as,
t0 = min {t > 1|||(P™)!(s, ) — d™|| < {,Vs}. The overall mixing time is tmix = supgcg t9

mix

In this paper, ¢ is finite due to ergodicity.

mix*

Mixing time characterizes how fast a CMDP converges to its stationary state distribution, d™¢, under
a given policy, my. We also define the hitting time as follows.

Definition 2. The hitting time of an ergodic CMDP M with respect to a policy, 7y, is defined as
thie = maxses[d™ (s)]”!. The overall hitting time is defined as tni = supyee th;,- In this paper,
thit 18 finite due to ergodicity as well.

Define 7* as the optimal solution to the unparameterized problem (2). For a given CMDP M, and a
time horizon 7', the regret and constraint violation of any algorithm A is defined as follows.
T-1 T—1

Regr (A, M) £ Z (J,’f* — r(st,at)) , Viop(A, M) & — Z c(sg,at) )

t=0 t=0
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where the algorithm, A, executes the actions, {a;}, t € {0, 1, - - } based on the trajectory observed
up to time, ¢, and the state, s, 1 is decided according to the state transition function, P. For simplicity,
we shall denote the regret and constraint violation as Reg; and Vior respectively. Our goal is to
design an algorithm A that achieves low regret and constraint violation bounds.

3 Proposed Algorithm

We solve (3) via a primal-dual algorithm based on the following problem.

max min Jn(0, ), (10)

where J,(0,\) £ J,.(0) + A\J.(0). The function, J,(-,-), is called the Lagrange function and ) the
Lagrange multiplier. Our algorithm updates the pair (6, A) following the policy gradient iteration as
shown below V& € {1, -, K} with an initial point (61, A1), Ay = 0.

Ors1 = Ok + aVoJL(Ok, k), Aet1 = Pio,2)[Ak — BJc(0k)] (11)

where a and [ are learning parameters and § is the Slater parameter introduced in the following
assumption. Finally, for any set, A, P5[-] denotes projection onto A. The assumption stated below
ensures that we have at least one feasible interior point solution to ().

Assumption 2 (Slater condition). There exists a d € (0,1) and € © such that J.(9) > 6.
Note that in (TT), the dual update is projected onto the set [0, 2] because the optimal dual variable for

the parameterized problem is bounded in Lemma The gradient of Ji, (-, A) can be computed by
invoking a variant of the well-known policy gradient theorem [25]).

Lemma 1. The gradient of Ji,(-, \) is computed as,

VOJL(ov >\) = Es~d”9,a~ﬂ'9(s) [AE?A(Sa a)v9 IOg ﬂ'(.)((llS)]

Algorithm 1 Primal-Dual Parameterized Policy Gradient

1: Input: Episode length H, learning rates «, 3, initial parameters 61, A1, initial state sg ~ p(-),

2. K=T/H

3: forke{l,--- ,K}do

4: T+ ¢

5: forte{(k—1)H,--- ,kH —1}do
6: Execute a; ~ g, (+|s¢)

7: Observe r(sy, at), ¢(s¢, ar) and sg11
8: 7;; (—EU{(St7at)}

9: end for
10 forte{(k—1)H,--- ,kH — 1} do
11: Obtain A}:e;k (8¢, at) via Algorithmand Ti
12: end for
13:  Compute wy, using (13)
14:  Update the parameters:

Or+1 = O + awy, (12)

M1 = Pio.2 M — BJe(0k)]
KH—1

. 1
where J.(0;) = TN E c(st, ar)
t=(k—1)H+N

15: end for

where V(s, a), A%\ (s, a) £ A7 (s,a) + AAT?(s,a), and {A7} sc (¢} are the advantage functions
corresponding to reward and cost. In typical RL scenarios, learners do not have access to the state
transition function, P, and thereby to the functions d™ and A[’,. This makes computing the exact
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gradient a difficult task. In Algorithm[I} we demonstrate how one can still obtain good estimates of
the gradient using sampled trajectories.

Algorithmruns K epochs, each of duration H = 16ty;itmi T (log T')? where ¢ € (0, 1) defines a
constant whose value is specified later. Clearly, K’ = T'/H. Note that the learner is assumed to know
the horizon length, T'. This can be relaxed utilizing the well-known doubling trick [26]. Additionally,
it is assumed that the algorithm is aware of the mixing time and the hitting time. This assumption
is common in the literature [13| [17]. The first step in obtaining a gradient estimate is estimating
the advantage value for a given pair (s, a). This can be accomplished via Algorithm At the kth
epoch, a g, -induced trajectory, T, = {(s¢, at)}ff@il) 5 is obtained and subsequently passed to
Algorithm [2] that searches for subtrajectories within it that start with a given state s, are of length
N = 4tmix(log T'), and are at least N distance apart from each other. Assume that there are M such
subtrajectories. Let the total reward and cost of the ith subtrajectory be {r;, ¢; } respectively and 7;
be its starting time. The value function estimates for the kth epoch are

M

Qo' (5.0) = s [M Y gillar =a)|, Vg™ (s) = ; i Yge{nc (13
This leads to the following advantage estimator.
Azef\k (s,a) = A (s,a) + Ap An (s,a), (14)
where Ay (s,a) = Qy"* (s,a) — Vgﬂg’“( ), g € {r, c}. Finally, the gradient estimator is,
try1—1
wi 2 Vo Ju (O, \) = Z AL (s1,01) Vo log mo, (arlse) (15)
t=ty

where t;, = (k — 1) H is the starting time of the kth epoch. The parameters are updated following
(T2). To update the Lagrange multiplier, we need an estimation of .J.(6}), which is obtained as the
average cost of the kth epoch. It should be noted that we remove the first /N samples from the kth
epoch because we require the state distribution emanating from the remaining samples to be close
enough to the stationary distribution d™°x, which is the key to make .J.(6},) close to .J,(6). The
following lemma demonstrates that Azej{k (s, a) is a good estimator of Azef{k (s,a).

Algorithm 2 Advantage Estimation

1: Input: Trajectory (s, , G4, - - -, St,, Gt, ), State s, action a, Lagrange multiplier A, and parameter

2: Initialize: M < 0, 7 < t;
3: Define: N = 4¢,ixlog, T
4: while 7 <ty — N do

5. if s, = s then

6: M+~ M+ 1, ™ < T
7
8

IM ZtJr (s a0), Vg € {r,c}
: T4 7+ 2N.
9: else
10: T+ T17+1.
11:  endif

12: end while
13: if M > 0 then

14:  Compute Qg(s a) s) via (13), Vg € {r,c}
15: else A

16:  Vy(s) =0,Q4(s,a) =0, Vg e {r,c}

17: end if

18: return (Q,(s,a) — Vi (s)) + A(Qc(s, a) — Vo(s))

Lemma 2. The following inequality holds Yk, ¥ (s, a) and sufficiently large T.

2
AT Ly thitN3 IOgT (log T)
Ok _ O < _ nnx
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Lemma [2] shows that the L, error of our proposed advantage estimator can be bounded above as

@(T ~¢). We later utilize the above result to prove the goodness of the gradient estimator. It is to be
clarified that our Algorithm@]is inspi~red by Algorithm 2 of [17]]. However, while the authors of [17]]

choose H = O(1), we adapt H = O(T¢). This subtle change is important in proving a sublinear
regret for general parametrization.

4 Global Convergence Analysis

This section first shows that the sequence {6y, Ax }2_; produced by Algorithmis such that their
associated Lagrange sequence {Jr,(6x, Ax)}72, converges globally. By expanding the Lagrange
function, we then exhibit convergence of each of its components {J, (0, \r) }&_,, g € {r, c}. This

is later used for regret and constraint violation analysis. Before delving into the details, we would
like to state a few necessary assumptions.

Assumption 3. The score function (stated below) is G-Lipschitz and B-smooth. Specifically,
V6,61, 60, € O, and V(s, a), the following inequalities hold.

IV logmo(als)l| < G, [|Vglogm, (als) — Vologm, (als)|| < B|61 — b2]|
Remark 1. The Lipschitz and smoothness properties of the score function are commonly assumed for

policy gradient analyses [27, 28} 29]. These assumptions hold for simple parameterization classes
such as Gaussian policies.

Note that by combining Assumption [3] with Lemma[2]and using the gradient estimator as given in
(15), one can deduce the following result.
Lemma 3. The following inequality holds Yk provided that assumptions[I|and[3|are true.

E [Hwk - vaJL(ek,Ak)H?] < O (52AG22, T~¢) (17)

mix

Lemmaclaims that the gradient estimation error can be bounded as @(T’f). We will use this result
later to prove the global convergence of our algorithm.

Assumption 4. Let the transferred compatible function approximation error be defined as follows.

2
Liws ze (g x,0,A) = Egogr Eanre(s) Kve; log mg(als) - wp \ — AT’ (s, a)) } (18)

where 7* is the optimal solution of unparameterized problem in (2) and

2
w;’)\ = arg m%}j ESNdﬂ'g EaNﬂ'g(S) |:<Vg 10g7T9((1|s) cW— AEQ)\(& a)) ] (19)
we ’

We assume that L~ . (wWh 5,0, A) < €bias, A € [0, %] and 0 € © where €}, is a positive constant.

Remark 2. The transferred compatible function approximation error quantifies the expressivity of the
parameterized policy class. We can show that e;,5 = 0 for softmax parameterization [10] and linear
MDPs [30]. If the policy class is restricted, i.e., it does not contain all stochastic policies, €p;as turns
out to be strictly positive. However, if the policy class is parameterized by a rich neural network, then
€bias Can be assumed to be negligibly small [31]]. Such assumptions are common [29, [10]].

Remark 3. Note that wy , defined in (T9) can be written as,
Wy = Fp(Q)TEswd;‘e | D [Vg log 7T9((1|3)AE‘)’>\(3, a)
where T is the Moore-Penrose pseudoinverse and F},(#) is the Fisher information matrix defined as,
Fp(a) = Es~d:§9 EQNMHS) [Vg log 7 (a|3)(Va log 7y (a|s))T]

Assumption 5. There exists a constant up > 0 such that F,(§) — prlq is positive semidefinite
where I is an identity matrix of dimension, d.

Assumption [3]is also called Fisher-non-degenerate policy assumption and is quite common in the
literature [29, [32| 33] in the policy gradient analysis. [29][Assumption 2.1] provided a detailed
discussion on the requirement of policy class to satisfy the assumption [5] Moreover, [34] describes a
class of policies that obeys assumptions [3| 5| simultaneously. The Lagrange difference lemma stated
below is important in establishing global convergence.
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Lemma 4. With a slight abuse of notation, let Ji,(mw,\) = JT + AJT. For any two policies w, 7', the
Sfollowing result holds Y\ > 0.

Jr(mA) = Ju (7', N) = EgoarEgn(s) [AF (5, 0)]

We now present a general framework for the convergence analysis of Algorithm [T]

Lemma 5. [f the policy parameters, {0y, )\k}le are updated via (12)) and assumptions and
hold, then we have the following inequality for any K,

K

1

7 ZE<JL(7T*,)\k) — JL(Ok, Ak)) < V€bias + = ZEH —wi)|l + ZE||0J1<||2
k=1

B (KL C19) 0, (1)

where wj; := wj, ., Wy, 18 defined in (19), and * is the optimal solution to the problem [@).

Lemma 3 proves that the optimality error of the Lagrange sequence can be bounded by the average
first-order and second-order norms of the intermediate gradients. Note the presence of €5 in the
result. If the policy class is severely restricted, the optimality bound loses its importance. Consider
the expectation of the second term in (20). Note that,

(72 EKIEuwk ~uil) <% ZE[nwk ~uil?) - ZE[nwk — F00) Vo 00 ]

< E {E |:||0Jk — V@JL(ek, /\k)||2:| +E |:||V9JL(9/€, )\k) — Fp(Hk)TVQJL(Gk, /\k)||2:| }

K

%3 B[l = voru ] + £ 3 (14 ) 1o ]

k=1 E

(@)

| /\

where (a) follows from Assumption[5] The expectation of the third term in (20) can be bounded as

K X h
1 ) 1 , ) 2
K ;E[|wk| } < K ;E [HVGJL(@k,)\k)H } + e ;E{Hwk — Vo Ju (0, M) || }

In both @) and @O), E|wr — VeJr(0k, Ar)||* is bounded above by Lemma To bound the term,
E|VoJL (0%, Ar)||*, the following lemma is applied.
Lemma 6. Let J,(-) be L-smooth, Vg € {r,c} and o =

ﬁ. Then the following holds.

288L
2K K

= Z V010, i) |* <
K=

ZHWJL Ok A) — will* + 8 (20)

Note the presence of /3 in (20). To ensure convergence, 5 must be a function of 7". Invoking Lemma
Bl we get the following relation under the same set of assumptions and the choice of parameters as in

Lemmal6l
1 = 2 ~ (AG?t2, Lt mixtnit
K ’;EHWJL(@/«,M)H <0 (52T§> +0 <52Tl5> + 2D
Applying Lemma3]and 1) in 20), we arrive at,
AG?t2 . Limixtni
2 mix mixthit
KZE[Hw [ } < O( STe . T garice ) + 8 (22)

Similarly, using (4)), we deduce the following.

ZEHwk —wi|l < (1 + ) f+ (1 + ) O (fGtle + Ltmixthit> 23)

0TS/2 oT(1=8)/2
Inequahtles (22) and (23) lead to the following global convergence of the Lagrange function.
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Lemma 7. Let {0;} | be as described i m Lemma@ If assumptlonshold {Jg()}ger.cy are

L-smooth functions, o = m, K =4, and H = 16t mixtnis T (logy T')?, then

K
1 ~ \/ZGtmix Ltmixthit
ﬁ,; (JL T\ — JL(ek;/\k)> <G (1 + W) o <\/B+ STE2 T sT(-8)/2 )

B@ AGt2 | Liwmixtnit LtmixtnitBgqre [KL(7*(:]5) (|70, (:]5))]
T pore T gepie T Ti¢5

+ V €bias

Lemma establishes that the average difference between Jp,(m*, A\) and Ji, (0, \x) is O(V/B +
T-¢/2 + 7-(1=9/2)_ Expanding the function, .J;,, and utilizing the update rule of the Lagrange
multiplier, we achieve the global convergence for the objective and the constraint in Theorem|I] (stated
below). In its proof, Lemma [I8](stated in the appendix) serves as an important tool in disentangling
the convergence rates of regret and constraint violation. Interestingly, Lemma 18 is built upon the
strong duality property of the unparameterized optimization (2)) and has no apparent direct connection
with the parameterized setup.

Theorem 1. Consider the same parameters as in Lemma[7]and set B = T-2/5 & =2/5. We have,

K
1 . VA G2 LN A/
L T < mlx - — /5
K P E<‘] ( )> V €Ebias + — (1 + /LF) O (T )
s t 1
mixUhit 2, 2 -1/5
Z ( )<5«/eb1a5+0( T1/5>+\/AG tm”‘<1+uF>O<T )

where 7* is a solution to ). In the above bounds, we write only the dominating terms of T.
Theoremestablishes @(T ~1/5) convergence rates for both the objective and the constraint violation.

5 Regret and Violation Analysis

In this section, we use the convergence result of the previous section to bound the expected regret and
constraint violation of Algorithm[I] Note that the regret and constraint violation decompose as,

T-1

RegT:Z(J;r*frsf,af) HZ( ) ZZ (0) — r(se, at))
t=0 k=1+tCT;,
T-1 K
Vior = Z (—c(se,ar)) = HZ Je(0r)) + Z Z (0r) — c(s¢,at))
t=0 k=1 k=1tcTy
where 7, 2 {(k — 1)H,--- ,kH — 1}. Observe that the expectation of the first terms in regret and

violation can be bounded by Theorem|[I] The expectation of the second term in regret and violation
can be expanded as follows,

K
B[S 5 a0 50 00)| © B[S S B IV (4] — Q3% (s aal
k=1 teIk k=1t€Zy
K
Z SV (se1) = Vo (s0) | = B S Ve (ska) — Vo <s<kl>H>] (24)
k= teZy k=1

K—-1
SV (k) — Vi (o) | + B [V (1) — Vi s0)]

where g € {r, c}. Equality (a) uses the Bellman equation and () follows from the definition of Q.
The first term in the last line of Eq. (24) can be upper bounded by Lemmal§] (stated below). On the
other hand, the second term can be upper bounded as O(¢ix) using Lemma@
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Lemma 8. If assumptions andhold, then for K = % where H = 16tmixthitT% (logy T')?, the
Sollowing inequalities hold Vk, ¥(s, a) and sufficiently large T':

(a) 70, (als) — ma, (als)| < Gll6usr — 04

K
~ (aAG , ,
- < ; H T
(b) ;Eng(ekH) Jg(0x) <O ( i [(\/Zetmlx + 5) T3 4+ /Tt D
S ~ [(aAGty;
(€) D EVy " (sp) = Vg™ (sx)] < O (mlx [(\/ZGtmix N 5) T LtmixthitTfOD
k=1 6thit

where g € {r,c}, and {s;,}_, is an arbitrary sequence of states.

Lemmal|§]states that the obtained policy parameters are such that the average consecutive difference in
the sequence {J,(0x)}X_,, g € {r, ¢} decreases with time horizon, T. We would like to emphasize
that Lemma [8] works for both reward and constraint functions. Hence, we can prove our regret
guarantee and constraint violation as shown below.

Theorem 2. If assumptions|I[-5|hold, J,(-)’s are L-smooth, Vg € {r,c} and T are sufficiently large,
then our proposed Algorithm|l|achieves the following expected regret and constraint violation bounds

with learning rates o = A=) and 3 = T—2/5.
5
E [Regr] < T'/epias + O(TY?) + O(tmix) (25)
E [Vior] < T8v/epias + O(TY®) + Ot mix) (26)

The detailed expressions of these bounds are provided in the Appendix. Here, we keep only those
terms that emphasize the order of 7". Note that our result outperforms the state-of-the-art model-free
tabular result in average-reward CMDP [8]]. However, our regret bound is worse than that achievable
in average reward unconstrained MDP with general parameterization [13]]. Interestingly, the gap
between the convergence results of constrained and unconstrained setups is a common observation
across the literature. For example, in the tabular model-free average reward MDP, the state-of-the-art
regret bound for unconstrained setup, @(Tl/ 2) [I71, is better than that in the constrained setup,

O(T5/%) [8].

6 Conclusions

This paper establishes the first sublinear regret and constraint violation bounds in the average reward
CMDP setup with general parametrization (and do not assume the underlying constrained Markov
Decision Process (CMDP) to be tabular or linear). We show that our proposed algorithm achieves
(’~)(T4/ %) regret and constraint violation bounds where 7" is the time horizon. Note that the state of the
art in unconstrained counterpart is @(T3/ 4). Closing this gap by designing more efficient algorithms
is an open question in the average reward CMDP literature with the general parametrization. Moreover,
our current algorithm requires the knowledge of mixing time. Relaxing such assumptions is another
important future direction in realistic settings. For further discussions on future work directions, the
readers are referred to [35].
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A Proofs for Lemmas in Section

A.1 Proof of Lemmal[ll

Since the first step of the proof works in the same way for functions J, and J,., we use the generic
notations Jg, Vy, Q4 where g = r, ¢ and derive the following.

VoV (s vg(zm als) ))

-¥ (vm )Q”e () + 3 ol Vo5 .0

@ Z wo(als) (w log 7r9(a|s))Q§9(s, Q) + Z ro(als)Vo (g(s, ) = 1y(0) + 3 P s, )V (sf)>
=Yt 5)(Vatogma(als) ) Q5 (5.0) + ;mws)(;P<s’|s,a>ve%”6<:'>) V0, (6)

27)
where the step (a) is a consequence of Vg log mg = Vﬂ’;@ and the Bellman equation. Multiplying both

sides by d”9( ), taking a sum over s € S, and rearranging the terms, we obtain the following.

Vo Jy(0 Zd“" )VeJ,y(0)

= () S mlals) (Totoxmals) ) @51 (s.0) + S a7 (6) X maals) (3 P15 a)vave(s) )
_ Z d™ (s)VeV, (s)

= Esamo,anmo(ls) [Q ?(s,a) Vg log m(a } —i—Zd’”’ ZP”S $)VeV (s de’ VoV (s)

(7) E, 470 a~mo(-|s) |:Q (S CL)VQ log g a| :| + Zdﬂ'e V@V“G( ) Zdﬂe (5)V9Vg7r9 (5)

S

= Es~d"9 ,a~mg(+]s) |:Q (S G)VQ IOg 779( ‘ ):|

(28)
where (a) uses the fact that d™ is a stationary distribution. Note that,
E, g ,ar~mg(+]s) |:V ( )VIOg 71-9(0‘| ):|
= Bouaro | > V7" (S)Vaﬂe(w)l (29)
acA
=Egqmo [‘/gm’(s)v(g <Z 7r9(a|5)> ] = Esgro [V”( )Vg(l)} =0
acA

We can, therefore, replace the function 7 in the policy gradient with the advantage function
A (s,a) = Qe (s,a) — V]*(s),¥(s,a) € S x A. Thus,

VoJg(0) = Egoare ammy(-|s) [A ?(s,a)Vglogmy(als )] (30)
The proof is completed using the definitions of J,  and Ay, .

A.2 Proof of Lemmal[2l

Proof. The proof is similar to the proof of [[17, Lemma 6]. Consider the kth epoch and assume that
g, 1 denoted as 7 for notational convenience. Let, M be the number of disjoint sub-trajectories of
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length NN that start with the state s and are at least N distance apart (found by Algorithm |Z[) Let, gk
be the sum of rewards or constraint (¢ = r, ¢ accordingly) observed in the ith sub-trajectory and 7;
denote its starting time. The advantage function estimate is,

1 I ™ 1 .
2 — ) Lillar, = - ;o  if M
A;(s,a) — 7r(a|s) |:M 21:1 9k, (an a):| M 21:1 9k,i 1 >0 (31)
0 if M =0
Note the following,
Ti+N
E l:gk,i Sy = 8,01, = a:l = g(s,a) +E Z g(st’at) Sr; = 8,4 = a]
t=7;+1
Ti+N
=g(s,a)+ ZP(S’LS,a)E Z 9(st,at)|Sr41 = 5']
s’ t=71;+1
[N-1 _ r
= g(s,a) + Y _ P(s'|s,a) (P (s)| g”
s/ | 5=0
- 1T
N-1 4
=g(s,a)+ > P(s']s,a) (P™Y(s',)—d™| g™+ N(d™)"g™
s' | j=0 ]
1T
W o(s,a) + > P(s|s,a) | D (PTY(s', ) —d™| g7+ NJF =Y P(s'[s,a) | Y (PT)(s,) —d"
s/ 7=0 ] s’ j=N
éE?(s,a)

Y gls,a)+ 3" P(s|s, )V (s') + NJT — Ef(s,a) 2 Q7 (s,a) + (N + 1)J7 — Ef (s, 0)

(32)

where (a) follows from the definition of J7 as given in (5]), (b) is an application of the definition of
VT given in @, and (c) follows from the Bellman equation. Define the following quantity.

0™ (s,T) £ > [[(P™)(s,-) — d™||; where N = 4t (log, T) (33)
t=N

Using Lemma we get 6™ (s,T') < 7z which implies, |ET.(s,a)| <

1
E A il Ti - i Ti —
[(W(as)gk, (ar, = a) — g, ) St 8]
=E {gk,i Sr, = 8,07, = a] — Zw(a’|s)E [Qk,i

a’

7. Observe that,

!
Sy, = 8, 0r, za]

=Qy(s,a) + (N +1)J7 — Ef(s,a) — Zﬂ'(a’|s)[Q”(s, a) + (N +1)J5 — E7(s,a)] (34)

a’

=Qy(s,a) =V (s) — lET(s, a) — Zﬂ(a’|s)E}(s,a')]

a’

= Ag(&a) — A% (s,a)

where AZ(s,a) £ Er(s,a) — >, m(a’|s)ER(s,a’). Using the bound on EZ.(s,a), we derive,
|AT.(s,a)| < 2, which implies,

- 2
< |AT(s,a)] < T3 (35)

| (ot = -0

St = S:| - Ag(s7a)
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Note that (33)) cannot be directly used to bound the bias of Ag(s, a). This is because the random

variable M is correlated with the variables {g i} . To decorrelate them, imagine a CMDP where
the state distribution resets to the stationary distribution, d" after exactly N time steps since the
completion of a sub-trajectory. In other words, if a sub-trajectory starts at 7;, and ends at 7; + N,
then the system ‘rests’ for additional IV steps before rejuvenating with the state distribution, d™ at
7; + 2N. Clearly, the wait time between the reset after the (¢ — 1)th sub-trajectory and the start of
the ith sub-trajectory is, w; = 7; — (7;—1 + 2N), ¢ > 1. Let w; be the difference between the start
time of the kth epoch and the start time of the first sub-trajectory. Note that,

(a) wy only depends on the initial state, S(k—1)H and the induced transition function, P™,

(b) w;, where ¢ > 1, depends on the stationary distribution, d™, and the induced transition function,
PT,

(¢) M only depends on {wy, ws, - -} as other segments of the epoch have fixed length, 2N.

Clearly, in this imaginary CMDP, the sequence, {wy, wa, - - }, and hence, M is independent of
{9k.1,9k.2," - }. Let, E' denote the expectation operation and Pr’ denote the probability of events in
this imaginary system. Define the following.

A 2 gk,i]-(aﬂ = a)

i = (als) —gri — A7 (s,a) + AT(s,a) (36)

g

where AT.(s,a) is given in . Note that we have suppressed the dependence on 7T, s, a, and 7
while defining A; to remove clutter. Using (34)), one can write E' [A; (s, a)|{w;}] = 0. Moreover,

E’ [(A;(s,a) — A7 (s, a))?
=FE {(/Al;(s,a) - Ag(s,a))2 ’M > 0} x Pr'(M > 0) + (A;r(s,a))2 x Pr'(M = 0)
=F ( ! iAi - A}(s,a))2 ‘M > 0| x Pr'(M >0)+ (A;r(s,a))2 x Pr'(M = 0)

2
, TGRS / 37)
<2E[,, |E MZAi {w}| lwy < H—N| x Pr'(w; < H—N)
=1

+2(A%(s,a)” + (A7 (s, a))* x Pr'(M = 0)

/
< 2Ej,,

M
#ZE’ [AZ[{w;}] ‘wl <H N] x Pr'(w; < H — N)
=1

8
T6
where (a) uses the bound |A7.(s,a)| < 25 derived in (35)), and the fact that {A;} are zero mean
independent random variables conditioned on {w; }. Note that |g. ;| < N almost surely, |A7 (s, a)| <
O(tmix) via Lemma@ and |AT(s,a)| < % as shown in . Combining, we get, E’[\Ai|2’{wi}] <
O(N? /7 (als)) (see the definition of A; in ). Invoking this bound into , we get the following
result.

+ —+ (A7(s,a))* x Pr'(M = 0)

E [(Ag(s,a) - Ag(s,a)ﬂ < 2F/ UAwl <H- N] @ (%) + % )

+Ot2.) x Pr'(w; > H— N)

Note that, one can use Lemma T ] to bound the following violation probability.

Pr'(wy > H — N) < (1 _ M}”)

- — (39)

4
41, TS (log T)—1 - ———(log T)
' (2) (]. 3d (S)> dw(s) S T3

108580 https://doi.org/10.52202/079017-3447



where (a) is a consequence of the fact that 4ty 7% (log, T) — 1 > d%(s) log, T for sufficiently large
T'. Finally, note that, if M < My, where M is defined as,

., H-N
Mo = ON + 4N logT (40)
dr(s)

then there exists at least one w; that exceeds 4N log, T'/d™(s) which can happen with the following
maximum probability according to Lemma [TT}

4log T
3d™(s) «® 1
/
Pr' (M < Mo) < <1 - 4> <75 (41)
The above probability bound can be used to obtain the following result,
1
s Lprar—m)  1xPr(M < M)+ —Pr'(M > My)
1 m=1 M
E|—|M>0|= LD < ; 0
M Pr'(M > 0) Pr'(M > 0)
oy 4+ D loel “2)
1T
< T3 H_N <0 NlogT
B 1 1 B Hd(s)
- 73
Injecting and into , we finally obtain the following.
. 2 N3logT
E’(A’T, —A”,) <O| ———
(50 -a5000) | <0 (e )

_0 N3ty log T _ 0 t2. (logT)?
N Hn(als) ) Tém(als)

Eq. demonstrates that our desired inequality is obeyed in the imaginary system. We now need a

mechanism to translate this result to our actual CMDP. Note that (A7 (s,a) — A7(s,a))* = f(X)

where X = (Ma 71, 7-17 oy TM, TM)’ and 7; = (ana Sti+1s Gry+15" " ST+ N, a’ri+N)- We have,
Elf(X)) _ Sy fOOPI(X) _  Pr(X)
Ef(X)] Y fX)PY(X) = X Pr(X)

(44)

The last inequality uses the non-negativity of f(-). Observe that, for a fixed sequence, X, we have,
Pr(X) =Pr(r1) x Pr(Th|m1) X Pr(ra|m1, T1) X Pr(Ta|ma) X - --
X Pr(tar|mar—1, Tar—1) X Pr(Tar|tar) x Pr(s; # s,Vt € [Tar + 2N, kH — N]|tar, Tar),
(45)
Pr'(X) = Pr(m) x Pr(Ti|m) x Pr'(me|m, T1) x Pr(Tz|m2) x - -
X Pr'(tar|mar—1, Tar—1) X Pr(Tar|mar) x Pr(sy # s,Vt € [rar + 2N, kH — N]|7ar, Tar),
(46)

The difference between Pr(X) and Pr’(X) arises because Pr(7;41|7;, T;) # Pr'(7i11|7:, T7), Vi €
{1,---, M — 1}. Note that the ratio of these two terms can be bounded as follows,

Pr(7i41|mi, T7)
Pr/(Ti+1|Ti77;)
Yerzs Pr(sriron = 8|73, Ti) X Pr(se # 8,Vt € [1; + 2N, Tiy1 — 1], 87,,, = 8[sr,028 = §')
Derts Pr'(sr4on = 8|73, T;) x Pr(sy # s,Vt € [1; + 2N, 741 — 1], 87, = 8|Sp4on = &)

Pr(sr,1on = ¢\, Ti)

< ma
- s’X PI'/(S”+2N = S/|7'i7 7:)
PI‘(ST.+2N = S/|’7'7,‘7 7:) — d”(s’) (a) 1 thit 1
max L dr(s) St ey S e S e

47
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where (a) is a consequence of Lemma[10} We have,

Pr(X) I\" x @ 1
<14+ = <erz <eT <01+ = 48
Pr’(X)_(+T2> =T == T “8)
where (a) uses the fact that A/ < T. Combining ([44)) and , we get,

E [(Ag(s,a)—A;r(s,a))z] ( ) [ A’T (s,a) g(s,a)ﬂ

(@) (log T
< mix
—O<T%w>)

where (a) follows from (43)). Using the definition of Ar, », we get,

(49)

I

&=

| —| ;>>
~/
~—~

S
~—~

»

S
=

N
—

S
S~—
S~—"

_l’_

>
—~
—
S~—"

o

3
—~

[Va)

S
N2
N

N——
[ V)
[E—

<9E {(Af(s,a) - A:(S,a)ﬂ + 2\’ {(Az(s,a) - Ag(s,a)ﬂ <0 (%)

This concludes the proof. O

B Proofs for the Section of Global Convergence Analysis

B.1 Proof of Lemma[3l
Proof. Recall from Eq. (T3) that,

thy1—1
1 o
%:E;;%W%WWMWMM% (50)
=lk
Define the following quantity,
1 try1—1
Ok = t; ALk (s1,a4) Vg log mg, (arst) (51)
=tk
where ¢, = (k — 1)H is the starting time of the kth epoch. Note that the true gradient is given by,
Vo) = Bymor aom,y (10 [AQ?; (s,a)Vglog 7rg(&|s)} (52)
Using Assumptlonl Lemma@ and X € [0, 2], one can exhibit that |A7r9’“( a)Vologmy(als)| <

O(itmg‘G) V(s a) € 8 x A which implies [V Jp, x(0)] < O(tmix& S). Applying Lemma , one,
therefore, arrives at

ixlogT G2 .
- 2 < 2,2 tle g — mix
E |:||0Jk; VOJL,)\(GIC)H :| = @ 52G tm]x IOgT x O H @ 52th1tT£ (53)

Finally, the difference, E||w), — @x||* can be bounded as follows.

E|wy — @5

tpp1—1 thar—1
L 1
—E Z AL)\ (s¢,a:)Vologma, (ar|s:) — Z ALA (56, ar) Ve log o, (at|st)
=t t=t,
(a) G2 to1—1 )
2% B[ (Aena) - AT )|
t=tg
tp41—1
; oy 2| 1Y (AG* s (log T)?
o I Y EN RS
k

(54)
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where (a) follows from Assumptlonland Jensen’s inequality whereas (b) follows from Lemma
Combining, (53)) and (54)), we conclude the result.

B.2 Proof of Lemmal

Proof. Using the Lemmal[I2] it is obvious to see that

= 2 X @)lr(als) = ' (els))Q5 ()
—ZZd” QG (5,0) = DY,

, (55)
:ZZd’T s)m(als)Qy s,a —ZZC[” s)m(als)V]" (s)
= Z Zdﬁ QW (S a) Vg7T (S)] = EswdwEaNﬂ( |s) [A (S a)l
‘We conclude the lemma using the definition of Ji, ) and Ay, ». O

B.3 Proof of Lemmal5|

Proof. We start with the definition of KL divergence.
E,am [KL(m"(-]$)l70, (-|s)) = KL(7(-]s) |70, (-[5))]
7T9k+1(a|8):|
=E, g~ E4sure(s | log ———=
e “>l ® o, (als)

(a) B
> Eg g Bamre(1s)[ Vo log mg, (als) - (Orr1 — Ok)] — §l|9k+1 — Okl?

Ba?
= 0B, e B[V log 7, als) - 0] — o
. . Ba? 9
= aB, g Equre(.|s)[Volog g, (als) - wi] + aBE, g Eqr(.15)[Vo log e, (als) - (wr — wy)] — T“w’“”
= Oé[JL(ﬂ'*, )\k:) — JL(Hk, )\k)] + OZESNdW*EaNﬂ-* [Vg lOg’ngk( | ) wZ] - a[JL(ﬂ'*, )\k) - JL(Hk, )\k)]
Ba?
+ aE gm Eanre(15)[Vologme, (als) - (wk — wp)] — 7||wk||2

b * * T
u alJu(m, Ak) — JL(Ok, )] + aBy L gr B ()s) [Va log m, (als) - wj, — A% (s, a)]

. Ba?
+ aESNd"'*EaNﬂ'*(‘ls) lvf) 10g7r9k (a’|5) ' (wk - wk)l - 7”“ ”2

© . 2
alJu(m™, Ak) — Ju(Ok, Ak)] — a\/ESNd""*Ean*(-|5) [(V@ log 7, (als) - wy — AL%, (s, a)) }

* Ba2 2
— 0By gm Banre (1) [ Vo log mo, (als) |2l (wr — wi)ll = ——lwwll
(d) . Ba?
alJL(m", Ak) = JL(Ok, Ak)] — av/epias — oGl (wr — wp)[| — 7l|wkl|2

(56)
where the step (a) holds by Assumption 3] and step (b) holds by Lemmafd} Step (c) uses the convexity
of the function f(x) = 2. Finally, step (d) comes from the Assumption 4] Rearranging items, we
have

* N Ba
JL(m*, M) — JL(0k, Ak) < VVebias + G| (wi — wpp)|| + 7”‘%”2
(57)
1 X *
+ o Bangr [KL(m" (])l|mo, (+]5) — KL("(:|s)lI7o,. (-]5))]
Summing from k£ = 1 to K, using the non-negativity of KL divergence and dividing the resulting
expression by K, we get the desired result. O
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B.4 Proof of Lemmal6l

Proof. By the L-smooth property of the objective function and constraint function, we know that
Jr(-, A) is a L(1 4+ X\)-smooth function. Thus,

L(1+ X
Ju(Okt1, Ak) > JL(Ok, Ak) + (VIL(Ok, Ak), Ok+1 — Ok) — M‘wkﬂ — Okl?

2
(a) L(1 + Ak)

= JL(0k, i) + VI (0, )T wp — [

= JL(ek; /\k) + Oé”VJL(Qk, )‘k)H — Oé(VJL(Qk, /\k) — Wk, VJL(Qk, /\k)>

L(1 4 M\)a?
- PO G g () — o~ V(B M)

® 2 _ @ 2 _ @ 2
2 JL(Ok, M) + @l VIL Ok, M) 7 = SV IL(Ok, Ae) = wrll” = S IV IL(Ok, Ax )l
— L(1 4+ X\e)@?|VIL Ok, M) — wi]|? — L(1 4 A\p)?|| VL (O, M) ||
(0% «
= Ju(Ok, Ak) + (5 - L1+ )\k)a2) IV (0x, i) | — (5 +L(1+ Ak)OéQ) IV 1 (65> k) — wr])?

(58)
where step (a) follows from the fact that 6,11 = 6 + awy and inequality (b) holds due to the
Cauchy-Schwarz inequality. Now, adding Ji, (041, Ak+1) on both sides, we have
o)
JBrrrs M) 2 T Aer) = T, M) + I8, M) + (5 = L0+ A)a?) [V (0, M)

(0%
— (5 + L+ 2)a?) [V (0 ) =

—

ll

2 st = A elBin) + JuO M) + (5 = L+ M) V(0 M)

— (5 + L+ 2)a?) [V (0 ) =

® o
> =B+ Il M) + (5 = L+ M)a?) [V (6, M)

(0%
- (5 + L(l + )\k)a2) HVJL(alm )\k) - wk||2

(59)
where (a) holds by the definition of Jp, (6, A) and step (b) is true because |J ()] < 1,V0 and
| < 1.

Art1 — M| < BlJ.(6k)| < B where the last inequality uses the fact that |.J.(6,)| <

Summing
overk € {1,---, K}, we have,

Z |:JL Ort1, Akg1) — JL(eka)\k)} > —pK + (% — L(1+ /\k)a2> IV JL (85, A |

e

k=1
K (60)
=30 (5 L0 M)0?) IV 60k k) —
k=1
which leads to the following.
K
T A1) = T3, 20) = =BK + Y (5 = L1+ M)a?) [ V(6 M)
k=1
! (61)
> (5 + L+ M) IV I8k he) — il
=1
Rearranging the terms and using 0 < Ag % due to the dual update, we arrive at the following.
ZK: V70 (0, M) |12 < Ju(Ok 1, A1) — JL(01, M) + BE + (2 + L1+ 2)a2) S5 IV 0k, M) — wie)?
LUk, Ak)ll” = >
b1 5 = L(l + %)042
(62)
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Choosing o = and dividing both sides by K, we conclude the result.

1
4L(1+3%)
K 2
1 ,  16L(1+2)
— 0 < — 907 0 - 0
K;IIVJL( ks M) |7 < I [JL(OK 1, A1) — JL(01,A1)]
B (63)

K
3
K k}_jl IVJL (6, A) — will® + 8

Recall that [ Ji,(0,A)| <1+ A <142 < 2, vf € ©,VA > 0. Thus,

288L
(O, \)||* < (Or, Ai) — wie)? 64
];HVJL kAT < o KZHVJL Ky Ak) — wil|” 4 B (64)
This completes the proof. O

B.5 Proof of Theorem[ll
B.5.1 Rate of Convergence of the Objective
Recall the definition of Ji, (6, \) = J,.() + AJ.(f). Using Lemma([7] we arrive at the following.

K
2 \/ZGtmix Ltmixthit
K ICZ < )> =G (1 " ) © <\/E+ sTE2 T sra-on
B ~ [ AG?*#2. Ltmixthlt tmixthit By g [KL(* (-|3) |70, (-]5))]
LO< §2T¢ + 52T1-¢ ) ( Ti-¢5 ) (65)
1 K
K ZE {Ak (J” - Jc(ewﬂ + Vb
=1

Thus, we need to find a bound for the last term in the above equation.

(/\K+1)2

@ Z:: ( Arr1)? = (Ak) )

(P[o,g] D — B.(00)]% — (Am)

M= 10 1

<3 (Pw-ado]’ - 0w?)
k=1
K
:7252)%(] (O) + 8% Je(0)? ©0
k=1 k=1

K
(2 28 (I = Ju(0k)) + B Z J.(0r)?

k=1 k=1

K K
<28 Z Ae(JE = Je(6r)) + 282 Z Je(0x)?

K
= 2BZAk Te(0k)) + 2BZAk — Je(6k) +28° ) Je(61)?
k=1

k=1
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where (a) uses A\; = 0 and inequality (b) holds because 6* is a feasible solution to the constrained
optimization problem. Rearranging items and taking the expectation, we have,

K

_% = E |:)\k(Jcﬂ* — J.(0 ] < = ZE[)\k —J. (49/@))} + % é E[jc(gk)]2
@ % i E [Ak (Jc(ek) - J;(ek)ﬂ + 3
k=1
K

— +8
(67)

where (a) results from |J, ,(0)|> < 1, V0 € © and (b) uses the fact that J, ,(f)) and \j are
conditionally independent given 6. Finally, (c) is a consequence of Lemma[I3] Combining with
(63), we deduce,

Fn( )

< Jas 4G <1+ u> (\[ VAGtmix N Ltmixthit> Lo <5T2 +[3)
(68)

§TE/2 ST(1—=8)/2

AGQt?nlx Ltmixthlt Ltnmxthlt:Eswd7r [KL( ( |3)||7T91(|8))]
* ZO ( p°Te | g@Tie ’8) ( €5 )

AGtmix Ltmixt i
S\/@+G<1+> <f+f + “)

§TE/2 dT(1=8)/2

The last inequality presents only the dominant terms of 3 and 7T'.

B.5.2 Rate of Constraint Violation

Since {/\k}f:1 are derived by applying the dual update in Algorithm we have,

B - 2 € Bln - o - 2

—Eln - % T 28E {jc(ek) </\k ;)} +A°E [J2(9k)]

Ul 2 am 2.0 (3 2)| - 208 | (o) - o) (= 2) |+ 52

9 -2 o [0 (- 2)] - 29 (8 [200] - 00) (- 2]

2
<E ’Ak _ 2’ _98E {JC(Gk) <>\k - ?)} +28E UE [Je(00)|6x] (ok)] M — ?H + 32
@) 22 I 2\], 48
< E |\ — 5 — 20K _Jc(ak) (Ak - 5)_ 5T2 +ﬁ2
(69)

where (a) is due to the non-expansiveness of the projection Py, 2) and (b) holds because J.(0) € [0,1],
V6 € © according to its definition in Algorithm Finally, (c) is a consequence of the fact that J, (6,

108586 https://doi.org/10.52202/079017-3447



and )\, are conditionally independent given ), whereas (d) applies |\, — 2| < Z and Lemma
Averaging (69) over k € {1,..., K}, we get,

K 212 212
1 2 A1 = 2|7 = [Ak41 — 3 2 Bl@ 2 2 B
=Y E|J.O) (e —=]] < ) 6 I [l
K}; {J(k)(k 5)}_ 98K +6T2+2_52,6’K+6T2+
. (70)
where (a) uses A\; = 0. Note that A\ JT > 0, Vk. Adding the above inequality to (]5_3[) at both sides,
we, therefore, have,

K
_ 1 P 2 3
|:J _*E Jr 9k:|+ E|: § Jc0k1|<\/€b1as+52ﬂK+T25+2
k=1

k=1

Gtomix Lt mixthi AG?t2, Ltpixtni
+G<1+u> <f+\ﬁ + ht>+L(9( mix ht+ﬂ>

TE/2 ST (1=€)/2 62T¢ 0271-¢
+O<LtmlxthnEs~dw [KL(m (s)llwol(-ls))]>

T1-8§
(71)
Since the functions {J,(6x)}, k € {0,--- , K —1}, g € {r, c} are linear in occupancy measure, there
exists a policy 7 such that the following holds Vg € {r, c}.
| K
2 Jol0k) = J] (72)
k=1

Injecting the above relation to (71)), we have
x _ 2 - 2 2 B
T T - _ T < . I p—
el ] 2]t < v e e
1 ~ AGtmix Ltmixt i
+G<1+)C’)<\/B+f + ’“) (73)
WF

8TE/? ST(—=€)/2

AGPE,. | Dhwictu Lt Ber (KL (1) 70, ()]
N O( 5°TE | 2TI€ B)HD( =T )

By Lemma([T8] we arrive at,

o]

(56 \/ZGtmix Lt ixtnit
< 0y/Ebias + o7 56K +ﬁ+ 5 +G( > <5f+ TG

(74)
B 5 (AC i | Ltwixtuic LtmixthitEgegr [KL(T*(|3) |70, (]5))]
L YA T ¢ T1-¢
2ﬁmlxthlt \/ZGtmix Ltmixthit
<6./eblab+(9(5ﬁT1 5) +G(l+> <5\/>+ TE + TA-£6)/2
The last inequality presents only the dominant terms of 5 and 7.
B.5.3 Optimal Choice of 3 and &
If we choose 3 = T~ for some 1) € (0, 1), then following (68) and (74), we can write,
K
1 o ~ _ _ —(1—
KZE(JT —L(ek)) smﬂo(T /2y =2 @ fW), (75)
k=1

E

K
1
% E Jc(gk)] < 6v/Ebins +O< (A=&=n) L p—n/2 L 7—E/2 +T*(1*§)/2) (76)
k=1
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Clearly, the optimal values of 1 and & can be obtained by solving the following optimization.

. £ 1—
max(y,¢)e(0,1)2 M {1 —&—n, g 25 (77)

One can easily verify that (£, 1) = (2/5,2/5) is the solution of the above optimization. Therefore,
the convergence rate of the objective function can be written as follows.

1 K
e 2B - 00)
k=1
1 1 \/7Gtrmx Ltmixthit 1 1
< ./€b1aS+G (1+ /,LF> <T1/5 5T1/5 + 5T3/10 ) + 0 <6T,2 + T2/5> (78)
52 + AG2tI2an Ltrmxthlt LtmlxthltEsde [KL( ( ‘S)Hﬂ-al (|8))]
+ O ( 52T2/5 + 52’1”3/5 ) + O( T3/56 )

< Tblas‘i’ \/7G tmix <1+ ) 71/5>

The last expression only considers the dominant terms of 7. Similarly, the constraint violation rate
can be computed as,

7

6T1/5 T WE T1/5 T3/10
g <52 + AG?t2 Ltmixthit) 5 (LtmixthitEswdﬂ* [KL(7*(+]3)|| 7, (.|s))])
I

~ ( tmixthi 1 d d Gtmlx Ltmixti
< eblas+(9< ht+2+T2/5>+G<1+>O< + VA + ht)

6T2/5 6T3/5 T3/5

A mlxthit 2, . L 2 —-1/5
5/Eorms + ( S ) + VAG i (1 + NF) o (r-1°)

(79)

where the last expression contains only the dominant terms of 7'. This concludes the theorem.

C Proofs for the Regret and Violation Analysis
C.1 Proof of Lemma|§]

Proof. Using Taylor’s expansion, we can write the following V(s,a) € S x A, Vk.

76,1 (als) — 7o, (als)| = |(Ok+1 — O) Vemg(als)|

= g, (als) |(Ox+1 — 0x) " Vo log g, (als)| (80)

(a)
< 7, (als)[|0x11 = Okl Vo log mg, (als)[| < GllOk+1 — Ol
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where 0}, is some convex combination| of 85 and 0r+1 and (a) results from Assumptlonl This
concludes the first statement. Applying and Lemma. we obtain the following for g € {r, c}.

Y E|Jy (k1) — Iy (61)] = ZE de’““ 8)(Toy.1. (als) — 7o, (als))Qy™ (s, a)
k=1

K
< ZE Zdﬂ'ﬂkJrl (s) ’W9k+1(a| —mp, (a ”Qg s,a H

= L
<GB D dm e (5)]0k1 — Ok]1Q5" (5, >ﬂ

k=1 s,a

(81)

(a) K
< GaZE ZZd”M k]| - 6tmix | = 6AGOtmix Y El|wgll

k=1
_,_/
=1

®) K :
< 6AGat i VK (Z E||wk||2>
k=1

% %) <aicj [(\/ZGtmix + 5) T3 + LtmixthitTlgo}>

Inequality (a) uses Lemma[9]and the update rule 6.1 = 6 + awy. Step (b) holds by the Cauchy
inequality and Jensen inequality whereas (c) can be derived usmg (22) and substituting K = T'/H.

This establishes the second statement. Next, recall from that for any policy g, g™ (s) =
> . molals)g(s, a). Note that, for any policy parameter 6, and any state s € S, the following holds.

00 N-1 oo
‘/gﬂ-g(s) = <(Pﬂ-8)t(3a')_dﬂe7gﬂe> = <(Pﬂ9)t(87')7gﬂg>_NJ(9)+ <(P7r9)t(s7')_dﬂ-evgﬂg>~
t=0 t=0 t=N
(82)
Define the following quantity.
5 (s,T) Z 1(P™)t(s,) — d™||, where N = dtyix(log, T) (83)

Lemma states that for sufficiently large T', we have 6™ (s,T") < % for any policy 7y and state s.
Combining this result with the fact that the g™ function is absolutely bounded in [0, 1], we obtain,

K N-1
<(P 6k+1)t(s’f’ )_ (P ek) (Sk) ) g 9k+1> +ZE <(Pﬂ9k)t(5k7.)7g770k+1 _gﬂ'ek>
k=1 t=0 o1 =
K
2K
+ N Y B (O41) = Ty (00)] + 5
k=1
(a) K N1 K N-1
<3 D BRI = (PT) g e g+ Y0 D Bl — g
k=1 t=0 b1 =0
2 AGtle 2 3
O (adt [(\/»Gtm‘x T 5) T+ LtmixthitTﬁ’])
hit

(84)

"Note that, in general, 0%, is dependent on (s,a).
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where (a) follows from (§T) and substituting N' = 4t,,ix(log, T'). For the first term, note that,
[((PTew)t = (PTox) ) g™k || o
< || Pron <<P”%+1>f—1 = (PO )g | | (PO — PO ) (P g

(a)
< (P ) T = (P ) T g™k | 4 max [ P75, ) — Pk (s, )

(85)

Inequality (@) holds since every row of P™ sums to 1 and ||(P7™)!~1g™+1||__ < 1. Moreover,
invoking (80), and the parameter update rule 8y, = 0x + awy, we get,

DD (wor. (als) = ma, (als) P(s'|s, a)
ZZP(S’\S,a)

maXHPTer_H( ) Pfrek( ?')Hl — max

< Glfk 41 — Og[| max

< aAG||wk|

Plugging the above result into and using a recursive argument, we get,
t
(P} = (PTon) ) g0k g < D max [P0k (s,) = P (s,)ly
t'=1

t
< Z aAG||wg|| € atAG||wy||

t'=1

Finally, we have
K N-1
3 STE[((Pk ) - (P ) g™
k=1 t=0

N—

,_.

Mw

atAG||wy|]

b
Il

1 t=0

K
< O(@AGN?) > " E|wy| (86)

k=1

O(aAGN*VK) (Z E||wk||2>
k=1

0N (O‘fgt‘”‘ [(VAGH i+ 6) T + LtmixthitTf’OD

Where( ) follows from (22)). Moreover, notice that,
K N— K N-1

S Bl — g <35 B

k=1 t=0 k=1 t=0

1
2

max

5 ale) = T el

(@) K
< @AGN ) El|wy|

k=1 ) (87)
K 2
< 0 AGNVEK (Z Ewﬁ)
k=1

Yo (O‘AG [(\/ZGtmix + 5) T? + LtmixthitTlsoD

Otnit

where (a) follows from and the update rule 0,41 = 0, + awy, whereas (b) is a consequence of
(22). Combining (84), (86), and (87), we establish the third statement.
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C.2 Proof of Theorem2]

Proof. Recall the decomposition of the regret in section [5|and take the expectation.

T-1

E[Reg,| = Z (J,’f* (8¢, a) ) HZ (J” — J.(0) ) —|—Z Z (0k) — (st at))
t=0 k=1teT;
K K1
1Y (I = 0 00)) B | X VT ) — V(o) | + B[V (o) = 1 s0)]
k=1 k=1

(88)
Using the result in (78), Lemma|[8]and Lemma[9] we get,

1 A 4 VA tmix n4 Ltmixt i . 3
E[RegT]<T~/ebias+G<1+u>O<T5+ (g Ts5 + hit 17o>_|_(’)< +T5>
F

)
+ O 52 + AG2t12n1xT Ltmixthit T% T @ LtmixthitEsde* [KL(TI'*(|S) H?Tgl (|S))] T%
62 62 §
A A mix 2 3
o) (O‘Gt [(\/Zatmix + 5) T + LtmixthitTloD + O(tmix)
Otnit

(89)
Similarly, for the constraint violation, we have

T-1

E[Vior] = Z (—c(st,at)) HZ —J.(60k) + Z Z (Je(0r) — c(st,at))

t=0 k=1tcT,

K K—-1
—H Y J(O0) B | 30 VI (spar) = VI (k)
k=1 k=1

+ B [VI (s1) = VI (s0)]

(90)
Using the result in (79), Lemma |8 and Lemma[9] we get,
1 -
E[Vior] < T6\/epms + G <1 + u> o ([5 + \/ZGtmix] Tt 4 LtmixthitTllo)
F
trmixthi 1 6% + AG?t2. Lt mixtni
+0 MUPS 4+ — 6T fo + AG g hit 3
) 0T ) )
©On
o (LtmixthitESNd"* [KL(7(:]s)||me, ('|3))]T§)
- AGtmix 2 3
+0 (“ [(VAGH i +0) T + LtmixthitT%D + Otmix)
Otnit
This concludes the theorem. O

D Some Auxiliary Lemmas for the Proofs

Lemma 9. [I7, Lemma 14] For any ergodic MDP with mixing time tyix, the following holds
Y(s,a) € 8 x A, any policy T and Vg € {r,c}.

(@)|Vy (8)] < Btmix, (0)|Qg (s, )] < 6tmix
Lemma 10. /7, Corollary 13.2] Let 6™ (-, T') be defined as written below for an arbitrary policy .

T) £ Z ||<P7r)t(s? ) - dTrHl’ Vs € S where N = 4tmix(10g2 T) (92)

Iftmix < T/4, we have the following inequality Vs € S: ™ (s, T) < 2.
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Lemma 11. [[I7] Lemma 16] Let T = {t1 + 1,t1 + 2, -+ , ta} be a certain period of an epoch k of
Algorithm 2| with length N. Then for any s, the probability that the algorithm never visits s in T is

upper bounded by
3dm (s)\ L'+
(1 - ) 93)
4
Lemma 12. [I7 Lemma 15] The difference of the values of the function J,;, g € {r,c} at policies
and ', is
Jp—J7 =3 d(s)(n(als) — 7' (als)QF (s,a) (94)
Lemma 13. [6] Lemma 7] The term J,(0) for any 6 € © is a good estimator of J,(), which means
. 1
[E[e(0)] = Je(0)] < = (95)

Lemma 14. [36] Lemma A.6] Let 8 € ©O be a policy parameter. Fix a trajectory z =
{(st,as, 74, S141) hren generated by following the policy Ty starting from some initial state sg ~ p.
Let, VL(0) be the gradient that we wish to estimate over z, and 1(0,-) is a function such that
E. a0 z,0(0,z) = VL(0). Assume that ||1(0, 2)||, || VL(0)|| < G,V € ©,Vz2 € S x AXR x S.

Define 19 = % 2?21 1(0,2;). If P = 2tmix log T, then the following holds as long as Q < T,

B[ - Vi)’ <0 (Gi log (PQ) g) 96)

Lemma 15 (Strong duality). [37, Lemma 3] For convenience, we rewrite the unparameterized
problem (2).

max J;

mell (97)
s.t. JI >0

Define * as the optimal solution to the above problem. Define the associated dual function as

A max JI + AJ7 (98)

and denote \* = arg miny>q J g. We have the following strong duality property for the unparame-
terized problem whenever Assumption |2| holds.

JT =Ty (99)

T

Although the strong duality holds for the unparameterized problem, the same is not true for parame-
terized class {my|0 € ©}. To formalize this statement, define the dual function associated with the
parameterized problem as follows.

A AL
Tb.e 2 max J, (6) + AJ.(6) (100)

and denote A}y = arg miny>o Jp o. The lack of strong duality states that, in general, Jg@’@ £ J.(0%)
where 6* is a solution of the parameterized constrained optimization (3). However, the parameter A%,
as we demonstrate below, must obey some restrictions.

Lemma 16. Under Assumption[2] the optimal dual variable for the parameterized problem is bounded
as

J;T* - Jr(é)

0< A <
- - )

1
< =
; (101)

Proof. The proof follows the approach in [37, Lemma 3], but is revised to the general parameterization
setup. Let A, = {\ > 0] Ji\)@ < a} be a sublevel set of the dual function for a € R. If A, is
non-empty, then for any A € A,

a>Jp o> Jr(0) + Ae(0) > J(0) + A (102)

where 6 is a Slater point in Assumption Thus, A < (a — J,.(9))/5. If we take a = ngf)@ <

Jbe < Jp =Jr . then we have A}, € A, which proves the Lemma. The last inequality holds
since JT € [0, 1] for any policy, 7. O
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Since the above inequality holds for arbitrary ©, we also have, 0 < A* < %. Define v(7) £
maxyer{J7|JT > 7}. Using the strong duality property of the unparameterized problem (7)), we

establish the following property of the function, v(-).
Lemma 17. Assume that the Assumption 2| holds, we have for any T € R,

v(0) = TA* > v(T) (103)
Proof. By the definition of v(7), we have v(0) = J7 . With a slight abuse of notation, denote

Ju(m,\) = JF + A\JT. By the strong duality stated in Lemma|[15] we have the following for any

m eIl
Ju(m, X) < max Jy (7, \°) Rel ;@ g — (o) (104)

Thus, forany = € {w € II| JT > 7},
v(0) — TA* > Jp(m, A*) — 7\

=T NS —7) = T (105)

Maximizing the right-hand side of this inequality over {7 € II|JT > 7} yields
v(0) = TA* > v(T) (106)
This completes the proof of the lemma. O

We note that a similar result was shown in [38, Lemma 15]. However, the setup of the stated paper is
different from that of ours. Specifically, [38] considers a tabular setup with peak constraints. Note
that Lemma [I7] has no direct connection with the parameterized setup since its proof uses strong
duality and the function, v(-), is defined via a constrained optimization over the entire policy set,
I1, rather than the parameterized policy set. Interestingly, however, the relationship between v(7)
and v(0) leads to the lemma stated below which turns out to be pivotal in establishing regret and
constraint violation bounds in the parameterized setup.

Lemma 18. Let Assumption[2|hold. For any constant C > 2\*, if there exists aw € Il and ¢ > 0
such that JT~ — J* + C[=JT] < ¢, then

—JI <2¢/C (107)
Proof. Let T = J7. Using the definition of v(7), one can write,
JI <w(r) (108)
Combining Eq. (T06) and (I08), we obtain the following.

JT—J7 < (1) —v(0) < —7A* (109)
The condition in the Lemma leads to,
(C=X)=T)=TN +C(—7) < J* —JT 4+ C[-J] <¢ (110)
Finally, we have,
-7 < < < % (111)
—C-Xx"C
which completes the proof. O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contribution and challenges are clearly described at the end of the intro-
duction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We add all the assumptions in the work, list the gap with lower bound in Table
1, and give future work direction.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the assumptions are clearly stated with a remark to discuss. All the proof
are given in the appendix in details.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: the research conducted in the paper satisfies the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: the paper does not use existing assets
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not use release new assets
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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