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Abstract

This paper introduces a conformal inference method to evaluate uncertainty in
classification by generating prediction sets with valid coverage conditional on
adaptively chosen features. These features are carefully selected to reflect potential
model limitations or biases. This can be useful to find a practical compromise be-
tween efficiency—by providing informative predictions—and algorithmic fairness—
by ensuring equalized coverage for the most sensitive groups. We demonstrate the
validity and effectiveness of this method on simulated and real data sets.

1 Introduction

1.1 Uncertainty, Fairness, and Efficiency in Machine Learning

Increasingly sophisticated machine learning (ML) models, like deep neural networks, are revolution-
izing decision-making in many high-stakes domains, including medical diagnostics [1], job screening
[2], and recidivism prediction [3, 4]. However, serious concerns related to uncertainty quantification
[5, 6] and algorithmic fairness [7–10] underscore the need for novel methods that can provide reliable
and unbiased measures of confidence, applicable to any model.

Uncertainty quantification is crucial because ML models, although effective on average, can make
errors while displaying overconfidence [11]. Consequently, in some situations users may lack
sufficient warning about the potential unreliability of a prediction, raising trust and safety concerns.
A promising solution is conformal inference [12–14], which enables converting the output of any
model into prediction sets with precise coverage guarantees. These sets reflect the model’s confidence
on a case-by-case basis, with smaller sets indicating higher confidence in a specific prediction.

Algorithmic fairness focuses on the challenges of prediction inaccuracies that disproportionately
impact specific groups, often identified by sensitive attributes like race, sex, and age. Among the
many sources of algorithmic bias are training data that do not adequately represent the population’s
heterogeneity and a focus on maximizing average performance. However, fairness is partly subjective
and lacks a universally accepted definition [15], leading to sometimes conflicting interpretations [16].

This complexity makes conformal inference with equalized coverage [17] an appealing approach.
Equalized coverage aims to ensure that the prediction sets attain their coverage not only on average for
the whole population (e.g., above 90%) but also at the same level within each group of interest. While
this does not necessarily imply that the prediction sets will have equal size on average across different
groups—since it is possible the predictive model may be more or less accurate for different groups—it
objectively communicates the possible limitations of a model. This transparency helps decision-
makers recognize when predictions may be less reliable for specific subgroups, allowing them to
either avoid unnecessary actions or adopt more cautious strategies in cases of higher uncertainty,
thereby minimizing the potential harm from inaccurate predictions.
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A limitation of the method developed in [17] for conformal inference with equalized coverage is that
it does not scale well to situations involving diverse populations with multiple sensitive attributes. In
such cases, it necessitates splitting the data into exponentially many subsets, significantly reducing
the effective sample size and leading to less informative predictions. Balancing this trade-off [18]
between efficiency—aiming for highly informative predictions with small set sizes—and fairness—
ensuring unbiased treatment—is challenging and requires novel approaches. This paper introduces
a method to address this by providing equalized coverage conditional on carefully chosen features,
informed by the model and data. While it cannot guarantee equalized coverage for all sensitive
groups, it seeks a reasonable compromise with finite data sets, mitigating significant biases while
retaining predictive power.

1.2 Background on Conformal Inference for Classification

Consider a data set comprising n exchangeable (e.g., i.i.d.) observations Zi for i ∈ D := [n] :=
{1, . . . , n}, sampled from an arbitrary and unknown distribution PZ . In classification, one can write
Zi = (Xi, Yi), where Yi ∈ [L] := {1, . . . , L} is a categorical label and Xi ∈ X represents the
individual’s features, taking values in some space X . As explained below, we will assume these
features include some sensitive attributes. Further, we consider a test point Zn+1 = (Xn+1, Yn+1),
also sampled exchangeably from PZ , and whose label Yn+1 ∈ [L] has not yet been observed.

A standard goal for split conformal prediction methods is to quantify the predictive uncertainty
of a given “black-box” ML model (e.g., pre-trained on an independent data set) by constructing a
prediction set Ĉ(Xn+1) for Yn+1, guaranteeing marginal coverage at some desired level α ∈ (0, 1):

P[Yn+1 ∈ Ĉ(Xn+1)] ≥ 1− α. (1)

This probability is taken over the randomness in Yn+1 and Xn+1, as well as in the data indexed by D.
Intuitively, marginal coverage means the prediction sets are expected to cover the correct outcomes
for a fraction 1 − α of the population. However, this is not always satisfactory, especially if the
miscoverage errors may disproportionately affect individuals characterized by well-defined features.

To address these concerns, one might consider feature-conditional coverage, P[Yn+1 ∈ Ĉ(Xn+1) |
Xn+1 = x] ≥ 1−α for all x ∈ X . This would ensure consistent coverage for all possible test features
Xn+1. However, it is impossible to achieve without additional assumptions, such as modeling the
distribution PZ [19] or significantly restricting the feature space X [20]. Given that such assumptions
may be unrealistic in real-world settings, exact feature-conditional coverage is typically unachievable.

Equalized coverage [17] seeks a practical middle ground between the two extremes of marginal and
feature-conditional coverage, focusing on accounting for specific discrete attributes encapsulated by
Xn+1. To facilitate the subsequent exposition of our method, it is useful to recall the definition of
equalized coverage with the following notation.

Let K denote the number of sensitive attributes, and for each k ∈ [K] let Mk ∈ N count the
possible values of the k-th attribute. Consider a function ϕ : X × {0, 1}K → Nd for any subset
A ⊆ [K] with |A| = d elements, so that ϕ(x,A) is a vector of length |A| representing the values
of all attributes indexed by A for an individual with features x. In the special case where A is
an empty set, ϕ returns a constant. If A is a singleton, e.g., A = {k} for some k ∈ [K], then
ϕ(x, {k}) ∈ [Mk] denotes the value of the k-th attribute; e.g., someone’s academic degree. More
generally, ϕ(x, {k, l}) ∈ [Mk] × [Ml], for any distinct k, l ∈ [K], denotes the joint values of two
attributes, characterizing a smaller group, such as “males with a bachelor’s degree.”.

When multiple sensitive attributes are involved, i.e., K > 1, the concept of equalized coverage
introduced by [17] can be naturally extended to exhaustive equalized coverage, defined as:

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, [K])] ≥ 1− α. (2)

In words, this says Ĉ(Xn+1) has valid coverage conditional on all K sensitive attributes. Prediction
sets satisfying (2) can be obtained by applying the standard conformal calibration method separately
within each of the M =

∏K
k=1 Mk groups characterized by a specific combination of the protected

attributes represented by ϕ(Xi, [K]); see Appendix A1 for details. However, a downside of this
approach is that the calibration subsets may be too small if M is large, leading to uninformative
predictions for even moderate values of K. This limitation forms the starting point of our work.
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1.3 Preview of Our Contributions: Adaptive Equalized Coverage

In practice, for a given model and data set, different groups may not exhibit the same need for rigorous
equalized coverage guarantees (2), as conformal predictions may be able to approximately achieve the
desired coverage even without explicit constraints. Algorithmic bias typically affects only a minority
of the population, so standard prediction sets with marginal coverage (1) may approximately satisfy
(2) for most groups. Therefore, we propose Adaptively Fair Conformal Prediction (AFCP), a new
method that efficiently identifies and addresses groups suffering from algorithmic bias in a data-driven
way, adjusting their prediction sets to equalize coverage without sacrificing informativeness.

AFCP involves two main steps. First, as sketched in Figure 1, it carefully selects a sensitive attribute
Â(Xn+1) ∈ {∅, {1}, . . . , {K}}, based on Xn+1 and the data in D. Although AFCP can be extended
to select multiple attributes, we begin by focusing on this simpler version for clarity. Intuitively,
AFCP searches for the attribute corresponding to the group most negatively affected by algorithmic
bias. It may also opt to select no attribute (Â(Xn+1) = ∅) in the absence of significant biases.

Figure 1: Schematic visualization of the automatic sensitive attribute selection carried out by our
Adaptively Fair Conformal Prediction (AFCP) method. This method is designed to find the attribute
corresponding to the group most negatively affected by algorithmic bias, on a case-by-case basis.

Next, AFCP constructs a prediction set Ĉ(Xn+1) for Yn+1 that guarantees the following notion of
adaptive equalized coverage at the desired level α ∈ (0, 1):

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, Â(Xn+1))] ≥ 1− α. (3)

In words, this tells us Ĉ(Xn+1) is well-calibrated for the groups defined by the selected attribute
Â(Xn+1). It is worth highlighting the key distinctions between (3) and the existing notions of cover-
age reviewed above. On the one hand, if AFCP identifies no significant bias, selecting Â(Xn+1) = ∅,
then (3) reduces to marginal coverage (1), following the convention that ϕ(Xn+1, ∅) is a constant.
On the other hand, exhaustive equalized coverage (2) would correspond to simultaneously selecting
all possible sensitive attributes instead of only that identified by Â(Xn+1). To clarify the terminology,
in this paper we will say that an attribute is sensitive if it may identify a group affected by algorithmic
bias. By contrast, a protected attribute is one for which equalized coverage is explicitly sought.

Figure 2 illustrates this intuition through a simulated example. In this scenario, we generate synthetic
medical diagnosis data, considering six possible diagnosis labels, and designate race, sex, and age
group as potentially sensitive attributes alongside other demographic factors. Notably, the female
group, identified by sex, is characterized by fewer samples and higher algorithmic bias, resulting in
marginal prediction sets with low group-conditional coverage. By contrast, the model leads to no
significant disparities across races and age groups in this dataset.

For two example patients from the critical group, the standard marginal prediction sets fail to cover
the true label. Conversely, sets calibrated for exhaustive equalized coverage are too conservative to
be informative. By contrast, AFCP generates prediction sets that are both efficient and fair.

Without additional sample splitting, which would be inefficient, constructing informative prediction
sets that satisfy (3) is challenging due to potential selection bias from using the same data for attribute
selection and conformal calibration. This paper presents a novel solution to address this challenge.
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Figure 2: Prediction sets constructed with different methods for patients in groups negatively affected
by algorithm bias. Our method (AFCP) is designed to provide informative prediction sets that are
well-calibrated conditional on the automatically identified critical sensitive attribute.

1.4 Table of Contents

Section 2 presents our AFCP method, focusing on the special case in which at most one sensitive
attribute may be selected. Section 3 demonstrates the empirical performance of AFCP on synthetic
and real data. Section 4 discusses some limitations and suggests ideas for future work.

Additional content is presented in the Appendices. Appendix A1 reviews relevant details of existing
approaches. Appendices A2 and A3 present two extensions of our method, respectively enabling
the selection of more than one sensitive attribute and providing valid coverage also conditional on
the true test label; both extensions involve distinct technical challenges. Additionally, a variation of
AFCP designed for outlier detection tasks is detailed in Appendix A4. Appendix A5 contains all
mathematical proofs. Appendix A6 explains how to implement our method efficiently and studies its
computational cost. Appendix A7 describes the results of numerous additional experiments.

1.5 Related Works

Conformal inference is a very active research area, with numerous methods addressing diverse tasks,
including outlier detection [21–23], classification [24–28], and regression [29–31]. Overcoming the
limitations of the standard marginal coverage guarantees (1) is a main interest in this field.

Some works have proposed conformity scores designed to seek high feature-conditional coverage
while calibrating prediction sets for marginal coverage [27, 30]. Others attempt to mitigate over-
confidence while training the ML model [32, 33], and several have developed calibration methods
for non-exchangeable data, accounting for possible distribution shifts [34–38]. These works are
complementary to ours, as we focus on guaranteeing a new adaptive notion of equalized coverage.

In addition to [17], several other works have considered constructing prediction sets adhering to
various notions of equalized coverage and have empirically investigated the performance of conformal
predictors in this regard [39]. In the context of regression, [40] and [41] proposed strategies to
enhance conditional coverage given several protected attributes, but they targeted a different notion of
equalized coverage designed for continuous outcomes. In classification, a classical approach to move
beyond marginal coverage is label-conditional coverage, where the “protected” groups are defined
not based on the features Xn+1 but by the label itself, Yn+1 [42–44]. As explained in Appendix A3,
the method proposed in this paper can also be extended to provide label-conditional coverage.

More closely related to the notion of equalized coverage [17] are the works of [45, 46], which differ
from ours as they do not consider the automatic selection of the sensitive groups. To tackle a related
challenge due to unknown biased attributes, [47] studied how to identify unfairly treated groups
by establishing a simultaneously valid confidence bound on group-wise disparities. In principle,
their approach can be integrated within the selection component of our method. Very recently, [48]
proposed an elegant method to obtain valid conformal prediction sets for adaptively selected subsets
of test cases. While their perspective aligns more closely with ours, their approach and focus differ as
they study different selection rules not specifically aimed at mitigating algorithmic bias.
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2 Method

2.1 Automatic Attribute Selection

Given a pre-trained classifier, an independent calibration data set D, and a test point Zn+1 =
(Xn+1, Yn+1) with an unknown label Yn+1, we will select (at most) one sensitive attribute,
Â(Xn+1) ∈ {∅, {1}, . . . , {K}}, according to the following leave-one-out procedure.

For each y ∈ [L], imagine Yn+1 is equal to y, and define an augmented calibration set D′
y :=

D ∪ {(Xn+1, y)}. For each i ∈ [n+ 1], define also the leave-one-out set D′
y,i := D′

y \ {(Xi, Yi)},
with y acting as a placeholder for Yn+1. Then, for each i ∈ [n + 1], we construct a conformal
prediction set Ĉ loo

y (Xi) for Yi given Xi by calibrating the classifier using the data in D′
y,i. Any

method can be applied for this purpose, although it may be helpful for concreteness to focus on
employing the standard approach seeking marginal coverage (1) using the adaptive conformity scores
proposed by [27]. Let Ey,i denote the binary indicator of whether Ĉ loo

y (Xi) fails to cover Yi:

Ey,i := 1{Yi /∈ Ĉ loo
y (Xi)}. (4)

After evaluating Ey,i for all i ∈ [n+ 1], we will assess the leave-one-out miscoverage rate for the
worst-off group identified by each sensitive attribute k ∈ [K]. That is, we evaluate

δy,k := max
m∈[Mk]

∑n+1
i=1 Ey,i · 1{ϕ(Xi, {k}) = m}∑n+1

i=1 1{ϕ(Xi, {k}) = m}
.

Intuitively, δy,k denotes the maximum miscoverage rate across all groups identified by the k-th
attribute. Large values of δy,k suggest that the k-th attribute may be a sensitive attribute corresponding
to at least one group suffering from algorithmic bias.

To assess whether there is evidence of significant algorithmic bias, we can perform a statistical test
for the null hypothesis that no algorithmic bias exists. Note that this test can be heuristic since it
does not need to be exact for our method to rigorously guarantee (3). Therefore, we do not need to
carefully consider the assumptions underlying this test. As a useful heuristic, we define:

q̂y := max
k∈[K]

δy,k, (5)

and carry out a one-sided t-test for the null hypothesis H0 : q̂y ≤ α against H1 : q̂y > α.

If H0 is rejected (at any desired level, like 5%), we conclude there exists a group suffering from
significant algorithmic bias, and we identify the corresponding attribute through

Â(Xn+1, y) = {argmax
k∈[K]

δy,k}. (6)

Otherwise, we set Â(Xn+1, y) = ∅, which corresponds to selecting no attribute. See Algorithm 1 for
an outline of this procedure, as a function of the placeholder label y.

After repeating this procedure for each y ∈ [L], the final selected attribute Â(Xn+1) is:

Â(Xn+1) = ∩y∈[L]Â(Xn+1, y). (7)

Therefore, an attribute is selected if and only if it is consistently flagged by our leave-one-out
procedure for all values of the placeholder label y ∈ [L]. This approach minimizes the potential
arbitrariness due to the use of a placeholder label and is necessary to guarantee that our method
constructs prediction sets achieving (3), as discussed in the next section.

Before explaining how our method utilizes the selected sensitive attribute obtained in (7) to construct
prediction sets satisfying (3), we pause to make two remarks. First, as long as n is large enough,
Â(Xn+1, y) is quite stable with respect to both Xn+1 and y, as each of these variables plays a
relatively small role in determining the leave-one-out miscoverage rates. Therefore, the selected
attribute Â(Xn+1) given by (7) is also quite stable for different values of Xn+1. This stability
will be demonstrated empirically in Section 3. Second, despite its iterative nature, our method can
be implemented efficiently; see Appendix A6. Further, if n is very large, our method could be
streamlined using cross-validation instead of a leave-one-out approach.
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Algorithm 1 Automatic attribute selection using a placeholder test label.
1: Input: calibration data D; test point with features Xn+1; list of K sensitive attributes;
2: Input: pre-trained classifier f̂ ; fixed rule for computing nonconformity scores; level α ∈ (0, 1);
3: Input: placeholder label y ∈ [L].
4: Assume Yn+1 = y and define the augmented data set D′

y := D ∪ {(Xn+1, y)}.
5: for i ∈ [n+ 1] do
6: Pretend that (Xi, Yi) is the test point and D′

y \ {(Xi, Yi)} is the calibration set.
7: Construct a conformal prediction set Ĉ loo

y (Xi) for Yi.
8: Evaluate the miscoverage indicator Ey,i using (4).
9: end for

10: Perform a one-sided test for H0 : q̂y ≤ α vs. H1 : q̂y > α, with q̂y defined as in (5).
11: Select the attribute Â(Xn+1, y) using (6) if H0 is rejected, else set Â(Xn+1, y) = ∅.
12: Output: Â(Xn+1, y), either a selected sensitive attribute or an empty set.

2.2 Constructing the Adaptive Prediction Sets

After evaluating Â(Xn+1, y) by applying Algorithm 1 with placeholder label y for Yn+1 for all
y ∈ [L], and selecting either an empty set or a single attribute Â(Xn+1) using (7), AFCP constructs
an adaptive prediction set for Yn+1 that satisfies (3) as follows.

First, it constructs a marginal conformal prediction set Ĉm(Xn+1) targeting (1), by applying the stan-
dard approach reviewed in Appendix A1. Then, for each y ∈ [L], it constructs a conformal prediction
set Ĉ(Xn+1, Â(Xn+1, y)) with equalized coverage for the group identified by attribute Â(Xn+1, y),
as if it had been fixed. This is achieved by applying the standard marginal method based on a re-
stricted calibration sample indexed by {i ∈ [n] : ϕ(Xi, Â(Xn+1, y)) = ϕ(Xn+1, Â(Xn+1, y))}; see
Algorithm A1 in Appendix A1 for further details. Therefore, note that ϕ(Xi, Â(Xn+1, y)) becomes
equivalent to Ĉm(Xn+1) if Â(Xn+1, y) = ∅. Finally, the AFCP prediction set for Yn+1 is given by:

Ĉ(Xn+1) = Ĉm(Xn+1) ∪
{
∪L
y=1Ĉ(Xn+1, Â(Xn+1, y))

}
. (8)

See Algorithm 2 for an outline of this procedure.

Note that the AFCP set Ĉ(Xn+1) given by (8) always contains the marginal set Ĉm(Xn+1); this is
essential to prove the validity of our approach. Second, in practice the selection Â(Xn+1, y) tends to
be very consistent for different values of the placeholder label y, as long as the sample size n is large
enough; therefore, the union in (8) will typically not lead to a very large prediction set.

Algorithm 2 Adaptively Fair Conformal Prediction (AFCP).
1: Input: calibration data D; test point with features Xn+1; list of K sensitive attributes;
2: Input: pre-trained classifier f̂ ; fixed rule for computing nonconformity scores; level α ∈ (0, 1).
3: for y ∈ [L] do
4: Select an attribute Â(Xn+1, y) by applying Algorithm 1 with placeholder label y.
5: Construct Ĉ(Xn+1, A) by applying Algorithm A1 with the attribute A = Â(Xn+1, y).
6: end for
7: Construct Ĉm(Xn+1) by applying Algorithm A1 without protected attributes.
8: Output: selected attribute Â(Xn+1) given by (7) and prediction set Ĉ(Xn+1) given by (8).

The following result, proved in Appendix A5, establishes that the prediction sets Ĉ(Xn+1) output
by AFCP guarantee adaptive equalized coverage (3) with respect to the adaptively selected attribute
Â(Xn+1). It is worth emphasizing this result is not straightforward and involves an innovative proof
technique to address the lack of exchangeability introduced by the adaptive selection step.

Theorem 1. If {(Xi, Yi)}n+1
i=1 are exchangeable, the prediction set Ĉ(Xn+1) and the selected

attribute Â(Xn+1) output by Algorithm 2 satisfy the adaptive equalized coverage defined in (3).
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3 Numerical Experiments

3.1 Setup and Benchmarks

This section demonstrates the empirical performance of AFCP, focusing on the implementation
described in Section 2, which selects at most one sensitive attribute. Our method is compared with
three existing approaches, which utilize the same data, ML model, and conformity scores but produce
prediction sets with different guarantees. The first is the marginal benchmark, which constructs
prediction sets guaranteeing (1) by applying Algorithm A1 without protected attributes. The second
is the exhaustive equalized benchmark, which constructs prediction sets guaranteeing (2) by applying
Algorithm A1 with all K sensitive attributes simultaneously protected. The third is a partial equalized
benchmark that separately applies Algorithm A1 with each possible protected attribute k ∈ [K], and
then takes the union of all such prediction sets. This is an intuitive approach that can be easily verified
to provide a coverage guarantee intermediate between (2) and (3), namely:

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, {k})] ≥ 1− α, ∀k ∈ [K]. (9)

However, we will see that these prediction sets are often still too conservative in practice.

In addition, we apply a variation of AFCP that always selects one sensitive attribute, regardless of the
outcome of the significance test. This method is denoted as AFCP1 in our experiments.

For all methods considered, the classifier is based on a five-layer neural network with linear layers
interconnected via a ReLU activation function. The output layer uses a softmax function to estimate
the conditional label probabilities. The Adam optimizer and cross-entropy loss function are used in
the training process, with a learning rate set at 0.0001. The loss values demonstrate convergence after
100 epochs of training. For all methods, the miscoverage target level is set at α = 0.1.

3.2 Synthetic Data

We generate synthetic classification data to mimic a medical diagnosis task with six possible labels:
Skin cancer, Diabetes, Asthma, Stroke, Flu, and Epilepsy. The available features include three
sensitive attributes—Age Group, Region, and Color—and six additional non-sensitive covariates.
Color is categorized as Blue or Grey, with 10% and 90% marginal frequencies, respectively. The
Age Group is cyclically repeated as < 18, 18− 24, 25− 40, 41− 65, > 65, and Region is sampled
from an i.i.d. multinomial distribution across {West, East, North, South} with equal probabilities.
The six non-sensitive features are i.i.d. random samples from a uniform distribution on [0, 1]. For
simplicity, Color is denoted as X0 and the first non-sensitive feature as X1. Conditional on X , the
label Y is generated based on a decision tree model that depends only on X0 and X1, as detailed in
Appendix A7. This model is designed so that the diagnosis label for individuals with Color equal to
Blue is intrinsically harder to predict, mimicking the presence of algorithmic bias.

Figure 3 shows the performance of all methods as a function of the total sample size, ranging from
200 to 2000. In each case, 50% of the samples are used for training and the remaining 50% for
calibration. Results are averaged over 500 test points and 100 independent experiments.

While the marginal benchmark produces the smallest prediction sets on average, it leads to significant
empirical undercoverage within the Blue group. In contrast, the exhaustive benchmark, which
achieves the highest coverage overall, tends to lead to overly conservative and thus uninformative
prediction sets, especially for the Blue group. The partial benchmark, though less conservative than
the exhaustive method, still generates prediction sets that are too large when the sample size is small.

Our AFCP method and its simpler variation, AFCP1, not only achieve valid coverage for the Blue
group but do so with prediction sets that, on average, are not much larger than the marginal ones.
AFCP1 is slightly more robust than AFCP when the sample size is very small, as it never fails to
select a sensitive attribute. This is advantageous in scenarios where we know there is a sensitive
attribute worth equalizing coverage for, though this may not always be the case in practice. See
Figure A1 and Table A1 for detailed results with standard errors.

Figure 4 provides additional insight into our method’s performance by plotting the selection frequen-
cies of each sensitive attribute as a function of sample size, within the same experiments described
in Figure 3. These results show that our method behaves as anticipated. When the sample size and
algorithmic bias are both small, AFCP shows more variability in selecting the sensitive attribute,
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Coverage for Blue Average coverage Average size
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Figure 3: Performance of conformal prediction sets constructed by different methods on synthetic
medical diagnosis data, as a function of the total number of training and calibration data points. Our
method (AFCP) leads to more informative prediction sets (smaller average size) with more effective
mitigation of algorithmic bias (higher conditional coverage). The error bars indicate 2 standard errors.

often selecting no attributes. However, as the sample size grows and the undercoverage affecting
the Blue group becomes more pronounced, AFCP consistently selects Color as the most sensitive
attribute, correctly identifying the main manifestation of algorithmic bias in these data.

Selects Any Attribute Selects Region Selects Age Group Selects Color

200 500 1000 2000 200 500 1000 2000 200 500 1000 2000 200 500 1000 2000
0.00

0.25

0.50

0.75

1.00

Sample size

Method

AFCP

AFCP1

Figure 4: Selection frequency of different attributes using our AFCP method and its variation, AFCP1,
in the experiments of Figure 3. As the sample size increases, AFCP becomes more consistent in
selecting the most relevant attribute, Color.

Additional results are presented in Appendix A7.1.1. Figures A1–A3 and Tables A2–A4 summarize
the average coverage and prediction set size conditional on each protected attribute. Figures A4–A7
and Tables A5–A8 study the performance of an extension of our method that also provides valid
coverage conditional on the true label of the test point.

3.3 Nursery data

We apply AFCP and its benchmarks to the open-domain Nursery data set [49], which was derived
from a hierarchical decision model originally developed to rank applications for nursery schools for
social science studies. The data encompass 12,960 instances with eight categorical features: Parents’
occupation (3 levels), Child’s nursery (5 levels), Family form (4 levels), Number of children (1, 2, 3,
or more), Housing conditions (3 levels), Financial standing (2 levels), Social conditions (3 levels),
and Health status (3 levels). These features are used to predict application ranks across five categories.
The variables “Parents’ occupation", “Number of children", “Financial standing", “Social conditions",
and “Health status" are marked as possible sensitive attributes.

To prepare for model training, we executed several pre-processing steps. First, two instances labeled
“recommend" were removed due to the minimal occurrence of this outcome label. Subsequently,
we utilized the LabelEncoder function in the sklearn Python package to numerically encode all
features and labels. To make the problem more interesting and allow control over the strength
of algorithmic bias, we added independent, uniformly distributed noise to the labels of samples
with Parents’ occupation in the first category, rounding these perturbed labels to the nearest integer.
This makes the group corresponding to the first category of Parents’ occupation intrinsically more
unpredictable and hence more prone to algorithmic bias. To enhance the challenge of making accurate
predictions for this group, it was further down-sampled to 10% of its original size.
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Coverage for Occupation 1 Average coverage Average size
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Figure 5: Performance of prediction sets constructed by different methods on the Nursery data, as
a function of the sample size. AFCP leads to more informative predictions with higher coverage
conditional on the sensitive attribute, Parents’ occupation (shown explicitly for level one).

Figure 5 summarizes the performance of all approaches as a function of the total number of training
and calibration data points, which varies between 200 and 5000. The results are averaged over 500
randomly chosen test points and 100 repeated experiments. In each experiment, 50% of the samples
are randomly assigned for training and the remaining 50% for calibration. The marginal benchmark is
heavily biased, leading to prediction sets with very low coverage for samples with Parents’ occupation
in the first category. The exhaustive benchmark is too conservative and results in very large prediction
sets unless the sample size is very large. The partial benchmark performs better than the other two
benchmarks, but our AFCP method still outperforms it, producing smaller prediction sets with valid
coverage even for the hardest-to-predict group. See Table A9 for detailed results.

The results of additional experiments are presented in Appendix A7.1.2. Figures A8–A12 and
Tables A10–A14 detail the average coverage and prediction set size for each sensitive attribute.
Additionally, Figures A13–A18 and Tables A15–A20 report on the performance of an extended
version of AFCP which also ensured valid coverage conditional on the true test label.

3.4 Additional Numerical Experiments

Figures A19–A21 and Table A21 in Appendix A7.1.3 summarize additional experimental results
using the open-source COMPAS dataset [50]. Moreover, Appendix A7.2 demonstrates the empirical
performance of our AFCP extension for outlier detection; see Figures A22–A36 and Tables A22–A34.
These demonstrations involve both synthetic data and the open-domain Adult Income dataset [51].
The experiments with the real-world Adult Income data also include an AFCP extension that allows
for the selection of multiple sensitive attributes at the same time.

3.5 Performance of AFCP with Different Sample Sizes

Constructing informative prediction sets that achieve high conditional coverage is inherently more
challenging when dealing with smaller sample sizes. By experimenting with different sample sizes,
we demonstrate that our AFCP method consistently performs well across different scenarios. For
instance, in the experiments depicted in Figures 3–4, when the sample size is as small as 200, it is
difficult to fit an accurate predictive model, assess conditional coverage, and reliably identify the
sensitive attribute associated with the lowest coverage. This difficulty is reflected in the relatively large
sizes of the prediction sets produced by all methods and the substantial discrepancies between the
nominal and empirical conditional coverage. Despite these challenges, our method often succeeds in
selecting the correct sensitive attribute, achieving significantly higher conditional coverage compared
to the Marginal benchmark, with only a slight increase in average prediction set size.

Moreover, as the sample size increases, our method becomes highly effective at identifying the
attribute associated with the lowest conditional coverage, as illustrated in Figure 4. Consequently,
our method is able to achieve high conditional coverage with relatively small prediction sets. Overall,
these experiments demonstrate that our method offers distinct advantages over existing approaches in
both large-sample and small-sample settings.
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3.6 Comparison between AFCP and AFCP1

Both AFCP and AFCP1 outperform the benchmark approaches when applied to datasets with small
sample sizes, each excelling in different scenarios. AFCP is better suited to situations where there is
uncertainty regarding the presence of significant algorithmic bias, while AFCP1 is more effective
when prior knowledge suggests that at least one attribute may be biased. For example, in Figure 3,
which illustrates a case where one group (Color-Blue) is consistently biased, AFCP1 achieves slightly
higher conditional coverage than AFCP. While AFCP exhibits slight undercoverage for the blue
group with small sample sizes, it still outperforms the Marginal approach. The occasional inability of
AFCP to select a sensitive attribute in small samples reflects the inherent challenges posed by limited
datasets. When the method does not select an attribute, it often signifies a lack of sufficient evidence
of algorithmic bias, making it reasonable to calibrate the prediction sets solely for marginal coverage.

4 Discussion

This paper presents a practical and statistically principled method to construct informative conformal
prediction sets with valid coverage conditional on adaptively selected features. This approach balances
efficiency and equalized coverage, which may be particularly useful in applications involving multiple
sensitive attributes. While we believe it offers substantial benefits, a potential limitation of this method
is that it does not always identify the most relevant sensitive attribute, particularly when working
with limited sample sizes. Nevertheless, our empirical results are quite encouraging, demonstrating
that AFCP effectively mitigates significant instances of algorithmic bias when the sample size is
adequate. Moreover, our method is flexible, allowing for the integration of prior knowledge about
which sensitive attributes might require protection against algorithmic bias.

This paper creates several opportunities for further work. Future research could focus on theoretically
studying the conditions under which our method can be guaranteed to select the correct sensitive
attribute with high probability. Additionally, future extensions might explore implementing different
attribute selection procedures, such as those inspired by [47] - within our flexible AFCP framework
to delve into the subtle trade-offs associated with different selection algorithms. Moreover, adapting
our approach to accommodate different fairness criteria by adaptively adjusting the coverage rate
target for each subgroup is another promising area of study. Extending our method to more efficiently
handle scenarios with an extremely high number of possible classes is also worthwhile, potentially
drawing inspiration from [43]. Furthermore, investigating extensions for classification tasks where
the target variable is ordered could be both intriguing and practically useful. In such cases, a naive
modification of our method would involve utilizing the discrete convex hull of all components instead
of unions of subintervals on the right-hand side of Equation (8). However, developing a more refined
approach would be a valuable contribution for future work. Future extensions of our work could focus
on adapting to distributional shifts or enhancing the robustness and efficiency of our method under
adversarial attacks or contaminated data, potentially drawing connections with [52–56]. Finally,
extending our method to accommodate regression tasks with continuous outcomes presents additional
computational challenges, but potential solutions could be inspired by [33].

The numerical experiments described in this paper were carried out on a computing cluster. Individual
experiments, involving 1000 calibration samples and 500 test samples, required less than 25 minutes
and 5GB of memory on a single CPU. The entire project took approximately 100 hours of computing
time, and did not involve preliminary or failed experiments.

Software implementing the algorithms and data experiments are available online at https://github.
com/FionaZ3696/Adaptively-Fair-Conformal-Prediction.
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A1 Review of Existing Conformal Classification Methods

Algorithm A1 outlines the standard approach for constructing conformal prediction sets with equalized
coverage with respect to a fixed list of protected attributes [17]. In the special case where the list of
protected attributes is empty, this method reduces to the standard approach for constructing prediction
sets with marginal coverage.

Algorithm A1 Conformal classification with equalized coverage for fixed protected attributes.
1: Input: calibration data D; test point with features Xn+1; list of protected attributes A;
2: Input: pre-trained classifier f̂ ; pre-defined rule for computing nonconformity scores;
3: Input: nominal level α ∈ (0, 1).
4: Define the calibration subset

I(Xn+1, A) = {i ∈ [n] : ϕ(Xi, A) = ϕ(Xn+1, A)} .

5: for y ∈ [L] do
6: Compute the nonconformity scores Ŝy

i for i ∈ I(Xn+1, A) ∪ {(Xn+1, y)} using f̂ .
7: Compute the conformal p-value:

ûy(Xn+1) =
1 + |i ∈ I(Xn+1, A) : Ŝ

y
i ≤ Ŝy

n+1|
1 + |I(Xn+1, A)|

.

8: end for
9: Construct a prediction set using Ĉ(Xn+1) = {y ∈ [L] : ûy(Xn+1) ≥ α}.

10: Output: a prediction set Ĉ(Xn+1).

In the context of outlier detection, Algorithm A2 reviews the standard approach for computing
conformal p-values achieving valid false positive rate (FPR) control conditional a fixed list of
protected attributes.

Algorithm A2 Conformal p-value with equalized FPR for fixed protected attributes.
1: Input: calibration data D; test point Zn+1; list of protected attributes A;
2: Input: pre-trained one-class classifier f̂ ; pre-defined rule for computing nonconformity scores;
3: Input: nominal level α ∈ (0, 1).
4: Define the calibration subset

I(Zn+1, A) = {i ∈ [n] : ϕ(Zi, A) = ϕ(Zn+1, A)} .

5: Compute the nonconformity scores Ŝi for i ∈ I(Zn+1, A) ∪ {Zn+1} using f̂ .
6: Compute the conformal p-value:

û(Zn+1) =
1 + |i ∈ I(Zn+1, A) : Ŝi ≤ Ŝn+1|

1 + |I(Zn+1, A)|
.

7: Output: a conformal p-value û(Zn+1).

A2 Methodology Extension: AFCP with Multiple Selected Attributes

This section introduces an extension of AFCP that enables the selection of more than one sensitive
attribute. For simplicity, we focus on the selection of up to two attributes. The methodology for
selecting more than two attributes can be extended in a similar manner, as explained later.

A2.1 Automatic Multiple Attribute Selections

Given a pre-trained classification model, an independent calibration data set D with size n, and a test
point Zn+1 = (Xn+1, Yn+1) with an unknown label Yn+1, Algorithm 1 in Section 2.1 introduces
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the AFCP component to select one sensitive attribute according to the leave-one-out procedure.
Intuitively, selecting two sensitive attributes requires executing Algorithm 1 twice. However, during
the second iteration, the sensitive attribute list is restricted to exclude the most critical protected
attribute selected in the first round.

Specifically, for each placeholder label y ∈ [L], assuming Yn+1 = y, Algorithm 1 is run with
all K sensitive attributes for the first iteration to obtain the first selected attribute Â1(Xn+1, y) ∈
{∅, {1}, . . . , {K}}. If Â1(Xn+1, y) ̸= ∅, Algorithm 1 is run again using the sensitive attributes
[K]\Â1(Xn+1, y) and one can get the second selected attribute Â2(Xn+1, y) ∈ {∅, {1}, . . . , {K}}\
Â1(Xn+1, y). Therefore, the identified attributes for test feature Xn+1 with placeholder y for the test
label is the union of the two Â(Xn+1, y) = Â1(Xn+1, y)∪ Â2(Xn+1, y). This procedure is outlined
in Algorithm A3.

After repeating this procedure for each y ∈ [L], the final selected attribute Â(Xn+1) is:

Â(Xn+1) = ∩y∈[L]Â(Xn+1, y). (A10)

Algorithm A3 Two attributes selection using a placeholder test label.
1: Input: calibration data D; test point with features Xn+1; list of K sensitive attributes;
2: Input: pre-trained classifier f̂ ; pre-defined rule for computing nonconformity scores;
3: Input: nominal level α ∈ (0, 1), placeholder label y ∈ [L].
4: Select the first attribute Â1(Xn+1, y) by applying Algorithm 1 with placeholder label y and

sensitive attributes [K].
5: if Â1(Xn+1, y) ̸= ∅ then
6: Select the second attribute Â2(Xn+1, y) by applying Algorithm 1 with placeholder label y

and sensitive attributes [K] \ Â1(Xn+1, y).
7: end if
8: Output: Â(Xn+1, y) = Â1(Xn+1, y) ∪ Â2(Xn+1, y), which is a set of an empty set, or a set

including one or two selected sensitive attribute(s).

A2.2 Constructing the Adaptive Prediction Sets

After selecting a subset of attributes Â(Xn+1) using (A10), which may be empty, or include one or
two attributes, AFCP constructs an adaptive prediction set for Yn+1 that satisfies (3) as follows.

First, it constructs a marginal conformal prediction set Ĉm(Xn+1) targeting (1), by applying Algo-
rithm A1 without protected attributes. Then, for each y ∈ [L], it constructs a conformal prediction
set Ĉ(Xn+1, Â(Xn+1, y)) with equalized coverage for the group jointly identified by attributes
Â(Xn+1, y). This can be achieved by applying Algorithm A1 with protected attributes Â(Xn+1, y).
Lastly, it constructs a conformal prediction set Ĉeq(Xn+1, ℓ) with equalized coverage separately for
each protected attribute ℓ ∈ ∪y∈[L]Â(Xn+1, y), by applying the standard approach in Algorithm A1
on the subsets indexed by {i ∈ [n] : ϕ(Xi, {ℓ}) = ϕ(Xn+1, {ℓ})}.

Finally, the AFCP prediction set constructed using up to two selected attributes is given as:

Ĉ(Xn+1) = Ĉm(Xn+1) ∪
{
∪L
y=1Ĉ(Xn+1, Â(Xn+1, y))

}
∪
{
∪ℓ∈∪yÂ(Xn+1,y)

Ĉeq(Xn+1, ℓ)
}
.

(A11)

See Algorithm A4 for an outline of this AFCP extension.

Theorem A1. If {(Xi, Yi)}n+1
i=1 are exchangeable random samples, then the conformal prediction set

Ĉ(Xn+1) and the selected attributes Â(Xn+1) output by Algorithm A4 satisfy the adaptive equalized
coverage defined in (3).
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Algorithm A4 AFCP with two selected attributes.
1: Input: calibration data D; test point with features Xn+1; list of K sensitive attributes;
2: Input: pre-trained classifier f̂ ; pre-defined rule for computing nonconformity scores;
3: Input: nominal level α ∈ (0, 1).
4: for y ∈ [L] do
5: Select attribute(s) Â(Xn+1, y) by applying Algorithm A3 with placeholder label y.
6: Construct Ĉ(Xn+1, A) by applying Algorithm A1 with protected attribute(s) A =

Â(Xn+1, y).
7: end for
8: for ℓ ∈ ∪y∈[L]Â(Xn+1, y) do
9: Construct Ĉeq(Xn+1, ℓ) by applying Algorithm A1 with protected attribute {ℓ}.

10: end for
11: Construct Ĉm(Xn+1) by applying Algorithm A1 without protected attributes.
12: Define the final selected attribute(s) Â(Xn+1) using Equation (A10).
13: Define the final prediction set Ĉ(Xn+1) using Equation (A11).
14: Output: Â(Xn+1) and Ĉ(Xn+1).

A3 Methodology Extension: AFCP with Label Conditional Coverage

This section extends the AFCP method with adaptive equalized coverage that is also conditional on
the true test label. We focus on the main implementation of AFCP, where it can select up to one
sensitive attribute.

First, the label conditional counterparts of the marginal coverage, the exhaustive equalized coverage,
and the adaptive equalized coverage are defined. The label-conditional counterpart of marginal
coverage is defined as:

P[Yn+1 ∈ Ĉ(Xn+1) | Yn+1 = y] ≥ 1− α, ∀y ∈ [L]. (A12)

Intuitively, this coverage ensures that the prediction sets constructed are valid for each group with
the test label y for all possible values of y ∈ [L]. This coverage offers a stronger assurance than
marginal coverage in classification contexts. However, it overlooks scenarios where groups, identified
by feature attributes, may suffer adverse effects from prediction biases. To address these concerns,
one can aim for label-conditional exhaustive equalized coverage [17], defined as:

P[Yn+1 ∈ Ĉ(Xn+1) | Yn+1 = y, ϕ(Xn+1, [K])] ≥ 1− α, ∀y ∈ [L]. (A13)

Achieving this label conditional exhaustive equalized coverage involves applying the standard
conformal classification method (outlined in Algorithm A1) separately within each of the groups
characterized by every possible combination of sensitive attributes and test labels. Hence, this
approach can become overly conservative when a large number of sensitive attributes or response
labels are presented.

Our AFCP method strikes a balance between the two approaches to achieve label-conditional adaptive
equalized coverage:

P[Yn+1 ∈ Ĉ(Xn+1) | Yn+1 = y, ϕ(Xn+1, Â(Xn+1))] ≥ 1− α, ∀y ∈ [L], (A14)

which guarantees that the true test label is contained within the prediction sets with high probability
for the groups defined by the selected attribute Â(Xn+1) and the test label y for every y ∈ [L].

A3.1 Automatic Attribute Selection

Given a pre-trained classification model and an independent calibration data set D with size n, for
each placeholder label y ∈ [L] for Yn+1, the AFCP method with label-conditional adaptive equalized
coverage (A14) selects the sensitive attribute Â(Xn+1, y) by simply applying Algorithm 1 using the
label-restricted calibration data Dy = {i ∈ [n] : Yi = y}. After repeating this process for each
y ∈ [L], the final selected attribute Â(Xn+1) is again given by

Â(Xn+1) = ∩y∈[L]Â(Xn+1, y). (A15)
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A3.2 Constructing the Adaptive Prediction Sets

After selecting Â(Xn+1, y) by applying Algorithm 1 with placeholder label y based on the label-
restricted calibration data Dy = {i ∈ [n] : Yi = y}, and selecting a sensitive attribute Â(Xn+1),
AFCP constructs an adaptive prediction set for Yn+1 that satisfies (A14) as follows.

For each y ∈ [L], it firstly construct a conformal prediction set Ĉ lc(Xn+1, y) by applying Al-
gorithm A1 using the label-restricted calibration set Dy without considering protected attributes.
Then, it constructs another conformal prediction set Ĉ(Xn+1, Â(Xn+1, y)) with equalized cov-
erage for the group identified by both the selected attribute Â(Xn+1, y) and label y. This can
be achieved by applying Algorithm A1 based on a subset of the calibration samples indexed by
I(Xn+1, y) = {i ∈ Dy : ϕ(Xi, Â(Xn+1, y)) = ϕ(Xn+1, Â(Xn+1, y))}. Lemma A1 shows that,
for any given placeholder label, the prediction set constructed in this step satisfies the label conditional
adaptive equalized coverage as long as the selected variable using that placeholder label is fixed.

Lemma A1. If {(Xi, Yi)}n+1
i=1 are exchangeable and the selected attribute Â(Xn+1, y) is fixed for

some placeholder label y, then, the prediction set Ĉ(Xn+1, Â(Xn+1, y)) constructed by calibrating
on I(Xn+1, y) satisfies

P[Yn+1 ∈ Ĉ(Xn+1, Â(Xn+1, y)) | Yn+1 = ỹ, ϕ(Xn+1, Â(Xn+1, y))] ≥ 1− α,

for any ỹ ∈ [L].

Lastly, the final AFCP prediction set is obtained by:

Ĉ(Xn+1) =
{
∪L
y=1Ĉ

lc(Xn+1, y)
}
∪
{
∪L
y=1Ĉ(Xn+1, Â(Xn+1, y))

}
. (A16)

The procedures to form AFCP prediction sets with the label-conditional adaptive equalized cover-
age (A14) is summarized in Algorithm A5.

Algorithm A5 AFCP with label-conditional adaptive equalized coverage (A14).
1: Input: calibration data D; test point with features Xn+1; list of K sensitive attributes;
2: Input: pre-trained classifier f̂ ; pre-defined rule for computing nonconformity scores;
3: Input: nominal level α ∈ (0, 1).
4: for y ∈ [L] do
5: Define the label-restricted calibration set Dy = {i ∈ [n] : Yi = y}.
6: Select an attribute Â(Xn+1, y) by applying Algorithm 1 with placeholder label y on Dy .
7: Construct Ĉ(Xn+1, Â(Xn+1, y)) by applying Algorithm A1 with protected attributes

Â(Xn+1, y) on Dy .
8: Construct Ĉ lc(Xn+1, y) by applying Algorithm A1 on Dy .
9: end for

10: Define the final selected attribute Â(Xn+1) using Equation (A15).
11: Define the final prediction set Ĉ(Xn+1) using Equation (A16).
12: Output: Â(Xn+1) and Ĉ(Xn+1).

Theorem A2. If {(Xi, Yi)}n+1
i=1 are exchangeable random samples, then the conformal prediction set

Ĉ(Xn+1) and the selected attribute Â(Xn+1) output by Algorithm A5 satisfy the label-conditional
adaptive equalized coverage defined in (A14).

A4 Methodology Extension: AFCP for Outlier Detection

Consider a dataset D = {Zi}ni=1 containing n sample points drawn exchangeably from an unknown
distribution PZ . Consider an additional test point Zn+1. In the outlier detection problems, our AFCP
method aims to study whether Zn+1 ∼ PZ by constructing a valid conformal p-value û(Zn+1)

conditional on the group identified by the selected attribute Â(Zn+1), that is:

P[û(Zn+1) ≤ α | ϕ(Zn+1, Â(Zn+1))] ≤ α, (A17)
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for any α ∈ (0, 1). Intuitively, this guarantees that, on groups defined by the selected attribute
Â(Zn+1), the conformal p-value is super-uniform, therefore controlling the FPR (the probability of
rejecting the null hypothesis that Zn+1 is an inlier when it is true) below α.

A4.1 Automatic Attribute Selection

Given a pre-trained one-class classifier f̂ , an independent calibration dataset D, and a test point Zn+1,
our method selects a sensitive attribute Â(Zn+1) ∈ {∅, {1}, . . . , {K}} according to the following
leave-one-out procedure. Sometimes, no attribute may be selected, as denoted by Â(Zn+1) = ∅.

Define an augmented calibration set D′ := D ∪ {Zn+1}. For each i ∈ [n + 1], define also the
leave-one-out set D′

i := D′ \ {Zi}. Then, for each i ∈ [n + 1], we compute a conformal p-value
ûloo(Zi) for Zi using the data in D′

i to test if Zi is an outlier. This can be accomplished by running
Algorithm A2, using D′

i as the calibration data and Zi as the test point, and with the convention that
smaller nonconformity scores suggest Zi is more likely to be an outlier. Any nonconformity scores
can be utilized here. For concreteness, we focus on using the adaptive conformity scores proposed by
[27]. Small ûloo(Zi) provides stronger evidence to reject the null hypothesis H0,i : Zi is an inlier.
Let Ei denote the binary indicator of whether H0,i is rejected:

Ei := 1{ûloo(Zi) ≤ α}. (A18)

After evaluating Ei for all i ∈ [n+ 1], we will assess the leave-one-out FPR for the worst-off group
identified by each sensitive attribute k ∈ [K]. That is, we evaluate

δk := max
m∈[Mk]

∑n+1
i=1 Ei · 1{ϕ(Zi, {k}) = m}∑n+1

i=1 1{ϕ(Zi, {k}) = m}
. (A19)

Intuitively, δk denotes the maximum FPR across all groups identified by the k-th attribute, as estimated
by the leave-one-out simulation carried out under the assumption that Zn+1 is an inlier. Large values
of δk suggest that the k-th attribute may be a sensitive attribute corresponding to at least one group
suffering from algorithmic bias.

To assess whether there is evidence of significant algorithmic bias, we can perform a statistical test
for the null hypothesis that no algorithmic bias exists. We define:

q̂ := max
k∈[K]

δk, (A20)

and carry out a one-sided t-test for the null hypothesis H0 : q̂ ≤ α against H1 : q̂ > α.

If H0 is rejected (at any desired level, such as 5%), we conclude there exists a group suffering from
significant algorithmic bias, and we identify the corresponding attribute through

Â(Zn+1) = {argmax
k∈[K]

δk}. (A21)

Otherwise, we set Â(Zn+1) = ∅, which corresponds to selecting no attribute. See Algorithm A6 for
an outline of this procedure.

A4.2 Evaluating the Adaptive Conformal P-Value

After selecting either a single attribute or an empty set Â(Xn+1) that corresponds to at least one
group suffering from algorithmic bias, the next step of our AFCP method is to compute an adaptive
conformal p-value for testing whether Zn+1 is an outlier that satisfies (A17). This can be simply
achieved by applying the standard conformal method outlined in Algorithm A2 based on a restricted
calibration sample indexed by I(Â(Zn+1)) = {i ∈ [n] : ϕ(Zi, Â(Zn+1)) = ϕ(Zn+1, Â(Zn+1))},
See Algorithm A7 for a summary of AFCP for outlier detection tasks.

Theorem A3. If {Zi}n+1
i=1 are exchangeable random samples, the conformal p-value û(Zn+1) and

the selected attribute Â(Zn+1) output by Algorithm A7 satisfy (A17).
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Algorithm A6 Automatic attribute selection for outlier detection.
1: Input: calibration data D; test point Zn+1; list of K sensitive attributes;
2: Input: pre-trained one-class classifier f̂ ; pre-defined rule for computing nonconformity scores;
3: Input: nominal level α ∈ (0, 1).
4: Define the augmented data set D′ = D ∪ {Zn+1}.
5: for i ∈ [n+ 1] do
6: Pretend that Zi is the test point and D′ \ {Zi} is the calibration set.
7: Compute a conformal p-value ûloo(Zi).
8: Evaluate the false positive indicator Ei using (A18).
9: end for

10: Compute q̂ using (A20).
11: Perform a one-sided test for H0 : q̂ ≤ α vs. H1 : q̂ > α.
12: Select the attribute Â(Zn+1) using (A21) if H0 is rejected, else set Â(Zn+1) = ∅.
13: Output: Â(Zn+1), either a selected sensitive attribute or an empty set.

Algorithm A7 AFCP for outlier detection.
1: Input: calibration data D; test point Zn+1; list of K sensitive attributes;
2: Input: pre-trained one-class classifier f̂ ; pre-defined rule for computing nonconformity scores;
3: Input: nominal level α ∈ (0, 1).
4: Select a sensitive attribute Â(Zn+1) by applying Algorithm A6.
5: Evaluate û(Zn+1) by applying Algorithm A2 with protected attribute Â(Zn+1).
6: Output: û(Zn+1).

A4.3 AFCP for Outlier Detection with Multiple Selected Attributes

AFCP for outlier detection problems can be readily extended to select J sensitive attributes where
J > 1. This is achieved by repeatedly applying the single attribute selection procedure described
in Algorithm A6 J times. Each time, the algorithm selects a (possibly empty) subset of attributes
Â(Zn+1)

j from the list of sensitive attributes excluding the previously selected attribute Â(Zn+1)
j−1.

The final set of selected attributes is given by Â(Zn+1) = ∪J
j=1Â(Zn+1)

j . See Algorithm A8 for an
outline of this procedure.

Algorithm A8 Multiple attributes selection for outlier detection.
1: Input: calibration data D; test point Zn+1; list of K sensitive attributes;
2: Input: pre-trained one-class classifier f̂ ; pre-defined rule for computing nonconformity scores;
3: Input: nominal level α ∈ (0, 1); number of selected attributes J .
4: Denote K0 = [K].
5: for j ∈ {1, . . . , J} do
6: Select an attribute Â(Zn+1)

j by applying Algorithm A6 with sensitive attributes Kj−1.
7: Update the list of sensitive attributes Kj = Kj−1 \ Â(Zn+1)

j .
8: end for
9: Output: Â(Zn+1) = ∪J

j=1Â(Zn+1)
j , an empty set or a set of selected attributes.

After selecting a set of attributes Â(Zn+1), which might be empty or include one or more sensitive
attributes, AFCP constructs an adaptive conformal p-value satisfying (A17). This can be easily
achieved by applying Algorithm A2 with protected attributes Â(Zn+1). Algorithm A9 summarizes
the AFCP implementation for outlier detection that allows selecting multiple protected attributes.

Theorem A4. If {Zi}n+1
i=1 are exchangeable random samples, the conformal p-value û(Zn+1) and

selected attributes Â(Zn+1) output by Algorithm A9 satisfy (A17).
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Algorithm A9 AFCP for outlier detection with multiple selected attributes.
1: Input: calibration data D; test point Zn+1; list of K sensitive attributes;
2: Input: pre-trained one-class classifier f̂ ; pre-defined rule for computing nonconformity scores;
3: Input: nominal level α ∈ (0, 1); number of selected attributes J .
4: Select up to J sensitive attributes Â(Zn+1) by applying Algorithm A8.
5: Evaluate û(Zn+1) by applying Algorithm A2 with protected attribute Â(Zn+1).
6: Output: û(Zn+1).

A5 Mathematical Proofs

Proof of Theorem 1. Consider an imaginary oracle that has access to the true value of Yn+1. Denote
Âo(Xn+1, Yn+1) as the sensitive attribute selected by this oracle by applying Algorithm 1 with the
true Yn+1 instead of a placeholder label. Let Ĉo(Xn+1, Â

o(Xn+1, Yn+1)) represent the correspond-
ing output prediction set by applying Algorithm A1 with the protected attribute Âo(Xn+1, Yn+1).
Consider also Ĉm(Xn+1), the standard prediction set with marginal coverage (1).

The main idea of our proof is to connect the output prediction set Ĉ(Xn+1) and selected attribute
Â(Xn+1) from Algorithm 2 to those of the imaginary oracle described above. Throughout this proof,
we adopt the convention that ϕ(Xn+1, ∅) = 0.

To establish this connection, note that the attribute Â(Xn+1) selected by Algorithm 2 is either empty,
Â(Xn+1) = ∅, or a singleton, Â(Xn+1) = {k} for some k ∈ [K]. In the latter case, Â(Xn+1) =

Â(Xn+1, ỹ), ∀ỹ ∈ [L], and thus Â(Xn+1) = Âo(Xn+1, Yn+1) almost-surely. Therefore,

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, Â(Xn+1))]

≥ min

{
P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, ∅)],

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, Â
o(Xn+1, Yn+1))]

}

= min

{
P[Yn+1 ∈ Ĉ(Xn+1)],

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, Â
o(Xn+1, Yn+1))]

}

≥ min

{
P[Yn+1 ∈ Ĉm(Xn+1)],

P[Yn+1 ∈ Ĉo(Xn+1, Â
o(Xn+1, Yn+1)) | ϕ(Xn+1, Â

o(Xn+1, Yn+1))]

}
,

(A22)

where the last inequality follows from the facts that Ĉm(Xn+1) ⊆ Ĉ(Xn+1) and
Ĉo(Xn+1, Â

o(Xn+1, Yn+1)) ⊆ Ĉ(Xn+1) almost-surely. Next, we only need to separately lower-
bound by 1− α the two terms on the right-hand-side of (A22).

The first part of the remaining task is trivial. It is already well-known that P(Yn+1 ∈ Ĉm(Xn+1)) ≥
1− α; see [13, 57].

To complete the second part of the remaining task, note that the oracle-selected attribute
Âo(Xn+1, Yn+1) is invariant to any permutations of the exchangeable data indexed by [n+1]. There-
fore, the data points are also exchangeable conditional on the groups defined by Âo(Xn+1, Yn+1).
This means we can imagine the protected attribute Âo(Xn+1, Yn+1) is fixed, and the oracle prediction
set Ĉo(Xn+1, Â

o(Xn+1, Yn+1)) is simply obtained by applying Algorithm A1 to exchangeable data
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using a fixed protected attribute. This procedure is the same as the main algorithm in [17] and has
guaranteed coverage above 1− α; see Theorem 1 in [17].

Proof of Theorem A1. Similar to the proof of Theorem 1, consider an imaginary oracle that has
access to the true value of Yn+1. Denote Âo(Xn+1, Yn+1) as the (possibly empty, one, or two)
sensitive attribute(s) selected by this oracle by applying Algorithm A3 with the true Yn+1. Let
Ĉo(Xn+1, Â

o(Xn+1, Yn+1)) represent the output prediction set by applying Algorithm A1 with the
protected attribute(s) Âo(Xn+1, Yn+1). Consider also Ĉm(Xn+1), the standard prediction set with
marginal coverage (1), and Ĉeq(Xn+1, ℓ) the prediction set with valid coverage conditional on groups
identified by a fixed attribute {ℓ}.

The key idea of our proof is again to connect the practical prediction set Ĉ(Xn+1) and selected
protected attributes Â(Xn+1) of Algorithm A4 to those of the imaginary oracle described above.
Throughout this proof, we adopt the convention that ϕ(Xn+1, ∅) = 0.

To establish this connection, note that the attribute(s) Â(Xn+1) selected by applying Algorithm A3
falls into one of the three possible cases almost surely: (a) Â(Xn+1) = ∅, (b) Â(Xn+1) =

Âo(Xn+1, Yn+1), and (c) Ȧ(Xn+1) = Â(Xn+1) ⊂ Âo(Xn+1, Yn+1). The last scenario happens
when the oracle selects two attributes, and the Â(Xn+1) contains only one of them. For clarify of the
notation, we denote the last case using Ȧ(Xn+1).

Therefore,

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, Â(Xn+1))]

≥ min

{
P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, ∅)],

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, Â
o(Xn+1, Yn+1))],

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, Ȧ(Xn+1))]

}

= min

{
P[Yn+1 ∈ Ĉ(Xn+1)],

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, Â
o(Xn+1, Yn+1))],

P[Yn+1 ∈ Ĉ(Xn+1) | ϕ(Xn+1, Ȧ(Xn+1))]

}

≥ min

{
P[Yn+1 ∈ Ĉm(Xn+1)],

P[Yn+1 ∈ Ĉo(Xn+1, Â
o(Xn+1, Yn+1)) | ϕ(Xn+1, Â

o(Xn+1, Yn+1))],

P[Yn+1 ∈ ∪ℓ∈Âo(Xn+1,Yn+1)
Ĉeq(Xn+1, ℓ) | ϕ(Xn+1, Ȧ(Xn+1))]

}
,

(A23)

where the last inequality follows from the facts that Ĉm(Xn+1) ⊆ Ĉ(Xn+1),
Ĉo(Xn+1, Â

o(Xn+1, Yn+1)) ⊆ Ĉ(Xn+1), and ∪ℓ∈Âo(Xn+1,Yn+1)
Ĉeq(Xn+1, ℓ) ⊆ Ĉ(Xn+1)

almost-surely.

Next, we show how to separately lower-bound by 1 − α the three terms on the right-hand-side
of (A23).

The lower bounds of the first and second terms have been proved in theorem 1. We will focus on lower-
bounding the coverage of the third term. Because the oracle-selected attribute(s) Âo(Xn+1, Yn+1)
are invariant to any permutation of the exchangeable data indexed by [n+1], we can treat each of the
two elements in Âo(Xn+1, Yn+1) as fixed. Without loss of generality, let ℓ1 and ℓ2 denote the first

22

108781https://doi.org/10.52202/079017-3454



and the second element respectively, Ȧ(Xn+1) = ℓ1 or Ȧ(Xn+1) = ℓ2 with probability 1. Then,

P[Yn+1 ∈ ∪ℓ∈Âo(Xn+1,Yn+1)
Ĉeq(Xn+1, ℓ) | ϕ(Xn+1, k̇(Xn+1))]

≥ min

{
P[Yn+1 ∈ ∪ℓ∈Âo(Xn+1,Yn+1)

Ĉeq(Xn+1, ℓ) | ϕ(Xn+1, ℓ1)],

P[Yn+1 ∈ ∪ℓ∈Âo(Xn+1,Yn+1)
Ĉeq(Xn+1, ℓ) | ϕ(Xn+1, ℓ2)]

}

≥ min

{
P[Yn+1 ∈ Ĉeq(Xn+1, ℓ1) | ϕ(Xn+1, ℓ1)],

P[Yn+1 ∈ Ĉeq(Xn+1, ℓ2) | ϕ(Xn+1, ℓ2)]

}
≥ min{1− α, 1− α},

(A24)

where the inequality of the last line of (A24) is proved in [17] with fixed attribute ℓ1 and ℓ2 respectively.
Lastly, realize that ∪ℓ∈Âo(Xn+1,Yn+1)

Ĉeq(Xn+1, ℓ) ⊆ ∪ℓ∈∪L
y=1Â(Xn+1,y)

Ĉeq(Xn+1, ℓ) ⊆ Ĉ(Xn+1)

almost-surely, the proof is completed.

Proof of Theorem A2. Similar to the proof of Theorem 1, consider an imaginary oracle that has
access to the true value of Yn+1. Denote Âo(Xn+1, Yn+1) as the sensitive attribute selected by this
oracle by applying Algorithm 1 based on a subset of the calibration data indexed by DYn+1

= {i ∈
[n] : Yi = Yn+1}. Let Ĉo(Xn+1, Â

o(Xn+1, Yn+1)) represent the output prediction set by applying
Algorithm A1 with the protected attribute Âo(Xn+1, Yn+1). Consider also Ĉ lc(Xn+1, Yn+1), the
prediction set with label-conditional coverage obtained by running Algorithm A1 using DYn+1

without any protected attributes.

To establish this connection between the output prediction set Ĉ(Xn+1) and the selected attribute
Â(Xn+1) of Algorithm A5 and these of the imaginary oracle, note that the selected attribute Â(Xn+1)

must be Â(Xn+1) = ∅ or Â(Xn+1) = Âo(Xn+1, Yn+1).

Therefore, for any y ∈ [L],

P[Yn+1 ∈ Ĉ(Xn+1) | Yn+1 = y, ϕ(Xn+1, Â(Xn+1))]

≥ min

{
P(Yn+1 ∈ Ĉ(Xn+1) | Yn+1 = y, ϕ(Xn+1, ∅)),

P(Yn+1 ∈ Ĉ(Xn+1) | Yn+1 = y, ϕ(Xn+1, Â
o(Xn+1, Yn+1)))

}

= min

{
P(Yn+1 ∈ Ĉ(Xn+1) | Yn+1 = y),

P(Yn+1 ∈ Ĉ(Xn+1) | Yn+1 = y, ϕ(Xn+1, Â
o(Xn+1, Yn+1)))

}

≥ min

{
P(Yn+1 ∈ Ĉ lc(Xn+1, Yn+1) | Yn+1 = y),

P(Yn+1 ∈ Ĉo(Xn+1, Â
o(Xn+1, Yn+1)) | Yn+1 = y, ϕ(Xn+1, Â

o(Xn+1, Yn+1)))

}
,

(A25)

where the last inequality follows from the facts that Ĉ lc(Xn+1, Yn+1) ⊆ Ĉ(Xn+1) and
Ĉo(Xn+1, Â

o(Xn+1, Yn+1)) ⊆ Ĉ(Xn+1) almost-surely.
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Next, we only need to separately lower-bound by 1−α the two terms on the right-hand-side of (A25).

The first part of the remaining task is trivial. It is already well-known that P(Yn+1 ∈
Ĉ lc(Xn+1, Yn+1) | Yn+1 = y) ≥ 1− α; see [13, 47, 58].

Next, we prove the lower bound for the second term. Fix any y ∈ [L], and assume Yn+1 = y.
First, note that the oracle-selected attribute Âo(Xn+1, Yn+1) is invariant to any permutations of
the exchangeable data indexed by Dy ∪ {Xn+1, y}. Therefore, the data points are exchangeable
conditional on the group identified by the oracle-selected attribute Âo(Xn+1, Yn+1). This means
that we can imagine the protected attribute Âo(Xn+1, Yn+1) is fixed, and the oracle prediction
set Ĉo(Xn+1, Â

o(Xn+1, Yn+1)) is simply obtained by applying Algorithm A1 to exchangeable
data using a fixed protected attribute. This procedure has guaranteed coverage above 1 − α; see
Lemma A1.

Proof of Theorem A3. The strategy of this proof is very standard in the conformal inference literature.
We add this proof for completeness.

Recall that I(Â(Zn+1)) denotes a subset of the calibration data D that has the same value of the
selected attribute as the test point. To prove (A17), it suffices to show that the nonconformity scores
{Ŝi : i ∈ I(Â(Zn+1)) ∪ {Zn+1}} are exchangeable. Indeed, if the scores are exchangeable and
almost surely distinct (which can be easily achieved by adding continuous random noises), then
the rank of Ŝn+1 is uniformly distributed over the discrete values {1, 2, . . . , I(Â(Zn+1)) + 1}.
Consequently, the conformal p-value û(Zn+1) constructed by Algorithm A7 follows a uniform
distribution Unif({ 1

|I(Â(Zn+1))|+1
, 2
|I(Â(Zn+1))|+1

, . . . , 1}). This implies that P(û(Zn+1) ≤ α |
ϕ(Zn+1, Â(Zn+1))) = α. Even if the nonconformity scores are not almost surely distinct, one
can still verify that the distribution of û(Zn+1) is super-uniform. Combining both cases, we have
P(û(Zn+1) ≤ α|ϕ(Zn+1, Â(Zn+1))) ≤ α for any α ∈ (0, 1).

We complete the proof by showing that the nonconformity scores {Ŝi : i ∈ I(Â(Zn+1)) ∪ {Zn+1}}
are exchangeable. Define σ as an arbitrary permutation function applied on D ∪ {Zn+1} and denote
the permuted dataset as σ(D). We first run Algorithm A7 based on D to select the sensitive attribute
Â(Zn+1). Next, assume in a parallel world, we repeat Algorithm A7 with the same parameters and
seed settings but based on the permuted data σ(D). Denote the selected attribute in the parallel world
as Â

′
(Zn+1). Essentially, Â

′
(Zn+1) = Â(Zn+1). This is because the computation of conformal p-

values and the procedure of selecting the attribute with the worst FPR in Algorithm A6 are not affected
by the order of the calibration and test data. Therefore, the attribute selection process is invariant to
the order of D ∪ {Zn+1}. This implies that the attribute selected by Algorithm A6 Â(Zn+1) can be
treated as fixed, and the nonconformity scores computed on the subset I(Â(Zn+1)) ∪ {Zn+1} are
simply reordered in the parallel world, i.e.,

{Ŝ
′

σ(i) : i ∈ I(Â(Zn+1)) ∪ {Zn+1}} = σ̄({Ŝi : i ∈ I(Â(Zn+1)) ∪ {Zn+1}}),

where σ̄ is the permutation obtained by restricting σ on I(Â(Zn+1)) ∪ {Zn+1}. Hence, we have

{Ŝi : i ∈ I(Â(Zn+1)) ∪ {Zn+1}}
d
= {Ŝ

′

σ(i) : i ∈ I(Â(Zn+1)) ∪ {Zn+1}}

= σ̄({Ŝi : i ∈ I(Â(Zn+1)) ∪ {Zn+1}}),

where the equality in distribution is implied by D d
= σ(D).

Proof of Theorem A4. This proof is the same as the proof of Theorem A3 since the multiple selected
attributes Â(Zn+1) are invariant to any permutation of the calibration and test data.

Proof of Lemma A1. This proof is a minor extension of the proof of Theorem 1 in [17], with the
difference that we additionally condition on the true test label.

Fix any ỹ ∈ [L], and suppose Yn+1 = ỹ. For a placeholder label y, consider a subset of the calibration
data D indexed by I(Xn+1, y) = {i ∈ D : Yi = ỹ, ϕ(Xi, Â(Xn+1, y)) = ϕ(Xn+1, Â(Xn+1, y))}.
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Since {(Xi, Yi)}n+1
i=1 are exchangeable and the protected attribute Â(Xn+1, y) is fixed, the noncon-

formity scores Ŝi evaluated on the subset I(Xn+1, y) ∪ {(Xn+1, y)} are also exchangeable.

Further, denote Q̂(Xn+1, y) as the ⌈(1−α) · |1+I(Xn+1, y)|⌉-th smallest value of {Ŝi}i∈I(Xn+1,y).
By the quantile lemma [13, 17, 57], for any α ∈ (0, 1),

P[Yn+1 ∈ Ĉ(Xn+1, Â(Xn+1, y)) | Yn+1 = ỹ, ϕ(Xn+1, Â(Xn+1, y))]

= P[Ŝn+1 ≤ Q̂(Xn+1, y) | Yn+1 = ỹ, ϕ(Xn+1, Â(Xn+1, y))]

≥ 1− α.

(A26)

A6 Computational Shortcuts and Efficient Implementation

A6.1 Outlier Detection

Given a pre-trained one-class classifier, consider a calibration dataset D of size n. Let K denote the
number of sensitive attributes, and for each attribute k ∈ [K], let Mk ∈ N denote the count of its
possible values. Denote M = maxk Mk as the maximum count across all attributes.

AFCP for outlier detection outlined in Algorithm A7 has the following computational cost.

Analysis for a single test point

• The cost of computing the false positive indicators for every sample in D ∪ {Zn+1} takes
O(n·log n). Breaking into steps, for every data in D∪{Zn+1}, compute their nonconformity
scores takes O(n). Their associated conformal p-value can be computed at once by sorting
all scores and keeping track of their ranks, which takes O(n · log n).

• Then, selecting the sensitive attributes requires O(n ·K ·M).
• Once the attribute is selected, the cost of applying conformal prediction conditional on the

group identified by the selected attribute is O(1) because the subset of the group has been
found in the last step.

Hence, the total cost of running Algorithm A7 for a single test point is O(n log n+ nKM).

Analysis for m test points

• The cost of computing the false positive indicators for every sample in D ∪ {Zn+t}mt=1
takes O(n · (m+ log n)). This can be derived by rewriting the conformal p-values for all
j ∈ D ∪ {Zn+t} and for all t ∈ [m] as follows:

ûj,t =
1

1 + n

( ∑
i∈D∪{Zn+t}

1(Ŝi ≤ Ŝj)
)

=
1

1 + n

(
rank(Ŝj) among {Ŝi}i∈D + 1(Ŝn+t ≤ Ŝj)

)
.

Computing the nonconformity scores for all samples in D ∪ {Zn+t}mt=1 costs O(n+m),
evaluating the ranks takes O(n log n), and comparing Ŝn+t and Ŝj costs O(n ·m).

• Selecting the sensitive attribute costs O(n ·m+M ·K · (n+m)). Breaking in steps, for
each test sample Zn+t, the worst FPR for attribute k, as defined in (A20), can be rewritten
as follows:

δk,t := max
m∈[Mk]

∑
i∈D∪{Zn+t} Ei,t · 1{ϕ(Zi, {k}) = m}∑

i∈D∪{Zn+t} 1{ϕ(Zi, {k}) = m}

= max
m∈[Mk]

∑
i∈D Ei,t · 1{ϕ(Zi, {k}) = m}+ Et,t · 1{ϕ(Zi, {k}) = m}∑

i∈D 1{ϕ(Zi, {k}) = m}+ 1{ϕ(Zi, {k}) = m}

= max
m∈[Mk]

∑
i∈D(k,m) Ei,t + Et,t · 1{ϕ(Zi, {k}) = m}

|D(k,m)|+ 1{ϕ(Zi, {k}) = m}
,
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where D(k,m) represents a subset of the calibration data indexed by {i ∈ D : ϕ(Zi, {k}) =
m}. The trick we use is that the identification of subset D(k,m) does not depend on the test
sample t and can be reused to calculate the FPR for every test sample {Zn+t}mt=1. In specific,
identifying D(k,m),∀k ∈ [K],m ∈ [Mk] takes O(n·M ·K). For each D(k,m), computing∑

i∈D(k,m) Ei,t,∀t ∈ [m] takes O(|D(k,m)| ·m), and computing Et,t1{ϕ(Zi, {k}) = m}
takes O(m). Therefore, repeating this process for all D(k,m), k ∈ [K],m ∈ [Mk] in total
takes O(n ·m). Lastly, finding the maximum FPR across all attributes takes O(m ·M ·K).

Hence, the total cost of running Algorithm A7 for m test samples is O(n log n+nm+MK(n+m)).

A6.2 Multi-Class Classification

Given a pre-trained multi-class classifier, consider a calibration dataset D of size n. Let L denote the
total number of possible labels to predict, and let K denote the number of sensitive attributes. For
each attribute k ∈ [K], let Mk ∈ N denote the count of its possible values. Denote M = maxk Mk

as the maximum count across all attributes.

AFCP for multi-class classification outlined in Algorithm 2 has the following computational cost.

Analysis for a single test point

• The cost of constructing prediction sets and computing miscoverage indicators within the
leave-one-out procedure is O(L · n · log n).

• Then, selecting the sensitive attributes requires O(n ·K ·M + L · (n+M ·K)).
• Once the attribute is selected, the cost of applying conformal prediction conditional on the

group identified by the selected attribute is O(1) because the subset of the group has been
found in the last step.

Hence, the total cost of running Algorithm 2 for a single test point is O(L(n log n+KM)+nKM).

Analysis for m test points

• The cost of computing miscoverage indicators is O(L ·n · (m+log n)). This can be derived
by rewriting the conformal p-values for all j ∈ D ∪ {(Xn+t, y)} ∀y ∈ [L], and ∀t ∈ [m] as
follows:

ûy
j,t =

1

1 + n

( ∑
i∈D∪{Zn+t}

1(Ŝy
i ≤ Ŝy

j )
)

=
1

1 + n

(
rank(Ŝy

j ) among {Ŝy
i }i∈D + 1(Ŝy

n+t ≤ Ŝy
j )
)
.

For each placeholder label y ∈ [L], computing the nonconformity scores for all samples in
D∪{(Xn+t, y)}mt=1 costs O(n+m), evaluating the ranks takes O(n log n), and comparing
Ŝy
n+t with Ŝy

j costs O(n ·m). This process needs to be conducted for each y ∈ [L], therefore
the total cost of this step is O(L · (n+m+ n log n+ nm)) = O(L · n · (log n+m)).

• Selecting the sensitive attribute costs O(n ·M ·K+L ·m(n+M ·K). Breaking in steps, for
each test sample (Xn+t, y), y ∈ [L], the worst miscoverage rate for attribute k, as defined
in (5), can be rewritten as follows:

δy,k,t := max
m∈[Mk]

∑
i∈D∪{(Xn+t,y)} Ey,i,t · 1{ϕ(Xi, {k}) = m}∑

i∈D∪{(Xn+t,y)} 1{ϕ(Xi, {k}) = m}

= max
m∈[Mk]

∑
i∈D Ey,i,t · 1{ϕ(Xi, {k}) = m}+ Ey,t,t · 1{ϕ(Xi, {k}) = m}∑

i∈D 1{ϕ(Xi, {k}) = m}+ 1{ϕ(Xi, {k}) = m}

= max
m∈[Mk]

∑
i∈D(k,m) Ey,i,t + Ey,t,t · 1{ϕ(Xi, {k}) = m}

|D(k,m)|+ 1{ϕ(Xi, {k}) = m}
,

where D(k,m) represents a subset of the calibration data indexed by {i ∈ D : ϕ(Zi, {k}) =
m}. The trick we use is that the identification of subset D(k,m) does not depend on the test
sample t and the placeholder label y, therefore can be reused to calculate the miscoverage
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rate for every test sample {(Xn+t, y)}mt=1. In specific, identifying D(k,m),∀k ∈ [K],m ∈
[Mk] takes O(n ·M ·K). For each D(k,m), computing

∑
i∈D(k,m) Ey,i,t,∀t ∈ [m],∀y ∈

[L] takes O(L · |D(k,m)| ·m), and computing Ey,t,t1{ϕ(Zi, {k}) = m} takes O(L ·m).
Therefore, repeating this process for all D(k,m), k ∈ [K],m ∈ [Mk] and for all y ∈ [L]
in total takes O(L · n ·m). Lastly, finding the maximum miscoverage across all attributes
takes O(L ·m ·M ·K).

Hence, the total cost of running Algorithm 2 for m test samples is O(n log n+Lnm+MK(n+Lm)).

A7 Additional Results from Numerical Experiments

A7.1 AFCP for Multiclass Classification

A7.1.1 Synthetic Data

Recall from Section 3.2 that Color is denoted as X0 and the first one of the non-sensitive features as
X1. The distribution of Y conditional on X is modeled by a simple decision tree, where X0 and X1

are the only useful predictors for Y , formulated as the following:

P[Y | X] =



(
1
3 ,

1
3 ,

1
3 , 0, 0, 0

)
, if X0=Blue and X1 < 0.5,(

0, 0, 0, 1
3 ,

1
3 ,

1
3

)
, if X0=Blue and , X1 ≥ 0.5,

(1, 0, 0, 0, 0, 0) , if X0=Grey and , 0 ≤ X1 ≤ 1
6 ,

(0, 1, 0, 0, 0, 0) , if X0=Grey and , 1
6 ≤ X1 ≤ 2

6 ,
...

...
(0, 0, 0, 0, 0, 1) , if X0=Grey and , 5

6 ≤ X1 ≤ 1.

(A27)

The detailed numerical experiments results of AFCP with the adaptive equalized coverage (see
Equation (3)) are presented and compared with other benchmark methods.

Table A1: Average coverage and average size of prediction sets for all test samples constructed by
different methods as a function of the training and calibration size. All methods obtain coverage
beyond 0.9, while our AFCP and AFCP1 methods, along with the Marginal method, produce the
smallest, thus, the most informative, prediction sets. Red numbers indicate the small size of prediction
sets. See corresponding plots in Figure 3.

AFCP AFCP1 Marginal Partial Exhaustive

Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

200 0.917
(0.003)

3.016
(0.058)

0.937
(0.003)

3.206
(0.059)

0.902
(0.003)

2.861
(0.056)

0.967
(0.002)

3.624
(0.059)

0.999
(0.000)

5.965
(0.007)

500 0.939
(0.002)

1.860
(0.012)

0.939
(0.002)

1.861
(0.012)

0.900
(0.002)

1.685
(0.011)

0.963
(0.001)

2.094
(0.016)

0.950
(0.002)

3.219
(0.034)

1000 0.945
(0.001)

1.670
(0.009)

0.945
(0.001)

1.670
(0.009)

0.900
(0.002)

1.495
(0.009)

0.959
(0.001)

1.794
(0.010)

0.933
(0.002)

1.900
(0.009)

2000 0.946
(0.001)

1.548
(0.007)

0.946
(0.001)

1.548
(0.007)

0.901
(0.002)

1.391
(0.007)

0.956
(0.001)

1.618
(0.008)

0.923
(0.001)

1.719
(0.008)
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Coverage Size
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AFCP

AFCP1
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Partial
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Attribute: Color

Blue

Grey

Figure A1: Coverage and size of prediction sets constructed with different methods for groups formed
by Color. For the Blue group, the Marginal method (dashed orange lines) fails to detect and correct
for its undercoverage, and the Exhaustive method produces prediction sets that are too conservative
to be helpful. In contrast, our AFCP and AFCP1 methods correct the undercoverage and maintain
small prediction sets. See Table A2 for numerical details and standard errors.
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Figure A2: Coverage and size of prediction sets constructed with different methods for groups formed
by Age group. By design, all groups have similar performance, and none of them are subject to
unfairness/undercoverage. See Table A3 for numerical details and standard errors.
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Figure A3: Coverage and size of prediction sets constructed with different methods for groups
formed by Region. By design, all groups have similar performance, and none of them are subject to
unfairness/undercoverage. See Table A4 for numerical details and standard errors.
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Table A2: Coverage and size of prediction sets constructed with different methods for groups formed
by Color. Green numbers indicate low coverage and red numbers indicate the small size of prediction
sets. See corresponding plots in Figure A1.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Grey
Grey 200 0.927

(0.003)
2.936

(0.061)
0.935

(0.003)
3.015

(0.065)
0.921

(0.003)
2.862

(0.055)
0.967

(0.002)
3.457

(0.062)
0.999

(0.000)
5.961

(0.007)

Grey 500 0.941
(0.002)

1.682
(0.011)

0.941
(0.002)

1.682
(0.011)

0.942
(0.002)

1.683
(0.011)

0.969
(0.001)

1.941
(0.015)

0.945
(0.002)

2.917
(0.037)

Grey 1000 0.949
(0.001)

1.494
(0.009)

0.949
(0.001)

1.494
(0.009)

0.947
(0.002)

1.490
(0.009)

0.964
(0.001)

1.632
(0.010)

0.925
(0.002)

1.436
(0.008)

Grey 2000 0.951
(0.001)

1.384
(0.007)

0.951
(0.001)

1.384
(0.007)

0.951
(0.001)

1.381
(0.007)

0.962
(0.001)

1.462
(0.008)

0.914
(0.002)

1.254
(0.005)

Blue
Blue 200 0.832

(0.012)
3.723

(0.111)
0.950

(0.007)
4.908

(0.108)
0.729

(0.012)
2.847

(0.059)
0.963

(0.006)
5.099

(0.103)
1.000

(0.000)
6.000

(0.000)

Blue 500 0.916
(0.006)

3.500
(0.040)

0.917
(0.006)

3.504
(0.040)

0.515
(0.008)

1.707
(0.014)

0.917
(0.006)

3.512
(0.041)

1.000
(0.000)

6.000
(0.000)

Blue 1000 0.910
(0.005)

3.228
(0.024)

0.910
(0.005)

3.228
(0.024)

0.484
(0.007)

1.542
(0.011)

0.906
(0.005)

3.225
(0.024)

1.000
(0.000)

6.000
(0.000)

Blue 2000 0.906
(0.005)

3.008
(0.017)

0.906
(0.005)

3.008
(0.017)

0.461
(0.008)

1.480
(0.010)

0.905
(0.005)

3.013
(0.017)

0.998
(0.001)

5.878
(0.017)

Table A3: Coverage and size of prediction sets constructed with different methods for groups formed
by Age Group. By design, all groups have similar performance, and none of them are subject to
unfairness/undercoverage. See corresponding plots in Figure A2.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

<18
<18 200 0.910

(0.006)
3.098

(0.075)
0.931

(0.005)
3.298

(0.079)
0.891

(0.006)
2.887

(0.056)
0.964

(0.004)
3.674

(0.077)
0.999

(0.001)
5.967

(0.015)

<18 500 0.933
(0.003)

1.884
(0.015)

0.933
(0.003)

1.885
(0.015)

0.897
(0.003)

1.710
(0.013)

0.961
(0.003)

2.136
(0.029)

0.953
(0.004)

3.283
(0.074)

<18 1000 0.944
(0.003)

1.722
(0.010)

0.944
(0.003)

1.722
(0.010)

0.897
(0.003)

1.535
(0.010)

0.955
(0.002)

1.824
(0.014)

0.932
(0.004)

1.943
(0.017)

<18 2000 0.946
(0.002)

1.586
(0.011)

0.946
(0.002)

1.586
(0.011)

0.905
(0.003)

1.434
(0.009)

0.957
(0.002)

1.653
(0.012)

0.925
(0.003)

1.747
(0.018)

18-24
18-24 200 0.925

(0.005)
3.010

(0.063)
0.941

(0.004)
3.185

(0.063)
0.911

(0.005)
2.870

(0.058)
0.970

(0.003)
3.613

(0.068)
0.999

(0.001)
5.958

(0.016)

18-24 500 0.931
(0.003)

1.859
(0.014)

0.931
(0.003)

1.859
(0.014)

0.899
(0.003)

1.686
(0.012)

0.961
(0.002)

2.091
(0.024)

0.947
(0.004)

3.147
(0.084)

18-24 1000 0.942
(0.003)

1.673
(0.011)

0.942
(0.003)

1.673
(0.011)

0.899
(0.003)

1.504
(0.010)

0.961
(0.002)

1.815
(0.014)

0.939
(0.003)

1.925
(0.017)

18-24 2000 0.945
(0.002)

1.573
(0.009)

0.945
(0.002)

1.573
(0.009)

0.900
(0.003)

1.404
(0.008)

0.957
(0.002)

1.645
(0.013)

0.924
(0.003)

1.754
(0.018)

25-40
25-40 200 0.932

(0.004)
2.995

(0.057)
0.948

(0.004)
3.159

(0.059)
0.922

(0.004)
2.868

(0.058)
0.973

(0.003)
3.577

(0.064)
0.999

(0.001)
5.965

(0.018)

25-40 500 0.934
(0.003)

1.845
(0.014)

0.934
(0.003)

1.845
(0.014)

0.895
(0.003)

1.672
(0.012)

0.964
(0.003)

2.116
(0.032)

0.952
(0.004)

3.336
(0.090)

25-40 1000 0.941
(0.003)

1.646
(0.011)

0.941
(0.003)

1.646
(0.011)

0.896
(0.003)

1.479
(0.010)

0.956
(0.003)

1.782
(0.018)

0.934
(0.003)

1.895
(0.020)

25-40 2000 0.945
(0.002)

1.530
(0.009)

0.945
(0.002)

1.530
(0.009)

0.898
(0.003)

1.372
(0.008)

0.953
(0.002)

1.600
(0.012)

0.921
(0.003)

1.710
(0.016)

41-65
41-65 200 0.920

(0.005)
2.969

(0.057)
0.940

(0.004)
3.162

(0.060)
0.904

(0.005)
2.851

(0.056)
0.968

(0.003)
3.580

(0.061)
0.999

(0.000)
5.955

(0.018)

41-65 500 0.952
(0.003)

1.847
(0.013)

0.952
(0.003)

1.847
(0.013)

0.908
(0.004)

1.668
(0.011)

0.966
(0.002)

2.047
(0.026)

0.949
(0.004)

3.138
(0.086)

41-65 1000 0.949
(0.002)

1.654
(0.012)

0.949
(0.002)

1.654
(0.012)

0.906
(0.003)

1.479
(0.010)

0.961
(0.002)

1.772
(0.017)

0.930
(0.004)

1.858
(0.023)

41-65 2000 0.948
(0.002)

1.519
(0.009)

0.948
(0.002)

1.519
(0.009)

0.901
(0.003)

1.369
(0.008)

0.956
(0.002)

1.590
(0.010)

0.921
(0.003)

1.684
(0.015)

>65
>65 200 0.900

(0.007)
3.008

(0.059)
0.923

(0.006)
3.228

(0.064)
0.880

(0.007)
2.826

(0.054)
0.959

(0.005)
3.675

(0.072)
0.999

(0.000)
5.979

(0.010)

>65 500 0.944
(0.003)

1.867
(0.014)

0.944
(0.003)

1.867
(0.014)

0.904
(0.003)

1.689
(0.012)

0.965
(0.002)

2.082
(0.020)

0.952
(0.004)

3.191
(0.084)

>65 1000 0.946
(0.002)

1.653
(0.011)

0.946
(0.002)

1.653
(0.011)

0.901
(0.003)

1.479
(0.010)

0.960
(0.002)

1.774
(0.014)

0.930
(0.004)

1.880
(0.020)

>65 2000 0.949
(0.003)

1.529
(0.010)

0.949
(0.003)

1.529
(0.010)

0.902
(0.003)

1.377
(0.009)

0.956
(0.002)

1.600
(0.012)

0.921
(0.003)

1.699
(0.016)
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Table A4: Coverage and size of prediction sets constructed with different methods for groups
formed by Region. By design, all groups have similar performance, and none of them are subject to
unfairness/undercoverage. See corresponding plots in Figure A3.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

West
West 200 0.914

(0.005)
3.030

(0.059)
0.933

(0.004)
3.218

(0.060)
0.897

(0.005)
2.878

(0.057)
0.966

(0.003)
3.671

(0.068)
0.998

(0.001)
5.948

(0.017)

West 500 0.916
(0.004)

1.869
(0.015)

0.916
(0.004)

1.869
(0.015)

0.877
(0.004)

1.691
(0.012)

0.955
(0.003)

2.176
(0.022)

0.952
(0.003)

3.315
(0.080)

West 1000 0.929
(0.003)

1.699
(0.011)

0.929
(0.003)

1.699
(0.011)

0.879
(0.004)

1.516
(0.010)

0.951
(0.003)

1.854
(0.015)

0.931
(0.004)

2.012
(0.021)

West 2000 0.937
(0.002)

1.602
(0.009)

0.937
(0.002)

1.602
(0.009)

0.891
(0.003)

1.442
(0.009)

0.950
(0.002)

1.693
(0.011)

0.921
(0.003)

1.811
(0.015)

East
East 200 0.926

(0.004)
3.012

(0.059)
0.944

(0.003)
3.194

(0.059)
0.913

(0.004)
2.874

(0.057)
0.968

(0.002)
3.586

(0.062)
0.999

(0.001)
5.958

(0.016)

East 500 0.947
(0.003)

1.862
(0.013)

0.947
(0.003)

1.863
(0.013)

0.908
(0.003)

1.686
(0.012)

0.964
(0.002)

2.065
(0.020)

0.947
(0.003)

3.075
(0.071)

East 1000 0.950
(0.002)

1.677
(0.010)

0.950
(0.002)

1.677
(0.010)

0.906
(0.003)

1.508
(0.010)

0.960
(0.002)

1.778
(0.014)

0.929
(0.003)

1.856
(0.019)

East 2000 0.952
(0.002)

1.564
(0.009)

0.952
(0.002)

1.564
(0.009)

0.908
(0.002)

1.406
(0.008)

0.959
(0.002)

1.621
(0.010)

0.918
(0.003)

1.694
(0.015)

North
North 200 0.925

(0.004)
3.022

(0.059)
0.943

(0.003)
3.204

(0.060)
0.911

(0.004)
2.855

(0.055)
0.972

(0.002)
3.630

(0.058)
0.999

(0.001)
5.979

(0.010)

North 500 0.960
(0.002)

1.859
(0.012)

0.960
(0.002)

1.859
(0.012)

0.923
(0.003)

1.687
(0.010)

0.975
(0.002)

2.040
(0.016)

0.951
(0.003)

3.054
(0.083)

North 1000 0.957
(0.002)

1.665
(0.011)

0.957
(0.002)

1.665
(0.011)

0.917
(0.002)

1.489
(0.010)

0.966
(0.002)

1.760
(0.012)

0.939
(0.003)

1.841
(0.018)

North 2000 0.958
(0.002)

1.523
(0.009)

0.958
(0.002)

1.523
(0.009)

0.914
(0.003)

1.373
(0.008)

0.962
(0.002)

1.572
(0.010)

0.929
(0.003)

1.664
(0.015)

South
South 200 0.905

(0.005)
2.998

(0.060)
0.928

(0.004)
3.209

(0.064)
0.888

(0.005)
2.836

(0.054)
0.961

(0.003)
3.604

(0.065)
1.000

(0.000)
5.976

(0.011)

South 500 0.932
(0.003)

1.851
(0.012)

0.932
(0.003)

1.852
(0.012)

0.893
(0.003)

1.676
(0.012)

0.960
(0.002)

2.097
(0.022)

0.951
(0.003)

3.440
(0.090)

South 1000 0.943
(0.003)

1.639
(0.010)

0.943
(0.003)

1.639
(0.010)

0.897
(0.003)

1.468
(0.010)

0.957
(0.002)

1.784
(0.015)

0.934
(0.003)

1.898
(0.016)

South 2000 0.939
(0.003)

1.501
(0.008)

0.939
(0.003)

1.501
(0.008)

0.892
(0.003)

1.345
(0.007)

0.952
(0.002)

1.584
(0.011)

0.922
(0.003)

1.704
(0.015)
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Next, we provide numerical experimental results comparing AFCP with the label-conditional
adaptive equalized coverage (see Equation (A14)) with other benchmark methods.

Coverage for Blue Average coverage Average size

200 500 1000 2000 200 500 1000 2000 200 500 1000 2000

2

3

4
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6

0.900

0.925

0.950

0.975

1.000

0.6

0.8

1.0

Sample size

Method

AFCP

AFCP1

Marginal

Partial

Exhaustive

Figure A4: Performance on prediction sets constructed by different methods on synthetic medical
diagnosis data as a function of the total number of training and calibration points. Our method
(AFCP) leads to more informative sets with lower average width and higher conditional coverage on
the Blue group. The error bars indicate 2 standard errors.

Table A5: Average coverage and average size of prediction sets for all test samples constructed by
different methods as a function of the training and calibration size. All methods obtain coverage
beyond 0.9, while our AFCP and AFCP1 methods, along with the Marginal method, produce the
smallest, thus, the most informative, prediction sets. Red numbers indicate the small size of prediction
sets. See corresponding plots in Figure A4.

AFCP AFCP1 Marginal Partial Exhaustive

Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

200 0.931
(0.003)

3.153
(0.046)

0.999
(0.000)

5.972
(0.008)

0.930
(0.003)

3.151
(0.047)

1.000
(0.000)

6.000
(0.000)

1.000
(0.000)

6.000
(0.000)

500 0.923
(0.002)

1.986
(0.025)

0.965
(0.001)

3.552
(0.051)

0.912
(0.002)

1.846
(0.016)

0.996
(0.000)

5.307
(0.015)

1.000
(0.000)

6.000
(0.000)

1000 0.946
(0.002)

1.843
(0.012)

0.956
(0.001)

1.938
(0.012)

0.907
(0.002)

1.557
(0.010)

0.985
(0.001)

2.669
(0.017)

1.000
(0.000)

5.982
(0.002)

2000 0.947
(0.001)

1.578
(0.008)

0.949
(0.001)

1.585
(0.008)

0.903
(0.002)

1.415
(0.008)

0.973
(0.001)

1.900
(0.011)

0.983
(0.001)

5.104
(0.011)

Coverage Size

200 500 1000 2000 200 500 1000 2000
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Blue

Grey

Figure A5: Coverage and size of prediction sets constructed with different methods for groups formed
by Color. For the Blue group, the Marginal method (dashed orange lines) fails to detect and correct
for its undercoverage, and the Exhaustive method produces prediction sets that are too conservative
to be helpful. In contrast, our AFCP and AFCP1 methods correct the undercoverage and maintain
small prediction sets. See Table A6 for numerical details and standard errors.
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Coverage Size
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Figure A6: Coverage and size of prediction sets constructed with different methods for groups formed
by Age group. By design, all groups have similar performance, and none of them are subject to
unfairness/undercoverage. See Table A7 for numerical details and standard errors.
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Figure A7: Coverage and size of prediction sets constructed with different methods for groups
formed by Region. By design, all groups have similar performance, and none of them are subject to
unfairness/undercoverage. See Table A8 for numerical details and standard errors.

Table A6: Coverage and size of prediction sets constructed with different methods for groups formed
by Color. Green numbers indicate low coverage and red numbers indicate the small size of prediction
sets. See corresponding plots in Figure A5.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Grey
Grey 200 0.948

(0.003)
3.153

(0.046)
0.999

(0.000)
5.971

(0.008)
0.946

(0.003)
3.151

(0.047)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

Grey 500 0.952
(0.002)

1.896
(0.022)

0.963
(0.002)

3.299
(0.057)

0.952
(0.002)

1.843
(0.016)

0.996
(0.000)

5.232
(0.016)

1.000
(0.000)

6.000
(0.000)

Grey 1000 0.955
(0.001)

1.561
(0.011)

0.956
(0.001)

1.588
(0.013)

0.952
(0.002)

1.551
(0.011)

0.986
(0.001)

2.393
(0.019)

0.999
(0.000)

5.980
(0.002)

Grey 2000 0.952
(0.001)

1.406
(0.008)

0.952
(0.001)

1.407
(0.007)

0.952
(0.001)

1.405
(0.008)

0.978
(0.001)

1.755
(0.011)

0.981
(0.001)

5.004
(0.012)

Blue
Blue 200 0.786

(0.009)
3.149

(0.047)
0.999

(0.000)
5.983

(0.005)
0.783

(0.009)
3.145

(0.049)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

Blue 500 0.655
(0.012)

2.813
(0.083)

0.979
(0.003)

5.869
(0.016)

0.553
(0.008)

1.869
(0.018)

0.999
(0.001)

5.989
(0.005)

1.000
(0.000)

6.000
(0.000)

Blue 1000 0.872
(0.008)

4.339
(0.077)

0.964
(0.004)

5.038
(0.058)

0.506
(0.007)

1.603
(0.013)

0.974
(0.003)

5.117
(0.054)

1.000
(0.000)

6.000
(0.000)

Blue 2000 0.904
(0.006)

3.114
(0.024)

0.922
(0.005)

3.180
(0.023)

0.469
(0.008)

1.501
(0.012)

0.929
(0.005)

3.206
(0.022)

1.000
(0.000)

6.000
(0.000)
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Table A7: Coverage and size of prediction sets constructed with different methods for groups formed
by Age Group. By design, all groups have similar performance, and none of them are subject to
unfairness/undercoverage. See corresponding plots in Figure A6.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

<18
<18 200 0.918

(0.005)
3.172

(0.046)
0.999

(0.000)
5.972

(0.008)
0.917

(0.005)
3.168

(0.048)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

<18 500 0.923
(0.003)

2.017
(0.028)

0.963
(0.002)

3.483
(0.059)

0.912
(0.003)

1.874
(0.019)

0.996
(0.001)

5.289
(0.034)

1.000
(0.000)

5.999
(0.001)

<18 1000 0.946
(0.003)

1.893
(0.016)

0.956
(0.003)

1.999
(0.019)

0.906
(0.003)

1.604
(0.012)

0.984
(0.002)

2.696
(0.030)

1.000
(0.000)

5.980
(0.006)

<18 2000 0.950
(0.002)

1.616
(0.012)

0.952
(0.002)

1.624
(0.012)

0.906
(0.003)

1.458
(0.009)

0.974
(0.002)

1.940
(0.016)

0.983
(0.002)

5.110
(0.031)

18-24
18-24 200 0.938

(0.004)
3.178

(0.050)
1.000

(0.000)
5.971

(0.008)
0.937

(0.004)
3.180

(0.050)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

18-24 500 0.919
(0.003)

1.994
(0.029)

0.962
(0.002)

3.555
(0.059)

0.912
(0.003)

1.846
(0.017)

0.997
(0.001)

5.303
(0.036)

1.000
(0.000)

6.000
(0.000)

18-24 1000 0.945
(0.003)

1.843
(0.015)

0.955
(0.002)

1.934
(0.016)

0.907
(0.003)

1.561
(0.012)

0.985
(0.001)

2.685
(0.031)

0.999
(0.000)

5.975
(0.006)

18-24 2000 0.944
(0.003)

1.605
(0.010)

0.945
(0.002)

1.611
(0.010)

0.901
(0.003)

1.429
(0.009)

0.973
(0.002)

1.930
(0.017)

0.984
(0.001)

5.104
(0.035)

25-40
25-40 200 0.948

(0.003)
3.162

(0.050)
0.999

(0.000)
5.971

(0.008)
0.946

(0.003)
3.164

(0.051)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

25-40 500 0.920
(0.003)

1.957
(0.026)

0.962
(0.002)

3.554
(0.059)

0.909
(0.003)

1.827
(0.017)

0.997
(0.001)

5.299
(0.037)

1.000
(0.000)

6.000
(0.000)

25-40 1000 0.942
(0.003)

1.814
(0.015)

0.953
(0.003)

1.908
(0.017)

0.902
(0.003)

1.537
(0.012)

0.981
(0.002)

2.628
(0.030)

1.000
(0.000)

5.985
(0.005)

25-40 2000 0.945
(0.002)

1.558
(0.010)

0.947
(0.002)

1.566
(0.009)

0.903
(0.002)

1.398
(0.009)

0.972
(0.002)

1.891
(0.017)

0.985
(0.001)

5.099
(0.027)

41-65
41-65 200 0.942

(0.003)
3.160

(0.048)
1.000

(0.000)
5.974

(0.007)
0.937

(0.003)
3.148

(0.049)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

41-65 500 0.930
(0.003)

1.969
(0.026)

0.969
(0.002)

3.575
(0.059)

0.916
(0.003)

1.836
(0.016)

0.996
(0.001)

5.328
(0.038)

1.000
(0.000)

6.000
(0.000)

41-65 1000 0.949
(0.003)

1.826
(0.016)

0.959
(0.002)

1.917
(0.016)

0.912
(0.003)

1.537
(0.011)

0.988
(0.001)

2.676
(0.031)

1.000
(0.000)

5.981
(0.005)

41-65 2000 0.947
(0.002)

1.552
(0.009)

0.949
(0.002)

1.558
(0.009)

0.902
(0.003)

1.391
(0.009)

0.972
(0.002)

1.873
(0.015)

0.983
(0.002)

5.126
(0.032)

>65
>65 200 0.910

(0.005)
3.092

(0.043)
0.999

(0.001)
5.972

(0.008)
0.911

(0.005)
3.093

(0.043)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

>65 500 0.924
(0.003)

1.992
(0.028)

0.967
(0.002)

3.590
(0.059)

0.912
(0.003)

1.846
(0.017)

0.997
(0.001)

5.316
(0.034)

1.000
(0.000)

6.000
(0.000)

>65 1000 0.948
(0.003)

1.839
(0.016)

0.960
(0.002)

1.930
(0.016)

0.908
(0.003)

1.544
(0.011)

0.986
(0.001)

2.662
(0.028)

1.000
(0.000)

5.988
(0.004)

>65 2000 0.950
(0.002)

1.562
(0.011)

0.951
(0.002)

1.568
(0.011)

0.904
(0.003)

1.400
(0.010)

0.973
(0.002)

1.868
(0.016)

0.981
(0.002)

5.082
(0.032)
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Table A8: Coverage and size of prediction sets constructed with different methods for groups
formed by Region. By design, all groups have similar performance, and none of them are subject to
unfairness/undercoverage. See corresponding plots in Figure A7.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

West
West 200 0.927

(0.004)
3.165

(0.047)
0.999

(0.000)
5.979

(0.009)
0.923

(0.004)
3.164

(0.048)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

West 500 0.910
(0.003)

2.018
(0.028)

0.955
(0.003)

3.594
(0.055)

0.894
(0.003)

1.872
(0.016)

0.995
(0.001)

5.303
(0.023)

1.000
(0.000)

5.999
(0.001)

West 1000 0.930
(0.003)

1.869
(0.015)

0.940
(0.003)

1.972
(0.018)

0.887
(0.003)

1.575
(0.012)

0.981
(0.001)

2.718
(0.024)

0.999
(0.000)

5.976
(0.005)

West 2000 0.936
(0.002)

1.632
(0.009)

0.938
(0.002)

1.640
(0.009)

0.894
(0.003)

1.465
(0.009)

0.968
(0.002)

1.978
(0.013)

0.983
(0.001)

5.102
(0.025)

East
East 200 0.942

(0.003)
3.174

(0.048)
0.999

(0.000)
5.952

(0.014)
0.940

(0.003)
3.172

(0.049)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

East 500 0.927
(0.003)

1.980
(0.025)

0.966
(0.002)

3.520
(0.054)

0.918
(0.003)

1.848
(0.016)

0.997
(0.000)

5.283
(0.028)

1.000
(0.000)

6.000
(0.000)

East 1000 0.953
(0.002)

1.846
(0.016)

0.963
(0.002)

1.934
(0.015)

0.914
(0.003)

1.569
(0.012)

0.985
(0.001)

2.643
(0.022)

0.999
(0.000)

5.980
(0.005)

East 2000 0.951
(0.002)

1.588
(0.010)

0.952
(0.002)

1.595
(0.010)

0.911
(0.002)

1.430
(0.009)

0.975
(0.002)

1.909
(0.015)

0.983
(0.001)

5.081
(0.031)

North
North 200 0.937

(0.003)
3.146

(0.046)
1.000

(0.000)
5.979

(0.010)
0.936

(0.003)
3.144

(0.046)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

North 500 0.937
(0.003)

1.972
(0.026)

0.974
(0.002)

3.519
(0.057)

0.930
(0.003)

1.840
(0.016)

0.997
(0.001)

5.292
(0.027)

1.000
(0.000)

6.000
(0.000)

North 1000 0.957
(0.002)

1.844
(0.015)

0.968
(0.002)

1.937
(0.015)

0.920
(0.002)

1.548
(0.011)

0.988
(0.001)

2.686
(0.023)

1.000
(0.000)

5.986
(0.004)

North 2000 0.959
(0.002)

1.554
(0.010)

0.961
(0.002)

1.560
(0.010)

0.915
(0.003)

1.397
(0.009)

0.978
(0.001)

1.854
(0.014)

0.983
(0.001)

5.107
(0.031)

South
South 200 0.919

(0.004)
3.125

(0.047)
1.000

(0.000)
5.982

(0.009)
0.919

(0.004)
3.120

(0.047)
1.000

(0.000)
6.000

(0.000)
1.000

(0.000)
6.000

(0.000)

South 500 0.918
(0.003)

1.974
(0.030)

0.963
(0.002)

3.580
(0.059)

0.907
(0.003)

1.826
(0.018)

0.996
(0.001)

5.351
(0.024)

1.000
(0.000)

6.000
(0.000)

South 1000 0.944
(0.003)

1.815
(0.014)

0.955
(0.002)

1.911
(0.016)

0.905
(0.003)

1.533
(0.011)

0.984
(0.001)

2.634
(0.022)

1.000
(0.000)

5.985
(0.004)

South 2000 0.942
(0.003)

1.537
(0.009)

0.944
(0.003)

1.544
(0.009)

0.894
(0.003)

1.366
(0.008)

0.970
(0.002)

1.860
(0.015)

0.984
(0.001)

5.124
(0.031)
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A7.1.2 Nursery Data

Table A9: Average coverage and average size of prediction sets for all test samples constructed by
different methods as a function of the training and calibration size. All methods obtain coverage
beyond 0.9, while our AFCP and AFCP1 methods, along with the Marginal method, produce the
smallest, thus, the most informative, prediction sets. Red numbers indicate the small size of prediction
sets. See corresponding plots in Figure 5.

AFCP AFCP1 Marginal Partial Exhaustive

Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

200 0.923
(0.004)

1.847
(0.029)

0.934
(0.003)

1.918
(0.030)

0.896
(0.003)

1.726
(0.027)

0.977
(0.002)

2.559
(0.039)

0.999
(0.001)

3.980
(0.014)

500 0.930
(0.002)

1.623
(0.014)

0.931
(0.002)

1.625
(0.014)

0.900
(0.002)

1.504
(0.015)

0.961
(0.002)

1.909
(0.022)

1.000
(0.000)

4.000
(0.000)

1000 0.928
(0.002)

1.486
(0.009)

0.928
(0.002)

1.486
(0.009)

0.900
(0.002)

1.375
(0.009)

0.952
(0.002)

1.655
(0.014)

1.000
(0.000)

3.997
(0.001)

2000 0.928
(0.001)

1.359
(0.006)

0.928
(0.001)

1.359
(0.006)

0.902
(0.002)

1.259
(0.005)

0.945
(0.001)

1.450
(0.007)

0.992
(0.000)

3.738
(0.006)

5000 0.916
(0.001)

1.156
(0.005)

0.916
(0.001)

1.156
(0.005)

0.901
(0.002)

1.085
(0.003)

0.928
(0.002)

1.180
(0.005)

0.939
(0.001)

1.342
(0.007)

Coverage Size

200 500 1000 2000 5000 200 500 1000 2000 5000

1

2

3

4

0.4

0.6

0.8

1.0

Sample size

Attribute: Parents' Occupation

Occupation 1

Occupation 2

Occupation 3

Method

AFCP

AFCP1

Marginal

Partial

Exhaustive

Figure A8: Coverage and size of prediction sets constructed with different methods for groups formed
by Parents’ Occupation. For the Occupation 1 group, the Marginal method (dashed orange lines)
fails to detect and correct for its undercoverage, and the Exhaustive method produces prediction
sets that are too conservative to be helpful. In contrast, our AFCP and AFCP1 methods correct the
undercoverage and maintain small prediction sets. See Table A10 for numerical details and standard
errors.

Coverage Size
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Figure A9: Coverage and size of prediction sets constructed with different methods for groups
formed by Children. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See Table A11 for numerical details and standard errors.
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Coverage Size

200 500 1000 2000 5000 200 500 1000 2000 5000
1
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Convenient
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Method

AFCP

AFCP1

Marginal

Partial
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Figure A10: Coverage and size of prediction sets constructed with different methods for groups
formed by Finance. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See Table A12 for numerical details and standard errors.
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Attribute: Social

Nonprob

Problematic
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Figure A11: Coverage and size of prediction sets constructed with different methods for groups
formed by Social. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See Table A13 for numerical details and standard errors.

Coverage Size

200 500 1000 2000 5000 200 500 1000 2000 5000

1

2

3

4

0.85

0.90

0.95

1.00

Sample size

Attribute: Health

Not−Recommended

Priority

Recommended

Method

AFCP

AFCP1

Marginal

Partial

Exhaustive

Figure A12: Coverage and size of prediction sets constructed with different methods for groups
formed by Health. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See Table A14 for numerical details and standard errors.
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Table A10: Coverage and size of prediction sets constructed with different methods for groups formed
by Parents’ Occupation. Green numbers indicate low coverage and red numbers indicate the small
size of prediction sets. See corresponding plots in Figure A8.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Occupation 0
Occupation 0 200 0.940

(0.003)
1.692

(0.028)
0.945

(0.003)
1.731

(0.031)
0.936

(0.004)
1.665

(0.029)
0.983

(0.002)
2.420

(0.044)
1.000

(0.000)
3.980

(0.014)

Occupation 0 500 0.933
(0.002)

1.433
(0.012)

0.933
(0.002)

1.433
(0.012)

0.931
(0.003)

1.424
(0.013)

0.961
(0.002)

1.703
(0.021)

1.000
(0.000)

4.000
(0.000)

Occupation 0 1000 0.927
(0.002)

1.315
(0.009)

0.927
(0.002)

1.315
(0.009)

0.925
(0.002)

1.314
(0.009)

0.951
(0.002)

1.475
(0.015)

1.000
(0.000)

3.996
(0.001)

Occupation 0 2000 0.926
(0.002)

1.197
(0.007)

0.926
(0.002)

1.197
(0.007)

0.926
(0.002)

1.196
(0.006)

0.944
(0.002)

1.286
(0.008)

0.992
(0.001)

3.720
(0.010)

Occupation 0 5000 0.912
(0.002)

1.010
(0.004)

0.912
(0.002)

1.010
(0.004)

0.912
(0.002)

1.007
(0.003)

0.925
(0.002)

1.028
(0.004)

0.936
(0.002)

1.167
(0.009)

Occupation 1
Occupation 1 200 0.875

(0.022)
3.533

(0.082)
0.984

(0.006)
3.952

(0.017)
0.438

(0.013)
1.862

(0.031)
0.988

(0.006)
3.965

(0.016)
0.993

(0.005)
3.980

(0.014)

Occupation 1 500 0.937
(0.009)

3.699
(0.041)

0.943
(0.008)

3.727
(0.034)

0.411
(0.012)

1.657
(0.024)

0.950
(0.006)

3.742
(0.027)

1.000
(0.000)

4.000
(0.000)

Occupation 1 1000 0.906
(0.012)

3.505
(0.042)

0.906
(0.012)

3.505
(0.042)

0.399
(0.010)

1.561
(0.020)

0.928
(0.007)

3.585
(0.026)

1.000
(0.000)

4.000
(0.000)

Occupation 1 2000 0.893
(0.010)

3.356
(0.041)

0.893
(0.010)

3.356
(0.041)

0.429
(0.011)

1.579
(0.020)

0.906
(0.007)

3.416
(0.027)

1.000
(0.000)

4.000
(0.000)

Occupation 1 5000 0.891
(0.010)

3.263
(0.038)

0.891
(0.010)

3.263
(0.038)

0.641
(0.012)

2.037
(0.021)

0.904
(0.006)

3.341
(0.025)

1.000
(0.000)

4.000
(0.000)

Occupation 2
Occupation 2 200 0.913

(0.004)
1.810

(0.033)
0.919

(0.004)
1.868

(0.035)
0.911

(0.004)
1.772

(0.029)
0.970

(0.003)
2.534

(0.041)
0.999

(0.001)
3.980

(0.014)

Occupation 2 500 0.927
(0.003)

1.577
(0.018)

0.927
(0.003)

1.577
(0.018)

0.926
(0.003)

1.566
(0.018)

0.961
(0.002)

1.906
(0.026)

1.000
(0.000)

4.000
(0.000)

Occupation 2 1000 0.932
(0.002)

1.428
(0.011)

0.932
(0.002)

1.428
(0.011)

0.931
(0.002)

1.415
(0.011)

0.956
(0.002)

1.614
(0.016)

1.000
(0.000)

3.998
(0.001)

Occupation 2 2000 0.933
(0.002)

1.289
(0.007)

0.933
(0.002)

1.289
(0.007)

0.933
(0.002)

1.285
(0.007)

0.951
(0.002)

1.387
(0.009)

0.991
(0.001)

3.726
(0.010)

Occupation 2 5000 0.922
(0.002)

1.056
(0.005)

0.922
(0.002)

1.056
(0.005)

0.921
(0.002)

1.053
(0.004)

0.934
(0.002)

1.082
(0.005)

0.935
(0.002)

1.210
(0.009)

Table A11: Coverage and size of prediction sets constructed with different methods for groups
formed by Children. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See corresponding plots in Figure A9.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

1
1 200 0.904

(0.004)
1.966

(0.033)
0.914

(0.004)
2.034

(0.034)
0.884

(0.005)
1.853

(0.032)
0.968

(0.003)
2.673

(0.048)
0.999

(0.001)
3.980

(0.014)

1 500 0.911
(0.004)

1.728
(0.019)

0.911
(0.004)

1.730
(0.019)

0.880
(0.005)

1.600
(0.019)

0.949
(0.003)

2.047
(0.026)

1.000
(0.000)

4.000
(0.000)

1 1000 0.911
(0.003)

1.581
(0.014)

0.911
(0.003)

1.581
(0.014)

0.884
(0.003)

1.475
(0.013)

0.940
(0.003)

1.784
(0.018)

1.000
(0.000)

3.998
(0.001)

1 2000 0.910
(0.002)

1.428
(0.009)

0.910
(0.002)

1.428
(0.009)

0.884
(0.003)

1.326
(0.009)

0.935
(0.003)

1.554
(0.012)

0.993
(0.001)

3.758
(0.014)

1 5000 0.901
(0.003)

1.198
(0.009)

0.901
(0.003)

1.198
(0.009)

0.884
(0.003)

1.122
(0.006)

0.919
(0.003)

1.238
(0.009)

0.935
(0.003)

1.463
(0.016)

2
2 200 0.928

(0.004)
1.917

(0.032)
0.939

(0.003)
1.983

(0.033)
0.900

(0.004)
1.794

(0.030)
0.978

(0.002)
2.629

(0.051)
0.999

(0.001)
3.980

(0.014)

2 500 0.933
(0.003)

1.679
(0.017)

0.934
(0.003)

1.680
(0.017)

0.905
(0.003)

1.556
(0.017)

0.961
(0.002)

1.957
(0.024)

1.000
(0.000)

4.000
(0.000)

2 1000 0.929
(0.003)

1.535
(0.012)

0.929
(0.003)

1.535
(0.012)

0.905
(0.003)

1.427
(0.011)

0.956
(0.002)

1.725
(0.018)

1.000
(0.000)

3.997
(0.002)

2 2000 0.927
(0.003)

1.387
(0.008)

0.927
(0.003)

1.387
(0.008)

0.899
(0.003)

1.283
(0.007)

0.942
(0.002)

1.473
(0.010)

0.991
(0.001)

3.739
(0.013)

2 5000 0.911
(0.003)

1.175
(0.008)

0.911
(0.003)

1.175
(0.008)

0.898
(0.004)

1.105
(0.005)

0.925
(0.003)

1.198
(0.008)

0.941
(0.003)

1.370
(0.012)

3
3 200 0.938

(0.004)
1.806

(0.031)
0.950

(0.003)
1.882

(0.032)
0.908

(0.004)
1.670

(0.027)
0.984

(0.002)
2.544

(0.051)
1.000

(0.000)
3.980

(0.014)

3 500 0.945
(0.002)

1.579
(0.015)

0.945
(0.002)

1.581
(0.015)

0.916
(0.003)

1.460
(0.016)

0.970
(0.002)

1.834
(0.024)

1.000
(0.000)

4.000
(0.000)

3 1000 0.941
(0.002)

1.451
(0.011)

0.941
(0.002)

1.451
(0.011)

0.913
(0.003)

1.332
(0.011)

0.961
(0.002)

1.592
(0.015)

1.000
(0.000)

3.998
(0.001)

3 2000 0.942
(0.002)

1.324
(0.008)

0.942
(0.002)

1.324
(0.008)

0.918
(0.002)

1.230
(0.007)

0.956
(0.002)

1.401
(0.010)

0.991
(0.001)

3.713
(0.015)

3 5000 0.929
(0.003)

1.128
(0.008)

0.929
(0.003)

1.128
(0.008)

0.914
(0.003)

1.056
(0.005)

0.937
(0.002)

1.142
(0.008)

0.939
(0.002)

1.262
(0.012)

more
more 200 0.922

(0.004)
1.698

(0.026)
0.934

(0.004)
1.772

(0.029)
0.894

(0.004)
1.586

(0.025)
0.979

(0.002)
2.392

(0.051)
0.999

(0.000)
3.980

(0.014)

more 500 0.932
(0.003)

1.502
(0.015)

0.933
(0.003)

1.503
(0.015)

0.902
(0.003)

1.396
(0.014)

0.962
(0.003)

1.795
(0.028)

1.000
(0.000)

4.000
(0.000)

more 1000 0.931
(0.002)

1.376
(0.010)

0.931
(0.002)

1.376
(0.010)

0.897
(0.003)

1.266
(0.010)

0.952
(0.002)

1.519
(0.017)

1.000
(0.000)

3.996
(0.002)

more 2000 0.931
(0.003)

1.296
(0.008)

0.931
(0.003)

1.296
(0.008)

0.907
(0.003)

1.197
(0.007)

0.948
(0.002)

1.371
(0.009)

0.993
(0.001)

3.739
(0.015)

more 5000 0.921
(0.003)

1.121
(0.008)

0.921
(0.003)

1.121
(0.008)

0.909
(0.003)

1.055
(0.005)

0.931
(0.003)

1.139
(0.008)

0.940
(0.003)

1.274
(0.013)
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Table A12: Coverage and size of prediction sets constructed with different methods for groups
formed by Finance. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See corresponding plots in Figure A10.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Convenient
Convenient 200 0.921

(0.004)
1.873

(0.029)
0.933

(0.003)
1.946

(0.031)
0.894

(0.004)
1.755

(0.028)
0.976

(0.002)
2.596

(0.040)
0.999

(0.001)
3.980

(0.014)

Convenient 500 0.930
(0.002)

1.665
(0.015)

0.930
(0.002)

1.667
(0.015)

0.901
(0.003)

1.547
(0.015)

0.961
(0.002)

1.961
(0.022)

1.000
(0.000)

4.000
(0.000)

Convenient 1000 0.927
(0.002)

1.531
(0.010)

0.927
(0.002)

1.531
(0.010)

0.897
(0.002)

1.414
(0.009)

0.951
(0.002)

1.707
(0.015)

1.000
(0.000)

3.997
(0.001)

Convenient 2000 0.930
(0.002)

1.393
(0.008)

0.930
(0.002)

1.393
(0.008)

0.905
(0.002)

1.293
(0.007)

0.947
(0.002)

1.490
(0.009)

0.992
(0.001)

3.739
(0.008)

Convenient 5000 0.917
(0.002)

1.165
(0.006)

0.917
(0.002)

1.165
(0.006)

0.906
(0.002)

1.097
(0.004)

0.932
(0.002)

1.194
(0.006)

0.939
(0.002)

1.347
(0.010)

Inconvenient
Inconvenient 200 0.924

(0.004)
1.821

(0.028)
0.935

(0.003)
1.889

(0.029)
0.899

(0.004)
1.698

(0.027)
0.978

(0.002)
2.521

(0.040)
0.999

(0.001)
3.980

(0.014)

Inconvenient 500 0.931
(0.002)

1.582
(0.015)

0.931
(0.002)

1.583
(0.015)

0.901
(0.003)

1.462
(0.015)

0.961
(0.002)

1.857
(0.022)

1.000
(0.000)

4.000
(0.000)

Inconvenient 1000 0.929
(0.002)

1.440
(0.010)

0.929
(0.002)

1.440
(0.010)

0.902
(0.003)

1.336
(0.010)

0.953
(0.002)

1.601
(0.015)

1.000
(0.000)

3.997
(0.001)

Inconvenient 2000 0.925
(0.002)

1.325
(0.006)

0.925
(0.002)

1.325
(0.006)

0.899
(0.002)

1.224
(0.006)

0.943
(0.002)

1.410
(0.008)

0.993
(0.001)

3.736
(0.010)

Inconvenient 5000 0.915
(0.002)

1.146
(0.006)

0.915
(0.002)

1.146
(0.006)

0.897
(0.002)

1.072
(0.004)

0.925
(0.002)

1.166
(0.006)

0.938
(0.002)

1.337
(0.010)

Table A13: Coverage and size of prediction sets constructed with different methods for groups
formed by Social. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See corresponding plots in Figure A11.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Nonprob
Nonprob 200 0.922

(0.004)
1.894

(0.031)
0.933

(0.004)
1.964

(0.032)
0.896

(0.004)
1.775

(0.030)
0.976

(0.002)
2.605

(0.041)
0.999

(0.001)
3.980

(0.014)

Nonprob 500 0.926
(0.003)

1.655
(0.018)

0.926
(0.003)

1.657
(0.017)

0.897
(0.004)

1.538
(0.018)

0.959
(0.002)

1.943
(0.023)

1.000
(0.000)

4.000
(0.000)

Nonprob 1000 0.924
(0.003)

1.509
(0.012)

0.924
(0.003)

1.509
(0.012)

0.899
(0.003)

1.406
(0.012)

0.951
(0.002)

1.694
(0.017)

1.000
(0.000)

3.998
(0.001)

Nonprob 2000 0.922
(0.002)

1.360
(0.008)

0.922
(0.002)

1.360
(0.008)

0.896
(0.003)

1.258
(0.008)

0.942
(0.002)

1.456
(0.011)

0.991
(0.001)

3.740
(0.012)

Nonprob 5000 0.917
(0.003)

1.164
(0.007)

0.917
(0.003)

1.164
(0.007)

0.901
(0.003)

1.092
(0.005)

0.927
(0.002)

1.186
(0.007)

0.938
(0.003)

1.360
(0.013)

Problematic
Problematic 200 0.937

(0.004)
1.846

(0.030)
0.949

(0.004)
1.916

(0.030)
0.913

(0.004)
1.726

(0.028)
0.984

(0.002)
2.546

(0.041)
1.000

(0.000)
3.980

(0.014)

Problematic 500 0.945
(0.002)

1.626
(0.014)

0.945
(0.002)

1.628
(0.014)

0.913
(0.003)

1.500
(0.015)

0.967
(0.002)

1.892
(0.023)

1.000
(0.000)

4.000
(0.000)

Problematic 1000 0.941
(0.002)

1.486
(0.010)

0.941
(0.002)

1.486
(0.010)

0.909
(0.003)

1.369
(0.009)

0.958
(0.002)

1.639
(0.014)

1.000
(0.000)

3.996
(0.002)

Problematic 2000 0.936
(0.002)

1.337
(0.008)

0.936
(0.002)

1.337
(0.008)

0.909
(0.003)

1.238
(0.007)

0.950
(0.002)

1.417
(0.009)

0.993
(0.001)

3.726
(0.012)

Problematic 5000 0.916
(0.003)

1.135
(0.006)

0.916
(0.003)

1.135
(0.006)

0.903
(0.003)

1.066
(0.004)

0.931
(0.002)

1.160
(0.006)

0.939
(0.002)

1.312
(0.010)

Slightly_prob
Slightly_prob 200 0.909

(0.004)
1.800

(0.027)
0.921

(0.004)
1.871

(0.029)
0.881

(0.004)
1.677

(0.026)
0.971

(0.003)
2.526

(0.044)
0.999

(0.001)
3.980

(0.014)

Slightly_prob 500 0.920
(0.003)

1.590
(0.016)

0.920
(0.003)

1.590
(0.016)

0.891
(0.003)

1.476
(0.016)

0.956
(0.002)

1.893
(0.026)

1.000
(0.000)

4.000
(0.000)

Slightly_prob 1000 0.919
(0.003)

1.462
(0.011)

0.919
(0.003)

1.462
(0.011)

0.891
(0.003)

1.351
(0.011)

0.947
(0.002)

1.629
(0.018)

1.000
(0.000)

3.997
(0.001)

Slightly_prob 2000 0.925
(0.002)

1.378
(0.008)

0.925
(0.002)

1.378
(0.008)

0.900
(0.003)

1.282
(0.006)

0.944
(0.002)

1.475
(0.009)

0.993
(0.001)

3.746
(0.011)

Slightly_prob 5000 0.914
(0.002)

1.167
(0.006)

0.914
(0.002)

1.167
(0.006)

0.900
(0.003)

1.096
(0.005)

0.927
(0.002)

1.193
(0.007)

0.939
(0.002)

1.354
(0.011)
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Table A14: Coverage and size of prediction sets constructed with different methods for groups
formed by Health. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See corresponding plots in Figure A12.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Not-Recommended
Not-Recommended 200 0.961

(0.003)
1.357

(0.031)
0.967

(0.003)
1.419

(0.031)
0.942

(0.003)
1.223

(0.029)
0.990

(0.001)
1.951

(0.052)
1.000

(0.000)
3.980

(0.014)

Not-Recommended 500 0.950
(0.002)

1.136
(0.008)

0.950
(0.002)

1.139
(0.008)

0.931
(0.003)

1.006
(0.007)

0.971
(0.002)

1.228
(0.013)

1.000
(0.000)

4.000
(0.000)

Not-Recommended 1000 0.942
(0.002)

1.086
(0.007)

0.942
(0.002)

1.086
(0.007)

0.925
(0.003)

0.985
(0.005)

0.958
(0.002)

1.130
(0.008)

1.000
(0.000)

3.995
(0.002)

Not-Recommended 2000 0.935
(0.002)

1.051
(0.005)

0.935
(0.002)

1.051
(0.005)

0.922
(0.002)

0.966
(0.003)

0.948
(0.002)

1.072
(0.005)

0.994
(0.001)

3.697
(0.013)

Not-Recommended 5000 0.927
(0.002)

1.033
(0.005)

0.927
(0.002)

1.033
(0.005)

0.915
(0.002)

0.969
(0.003)

0.937
(0.002)

1.048
(0.005)

0.940
(0.002)

1.164
(0.009)

Priority
Priority 200 0.938

(0.004)
2.249

(0.038)
0.948

(0.003)
2.326

(0.039)
0.909

(0.004)
2.145

(0.038)
0.979

(0.002)
2.987

(0.044)
1.000

(0.000)
3.980

(0.014)

Priority 500 0.946
(0.002)

1.866
(0.026)

0.946
(0.002)

1.867
(0.026)

0.912
(0.003)

1.751
(0.026)

0.967
(0.002)

2.229
(0.036)

1.000
(0.000)

4.000
(0.000)

Priority 1000 0.945
(0.002)

1.601
(0.015)

0.945
(0.002)

1.601
(0.015)

0.907
(0.003)

1.484
(0.016)

0.960
(0.002)

1.788
(0.021)

1.000
(0.000)

3.998
(0.001)

Priority 2000 0.933
(0.002)

1.384
(0.010)

0.933
(0.002)

1.384
(0.010)

0.901
(0.002)

1.278
(0.009)

0.948
(0.002)

1.476
(0.013)

0.991
(0.001)

3.734
(0.011)

Priority 5000 0.908
(0.003)

1.140
(0.008)

0.908
(0.003)

1.140
(0.008)

0.896
(0.003)

1.073
(0.005)

0.924
(0.003)

1.167
(0.007)

0.937
(0.002)

1.330
(0.010)

Recommended
Recommended 200 0.871

(0.006)
1.933

(0.031)
0.888

(0.006)
2.006

(0.033)
0.839

(0.006)
1.809

(0.028)
0.962

(0.004)
2.736

(0.043)
0.998

(0.001)
3.980

(0.014)

Recommended 500 0.895
(0.004)

1.869
(0.020)

0.896
(0.004)

1.870
(0.020)

0.859
(0.004)

1.757
(0.020)

0.945
(0.003)

2.273
(0.029)

1.000
(0.000)

4.000
(0.000)

Recommended 1000 0.898
(0.003)

1.775
(0.014)

0.898
(0.003)

1.775
(0.014)

0.867
(0.003)

1.662
(0.014)

0.938
(0.002)

2.053
(0.023)

1.000
(0.000)

3.998
(0.001)

Recommended 2000 0.914
(0.003)

1.646
(0.011)

0.914
(0.003)

1.646
(0.011)

0.883
(0.003)

1.539
(0.010)

0.940
(0.002)

1.807
(0.013)

0.991
(0.001)

3.780
(0.010)

Recommended 5000 0.912
(0.003)

1.293
(0.010)

0.912
(0.003)

1.293
(0.010)

0.894
(0.002)

1.213
(0.007)

0.924
(0.002)

1.324
(0.010)

0.939
(0.002)

1.532
(0.014)

39

108798 https://doi.org/10.52202/079017-3454



Next, we provide numerical experimental results comparing AFCP with the label-conditional
adaptive equalized coverage (see Equation (A14)) with other benchmark methods.

Coverage for Occupation 1 Average coverage Average size

200 500 1000 2000 5000 200 500 1000 2000 5000 200 500 1000 2000 5000
1

2

3

4

0.900

0.925

0.950

0.975

1.000

0.6

0.7

0.8

0.9

1.0

Sample size

Method

AFCP

AFCP1

Marginal

Partial

Exhaustive

Figure A13: Performance on prediction sets constructed by different methods on the nursery data as
a function of the total number of training and calibration points. Our method (AFCP) leads to more
informative sets with a lower average width and higher conditional coverage on the Pretentious group.
The error bars indicate 2 standard errors.

Table A15: Average coverage and average size of prediction sets for all test samples constructed by
different methods as a function of the training and calibration size. All methods obtain coverage
beyond 0.9, while our AFCP and AFCP1 methods, along with the Marginal method, produce the
smallest, thus, the most informative, prediction sets. Red numbers indicate the small size of prediction
sets. See corresponding plots in Figure A13.

AFCP AFCP1 Marginal Partial Exhaustive

Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

200 0.925
(0.003)

2.745
(0.029)

0.962
(0.002)

3.841
(0.017)

0.919
(0.003)

2.575
(0.023)

0.996
(0.001)

3.970
(0.014)

0.999
(0.001)

3.980
(0.014)

500 0.924
(0.002)

2.934
(0.034)

0.944
(0.002)

3.670
(0.008)

0.910
(0.002)

2.214
(0.019)

0.978
(0.001)

3.811
(0.007)

1.000
(0.000)

4.000
(0.000)

1000 0.922
(0.002)

2.994
(0.029)

0.933
(0.002)

3.505
(0.006)

0.905
(0.002)

1.954
(0.015)

0.966
(0.001)

3.649
(0.006)

1.000
(0.000)

4.000
(0.000)

2000 0.923
(0.001)

2.937
(0.025)

0.927
(0.001)

3.352
(0.010)

0.904
(0.001)

1.712
(0.019)

0.954
(0.001)

3.495
(0.007)

0.997
(0.000)

3.996
(0.000)

5000 0.913
(0.001)

1.893
(0.022)

0.915
(0.001)

2.426
(0.022)

0.902
(0.001)

1.127
(0.005)

0.935
(0.001)

2.593
(0.019)

0.956
(0.001)

3.872
(0.002)

Coverage Size

200 500 1000 2000 5000 200 500 1000 2000 5000

1

2

3

4

0.6

0.7

0.8

0.9

1.0

Sample size

Attribute: Parents' Occupation

Occupation 1

Occupation 2

Occupation 3

Method

AFCP

AFCP1

Marginal

Partial

Exhaustive

Figure A14: Coverage and size of prediction sets constructed with different methods for groups
formed by Parents’ Occupation. For the Occupation 1 group, the Marginal method (dashed orange
lines) fails to detect and correct for its undercoverage, and the Exhaustive method produces prediction
sets that are too conservative to be helpful. In contrast, our AFCP and AFCP1 methods correct the
undercoverage and maintain small prediction sets. See Table A16 for details and standard errors.
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Coverage Size
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Figure A15: Coverage and size of prediction sets constructed with different methods for groups
formed by Children. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See Table A17 for numerical details and standard errors.
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Figure A16: Coverage and size of prediction sets constructed with different methods for groups
formed by Finance. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See Table A18 for numerical details and standard errors.
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Figure A17: Coverage and size of prediction sets constructed with different methods for groups
formed by Social. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See Table A19 for numerical details and standard errors.
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Figure A18: Coverage and size of prediction sets constructed with different methods for groups
formed by Health. All groups have similar performances, and none of them are subject to unfair-
ness/undercoverage. See Table A20 for numerical details and standard errors.
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Table A16: Coverage and size of prediction sets constructed with different methods for groups formed
by Parents’ Occupation. Green numbers indicate low coverage and red numbers indicate the small
size of prediction sets. See corresponding plots in Figure A14.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Occupation 0
Occupation 0 200 0.934

(0.004)
2.740

(0.029)
0.960

(0.003)
3.831

(0.018)
0.932

(0.004)
2.569

(0.024)
0.996

(0.001)
3.967

(0.014)
1.000

(0.000)
3.980

(0.014)

Occupation 0 500 0.921
(0.003)

2.911
(0.036)

0.936
(0.002)

3.662
(0.011)

0.913
(0.003)

2.177
(0.022)

0.973
(0.002)

3.803
(0.008)

1.000
(0.000)

4.000
(0.000)

Occupation 0 1000 0.914
(0.002)

2.937
(0.030)

0.921
(0.002)

3.502
(0.009)

0.908
(0.003)

1.888
(0.017)

0.958
(0.002)

3.677
(0.007)

1.000
(0.000)

4.000
(0.000)

Occupation 0 2000 0.916
(0.002)

2.845
(0.028)

0.918
(0.002)

3.356
(0.012)

0.910
(0.002)

1.624
(0.022)

0.945
(0.002)

3.518
(0.008)

0.996
(0.000)

3.995
(0.000)

Occupation 0 5000 0.910
(0.002)

1.679
(0.021)

0.911
(0.002)

2.681
(0.019)

0.907
(0.002)

1.009
(0.004)

0.927
(0.002)

2.768
(0.016)

0.948
(0.002)

3.877
(0.003)

Occupation 1
Occupation 1 200 0.739

(0.012)
2.850

(0.034)
0.977

(0.005)
3.907

(0.016)
0.692

(0.010)
2.689

(0.026)
0.993

(0.005)
3.980

(0.014)
0.993

(0.005)
3.980

(0.014)

Occupation 1 500 0.819
(0.011)

3.031
(0.036)

0.971
(0.003)

3.848
(0.011)

0.630
(0.011)

2.334
(0.022)

1.000
(0.000)

4.000
(0.000)

1.000
(0.000)

4.000
(0.000)

Occupation 1 1000 0.844
(0.010)

3.159
(0.032)

0.947
(0.005)

3.699
(0.015)

0.583
(0.010)

2.130
(0.019)

1.000
(0.000)

3.999
(0.001)

1.000
(0.000)

4.000
(0.000)

Occupation 1 2000 0.868
(0.008)

3.257
(0.019)

0.917
(0.006)

3.516
(0.016)

0.575
(0.010)

2.034
(0.019)

0.994
(0.002)

3.982
(0.004)

1.000
(0.000)

4.000
(0.000)

Occupation 1 5000 0.835
(0.008)

3.114
(0.027)

0.859
(0.007)

3.185
(0.025)

0.679
(0.009)

2.213
(0.019)

0.966
(0.004)

3.885
(0.010)

1.000
(0.000)

4.000
(0.000)

Occupation 2
Occupation 2 200 0.938

(0.004)
2.739

(0.031)
0.962

(0.003)
3.841

(0.018)
0.934

(0.003)
2.569

(0.024)
0.996

(0.001)
3.973

(0.014)
0.999

(0.001)
3.980

(0.014)

Occupation 2 500 0.938
(0.002)

2.947
(0.033)

0.949
(0.002)

3.658
(0.012)

0.939
(0.002)

2.237
(0.017)

0.981
(0.001)

3.797
(0.011)

1.000
(0.000)

4.000
(0.000)

Occupation 2 1000 0.939
(0.002)

3.030
(0.028)

0.944
(0.002)

3.486
(0.007)

0.938
(0.002)

2.000
(0.015)

0.970
(0.002)

3.581
(0.007)

1.000
(0.000)

4.000
(0.000)

Occupation 2 2000 0.936
(0.002)

2.990
(0.026)

0.938
(0.002)

3.329
(0.010)

0.936
(0.002)

1.763
(0.019)

0.958
(0.002)

3.417
(0.008)

0.997
(0.000)

3.996
(0.000)

Occupation 2 5000 0.925
(0.002)

1.971
(0.029)

0.926
(0.002)

2.083
(0.030)

0.922
(0.002)

1.123
(0.007)

0.939
(0.002)

2.269
(0.028)

0.958
(0.002)

3.852
(0.003)

Table A17: Coverage and size of prediction sets constructed with different methods for groups
formed by Children. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See corresponding plots in Figure A15.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

1
1 200 0.919

(0.005)
2.788

(0.031)
0.960

(0.003)
3.844

(0.017)
0.917

(0.004)
2.631

(0.026)
0.996

(0.001)
3.972

(0.014)
0.999

(0.001)
3.980

(0.014)

1 500 0.916
(0.003)

2.975
(0.033)

0.938
(0.003)

3.699
(0.010)

0.900
(0.004)

2.271
(0.018)

0.975
(0.002)

3.838
(0.010)

1.000
(0.000)

4.000
(0.000)

1 1000 0.912
(0.003)

3.066
(0.028)

0.923
(0.003)

3.534
(0.008)

0.896
(0.003)

2.038
(0.016)

0.961
(0.002)

3.677
(0.008)

1.000
(0.000)

4.000
(0.000)

1 2000 0.911
(0.002)

2.998
(0.026)

0.916
(0.002)

3.375
(0.012)

0.891
(0.003)

1.779
(0.021)

0.949
(0.002)

3.536
(0.009)

0.998
(0.000)

3.997
(0.001)

1 5000 0.901
(0.003)

1.967
(0.023)

0.903
(0.003)

2.498
(0.024)

0.887
(0.003)

1.176
(0.007)

0.928
(0.002)

2.664
(0.020)

0.954
(0.002)

3.880
(0.003)

2
2 200 0.933

(0.004)
2.782

(0.030)
0.967

(0.003)
3.851

(0.017)
0.927

(0.004)
2.613

(0.024)
0.998

(0.001)
3.972

(0.014)
0.999

(0.001)
3.980

(0.014)

2 500 0.927
(0.003)

2.966
(0.034)

0.946
(0.003)

3.686
(0.010)

0.915
(0.003)

2.251
(0.020)

0.980
(0.002)

3.824
(0.008)

1.000
(0.000)

4.000
(0.000)

2 1000 0.923
(0.003)

3.052
(0.029)

0.935
(0.002)

3.536
(0.007)

0.909
(0.003)

2.015
(0.014)

0.969
(0.002)

3.675
(0.007)

1.000
(0.000)

4.000
(0.000)

2 2000 0.921
(0.003)

2.972
(0.026)

0.925
(0.003)

3.364
(0.011)

0.902
(0.003)

1.750
(0.020)

0.949
(0.002)

3.506
(0.007)

0.997
(0.001)

3.996
(0.001)

2 5000 0.911
(0.003)

1.895
(0.024)

0.912
(0.003)

2.425
(0.023)

0.901
(0.003)

1.150
(0.007)

0.934
(0.002)

2.589
(0.022)

0.957
(0.002)

3.876
(0.004)

3
3 200 0.931

(0.004)
2.721

(0.030)
0.965

(0.003)
3.837

(0.017)
0.923

(0.004)
2.547

(0.024)
0.997

(0.001)
3.971

(0.015)
1.000

(0.000)
3.980

(0.014)

3 500 0.930
(0.003)

2.928
(0.035)

0.948
(0.003)

3.664
(0.010)

0.920
(0.003)

2.191
(0.020)

0.981
(0.002)

3.803
(0.009)

1.000
(0.000)

4.000
(0.000)

3 1000 0.932
(0.002)

2.976
(0.029)

0.944
(0.002)

3.497
(0.008)

0.916
(0.003)

1.931
(0.019)

0.970
(0.002)

3.632
(0.007)

1.000
(0.000)

4.000
(0.000)

3 2000 0.933
(0.002)

2.911
(0.027)

0.937
(0.002)

3.347
(0.011)

0.915
(0.002)

1.680
(0.021)

0.961
(0.002)

3.477
(0.009)

0.996
(0.001)

3.995
(0.001)

3 5000 0.923
(0.002)

1.865
(0.024)

0.924
(0.002)

2.400
(0.023)

0.911
(0.003)

1.090
(0.007)

0.939
(0.002)

2.559
(0.021)

0.955
(0.002)

3.860
(0.004)

more
more 200 0.916

(0.004)
2.688

(0.031)
0.957

(0.003)
3.830

(0.017)
0.910

(0.004)
2.509

(0.023)
0.994

(0.001)
3.967

(0.014)
0.999

(0.000)
3.980

(0.014)

more 500 0.922
(0.003)

2.860
(0.038)

0.943
(0.003)

3.629
(0.010)

0.903
(0.003)

2.137
(0.024)

0.978
(0.002)

3.779
(0.009)

1.000
(0.000)

4.000
(0.000)

more 1000 0.919
(0.003)

2.880
(0.033)

0.931
(0.003)

3.451
(0.009)

0.898
(0.003)

1.833
(0.020)

0.963
(0.002)

3.611
(0.008)

1.000
(0.000)

4.000
(0.000)

more 2000 0.926
(0.003)

2.865
(0.026)

0.931
(0.003)

3.324
(0.012)

0.909
(0.003)

1.641
(0.019)

0.957
(0.002)

3.461
(0.009)

0.997
(0.001)

3.996
(0.001)

more 5000 0.917
(0.003)

1.846
(0.024)

0.919
(0.003)

2.382
(0.023)

0.907
(0.003)

1.093
(0.006)

0.938
(0.002)

2.559
(0.021)

0.956
(0.002)

3.872
(0.003)
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Table A18: Coverage and size of prediction sets constructed with different methods for groups
formed by Finance. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See corresponding plots in Figure A16.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Convenient
Convenient 200 0.925

(0.004)
2.753

(0.030)
0.963

(0.002)
3.843

(0.017)
0.920

(0.004)
2.587

(0.024)
0.996

(0.001)
3.972

(0.014)
0.999

(0.001)
3.980

(0.014)

Convenient 500 0.927
(0.002)

2.957
(0.033)

0.948
(0.002)

3.684
(0.009)

0.913
(0.002)

2.240
(0.018)

0.980
(0.001)

3.822
(0.008)

1.000
(0.000)

4.000
(0.000)

Convenient 1000 0.923
(0.002)

3.029
(0.027)

0.934
(0.002)

3.517
(0.007)

0.905
(0.002)

1.993
(0.015)

0.966
(0.001)

3.653
(0.006)

1.000
(0.000)

4.000
(0.000)

Convenient 2000 0.927
(0.002)

2.980
(0.026)

0.931
(0.002)

3.369
(0.010)

0.909
(0.002)

1.757
(0.020)

0.958
(0.002)

3.508
(0.008)

0.997
(0.000)

3.996
(0.000)

Convenient 5000 0.915
(0.002)

1.908
(0.022)

0.917
(0.002)

2.445
(0.022)

0.908
(0.002)

1.143
(0.006)

0.939
(0.002)

2.614
(0.019)

0.956
(0.002)

3.866
(0.003)

Inconvenient
Inconvenient 200 0.924

(0.003)
2.737

(0.029)
0.961

(0.003)
3.839

(0.017)
0.919

(0.003)
2.564

(0.023)
0.996

(0.001)
3.969

(0.014)
0.999

(0.001)
3.980

(0.014)

Inconvenient 500 0.921
(0.002)

2.911
(0.035)

0.940
(0.002)

3.656
(0.009)

0.907
(0.003)

2.188
(0.021)

0.976
(0.001)

3.800
(0.008)

1.000
(0.000)

4.000
(0.000)

Inconvenient 1000 0.921
(0.002)

2.957
(0.030)

0.932
(0.002)

3.492
(0.007)

0.904
(0.003)

1.915
(0.016)

0.966
(0.002)

3.644
(0.007)

1.000
(0.000)

4.000
(0.000)

Inconvenient 2000 0.919
(0.002)

2.892
(0.026)

0.923
(0.002)

3.335
(0.011)

0.899
(0.002)

1.666
(0.020)

0.950
(0.001)

3.483
(0.008)

0.997
(0.000)

3.996
(0.000)

Inconvenient 5000 0.911
(0.002)

1.879
(0.023)

0.913
(0.002)

2.409
(0.023)

0.896
(0.002)

1.112
(0.005)

0.931
(0.002)

2.573
(0.020)

0.955
(0.001)

3.878
(0.002)

Table A19: Coverage and size of prediction sets constructed with different methods for groups
formed by Social. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See corresponding plots in Figure A17.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Nonprob
Nonprob 200 0.931

(0.004)
2.768

(0.031)
0.964

(0.003)
3.846

(0.017)
0.924

(0.004)
2.601

(0.025)
0.996

(0.001)
3.971

(0.014)
0.999

(0.001)
3.980

(0.014)

Nonprob 500 0.926
(0.003)

2.939
(0.035)

0.945
(0.003)

3.674
(0.009)

0.912
(0.003)

2.228
(0.020)

0.979
(0.001)

3.815
(0.008)

1.000
(0.000)

4.000
(0.000)

Nonprob 1000 0.924
(0.003)

3.016
(0.029)

0.935
(0.002)

3.515
(0.008)

0.909
(0.003)

1.980
(0.016)

0.968
(0.002)

3.658
(0.007)

1.000
(0.000)

4.000
(0.000)

Nonprob 2000 0.921
(0.002)

2.934
(0.026)

0.926
(0.002)

3.355
(0.011)

0.903
(0.002)

1.711
(0.021)

0.954
(0.002)

3.501
(0.008)

0.996
(0.001)

3.996
(0.001)

Nonprob 5000 0.915
(0.002)

1.904
(0.024)

0.916
(0.002)

2.437
(0.023)

0.900
(0.002)

1.137
(0.007)

0.934
(0.002)

2.585
(0.021)

0.957
(0.002)

3.875
(0.003)

Problematic
Problematic 200 0.924

(0.004)
2.742

(0.030)
0.963

(0.003)
3.843

(0.017)
0.922

(0.004)
2.573

(0.023)
0.997

(0.001)
3.972

(0.014)
1.000

(0.000)
3.980

(0.014)

Problematic 500 0.923
(0.003)

2.941
(0.034)

0.944
(0.002)

3.674
(0.009)

0.911
(0.003)

2.213
(0.019)

0.978
(0.002)

3.810
(0.007)

1.000
(0.000)

4.000
(0.000)

Problematic 1000 0.923
(0.002)

2.999
(0.029)

0.935
(0.002)

3.508
(0.007)

0.904
(0.003)

1.954
(0.016)

0.963
(0.002)

3.644
(0.007)

1.000
(0.000)

4.000
(0.000)

Problematic 2000 0.924
(0.002)

2.914
(0.026)

0.929
(0.002)

3.355
(0.011)

0.904
(0.003)

1.683
(0.021)

0.953
(0.002)

3.486
(0.008)

0.997
(0.001)

3.996
(0.001)

Problematic 5000 0.912
(0.002)

1.863
(0.022)

0.914
(0.002)

2.394
(0.022)

0.903
(0.002)

1.106
(0.005)

0.935
(0.002)

2.588
(0.020)

0.952
(0.002)

3.871
(0.003)

Slightly_prob
Slightly_prob 200 0.918

(0.004)
2.722

(0.029)
0.958

(0.003)
3.831

(0.017)
0.913

(0.004)
2.550

(0.022)
0.996

(0.001)
3.968

(0.014)
0.999

(0.001)
3.980

(0.014)

Slightly_prob 500 0.921
(0.003)

2.921
(0.034)

0.943
(0.002)

3.662
(0.009)

0.906
(0.003)

2.201
(0.020)

0.978
(0.002)

3.809
(0.009)

1.000
(0.000)

4.000
(0.000)

Slightly_prob 1000 0.919
(0.002)

2.966
(0.030)

0.931
(0.002)

3.492
(0.007)

0.902
(0.002)

1.929
(0.017)

0.966
(0.001)

3.646
(0.007)

1.000
(0.000)

4.000
(0.000)

Slightly_prob 2000 0.923
(0.002)

2.963
(0.025)

0.927
(0.002)

3.347
(0.012)

0.905
(0.002)

1.743
(0.019)

0.954
(0.002)

3.498
(0.008)

0.998
(0.000)

3.997
(0.000)

Slightly_prob 5000 0.913
(0.002)

1.912
(0.023)

0.914
(0.002)

2.448
(0.023)

0.902
(0.002)

1.139
(0.006)

0.935
(0.002)

2.605
(0.019)

0.958
(0.002)

3.871
(0.004)
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Table A20: Coverage and size of prediction sets constructed with different methods for groups
formed by Health. All groups have similar performance, and none of them are subject to unfair-
ness/undercoverage. See corresponding plots in Figure A18.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
size Coverage Size Coverage Size Coverage Size Coverage Size Coverage Size

Not-Recommended
Not-Recommended 200 0.937

(0.005)
2.279

(0.038)
0.947

(0.005)
3.868

(0.020)
0.936

(0.005)
2.193

(0.028)
0.995

(0.001)
3.975

(0.014)
1.000

(0.000)
3.980

(0.014)

Not-Recommended 500 0.929
(0.004)

2.576
(0.071)

0.938
(0.003)

3.915
(0.005)

0.924
(0.004)

1.771
(0.033)

0.981
(0.002)

3.981
(0.002)

1.000
(0.000)

4.000
(0.000)

Not-Recommended 1000 0.928
(0.003)

2.864
(0.069)

0.936
(0.002)

3.919
(0.010)

0.917
(0.003)

1.504
(0.031)

0.968
(0.002)

3.968
(0.002)

1.000
(0.000)

4.000
(0.000)

Not-Recommended 2000 0.932
(0.002)

3.129
(0.054)

0.936
(0.002)

3.876
(0.018)

0.921
(0.003)

1.341
(0.027)

0.956
(0.002)

3.956
(0.002)

0.994
(0.001)

3.994
(0.001)

Not-Recommended 5000 0.914
(0.002)

2.940
(0.046)

0.915
(0.002)

3.541
(0.043)

0.901
(0.003)

0.973
(0.005)

0.929
(0.002)

3.737
(0.027)

0.939
(0.002)

3.939
(0.002)

Priority
Priority 200 0.931

(0.004)
3.055

(0.038)
0.973

(0.002)
3.833

(0.018)
0.925

(0.004)
2.922

(0.032)
0.997

(0.001)
3.966

(0.014)
1.000

(0.000)
3.980

(0.014)

Priority 500 0.928
(0.003)

2.989
(0.048)

0.948
(0.002)

3.511
(0.015)

0.914
(0.003)

2.470
(0.022)

0.980
(0.002)

3.699
(0.012)

1.000
(0.000)

4.000
(0.000)

Priority 1000 0.927
(0.003)

2.946
(0.035)

0.939
(0.002)

3.287
(0.009)

0.907
(0.003)

2.142
(0.018)

0.967
(0.002)

3.439
(0.009)

1.000
(0.000)

4.000
(0.000)

Priority 2000 0.916
(0.003)

2.709
(0.024)

0.922
(0.003)

3.069
(0.013)

0.894
(0.003)

1.781
(0.023)

0.952
(0.002)

3.209
(0.012)

0.998
(0.000)

3.996
(0.001)

Priority 5000 0.910
(0.002)

1.263
(0.026)

0.913
(0.002)

1.765
(0.027)

0.898
(0.002)

1.085
(0.005)

0.934
(0.002)

1.879
(0.028)

0.960
(0.002)

3.833
(0.004)

Recommended
Recommended 200 0.906

(0.005)
2.899

(0.043)
0.965

(0.003)
3.820

(0.020)
0.897

(0.005)
2.607

(0.021)
0.996

(0.002)
3.970

(0.014)
0.998

(0.001)
3.980

(0.014)

Recommended 500 0.914
(0.003)

3.234
(0.042)

0.945
(0.003)

3.582
(0.014)

0.891
(0.003)

2.403
(0.013)

0.975
(0.002)

3.754
(0.011)

1.000
(0.000)

4.000
(0.000)

Recommended 1000 0.911
(0.003)

3.174
(0.025)

0.925
(0.003)

3.302
(0.011)

0.890
(0.003)

2.224
(0.011)

0.963
(0.002)

3.534
(0.010)

1.000
(0.000)

4.000
(0.000)

Recommended 2000 0.920
(0.002)

2.969
(0.020)

0.924
(0.002)

3.106
(0.016)

0.897
(0.002)

2.024
(0.015)

0.954
(0.002)

3.316
(0.015)

0.999
(0.000)

3.998
(0.000)

Recommended 5000 0.916
(0.002)

1.472
(0.025)

0.916
(0.002)

1.969
(0.025)

0.907
(0.002)

1.325
(0.010)

0.943
(0.002)

2.164
(0.025)

0.968
(0.001)

3.845
(0.003)
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A7.1.3 COMPAS data

We extend our experiments to investigate the effectiveness of AFCP using the Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS) dataset [50]. The COMPAS dataset
is widely studied in the fairness literature for multi-class classification tasks, predicting the risk of
recidivism across three categories: ’High’, ’Medium’, and ’Low’. Following the data preprocessing
steps outlined in [59], we exclude rows with missing or low-quality data and compute the length
of stay in jail. Additionally, we merge the race groups Asian and Native American, both of which
have few occurrences, into the ’Others’ category. After preprocessing, the dataset comprises 6,172
instances with five categorical features: charge degree of defendants (2 levels), race (4 levels), age
category (3 levels), sex (2 levels), and score category of defendants (3 levels). We regard the first four
features as potentially sensitive attributes.

Similar to the Nursery dataset case, we utilize the LabelEncoder function to numerically encode
categorical features and outcome labels. To increase prediction difficulty and emphasize algorithmic
bias, we introduce independent, uniformly distributed noise to the labels of samples identified as
African-American. Additionally, we undersample the African-American group to 200 samples, while
the Caucasian group contains 2,103 samples, Hispanic 509, and Others 385.

Figure A19 summarizes the performance of all methods as a function of the total number of training
and calibration data points, which range from 200 to 1000. Figure A20 narrows the focus by analyzing
the performance relative to the number of restricted calibration data points, as defined in Section 2.2.
The results are averaged over 500 randomly selected test points and 100 repeated experiments. In
each experiment, 50% of the samples are randomly assigned for training and the remaining 50%
for calibration. Once again, we conclude that our AFCP methods outperform the other benchmarks
considered, resulting in more informative prediction sets with higher conditional coverage for the
African-American subgroup.

Figure A21 shows the selection frequencies of the protected attribute Race as a function of sample
size within the same experiment described in Figure A19. This plot demonstrates that both AFCP and
AFCP 1 consistently select Race as the most sensitive attribute as the number of samples increases.
Also, we report the prediction accuracy in Table A21. The results confirm that the African-American
group is disproportionately affected by algorithmic bias, not only in terms of uncertainty estimates
but also in prediction accuracy, as they experience significantly lower-than-average test accuracy.

Coverage for African−American Average coverage Average size

200 300 500 1000 200 300 500 1000 200 300 500 1000
1.2

1.6

2.0
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0.93

0.95
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0.7

0.8
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1.0
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Method

AFCP

AFCP1

Marginal

Partial

Exhaustive

Figure A19: Performance of prediction sets constructed by different methods on the COMPAS data,
as a function of the sample size. AFCP leads to more informative predictions with higher coverage
conditional on the sensitive attribute, Race (shown for level African-American).
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Figure A20: Conditional coverage for the African-American group using different methods on the
COMPAS data, as a function of the sample sizes in the restricted calibration data.
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Figure A21: Selection frequency of the relevant attribute Race, using our AFCP method and its
variation, AFCP1, in the COMPAS experiments of Figure A19. As the sample size increases, AFCP
and AFCP1 become more consistent in selecting the most relevant attribute, Race.

Table A21: Average prediction accuracy and prediction accuracy for African-American group on the
COMPAS data, as a function of the sample size.

Sample Size Accuracy for African-American Average Accuracy

200 0.355 (0.009) 0.790 (0.003)
300 0.370 (0.009) 0.813 (0.002)
500 0.376 (0.008) 0.839 (0.002)
1000 0.375 (0.009) 0.869 (0.002)

A7.2 AFCP for Outlier Detection

A7.2.1 Setup and Benchmarks

This section demonstrates the empirical performance of our AFCP extension for outlier detection.
Firstly, we focus on the implementation described in Algorithm A7, which selects at most one
sensitive attribute. Similar to the multi-class classification cases, Our method is compared with three
existing approaches, which utilize the same data, ML model, and conformity scores but compute
conformal p-values with different guarantees. The first is the marginal benchmark, which constructs
conformal p-value guaranteeing P(ûmarginal(Zn+1) ≤ α) ≤ α by applying Algorithm A2 without
protected attributes. The second is the exhaustive equalized benchmark, which evaluates conformal
p-values guaranteeing P(ûexhaustive(Zn+1) ≤ α | ϕ(Zn+1, [K])) ≤ α by applying Algorithm A2 with
all K sensitive attributes simultaneously protected. The third is a partial equalized benchmark that
separately applies Algorithm A2 with each possible protected attribute k ∈ [K], and then takes the
maximum of all such p values. This is an intuitive approach that can be easily verified to provide a
coverage guarantee P(ûpartial(Zn+1) ≤ α | ϕ(Zn+1, {k})) ≤ α ∀k ∈ [K].

In addition, similar to the multiclass classification experiments, we consider AFCP1 - the AFCP
implementation that always selects the most critical protected attribute without conducting the
significance test.

For all methods considered, the outlier detection model is based on a three-layer neural network, and
the outputs from each layer are batch-normalized. The Adam optimizer and the BCEWithLogitsLoss
loss function are used in the training process, with a learning rate set at 0.0001. The loss values
demonstrate convergence after 100 epochs of training. For all methods, the miscoverage target level
is set at α = 0.1. Note that the training and testing data contain both inliers and outliers, while the
calibration data only contains inliers.

We assess the performance of the methods based on the False Positive Rate (FPR) and the True
Positive Rate (TPR). Ideally, the objective is to achieve a higher conditional FPR for groups expe-
riencing unfairness, thereby maintaining the average FPR below the target threshold of 0.1 while
simultaneously achieving a higher TPR. The results presented are averaged over 500 independent test
points and 30 experiments.

A7.2.2 Synthetic Data

We employ the same data settings as in the multi-class classification example, designating Color
as the sensitive attribute associated with the Blue group, which suffers from undercoverage. While
Age Group and Region are also sensitive attributes, they are not subject to biases in this context.
The outcome labels Y have two possible values: Y = 0 if the unit is properly treated and Y = 1
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otherwise. In our experiment, we treat Y = 1 as an outlier and Y = 0 as an inlier, with the data
generation process described as:

P[Y | X] =

{(
1
2 ,

1
2

)
, if Color = Blue,

(1, 0) or (0, 1) w. equal prob, if Color = Grey.
(A28)

Figure A22 and Table A22 illustrate the performance of conformal p-values generated by various
methods on synthetic data, showcasing how performance varies with the number of samples in
training and calibration datasets. Figures A23–A24 and Tables A23–A25 separately evaluate the
False Positive Rate (FPR) and True Positive Rate (TPR) for each protected attribute. Additionally,
Figure A26 explores how the severity of bias affecting groups impacts the selection frequency of
our method at various levels. The severity of bias is controlled by the varying percentage of Blue
samples, with higher levels indicating less samples and more significant biases in the Blue group.

FPR for Blue Average FPR Average TPR

200 500 1000 2000 200 500 1000 2000 200 500 1000 2000
0.0

0.2

0.4

0.6

0.8

0.00

0.03

0.06

0.09

0.12

0.0

0.1

0.2

0.3

0.4

Sample size

Method

AFCP

AFCP1

Marginal

Partial

Exhaustive

Figure A22: Performance on conformal p-values constructed by different methods on the synthetic
data as a function of the total number of training and calibration points. Our method (AFCP) leads to
higher TPR and lower FPR on the Blue group. The error bars indicate 2 standard errors.

Table A22: Average FPR and TPR of conformal p-values for all test samples constructed by different
methods as a function of the training and calibration size. All methods control FPR under 0.1, while
our AFCP and AFCP1 methods, along with the Marginal method, produce the highest TPR. Red
numbers indicate high TPR. See corresponding plots in Figure A22.

AFCP AFCP1 Marginal Partial Exhaustive

Sample
Size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

200 0.094
(0.007)

0.642
(0.025)

0.069
(0.006)

0.544
(0.033)

0.102
(0.008)

0.649
(0.027)

0.018
(0.003)

0.221
(0.023)

0.000
(0.000)

0.000
(0.000)

500 0.079
(0.005)

0.706
(0.018)

0.078
(0.005)

0.703
(0.018)

0.085
(0.005)

0.696
(0.017)

0.037
(0.003)

0.519
(0.024)

0.010
(0.002)

0.066
(0.006)

1000 0.089
(0.005)

0.780
(0.008)

0.088
(0.005)

0.780
(0.008)

0.096
(0.005)

0.770
(0.010)

0.046
(0.003)

0.664
(0.014)

0.052
(0.003)

0.521
(0.011)

2000 0.097
(0.005)

0.804
(0.006)

0.097
(0.005)

0.804
(0.006)

0.101
(0.004)

0.800
(0.006)

0.056
(0.004)

0.720
(0.010)

0.071
(0.004)

0.728
(0.008)

FPR TPR

200 500 1000 2000 200 500 1000 2000

0.00

0.25

0.50

0.75

0.0
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Attribute: Color

Blue

Grey

Figure A23: Performance on conformal p-values constructed by different methods for groups formed
by Color. See Table A23 for numerical details and standard errors.
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Figure A24: Performance on conformal p-values constructed by different methods for groups formed
by Region. See Table A25 for numerical details and standard errors.
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Figure A25: Performance on conformal p-values constructed by different methods for groups formed
by Age Group. See Table A24 for numerical details and standard errors.

Table A23: Coverage and size of prediction sets constructed with different methods for groups formed
by Color. See corresponding plots in Figure A23.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
Size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

Grey
Grey 200 0.085

(0.006)
0.695

(0.027)
0.073

(0.007)
0.606

(0.036)
0.077

(0.007)
0.680

(0.029)
0.020

(0.003)
0.247

(0.026)
0.000

(0.000)
0.000

(0.000)

Grey 500 0.077
(0.005)

0.767
(0.021)

0.078
(0.006)

0.766
(0.021)

0.062
(0.006)

0.734
(0.019)

0.036
(0.003)

0.567
(0.027)

0.011
(0.002)

0.074
(0.007)

Grey 1000 0.090
(0.005)

0.852
(0.008)

0.090
(0.005)

0.853
(0.008)

0.069
(0.004)

0.809
(0.011)

0.045
(0.003)

0.725
(0.014)

0.058
(0.004)

0.579
(0.012)

Grey 2000 0.097
(0.005)

0.883
(0.005)

0.097
(0.005)

0.883
(0.005)

0.071
(0.004)

0.840
(0.006)

0.052
(0.004)

0.789
(0.011)

0.079
(0.004)

0.812
(0.009)

Blue
Blue 200 0.169

(0.036)
0.190

(0.040)
0.030

(0.014)
0.029

(0.016)
0.336

(0.034)
0.378

(0.027)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Blue 500 0.105
(0.023)

0.132
(0.025)

0.085
(0.021)

0.112
(0.024)

0.286
(0.023)

0.340
(0.023)

0.052
(0.012)

0.075
(0.017)

0.000
(0.000)

0.000
(0.000)

Blue 1000 0.079
(0.021)

0.122
(0.022)

0.062
(0.017)

0.109
(0.019)

0.336
(0.020)

0.414
(0.026)

0.059
(0.017)

0.109
(0.019)

0.000
(0.000)

0.000
(0.000)

Blue 2000 0.096
(0.020)

0.121
(0.020)

0.096
(0.020)

0.121
(0.020)

0.375
(0.023)

0.454
(0.020)

0.090
(0.017)

0.115
(0.018)

0.000
(0.000)

0.000
(0.000)
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Figure A26: Selection frequencies of each protected attribute as a function of severity level of bias.
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Table A24: Coverage and size of prediction sets constructed with different methods for groups formed
by Age Group. See corresponding plots in Figure A25.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
Size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

West
West 200 0.099

(0.012)
0.628

(0.032)
0.072

(0.012)
0.538

(0.034)
0.112

(0.013)
0.649

(0.035)
0.022

(0.006)
0.187

(0.036)
0.000

(0.000)
0.000

(0.000)

West 500 0.086
(0.006)

0.701
(0.017)

0.084
(0.007)

0.705
(0.017)

0.097
(0.007)

0.687
(0.015)

0.043
(0.005)

0.485
(0.034)

0.008
(0.004)

0.055
(0.018)

West 1000 0.111
(0.008)

0.766
(0.017)

0.109
(0.008)

0.765
(0.016)

0.123
(0.010)

0.773
(0.016)

0.063
(0.007)

0.650
(0.025)

0.055
(0.007)

0.506
(0.024)

West 2000 0.117
(0.010)

0.805
(0.009)

0.117
(0.010)

0.805
(0.009)

0.131
(0.010)

0.817
(0.009)

0.070
(0.009)

0.718
(0.016)

0.076
(0.008)

0.698
(0.021)

East
East 200 0.100

(0.010)
0.644

(0.028)
0.074

(0.010)
0.529

(0.039)
0.107

(0.009)
0.642

(0.033)
0.022

(0.005)
0.241

(0.030)
0.000

(0.000)
0.000

(0.000)

East 500 0.081
(0.007)

0.711
(0.020)

0.079
(0.008)

0.703
(0.022)

0.083
(0.007)

0.696
(0.020)

0.041
(0.004)

0.535
(0.023)

0.014
(0.006)

0.089
(0.019)

East 1000 0.087
(0.007)

0.790
(0.013)

0.085
(0.008)

0.789
(0.012)

0.089
(0.007)

0.768
(0.015)

0.043
(0.006)

0.671
(0.019)

0.057
(0.006)

0.549
(0.026)

East 2000 0.096
(0.009)

0.794
(0.012)

0.096
(0.009)

0.794
(0.012)

0.095
(0.008)

0.791
(0.011)

0.054
(0.007)

0.713
(0.018)

0.070
(0.008)

0.727
(0.016)

North
North 200 0.087

(0.008)
0.660

(0.026)
0.065

(0.007)
0.582

(0.034)
0.088

(0.009)
0.646

(0.028)
0.016

(0.003)
0.238

(0.031)
0.000

(0.000)
0.000

(0.000)

North 500 0.068
(0.007)

0.717
(0.022)

0.069
(0.007)

0.716
(0.022)

0.079
(0.007)

0.698
(0.024)

0.031
(0.005)

0.555
(0.027)

0.015
(0.006)

0.074
(0.016)

North 1000 0.075
(0.009)

0.789
(0.009)

0.073
(0.009)

0.789
(0.009)

0.085
(0.008)

0.773
(0.013)

0.040
(0.005)

0.672
(0.015)

0.047
(0.007)

0.533
(0.028)

North 2000 0.085
(0.008)

0.816
(0.009)

0.085
(0.008)

0.816
(0.009)

0.081
(0.008)

0.802
(0.010)

0.048
(0.006)

0.728
(0.013)

0.068
(0.008)

0.743
(0.015)

South
South 200 0.088

(0.010)
0.630

(0.034)
0.063

(0.009)
0.520

(0.041)
0.096

(0.010)
0.658

(0.025)
0.011

(0.003)
0.209

(0.025)
0.000

(0.000)
0.000

(0.000)

South 500 0.081
(0.008)

0.697
(0.026)

0.079
(0.008)

0.691
(0.027)

0.081
(0.008)

0.704
(0.022)

0.033
(0.006)

0.500
(0.034)

0.004
(0.002)

0.043
(0.013)

South 1000 0.085
(0.008)

0.777
(0.010)

0.083
(0.008)

0.777
(0.009)

0.088
(0.007)

0.768
(0.011)

0.040
(0.005)

0.661
(0.014)

0.046
(0.008)

0.502
(0.024)

South 2000 0.093
(0.008)

0.803
(0.009)

0.093
(0.008)

0.803
(0.009)

0.101
(0.008)

0.790
(0.009)

0.056
(0.007)

0.718
(0.012)

0.073
(0.011)

0.744
(0.014)

Table A25: Coverage and size of prediction sets constructed with different methods for groups formed
by Region. See corresponding plots in Figure A24.

AFCP AFCP1 Marginal Partial Exhaustive

Group Sample
Size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

<18
<18 200 0.104

(0.012)
0.608

(0.032)
0.067

(0.010)
0.484

(0.047)
0.104

(0.012)
0.613

(0.031)
0.020

(0.005)
0.227

(0.039)
0.000

(0.000)
0.000

(0.000)

<18 500 0.107
(0.010)

0.715
(0.017)

0.104
(0.010)

0.710
(0.018)

0.100
(0.008)

0.695
(0.022)

0.049
(0.007)

0.474
(0.036)

0.013
(0.005)

0.065
(0.022)

<18 1000 0.101
(0.010)

0.777
(0.010)

0.096
(0.010)

0.774
(0.010)

0.105
(0.011)

0.767
(0.013)

0.051
(0.009)

0.645
(0.019)

0.044
(0.006)

0.499
(0.027)

<18 2000 0.114
(0.009)

0.806
(0.014)

0.114
(0.009)

0.806
(0.014)

0.121
(0.010)

0.806
(0.014)

0.063
(0.008)

0.689
(0.024)

0.072
(0.009)

0.693
(0.021)

18-24
18-24 200 0.082

(0.011)
0.680

(0.027)
0.062

(0.010)
0.605

(0.041)
0.088

(0.011)
0.655

(0.032)
0.017

(0.004)
0.272

(0.039)
0.000

(0.000)
0.000

(0.000)

18-24 500 0.069
(0.007)

0.730
(0.021)

0.069
(0.007)

0.736
(0.018)

0.068
(0.007)

0.708
(0.022)

0.025
(0.004)

0.546
(0.032)

0.013
(0.006)

0.089
(0.019)

18-24 1000 0.099
(0.010)

0.791
(0.012)

0.096
(0.010)

0.791
(0.012)

0.098
(0.009)

0.779
(0.013)

0.051
(0.007)

0.698
(0.015)

0.060
(0.012)

0.541
(0.030)

18-24 2000 0.084
(0.007)

0.804
(0.011)

0.084
(0.007)

0.804
(0.011)

0.079
(0.007)

0.799
(0.012)

0.048
(0.005)

0.731
(0.015)

0.069
(0.007)

0.757
(0.013)

25-40
25-40 200 0.078

(0.011)
0.660

(0.040)
0.062

(0.010)
0.575

(0.051)
0.094

(0.012)
0.672

(0.031)
0.015

(0.005)
0.208

(0.040)
0.000

(0.000)
0.000

(0.000)

25-40 500 0.060
(0.006)

0.741
(0.020)

0.060
(0.007)

0.745
(0.021)

0.068
(0.007)

0.722
(0.023)

0.034
(0.005)

0.581
(0.032)

0.005
(0.003)

0.052
(0.016)

25-40 1000 0.082
(0.007)

0.784
(0.013)

0.084
(0.007)

0.784
(0.013)

0.090
(0.008)

0.777
(0.013)

0.045
(0.006)

0.680
(0.017)

0.058
(0.010)

0.537
(0.030)

25-40 2000 0.093
(0.009)

0.804
(0.011)

0.093
(0.009)

0.804
(0.011)

0.096
(0.007)

0.803
(0.011)

0.051
(0.006)

0.741
(0.012)

0.069
(0.009)

0.738
(0.013)

41-65
41-65 200 0.084

(0.009)
0.653

(0.036)
0.066

(0.008)
0.607

(0.041)
0.099

(0.008)
0.672

(0.031)
0.016

(0.004)
0.244

(0.039)
0.000

(0.000)
0.000

(0.000)

41-65 500 0.074
(0.009)

0.688
(0.025)

0.068
(0.010)

0.679
(0.025)

0.083
(0.009)

0.680
(0.023)

0.030
(0.004)

0.498
(0.031)

0.011
(0.004)

0.074
(0.018)

41-65 1000 0.073
(0.008)

0.798
(0.013)

0.070
(0.007)

0.798
(0.013)

0.073
(0.008)

0.771
(0.016)

0.034
(0.005)

0.667
(0.024)

0.045
(0.007)

0.542
(0.031)

41-65 2000 0.091
(0.008)

0.810
(0.010)

0.091
(0.008)

0.810
(0.010)

0.106
(0.007)

0.801
(0.013)

0.055
(0.007)

0.721
(0.016)

0.074
(0.008)

0.745
(0.018)

>65
>65 200 0.118

(0.015)
0.614

(0.039)
0.086

(0.015)
0.452

(0.053)
0.120

(0.016)
0.633

(0.026)
0.022

(0.007)
0.158

(0.037)
0.000

(0.000)
0.000

(0.000)

>65 500 0.086
(0.010)

0.657
(0.034)

0.088
(0.010)

0.651
(0.035)

0.108
(0.010)

0.673
(0.024)

0.046
(0.006)

0.497
(0.036)

0.006
(0.003)

0.060
(0.019)

>65 1000 0.094
(0.011)

0.752
(0.015)

0.093
(0.011)

0.754
(0.015)

0.114
(0.010)

0.759
(0.016)

0.052
(0.007)

0.631
(0.024)

0.054
(0.008)

0.481
(0.027)

>65 2000 0.100
(0.009)

0.797
(0.013)

0.100
(0.009)

0.797
(0.013)

0.100
(0.009)

0.793
(0.012)

0.061
(0.006)

0.720
(0.020)

0.070
(0.007)

0.711
(0.019)
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A7.2.3 Adult Income Data

We apply our method to the open-domain Adult Income dataset [51], a widely utilized resource in
fairness studies. In this dataset, individuals with an income exceeding $50,000 are treated as outliers,
while those with an income of $50,000 or less are considered inliers. All categorical variables
in this dataset are treated as sensitive attributes, with levels that have small sample sizes grouped
together during the pre-processing stages. After pre-processing, the sensitive attributes and their
associated levels are as follows: Native-country (United-States, Others); Education (Bachelors, Some-
college, HS-grad, Others); Work Class (Private, Non-private); Marital-status (Divorced, Married-civ-
spouse, Never-married, Others); Occupation (Adm-clerical, Craft-repair, Other-service, Sales, Exec-
managerial, Prof-specialty, Others); Relationship (Own-child, Husband, Not-in-family, Unmarried,
Others); Race (White, Others); and Sex (female, male).

This section evaluates and compares the performance of AFCP, AFCP1, and AFCP+, which is the
AFCP implementation capable of selecting multiple protected attributes, along with other benchmark
methods described in Appendix A7.2.1. All results presented in this section average over 500 test
points and 30 independent experiments.

For this dataset, the groups suffering from algorithmic biases are unknown. Figure A27 evaluates the
performance of different methods on several groups that are observed to exhibit higher FPR using the
Marginal method. In all such cases, our AFCP, AFPC1, and AFCP+ methods effectively identify and
correct for the protected attributes corresponding to at least one group suffering from significantly
higher FPR.

Figure A28 and Table A26 present the average FPR and TPR of conformal p-values computed using
different methods across all test samples. On average, all methods can control the FPR below the
target level of 0.1, while our AFCP methods generally achieve higher TPR.

In addition, Figures A29–A36 and Table A27–A34 separately assess the FPR and TPR of conformal
p-values for each protected attribute.

Relationship: Husband Workclass: Not private

Education: Bachelors Marital status: Married−civ−spouse Occupation: Exec−managerial
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Figure A27: FPR of conformal p-values constructed with different methods for groups that are
observed to have significantly higher FPR when using the Marginal method. On average, our methods
identify those groups and perform corrections on the FPR.
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Figure A28: Average FPR and TPR of conformal p-values constructed with different methods on
all test samples. All methods control FPR under the target level 0.1. Our AFCP methods can
produce generally higher TPR than other methods except the Marginal one. However, as depicted in
Figure A27, the Marginal method suffers from unfairness.

Table A26: Average FPR and TPR of conformal p-values constructed with different methods on all
test samples. All methods control FPR under the target level 0.1. Red numbers indicate high TPR.
See corresponding plots in Figure A28.

AFCP AFCP1 AFCP+ Marginal Partial Exhaustive

Sample
size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

1
200 0.080

(0.008)
0.226

(0.020)
0.045

(0.004)
0.094

(0.010)
0.075

(0.009)
0.214

(0.021)
0.090

(0.007)
0.267

(0.018)
0.003

(0.001)
0.006

(0.002)
0.000

(0.000)
0.000

(0.000)
1

500 0.093
(0.005)

0.285
(0.019)

0.091
(0.006)

0.256
(0.022)

0.080
(0.005)

0.227
(0.024)

0.099
(0.006)

0.344
(0.018)

0.020
(0.003)

0.085
(0.011)

0.000
(0.000)

0.000
(0.000)

1
1000 0.093

(0.005)
0.299

(0.015)
0.091

(0.005)
0.283

(0.014)
0.064

(0.007)
0.176

(0.022)
0.095

(0.005)
0.408

(0.012)
0.028

(0.003)
0.153

(0.013)
0.002

(0.001)
0.008

(0.002)
1

2000 0.095
(0.004)

0.362
(0.012)

0.097
(0.004)

0.359
(0.013)

0.058
(0.005)

0.190
(0.017)

0.095
(0.005)

0.475
(0.009)

0.030
(0.003)

0.231
(0.010)

0.008
(0.001)

0.019
(0.002)
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Figure A29: Performance on conformal p-values constructed by different methods for groups formed
by Work Class. See Table A27 for numerical details and standard errors.
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Figure A30: Performance on conformal p-values constructed by different methods for groups formed
by Education. See Table A28 for numerical details and standard errors.
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Table A27: Coverage and size of prediction sets constructed with different methods for groups formed
by Work Class. See corresponding plots in Figure A29.

AFCP AFCP1 AFCP+ Marginal Partial Exhaustive

Attribute: Workclass Sample
size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

Not private
Not private 200 0.141

(0.015)
0.248

(0.025)
0.067

(0.008)
0.101

(0.015)
0.133

(0.016)
0.238

(0.027)
0.167

(0.015)
0.306

(0.026)
0.004

(0.002)
0.005

(0.002)
0.000

(0.000)
0.000

(0.000)

Not private 500 0.154
(0.010)

0.292
(0.022)

0.148
(0.010)

0.258
(0.025)

0.125
(0.012)

0.206
(0.026)

0.174
(0.011)

0.380
(0.019)

0.037
(0.006)

0.089
(0.012)

0.000
(0.000)

0.000
(0.000)

Not private 1000 0.152
(0.012)

0.303
(0.019)

0.150
(0.012)

0.292
(0.018)

0.091
(0.013)

0.175
(0.024)

0.167
(0.012)

0.451
(0.019)

0.051
(0.009)

0.169
(0.018)

0.000
(0.000)

0.000
(0.000)

Not private 2000 0.133
(0.009)

0.371
(0.017)

0.134
(0.009)

0.367
(0.016)

0.064
(0.009)

0.164
(0.021)

0.147
(0.008)

0.484
(0.014)

0.048
(0.005)

0.238
(0.013)

0.001
(0.001)

0.001
(0.001)

Private
Private 200 0.062

(0.008)
0.214

(0.021)
0.038

(0.005)
0.091

(0.014)
0.057

(0.008)
0.201

(0.022)
0.067

(0.007)
0.248

(0.019)
0.002

(0.001)
0.006

(0.002)
0.000

(0.000)
0.000

(0.000)

Private 500 0.073
(0.005)

0.283
(0.021)

0.073
(0.006)

0.254
(0.022)

0.066
(0.005)

0.239
(0.025)

0.076
(0.005)

0.324
(0.021)

0.015
(0.003)

0.083
(0.012)

0.000
(0.000)

0.000
(0.000)

Private 1000 0.075
(0.006)

0.298
(0.020)

0.073
(0.006)

0.279
(0.018)

0.055
(0.006)

0.178
(0.026)

0.073
(0.004)

0.386
(0.011)

0.021
(0.003)

0.144
(0.012)

0.003
(0.001)

0.012
(0.003)

Private 2000 0.083
(0.004)

0.356
(0.014)

0.085
(0.004)

0.353
(0.015)

0.056
(0.005)

0.205
(0.017)

0.078
(0.005)

0.468
(0.013)

0.024
(0.003)

0.226
(0.012)

0.010
(0.002)

0.028
(0.004)

Table A28: Coverage and size of prediction sets constructed with different methods for groups formed
by Education. See corresponding plots in Figure A30.

AFCP AFCP1 AFCP+ Marginal Partial Exhaustive

Attribute: Education Sample
size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

Bachelors
Bachelors 200 0.138

(0.020)
0.304

(0.036)
0.048

(0.012)
0.075

(0.021)
0.125

(0.019)
0.278

(0.035)
0.186

(0.017)
0.402

(0.030)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Bachelors 500 0.181
(0.022)

0.382
(0.038)

0.163
(0.020)

0.319
(0.037)

0.155
(0.020)

0.291
(0.038)

0.207
(0.019)

0.498
(0.030)

0.031
(0.008)

0.102
(0.023)

0.000
(0.000)

0.000
(0.000)

Bachelors 1000 0.141
(0.021)

0.315
(0.037)

0.133
(0.019)

0.287
(0.029)

0.095
(0.021)

0.171
(0.032)

0.203
(0.016)

0.570
(0.024)

0.063
(0.012)

0.201
(0.024)

0.000
(0.000)

0.000
(0.000)

Bachelors 2000 0.141
(0.017)

0.410
(0.027)

0.142
(0.016)

0.409
(0.027)

0.073
(0.018)

0.192
(0.029)

0.203
(0.011)

0.643
(0.019)

0.064
(0.010)

0.318
(0.025)

0.000
(0.000)

0.000
(0.000)

HS-grad
HS-grad 200 0.045

(0.006)
0.105

(0.015)
0.032

(0.005)
0.089

(0.016)
0.045

(0.006)
0.105

(0.015)
0.050

(0.006)
0.117

(0.015)
0.001

(0.001)
0.005

(0.003)
0.000

(0.000)
0.000

(0.000)

HS-grad 500 0.054
(0.005)

0.134
(0.013)

0.059
(0.006)

0.135
(0.019)

0.050
(0.006)

0.126
(0.020)

0.056
(0.005)

0.162
(0.015)

0.010
(0.003)

0.039
(0.009)

0.000
(0.000)

0.000
(0.000)

HS-grad 1000 0.073
(0.006)

0.223
(0.021)

0.075
(0.007)

0.219
(0.020)

0.053
(0.007)

0.133
(0.018)

0.056
(0.005)

0.211
(0.012)

0.011
(0.003)

0.064
(0.007)

0.007
(0.003)

0.035
(0.007)

HS-grad 2000 0.080
(0.008)

0.234
(0.018)

0.081
(0.008)

0.228
(0.019)

0.055
(0.006)

0.147
(0.012)

0.064
(0.006)

0.260
(0.013)

0.017
(0.003)

0.089
(0.008)

0.014
(0.002)

0.065
(0.011)

Others
Others 200 0.080

(0.014)
0.237

(0.033)
0.060

(0.011)
0.123

(0.023)
0.078

(0.014)
0.239

(0.034)
0.081

(0.012)
0.257

(0.030)
0.003

(0.001)
0.007

(0.003)
0.000

(0.000)
0.000

(0.000)

Others 500 0.098
(0.009)

0.312
(0.024)

0.097
(0.009)

0.287
(0.026)

0.082
(0.009)

0.243
(0.029)

0.108
(0.011)

0.358
(0.022)

0.022
(0.005)

0.104
(0.017)

0.000
(0.000)

0.000
(0.000)

Others 1000 0.096
(0.009)

0.365
(0.022)

0.094
(0.009)

0.349
(0.023)

0.068
(0.009)

0.224
(0.026)

0.097
(0.010)

0.450
(0.021)

0.024
(0.004)

0.184
(0.018)

0.001
(0.001)

0.001
(0.001)

Others 2000 0.095
(0.008)

0.418
(0.022)

0.099
(0.007)

0.416
(0.022)

0.062
(0.008)

0.234
(0.028)

0.093
(0.009)

0.516
(0.015)

0.024
(0.004)

0.268
(0.014)

0.008
(0.003)

0.009
(0.002)

Some-college
Some-college 200 0.102

(0.013)
0.223

(0.032)
0.045

(0.008)
0.091

(0.018)
0.088

(0.014)
0.188

(0.032)
0.108

(0.014)
0.235

(0.033)
0.007

(0.004)
0.014

(0.007)
0.000

(0.000)
0.000

(0.000)

Some-college 500 0.097
(0.010)

0.269
(0.029)

0.093
(0.011)

0.245
(0.030)

0.082
(0.009)

0.221
(0.030)

0.098
(0.011)

0.294
(0.027)

0.027
(0.007)

0.081
(0.015)

0.000
(0.000)

0.000
(0.000)

Some-college 1000 0.095
(0.009)

0.236
(0.022)

0.088
(0.008)

0.222
(0.022)

0.057
(0.009)

0.139
(0.022)

0.095
(0.009)

0.315
(0.023)

0.041
(0.006)

0.117
(0.013)

0.000
(0.000)

0.000
(0.000)

Some-college 2000 0.093
(0.011)

0.326
(0.025)

0.093
(0.011)

0.319
(0.025)

0.051
(0.006)

0.149
(0.016)

0.088
(0.009)

0.387
(0.026)

0.039
(0.006)

0.188
(0.018)

0.001
(0.001)

0.009
(0.004)
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Figure A31: Performance on conformal p-values constructed by different methods for groups formed
by Marital Status. See Table A29 for numerical details and standard errors.

52

108811https://doi.org/10.52202/079017-3454



Table A29: Coverage and size of prediction sets constructed with different methods for groups formed
by Marital Status. See corresponding plots in Figure A31.

AFCP AFCP1 AFCP+ Marginal Partial Exhaustive

Attribute: Marital status Sample
size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

Divorced
Divorced 200 0.049

(0.010)
0.105

(0.027)
0.020

(0.006)
0.032

(0.014)
0.043

(0.010)
0.107

(0.027)
0.053

(0.011)
0.116

(0.028)
0.001

(0.001)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Divorced 500 0.054
(0.012)

0.174
(0.038)

0.058
(0.013)

0.174
(0.038)

0.035
(0.009)

0.114
(0.029)

0.048
(0.010)

0.139
(0.030)

0.013
(0.006)

0.037
(0.016)

0.000
(0.000)

0.000
(0.000)

Divorced 1000 0.037
(0.010)

0.141
(0.033)

0.036
(0.011)

0.144
(0.032)

0.017
(0.007)

0.089
(0.027)

0.031
(0.009)

0.151
(0.032)

0.006
(0.005)

0.052
(0.020)

0.000
(0.000)

0.000
(0.000)

Divorced 2000 0.054
(0.011)

0.224
(0.039)

0.054
(0.010)

0.224
(0.039)

0.051
(0.013)

0.105
(0.034)

0.043
(0.009)

0.199
(0.040)

0.015
(0.005)

0.114
(0.030)

0.000
(0.000)

0.000
(0.000)

Married-civ-spouse
Married-civ-spouse 200 0.164

(0.019)
0.243

(0.021)
0.087

(0.010)
0.103

(0.012)
0.154

(0.020)
0.229

(0.023)
0.178

(0.017)
0.286

(0.020)
0.007

(0.003)
0.007

(0.002)
0.000

(0.000)
0.000

(0.000)

Married-civ-spouse 500 0.162
(0.013)

0.299
(0.022)

0.158
(0.015)

0.266
(0.025)

0.127
(0.013)

0.236
(0.027)

0.198
(0.014)

0.372
(0.021)

0.037
(0.008)

0.090
(0.012)

0.000
(0.000)

0.000
(0.000)

Married-civ-spouse 1000 0.179
(0.015)

0.315
(0.018)

0.172
(0.015)

0.297
(0.017)

0.089
(0.014)

0.182
(0.024)

0.220
(0.011)

0.444
(0.013)

0.061
(0.007)

0.162
(0.014)

0.007
(0.002)

0.009
(0.002)

Married-civ-spouse 2000 0.161
(0.015)

0.375
(0.015)

0.162
(0.016)

0.371
(0.015)

0.068
(0.006)

0.192
(0.017)

0.215
(0.010)

0.516
(0.011)

0.058
(0.006)

0.247
(0.012)

0.023
(0.003)

0.021
(0.003)

Never-married
Never-married 200 0.015

(0.003)
0.059

(0.016)
0.014

(0.003)
0.041

(0.014)
0.015

(0.003)
0.063

(0.016)
0.022

(0.004)
0.100

(0.021)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Never-married 500 0.034
(0.006)

0.158
(0.023)

0.032
(0.006)

0.147
(0.022)

0.040
(0.008)

0.150
(0.022)

0.025
(0.004)

0.132
(0.020)

0.006
(0.002)

0.050
(0.010)

0.000
(0.000)

0.000
(0.000)

Never-married 1000 0.043
(0.009)

0.190
(0.024)

0.043
(0.009)

0.182
(0.023)

0.061
(0.009)

0.166
(0.025)

0.019
(0.003)

0.163
(0.019)

0.007
(0.002)

0.079
(0.014)

0.000
(0.000)

0.000
(0.000)

Never-married 2000 0.055
(0.009)

0.307
(0.036)

0.056
(0.009)

0.309
(0.036)

0.059
(0.008)

0.275
(0.032)

0.020
(0.003)

0.224
(0.023)

0.008
(0.002)

0.129
(0.017)

0.000
(0.000)

0.002
(0.002)

Others
Others 200 0.089

(0.012)
0.175

(0.028)
0.050

(0.009)
0.049

(0.011)
0.080

(0.012)
0.171

(0.029)
0.106

(0.015)
0.201

(0.029)
0.002

(0.001)
0.005

(0.003)
0.000

(0.000)
0.000

(0.000)

Others 500 0.108
(0.011)

0.240
(0.025)

0.108
(0.011)

0.225
(0.021)

0.102
(0.012)

0.205
(0.023)

0.097
(0.011)

0.230
(0.025)

0.021
(0.006)

0.063
(0.014)

0.000
(0.000)

0.000
(0.000)

Others 1000 0.080
(0.011)

0.262
(0.031)

0.081
(0.011)

0.255
(0.032)

0.046
(0.010)

0.149
(0.036)

0.071
(0.006)

0.259
(0.027)

0.025
(0.005)

0.142
(0.025)

0.000
(0.000)

0.000
(0.000)

Others 2000 0.093
(0.012)

0.288
(0.022)

0.098
(0.013)

0.299
(0.022)

0.039
(0.007)

0.131
(0.029)

0.069
(0.010)

0.256
(0.024)

0.035
(0.007)

0.155
(0.020)

0.000
(0.000)

0.000
(0.000)
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Figure A32: Performance on conformal p-values constructed by different methods for groups formed
by Occupation. See Table A30 for numerical details and standard errors.
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Figure A33: Performance on conformal p-values constructed by different methods for groups formed
by Relationship. See Table A31 for numerical details and standard errors.
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Table A30: Coverage and size of prediction sets constructed with different methods for groups formed
by Occupation. See corresponding plots in Figure A32.

AFCP AFCP1 AFCP+ Marginal Partial Exhaustive

Attribute: Occupation Sample
size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

Adm-clerical
Adm-clerical 200 0.090

(0.015)
0.206

(0.027)
0.058

(0.014)
0.126

(0.032)
0.077

(0.015)
0.183

(0.028)
0.113

(0.018)
0.239

(0.028)
0.003

(0.002)
0.010

(0.010)
0.000

(0.000)
0.000

(0.000)

Adm-clerical 500 0.122
(0.014)

0.242
(0.030)

0.107
(0.014)

0.192
(0.030)

0.118
(0.015)

0.209
(0.031)

0.136
(0.015)

0.321
(0.028)

0.037
(0.012)

0.069
(0.020)

0.000
(0.000)

0.000
(0.000)

Adm-clerical 1000 0.108
(0.014)

0.248
(0.027)

0.112
(0.015)

0.245
(0.025)

0.078
(0.015)

0.128
(0.022)

0.093
(0.012)

0.281
(0.025)

0.042
(0.010)

0.133
(0.022)

0.000
(0.000)

0.000
(0.000)

Adm-clerical 2000 0.106
(0.014)

0.322
(0.033)

0.102
(0.014)

0.312
(0.032)

0.059
(0.011)

0.132
(0.027)

0.086
(0.012)

0.352
(0.029)

0.041
(0.007)

0.176
(0.027)

0.000
(0.000)

0.000
(0.000)

Craft-repair
Craft-repair 200 0.103

(0.017)
0.176

(0.030)
0.050

(0.012)
0.073

(0.016)
0.099

(0.016)
0.165

(0.029)
0.108

(0.015)
0.183

(0.029)
0.004

(0.004)
0.008

(0.005)
0.000

(0.000)
0.000

(0.000)

Craft-repair 500 0.075
(0.011)

0.187
(0.023)

0.075
(0.013)

0.182
(0.024)

0.079
(0.011)

0.160
(0.023)

0.097
(0.011)

0.230
(0.023)

0.023
(0.006)

0.071
(0.014)

0.000
(0.000)

0.000
(0.000)

Craft-repair 1000 0.128
(0.014)

0.242
(0.027)

0.123
(0.013)

0.229
(0.028)

0.065
(0.013)

0.131
(0.023)

0.134
(0.012)

0.278
(0.021)

0.050
(0.009)

0.104
(0.015)

0.008
(0.004)

0.027
(0.009)

Craft-repair 2000 0.102
(0.012)

0.270
(0.022)

0.099
(0.012)

0.262
(0.022)

0.065
(0.009)

0.168
(0.017)

0.123
(0.012)

0.346
(0.020)

0.035
(0.005)

0.163
(0.013)

0.010
(0.003)

0.065
(0.010)

Exec-managerial
Exec-managerial 200 0.121

(0.019)
0.248

(0.033)
0.039

(0.009)
0.079

(0.021)
0.109

(0.017)
0.237

(0.033)
0.131

(0.017)
0.279

(0.031)
0.001

(0.001)
0.003

(0.003)
0.000

(0.000)
0.000

(0.000)

Exec-managerial 500 0.165
(0.017)

0.362
(0.033)

0.149
(0.018)

0.298
(0.033)

0.139
(0.017)

0.282
(0.034)

0.179
(0.016)

0.439
(0.025)

0.039
(0.011)

0.103
(0.017)

0.000
(0.000)

0.000
(0.000)

Exec-managerial 1000 0.139
(0.016)

0.340
(0.031)

0.128
(0.015)

0.300
(0.024)

0.097
(0.017)

0.201
(0.038)

0.172
(0.015)

0.517
(0.021)

0.040
(0.008)

0.193
(0.023)

0.000
(0.000)

0.000
(0.000)

Exec-managerial 2000 0.115
(0.013)

0.442
(0.021)

0.115
(0.013)

0.440
(0.021)

0.062
(0.013)

0.231
(0.030)

0.161
(0.013)

0.611
(0.018)

0.044
(0.008)

0.319
(0.018)

0.000
(0.000)

0.000
(0.000)

Other-service
Other-service 200 0.026

(0.007)
0.114

(0.034)
0.016

(0.006)
0.050

(0.022)
0.023

(0.007)
0.101

(0.034)
0.025

(0.006)
0.131

(0.036)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Other-service 500 0.065
(0.012)

0.249
(0.055)

0.071
(0.012)

0.269
(0.053)

0.041
(0.008)

0.180
(0.044)

0.044
(0.006)

0.242
(0.045)

0.009
(0.004)

0.082
(0.028)

0.000
(0.000)

0.000
(0.000)

Other-service 1000 0.039
(0.008)

0.118
(0.028)

0.038
(0.008)

0.129
(0.033)

0.034
(0.007)

0.069
(0.026)

0.035
(0.006)

0.129
(0.040)

0.012
(0.004)

0.049
(0.018)

0.000
(0.000)

0.000
(0.000)

Other-service 2000 0.070
(0.011)

0.253
(0.042)

0.073
(0.011)

0.253
(0.042)

0.040
(0.009)

0.107
(0.025)

0.028
(0.006)

0.201
(0.029)

0.013
(0.004)

0.062
(0.018)

0.000
(0.000)

0.000
(0.000)

Others
Others 200 0.058

(0.012)
0.141

(0.021)
0.059

(0.012)
0.118

(0.024)
0.056

(0.012)
0.137

(0.021)
0.060

(0.012)
0.151

(0.024)
0.005

(0.002)
0.007

(0.004)
0.000

(0.000)
0.000

(0.000)

Others 500 0.064
(0.009)

0.187
(0.024)

0.069
(0.009)

0.195
(0.024)

0.054
(0.010)

0.163
(0.026)

0.058
(0.008)

0.187
(0.023)

0.011
(0.004)

0.047
(0.011)

0.000
(0.000)

0.000
(0.000)

Others 1000 0.070
(0.007)

0.214
(0.019)

0.073
(0.007)

0.221
(0.022)

0.054
(0.008)

0.146
(0.017)

0.050
(0.007)

0.243
(0.013)

0.010
(0.003)

0.081
(0.010)

0.004
(0.002)

0.027
(0.009)

Others 2000 0.071
(0.008)

0.225
(0.018)

0.077
(0.010)

0.229
(0.018)

0.059
(0.005)

0.161
(0.017)

0.062
(0.008)

0.259
(0.016)

0.017
(0.003)

0.102
(0.012)

0.023
(0.004)

0.061
(0.009)

Prof-specialty
Prof-specialty 200 0.094

(0.017)
0.243

(0.032)
0.040

(0.012)
0.079

(0.020)
0.091

(0.016)
0.232

(0.033)
0.125

(0.017)
0.308

(0.029)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Prof-specialty 500 0.136
(0.024)

0.309
(0.033)

0.129
(0.019)

0.275
(0.034)

0.118
(0.021)

0.225
(0.031)

0.147
(0.027)

0.385
(0.029)

0.018
(0.006)

0.086
(0.015)

0.000
(0.000)

0.000
(0.000)

Prof-specialty 1000 0.122
(0.016)

0.332
(0.018)

0.120
(0.016)

0.321
(0.019)

0.074
(0.015)

0.193
(0.026)

0.159
(0.018)

0.464
(0.019)

0.039
(0.010)

0.163
(0.018)

0.000
(0.000)

0.000
(0.000)

Prof-specialty 2000 0.131
(0.013)

0.411
(0.024)

0.131
(0.013)

0.404
(0.026)

0.073
(0.014)

0.205
(0.029)

0.167
(0.012)

0.562
(0.021)

0.037
(0.008)

0.262
(0.017)

0.000
(0.000)

0.000
(0.000)

Sales
Sales 200 0.110

(0.016)
0.326

(0.035)
0.032

(0.008)
0.120

(0.022)
0.105

(0.016)
0.306

(0.037)
0.127

(0.015)
0.415

(0.036)
0.002

(0.002)
0.013

(0.007)
0.000

(0.000)
0.000

(0.000)

Sales 500 0.086
(0.015)

0.344
(0.035)

0.084
(0.014)

0.327
(0.037)

0.071
(0.011)

0.286
(0.038)

0.126
(0.019)

0.428
(0.034)

0.021
(0.005)

0.124
(0.024)

0.000
(0.000)

0.000
(0.000)

Sales 1000 0.103
(0.016)

0.382
(0.025)

0.091
(0.015)

0.357
(0.024)

0.072
(0.013)

0.221
(0.032)

0.128
(0.012)

0.535
(0.025)

0.036
(0.008)

0.218
(0.021)

0.000
(0.000)

0.000
(0.000)

Sales 2000 0.112
(0.014)

0.404
(0.031)

0.114
(0.014)

0.402
(0.031)

0.045
(0.009)

0.185
(0.032)

0.111
(0.011)

0.548
(0.021)

0.041
(0.009)

0.278
(0.025)

0.000
(0.000)

0.000
(0.000)

FPR TPR

200 500 1000 2000 200 500 1000 2000
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Figure A34: Performance on conformal p-values constructed by different methods for groups formed
by Race. See Table A32 for numerical details and standard errors.
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Table A31: Coverage and size of prediction sets constructed with different methods for groups formed
by Relationship. See corresponding plots in Figure A33.

AFCP AFCP1 AFCP+ Marginal Partial Exhaustive

Attribute: Relationship Sample
size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

Husband
Husband 200 0.181

(0.021)
0.266

(0.023)
0.096

(0.011)
0.112

(0.013)
0.170

(0.022)
0.251

(0.025)
0.196

(0.019)
0.313

(0.022)
0.007

(0.004)
0.007

(0.003)
0.000

(0.000)
0.000

(0.000)

Husband 500 0.170
(0.014)

0.321
(0.024)

0.169
(0.016)

0.286
(0.027)

0.136
(0.014)

0.254
(0.028)

0.213
(0.016)

0.400
(0.022)

0.040
(0.008)

0.098
(0.013)

0.000
(0.000)

0.000
(0.000)

Husband 1000 0.191
(0.018)

0.332
(0.019)

0.183
(0.018)

0.314
(0.019)

0.097
(0.015)

0.191
(0.025)

0.239
(0.013)

0.473
(0.014)

0.066
(0.008)

0.174
(0.015)

0.008
(0.003)

0.010
(0.002)

Husband 2000 0.160
(0.015)

0.389
(0.016)

0.161
(0.016)

0.385
(0.016)

0.074
(0.006)

0.207
(0.018)

0.225
(0.011)

0.537
(0.011)

0.061
(0.006)

0.262
(0.013)

0.025
(0.004)

0.024
(0.003)

Not-in-family
Not-in-family 200 0.057

(0.007)
0.127

(0.018)
0.035

(0.005)
0.054

(0.010)
0.053

(0.007)
0.131

(0.019)
0.072

(0.009)
0.161

(0.020)
0.001

(0.001)
0.003

(0.002)
0.000

(0.000)
0.000

(0.000)

Not-in-family 500 0.082
(0.009)

0.227
(0.020)

0.082
(0.008)

0.217
(0.018)

0.077
(0.009)

0.193
(0.019)

0.068
(0.006)

0.201
(0.019)

0.016
(0.003)

0.064
(0.009)

0.000
(0.000)

0.000
(0.000)

Not-in-family 1000 0.064
(0.009)

0.224
(0.022)

0.064
(0.009)

0.217
(0.022)

0.053
(0.009)

0.141
(0.022)

0.048
(0.005)

0.215
(0.016)

0.016
(0.004)

0.108
(0.012)

0.000
(0.000)

0.000
(0.000)

Not-in-family 2000 0.080
(0.009)

0.295
(0.026)

0.081
(0.009)

0.300
(0.025)

0.060
(0.008)

0.188
(0.028)

0.053
(0.004)

0.248
(0.015)

0.023
(0.004)

0.144
(0.012)

0.000
(0.000)

0.000
(0.000)

Others
Others 200 0.025

(0.008)
0.066

(0.013)
0.016

(0.007)
0.035

(0.010)
0.021

(0.008)
0.061

(0.014)
0.022

(0.007)
0.078

(0.014)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Others 500 0.059
(0.012)

0.117
(0.019)

0.045
(0.009)

0.093
(0.017)

0.031
(0.010)

0.082
(0.019)

0.051
(0.012)

0.146
(0.021)

0.012
(0.006)

0.021
(0.009)

0.000
(0.000)

0.000
(0.000)

Others 1000 0.049
(0.008)

0.172
(0.022)

0.051
(0.008)

0.154
(0.019)

0.021
(0.008)

0.100
(0.027)

0.062
(0.015)

0.195
(0.026)

0.017
(0.006)

0.059
(0.011)

0.000
(0.000)

0.000
(0.000)

Others 2000 0.091
(0.015)

0.243
(0.025)

0.091
(0.015)

0.237
(0.025)

0.026
(0.009)

0.062
(0.018)

0.081
(0.015)

0.321
(0.022)

0.026
(0.008)

0.114
(0.016)

0.000
(0.000)

0.000
(0.000)

Own-child
Own-child 200 0.008

(0.003)
0.025

(0.018)
0.010

(0.003)
0.011

(0.011)
0.009

(0.003)
0.025

(0.018)
0.010

(0.003)
0.033

(0.020)
0.001

(0.001)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Own-child 500 0.017
(0.009)

0.089
(0.040)

0.017
(0.009)

0.097
(0.042)

0.026
(0.009)

0.103
(0.041)

0.005
(0.002)

0.067
(0.030)

0.000
(0.000)

0.017
(0.012)

0.000
(0.000)

0.000
(0.000)

Own-child 1000 0.041
(0.014)

0.214
(0.060)

0.041
(0.014)

0.203
(0.060)

0.072
(0.012)

0.167
(0.055)

0.008
(0.002)

0.158
(0.050)

0.002
(0.001)

0.117
(0.049)

0.000
(0.000)

0.000
(0.000)

Own-child 2000 0.054
(0.012)

0.363
(0.050)

0.054
(0.012)

0.363
(0.050)

0.064
(0.011)

0.312
(0.055)

0.011
(0.003)

0.208
(0.049)

0.006
(0.002)

0.127
(0.036)

0.000
(0.000)

0.007
(0.007)

Unmarried
Unmarried 200 0.035

(0.008)
0.084

(0.025)
0.018

(0.006)
0.015

(0.011)
0.031

(0.008)
0.078

(0.024)
0.041

(0.009)
0.111

(0.029)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Unmarried 500 0.060
(0.010)

0.112
(0.027)

0.057
(0.010)

0.102
(0.027)

0.055
(0.011)

0.103
(0.027)

0.060
(0.010)

0.101
(0.025)

0.017
(0.007)

0.030
(0.013)

0.000
(0.000)

0.000
(0.000)

Unmarried 1000 0.044
(0.007)

0.144
(0.034)

0.044
(0.009)

0.142
(0.035)

0.024
(0.007)

0.099
(0.029)

0.038
(0.007)

0.157
(0.031)

0.016
(0.004)

0.059
(0.023)

0.000
(0.000)

0.000
(0.000)

Unmarried 2000 0.050
(0.010)

0.218
(0.031)

0.058
(0.012)

0.226
(0.031)

0.025
(0.008)

0.106
(0.027)

0.026
(0.006)

0.159
(0.030)

0.013
(0.005)

0.090
(0.021)

0.000
(0.000)

0.000
(0.000)

Table A32: Coverage and size of prediction sets constructed with different methods for groups formed
by Race. See corresponding plots in Figure A34.

AFCP AFCP1 AFCP+ Marginal Partial Exhaustive

Attribute: Race Sample
size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

Others
Others 200 0.052

(0.009)
0.190

(0.029)
0.028

(0.005)
0.084

(0.018)
0.051

(0.009)
0.169

(0.027)
0.060

(0.009)
0.217

(0.028)
0.001

(0.001)
0.006

(0.004)
0.000

(0.000)
0.000

(0.000)

Others 500 0.074
(0.009)

0.246
(0.026)

0.070
(0.009)

0.222
(0.029)

0.061
(0.008)

0.190
(0.025)

0.082
(0.009)

0.293
(0.027)

0.019
(0.004)

0.068
(0.014)

0.000
(0.000)

0.000
(0.000)

Others 1000 0.075
(0.008)

0.266
(0.027)

0.077
(0.009)

0.254
(0.026)

0.056
(0.009)

0.167
(0.027)

0.073
(0.009)

0.308
(0.026)

0.026
(0.006)

0.144
(0.019)

0.000
(0.000)

0.000
(0.000)

Others 2000 0.079
(0.009)

0.299
(0.027)

0.078
(0.009)

0.298
(0.028)

0.048
(0.008)

0.172
(0.027)

0.064
(0.008)

0.355
(0.028)

0.029
(0.006)

0.209
(0.022)

0.000
(0.000)

0.000
(0.000)

White
White 200 0.085

(0.009)
0.229

(0.021)
0.048

(0.005)
0.095

(0.011)
0.079

(0.010)
0.218

(0.022)
0.096

(0.008)
0.271

(0.020)
0.003

(0.001)
0.006

(0.002)
0.000

(0.000)
0.000

(0.000)

White 500 0.096
(0.005)

0.289
(0.020)

0.095
(0.006)

0.258
(0.022)

0.084
(0.006)

0.230
(0.024)

0.103
(0.006)

0.349
(0.019)

0.021
(0.003)

0.086
(0.011)

0.000
(0.000)

0.000
(0.000)

White 1000 0.095
(0.006)

0.302
(0.015)

0.093
(0.005)

0.285
(0.014)

0.065
(0.007)

0.177
(0.023)

0.099
(0.005)

0.417
(0.012)

0.028
(0.004)

0.153
(0.013)

0.003
(0.001)

0.009
(0.002)

White 2000 0.098
(0.004)

0.368
(0.013)

0.100
(0.004)

0.365
(0.013)

0.060
(0.006)

0.192
(0.017)

0.101
(0.005)

0.486
(0.011)

0.030
(0.003)

0.233
(0.011)

0.009
(0.001)

0.020
(0.003)
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Figure A35: Performance on conformal p-values constructed by different methods for groups formed
by Sex. See Table A33 for numerical details and standard errors.

Table A33: Coverage and size of prediction sets constructed with different methods for groups formed
by Sex. See corresponding plots in Figure A35.

AFCP AFCP1 AFCP+ Marginal Partial Exhaustive

Attribute: Sex Sample
size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

Female
Female 200 0.047

(0.007)
0.077

(0.013)
0.031

(0.005)
0.035

(0.008)
0.043

(0.007)
0.072

(0.014)
0.057

(0.008)
0.095

(0.014)
0.001

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

Female 500 0.065
(0.007)

0.144
(0.016)

0.061
(0.007)

0.123
(0.014)

0.063
(0.008)

0.110
(0.016)

0.055
(0.005)

0.159
(0.018)

0.013
(0.003)

0.038
(0.009)

0.000
(0.000)

0.000
(0.000)

Female 1000 0.058
(0.008)

0.182
(0.018)

0.058
(0.007)

0.170
(0.017)

0.051
(0.007)

0.113
(0.021)

0.044
(0.005)

0.187
(0.018)

0.016
(0.003)

0.073
(0.009)

0.000
(0.000)

0.000
(0.000)

Female 2000 0.075
(0.007)

0.266
(0.019)

0.077
(0.007)

0.265
(0.020)

0.047
(0.007)

0.106
(0.018)

0.045
(0.005)

0.290
(0.018)

0.020
(0.003)

0.117
(0.010)

0.000
(0.000)

0.000
(0.000)

Male
Male 200 0.100

(0.012)
0.252

(0.022)
0.054

(0.006)
0.105

(0.012)
0.095

(0.012)
0.239

(0.024)
0.111

(0.010)
0.297

(0.021)
0.004

(0.002)
0.007

(0.002)
0.000

(0.000)
0.000

(0.000)

Male 500 0.109
(0.007)

0.310
(0.021)

0.109
(0.008)

0.279
(0.024)

0.090
(0.006)

0.247
(0.026)

0.126
(0.008)

0.377
(0.020)

0.024
(0.004)

0.093
(0.012)

0.000
(0.000)

0.000
(0.000)

Male 1000 0.114
(0.007)

0.321
(0.017)

0.110
(0.007)

0.304
(0.017)

0.071
(0.008)

0.187
(0.024)

0.126
(0.007)

0.448
(0.013)

0.035
(0.004)

0.167
(0.014)

0.004
(0.001)

0.009
(0.002)

Male 2000 0.109
(0.006)

0.379
(0.014)

0.110
(0.006)

0.376
(0.014)

0.065
(0.006)

0.205
(0.018)

0.126
(0.007)

0.507
(0.010)

0.037
(0.003)

0.251
(0.012)

0.013
(0.002)

0.022
(0.003)
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Figure A36: Performance on conformal p-values constructed by different methods for groups formed
by Country. See Table A34 for numerical details and standard errors.
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Table A34: Coverage and size of prediction sets constructed with different methods for groups formed
by Country. See corresponding plots in Figure A36.

AFCP AFCP1 AFCP+ Marginal Partial Exhaustive

Attribute: Country Sample
size FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

Others
Others 200 0.096

(0.017)
0.214

(0.032)
0.060

(0.013)
0.090

(0.018)
0.092

(0.017)
0.204

(0.032)
0.095

(0.014)
0.226

(0.030)
0.000

(0.000)
0.004

(0.004)
0.000

(0.000)
0.000

(0.000)

Others 500 0.081
(0.013)

0.186
(0.028)

0.071
(0.012)

0.155
(0.025)

0.075
(0.012)

0.147
(0.024)

0.120
(0.016)

0.319
(0.035)

0.034
(0.008)

0.051
(0.012)

0.000
(0.000)

0.000
(0.000)

Others 1000 0.086
(0.015)

0.252
(0.028)

0.088
(0.015)

0.243
(0.027)

0.061
(0.011)

0.163
(0.027)

0.087
(0.012)

0.313
(0.029)

0.030
(0.008)

0.138
(0.021)

0.000
(0.000)

0.000
(0.000)

Others 2000 0.082
(0.012)

0.331
(0.029)

0.086
(0.013)

0.336
(0.030)

0.071
(0.012)

0.181
(0.028)

0.094
(0.017)

0.391
(0.030)

0.028
(0.006)

0.210
(0.017)

0.000
(0.000)

0.000
(0.000)

United-States
United-States 200 0.079

(0.008)
0.226

(0.020)
0.043

(0.004)
0.094

(0.010)
0.073

(0.009)
0.214

(0.021)
0.090

(0.007)
0.269

(0.018)
0.003

(0.001)
0.006

(0.002)
0.000

(0.000)
0.000

(0.000)

United-States 500 0.094
(0.005)

0.294
(0.021)

0.093
(0.006)

0.264
(0.024)

0.081
(0.005)

0.234
(0.025)

0.097
(0.006)

0.346
(0.019)

0.019
(0.003)

0.088
(0.012)

0.000
(0.000)

0.000
(0.000)

United-States 1000 0.093
(0.005)

0.303
(0.015)

0.091
(0.005)

0.286
(0.014)

0.064
(0.007)

0.177
(0.023)

0.096
(0.005)

0.415
(0.012)

0.028
(0.003)

0.154
(0.012)

0.003
(0.001)

0.009
(0.002)

United-States 2000 0.097
(0.004)

0.365
(0.012)

0.098
(0.004)

0.360
(0.013)

0.057
(0.005)

0.191
(0.017)

0.095
(0.005)

0.481
(0.010)

0.030
(0.003)

0.232
(0.011)

0.008
(0.001)

0.020
(0.003)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of this work in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are stated in the paper and all proofs are provided in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results. Additionally, code is provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the code needed to reproduce the main ex-
perimental results, and precise information about how the open-domain data were obtained.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars or standard deviations where appropriate, along
with suitable explanations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides information on the computer resources in the Discussion
section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work is motivated by the need to address algorithmic bias issues, which
is a topic with potentially broad impacts, as discussed in the paper. However, this paper
focuses on foundational research that is not tied to a particular application.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper describes foundational research and does not release new data or
models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper uses open-domain data, properly crediting the license and creators.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new code accompanying this paper is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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