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Abstract

For constrained, not necessarily monotone submodular maximization, all known
approximation algorithms with ratio greater than 1/e require continuous ideas,
such as queries to the multilinear extension of a submodular function and its
gradient, which are typically expensive to simulate with the original set function.
For combinatorial algorithms, the best known approximation ratios for both size
and matroid constraint are obtained by a simple randomized greedy algorithm of
Buchbinder et al. [9]: 1/e ≈ 0.367 for size constraint and 0.281 for the matroid
constraint in O(kn) queries, where k is the rank of the matroid. In this work,
we develop the first combinatorial algorithms to break the 1/e barrier: we obtain
approximation ratio of 0.385 in O(kn) queries to the submodular set function for
size constraint, and 0.305 for a general matroid constraint. These are achieved
by guiding the randomized greedy algorithm with a fast local search algorithm.
Further, we develop deterministic versions of these algorithms, maintaining the
same ratio and asymptotic time complexity. Finally, we develop a deterministic,
nearly linear time algorithm with ratio 0.377.

1 Introduction

A nonnegative set function f : 2U → R+ is submodular iff for all S ⊆ T ⊆ U , x ∈ U \ T ,
f (S ∪ {x})−f (S) ≥ f (T ∪ {x})−f (T ); and f is monotone iff f (S) ≤ f (T ) for all S ⊆ T ⊆ U .
Submodular optimization plays an important role in data science and machine learning [3], particularly
in tasks that involve selecting a representative subset of data or features. Its diminishing returns
property makes it ideal for scenarios where the incremental benefit of adding an element to a set
decreases as the set grows. Applications include sensor placement for environmental monitoring [19,
27], where the goal is to maximize coverage with limited sensors, feature selection [22, 18, 2] in
machine learning to improve model performance and reduce overfitting, and data summarization [23,
31] for creating concise and informative summaries of large datasets. Further, many of these
applications employ submodular objective functions that are non-monotone, e.g. Mirzasoleiman et al.
[23], Tschiatschek et al. [31]. Formally, we study the optimization problem (SM): max f (S) , s.t.S ∈
I, where f is nonnegative, submodular and not necessarily monotone; and I ⊆ 2U is a family of
feasible subsets. Specifically, we consider two cases: when I is a size constraint (all sets of size at
most k); and more generally, when I is an arbitrary matroid of rank k.

In this field, algorithms typically assume access to a value oracle for the submodular function f , and
the efficiency of an algorithm is measured by the number of queries to the oracle, because evaluation
of the submodular function is typically expensive and dominates other parts of the computation. In the
general, not necessarily monotone case, the approximability of constrained submodular optimization
in the value oracle model is not well understood. For several years, 1/e ≈ 0.367 was conjectured
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Table 1: The prior state-of-the-art and the ratios achieved in this paper, in each category: deterministic
(det), randomized combinatorial (cmb), and continuous (cts).

Constraint Reference Query Ratio Type

Size

Buchbinder and Feldman [5] O
(
k3n

)
1/e ≈ 0.367 Det

Buchbinder et al. [9] O (kn) 1/e Cmb
Buchbinder and Feldman [7] poly(n) 0.401 Cts

Algorithm 2 O (kn/ε) 0.385− ε Cmb

Algorithm 11 O
(
kn

(
10
9ε

) 20
9ε

−1
)

0.385− ε Det

Algorithm 14 O
(
log(k)n

(
10
3ε

) 20
3ε

(
5
ε

) 10
ε

−1
)

0.377− ε Det

Matroid

Sun et al. [30] O
(
k2n2

)
0.283−O

(
1
k2

)
Det

Buchbinder et al. [9] O (kn) 0.283− ε Cmb
Buchbinder and Feldman [7] poly(n) 0.401 Cts

Algorithm 2 O (kn/ε) 0.305− ε Cmb

Algorithm 11 O
(
kn

(
10
9ε

) 20
9ε

−1
)

0.305− ε Det

to be the best ratio, as this ratio is obtained by the measured continuous greedy [15] algorithm that
also gets the 1− 1/e ratio in the monotone setting, which is known to be optimal [24]. However, in
several landmark works, the 1/e barrier was broken: first to 0.371 by Buchbinder et al. [9] (for size
constraint only) and subsequently to 0.372 by Ene and Nguyen [13], then 0.385 by Buchbinder and
Feldman [6]. Very recently, the best known approximation factor has been improved to 0.401 [7]. On
the other hand, the best hardness result is 0.478 [16, 28].

All of the algorithms improving on the 1/e ratio use oracle queries to the multilinear extension of a
submodular function and its gradient. The multilinear extension relaxes the submodular set function
to allow choosing an element with probability in [0, 1]. Although this is a powerful technique, the
multilinear extension must be approximated by polynomially many random samples of the original
set function oracle. Unfortunately, this leads to a high query complexity for these algorithms, which
we term continuous algorithms; typically, the query complexity to the original submodular function
is left uncomputed. As an illustration, we compute in Appendix B that the continuous algorithm of
Buchbinder and Feldman [6] achieves ratio of 0.385 with query complexity of O

(
n11 log(n)

)
to

the set function oracle. Consequently, these algorithms are of mostly theoretical interest – the time
cost of running on tiny instances (say, n < 100) is already prohibitive, as demonstrated by Chen and
Kuhnle [12] where a continuous algorithm required more than 109 queries to the set function on an
instance with n = 87, k = 10.

For size and matroid constraints, the current state-of-the-art approximation ratio for a combinato-
rial algorithm (i.e. not continuous) is obtained by the RANDOMGREEDY algorithm (Algorithm
1) of Buchbinder et al. [9]. RANDOMGREEDY achieves ratio 1/e ≈ 0.367 for size constraint,

Algorithm 1: Buchbinder et al. [9]
1 Procedure RANDOMGREEDY (f, k):
2 Input: oracle f , size constraint k
3 Initialize: A0 ← ∅
4 for i← 1 to k do
5 Mi ←

argmaxS⊆U,|S|=k

∑
x∈S ∆(x|Ai−1)

6 xi ← a uniformly random
element from Mi

7 Ai ← Ai−1 + xi

8 end
9 return Ak

and 0.283− ε ratio for matroid constraint; its query
complexity is O (kn). Thus, there is no known com-
binatorial algorithm that breaks the 1/e barrier; and
therefore, no such algorithm is available to be used in
practice on any of the applications of SM described
above.

Moreover, closing the gap between ratios achieved
by deterministic and randomized algorithms for SM
has been the focus of a number of recent works
[5, 17, 11, 8]. In addition to theoretical interest, de-
terministic algorithms are desirable in practice, as a
ratio that holds in expectation may fail on any given
run with constant probability. Buchbinder and Feld-
man [5] introduced a linear programming method to
derandomize the RANDOMGREEDY algorithm (at the

expense of additional time complexity), meaning that the best known ratios for deterministic algo-
rithms are again given by RANDOMGREEDY. There is no known method to derandomize continuous
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algorithms, as the only known way to approximate the multilinear extension of a general submodular
set function relies on random sampling methods. Özcan et al. [26], however, introduced a determin-
istic estimation via Taylor series approximation, but this approach is limited to a specific class of
submodular functions that can be expressed as weighted compositions of analytic and multilinear
functions. Therefore, there is no known deterministic algorithm that breaks the 1/e barrier. The
best known ratio in each category of continuous, combinatorial, and deterministic algorithms is
summarized in Table 1. In this work, we consider the following questions:

Can combinatorial algorithms, and separately, deterministic algorithms, obtain approximation ratios
for SM beyond 1/e? If so, are the resulting algorithms practical and do they yield empirical

improvements in objective value over existing algorithms?

1.1 Contributions

In this work, we improve the best known ratio for a combinatorial algorithm for size-constrained SM
to 0.385− ε ≈ 1/e+ 0.018. This is achieved by using the result of a novel local search algorithm to
guide the RANDOMGREEDY algorithm. Overall, we obtain query complexity of O (kn/ε), which is
at worst quadratic in the size of the ground set, since k ≤ n. Thus, this algorithm is practical and can
run on moderate instance sizes; the first algorithm with ratio beyond 1/e for which this is possible.
Further, we extend this algorithm to the matroid constraint, where it improves the best known ratio
of a combinatorial algorithm for a general matroid constraint from 0.283 of RANDOMGREEDY to
0.305− ε.

Secondly, we obtain these same approximation ratios with deterministic algorithms. The ideas are
similar to the randomized case, except we leverage a recently formulated algorithm INTERPOLAT-
EDGREEDY [11] as a replacement for guided RANDOMGREEDY. The analysis of INTERPOLATED-
GREEDY has similar recurrences (up to low order terms) and the algorithm can be guided in a similar
fashion to RANDOMGREEDY, but is amenable to derandomization. The derandomization only adds a
constant factor, albeit one that is exponential in (1/ε).

Next, we seek to lower the query complexity further, while still improving the 1/e ratio. As
INTERPOLATEDGREEDY can be sped up to Oε(n log k), the bottleneck becomes the local search
procedure. Thus, we develop a faster way to produce the guiding set Z by exploiting a run of
(unguided) INTERPOLATEDGREEDY and demonstrating that a decent guiding set is produced if
the algorithm exhibits nearly worst-case behavior. With this method, we achieve a deterministic
algorithm with ratio 0.377 ≈ 1/e+ 0.01 in Oε(n log k) query complexity, which is nearly linear in
the size of the ground set (since k = O(n)).

Finally, we demonstrate the practical utility of our combinatorial 0.385-approximation algorithm
by implementing it and evaluating in the context of two applications of size-constrained SM on
moderate instance sizes (up to n = 104). We evaluate it with parameters set to enforce a ratio > 1/e.
It outperforms both the standard greedy algorithm and RANDOMGREEDY by a significant margin
in terms of objective value; moreover, it uses about twice the queries of RANDOMGREEDY and is
orders of magnitude faster than existing local search algorithms.

1.2 Additional Related Work

Derandomization. Buchbinder and Feldman [5] introduced a linear programming (LP) method
to derandomize the RANDOMGREEDY algorithm, thereby obtaining ratio 1/e with a deterministic
algorithm. Further, Sun et al. [30] were able to apply this technique to RANDOMGREEDY for matroids.
A disadvantage of this approach is an increase in the query complexity over the original randomized
algorithm. Moreover, we attempted to use this method to derandomize our guided RANDOMGREEDY
algorithm, but were unsuccessful. Instead, we obtained our deterministic algorithms by guiding
the INTERPOLATEDGREEDY algorithm instead of RANDOMGREEDY; this algorithm is easier to
derandomize, notably without increasing the asymptotic query complexity.

Relationship to Buchbinder and Feldman [6]. The continuous, 0.385-approximation algorithm of
Buchbinder and Feldman [6] guides the measured continuous greedy algorithm using the output of a
continuous local search algorithm, in analogous fashion to how we guide RANDOMGREEDY with the
output of a combinatorial local search. However, the analysis of RANDOMGREEDY is much different
from that of measured continuous greedy, although the resulting approximation factor is the same.
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Specifically, Buchbinder and Feldman [6] obtain their ratio by optimizing a linear program mixing
the continous local search and guided measured continous greedy; in contrast, we use submodularity
and the output of our fast local search to formulate new recurrences for guided RANDOMGREEDY,
which we then solve.

Local search algorithms. Local search is a technique widely used in combinatorial optimization.
Nemhauser et al. [25] introduced a local search algorithm for monotone functions under size con-
straint; they showed a ratio of 1/2, but noted that their algorithm may run in exponential time.
Subsequently, local search has been found to be useful, especially for non-monotone functions. Feige
et al. [14] proposed a 1/3 approximation algorithm with O

(
n4/ε

)
queries for the unconstrained

submodular maximization problem utilizing local search. Meanwhile, Lee et al. [21] proposed a local
search algorithm for general SM with matroid constraint, attaining 1/4− ε approximation ratio with
a query complexity of O

(
k5 log(k)n/ε

)
. We propose our own FASTLS in Section 2.1, yielding a

ratio of 1/2 for monotone cases and 1/4 for non-monotone cases through repeated applications of
FASTLS, while running in O (kn/ε) queries.

Fast approximation algorithms. Buchbinder et al. [10] developed a faster version of RANDOM-
GREEDY for size constraint that reduces the query complexity to Oε (n) with ratio of 1/e − ε.
Chen and Kuhnle [11] proposed LINEARCARD, the first deterministic, linear-time algorithm with an
1/11.657-approximation ratio for size constraints. Also, Han et al. [17] introduced TWINGREEDY,
a 0.25-approximation algorithm with a query complexity of O (kn) for matroid constraints. These
algorithms are fast enough to be used as building blocks for our FASTLS, which requires as an input
a constant-factor approximation in O (kn) queries.

Relationship to Tukan et al. [32]. During the submission of this paper, we noticed an independent
and parallel work by Tukan et al. [32], which proposed a different 0.385-approximation algorithm.
Both papers start from a similar idea-guiding the random greedy algorithm with a fast algorithm to
find a local optimum. However, Tukan et al. [32] only considered size constraint and focused on
algorithm speedup. They introduced a randomized local search algorithm and used its output to guide
the stochastic greedy of Buchbinder et al. [9], achieving a query complexity of Oε

(
n+ k2

)
. On

the other hand, we 1) address a more general constraint-matroid constraint; 2) for size constraint,
present an asymptotically faster algorithm that uses a novel way of guiding with partial solutions from
random greedy itself, which are not local optima, thereby achieving ratio 0.377−ε withOε (n log(k))
queries; and 3) derandomize these algorithms.

1.3 Preliminaries

Notation. In this section, we establish the notations employed throughout the paper. We denote
the marginal gain of adding A to B by ∆(A|B) = f (A ∪B) − f (B). For every set S ⊆ U and
an element x ∈ U , we denote S ∪ {x} by S + x, and S\{x} by S − x. Given a constraint and its
related feasible sets I, let O ∈ argmaxS∈I f (S); that is, O is an optimal solution. To simplify
the pseudocode and the analysis, we add k dummy elements into the ground set, where the dummy
element serves as a null element with zero marginal gain when added to any set. The symbol e0 is
utilized to represent a dummy element.

Submodularity. A set function f : 2U → R+ is submodular, if ∆(x|S) ≥ ∆(x|T ) for all S ⊆ T ⊆
U and x ∈ U \ T , or equivalently, for all A,B ⊆ U , it holds that f (A) + f (B) ≥ f (A ∪B) +
f (A ∩B).

Constraints. In this paper, our focus lies on two constraints: size constraint and matroid constraint.
For size constraint, we define the feasible subsets as I(k) = {S ⊆ U : |S| ≤ k}, where k is an input
parameter. The matroid constraint is defined in Appendix A.

Organization. Our randomized algorithms are described in Section 2, with two subroutines, FASTLS
and GUIDEDRG, in Section 2.1 and 2.2, respectively. Due to space constraints, we provide only
a sketch of the analysis for size constraint in the main text. The full pseudocodes and formal
proofs for both size and matroid constraint are provided in Appendix C. Then, we briefly sketch the
deterministic approximation algorithms in Section 2.3, with full details provided in Appendix D.
Next, we introduce the nearly linear-time deterministic algorithm in Section 3, with omitted analysis
provided in Appendix E. Our empirical evaluation is summarized in Section 4. In Section 5, we
discuss limitations and future directions.

4

108932https://doi.org/10.52202/079017-3459



Algorithm 2: Randomized combinatorial approximation algorithm.
1 Input: Instance (f, I), a constant-factor approximation Z0, switch time t ∈ [0, 1], accuracy

ε > 0
2 Z ← FASTLS(f, I, Z0, ε) /* find local optimum Z */
3 A← GUIDEDRG(f, I, Z, t) /* guided by local optimum Z */
4 return argmax{f (Z) , f (A)}

2 A Randomized (0.385− ε)-approximation in O (kn/ε) Queries

In this section, we present our randomized approximation algorithm (Alg. 2) for both size and
matroid constraints. This algorithm improves the state-of-the-art, combinatorial approximation ratio
to 0.385 − ε ≈ 1/e + 0.018 for size constraint, and to 0.305 − ε ≈ 0.283 + 0.022 for matroid
constraint.

Algorithm Overview. In overview, Alg. 2 consists of two components, which are detailed below.
The first component is a local search algorithm, FASTLS (Alg. 4 in Appendix C.1), described in
detail in Section 2.1. In brief, the local search algorithm takes an accuracy parameter ε > 0 and a
constant-factor, approximate solution Z0 as input, which may be produced by any approximation
algorithm with better than O (kn) query complexity. The second component is a random greedy
algorithm, GUIDEDRG (Alg. 6 in Appendix C.2), that is guided by the output Z of the local search,
described in detail in Section 2.2. Also, GUIDEDRG takes a parameter t ∈ [0, 1], which is the
switching time (as fraction of the budget or rank k) from guided to unguided behavior. The candidate
with best f value from the two subroutines is returned.

If f(Z) < αOPT (otherwise, there is nothing to show), then the local search set satisfies our definition
of ((1 + ε)α, α)-guidance set (Def. 2.1 below). Under this guidance, we show that GUIDEDRG
produces a superior solution compared to its unguided counterpart. The two components, FASTLS
and GUIDEDRG are described in Sections 2.1 and 2.2, respectively. The following theorem is proven
in Section 2.2 (size constraint) and Appendix C.2.2 (matroid constraint).

Theorem 2.1. Let (f, I) be an instance of SM. Let ε > 0, and k ≥ 1/ε. Algorithm 2 achieves
an expected (0.385 − ε)-approximation ratio for size constraint with t = 0.372, and an expected
(0.305− ε)-approximation ratio for matroid constraint with t = 0.559. The query complexity of the
algorithm is O (kn/ε).

2.1 The Fast Local Search Algorithm

In this section, we introduce FASTLS (Alg. 4), which is the same for size or matroid constraints.
There are several innovations in FASTLS that result in O (kn/ε) time complexity, where k is the
maximum size of a feasible set, and ε > 0 is an input accuracy parameter.

In overview, the algorithm maintains a feasible set Z; initially, Z = Z0, where Z0 is an input set
which is a constant approximation to OPT. The value of Z is iteratively improved via swapping,
which is done in the following way. For each element a ∈ U , we compute ∆(a|Z \ a); if a ̸∈ Z, this
is just the gain of a to Z; this requires O (n) queries. Then, if a ∈ Z and e ̸∈ Z such that Z \ a+ e
is feasible, and ∆(e|Z)−∆(a|Z \ a) ≥ ε

kf(Z), then a is swapped in favor of e. If no such swap
exists, the algorithm terminates.

One can show that, for each swap, the value of Z increases by at least a multiplicative (1 + ε/k)
factor. Since f(Z) is initialized to a constant fraction of OPT, it follows that we make at most
O(k/ε) swaps. Since each swap requires O (n) queries, this yields the query complexity of the
algorithm: O (kn/ε). In addition, if f is monotone, FASTLS gets ratio of nearly 1/2 for FASTLS.
A second repetition of FASTLS yields a ratio of 1/4 in the case of general (non-monotone) f , as
shown in Appendix C.1.2. Thus, FASTLS may be of independent interest, as local search obtains
good objective values empirically and is commonly used in applications.

For our purposes, we want to use the output of FASTLS to guide RANDOMGREEDY. Since we will
also use another algorithm for a similar purpose in Section 3, we abstract the properties needed for
such a guidance set. Intuitively, a set Z is a good guidance set if it has a low f -value and also ensures
that the value of its intersection and union with an optimal solution are poor.
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Figure 1: (a): The evolution of E [f (O ∪Ai)] and E [f (Ai)] in the worst case of the analysis of
RANDOMGREEDY, as the partial solution size increases to k. (b): Illustration of how the degradation
of E [f (O ∪Ai)] changes as we introduce an (0.385 + ε, 0.385)-guidance set. (c): The updated
degradation with a switch point tk, where the algorithm starts with guidance and then switches to
running without guidance. The dashed curved lines depict the unguided values from (a).

Definition 2.1. A set Z is a (α, β)-guidance set, if given constants α, β ∈ (0, 0.5) and optimum
solution O, it holds that: 1) f (Z) < αf (O); 2) f (O ∩ Z) ≤ αf (O); 3) f (O ∪ Z) ≤ βf (O), or
alternatively, 3′) f (O ∩ Z) + f (O ∪ Z) ≤ (α+ β)f (O).

Lemma 2.2 (proved in Appendix C.1.1) implies that for the FASTLS output Z, if f(Z) < αOPT,
then Z is ((1 + ε)α, α)-guidance set.
Lemma 2.2. Let ε > 0, and let (f, I(M)) be an instance of SM. The input set Z0 is an α0-
approximate solution to (f, I(M)). FASTLS (Alg. 4) returns a solution Z with O (kn log(1/α0)/ε)
queries such that f (S ∪ Z) + f (S ∩ Z) < (2 + ε)f (Z), where S ∈ I(M).

2.2 Guiding the RANDOMGREEDY Algorithm

In this section, we discuss the guided RANDOMGREEDY algorithm (Alg. 6) using an ((1 + ε)α, α)-
guidance set Z returned by FASTLS. Due to space constraints, we only consider the size constraint in
the main text. The ideas for the matroid constraint are similar, although the final recurrences obtained
differ. The version for matroid constraints is given in Appendix C.2.2.

The algorithm GUIDEDRG is simple to describe: it maintains a partial solution A, initially empty.
It takes as parameters the switching time t and guidance set Z. While the partial solution satisfies
|A| < tk, the algorithm operates as RANDOMGREEDY with ground set U \ Z; after |A| ≥ tk, it
operates as RANDOMGREEDY with ground set U . Pseudocode is provided in Appendix C.2.

Overview of analysis. For clarity, we first describe the (unguided) RANDOMGREEDY analysis from
Buchbinder et al. [9]. There are two recurrences: the first is the greedy gain:

E [f (Ai)− f (Ai−1)] ≥
1

k
E [f (O ∪Ai−1)− f (Ai−1)] .

Intuitively, the gain at iteration i is at least a 1/k fraction of the difference between f(O ∪A) and A,
in expectation, where A is the partial solution. If f were monotone, the right hand side would be at
least (OPT− f(A))/k. However, in the case that f is not monotone, the set O ∪A may have value
smaller than OPT.

To handle this case, it can be shown that the expected value of f(O∪A) satisfies a second recurrence:

E [f (O ∪Ai)]
(a)

≥
(
1− 1

k

)
E [f (O ∪Ai−1)] +

1

k
E [f (O ∪Ai−1 ∪Mi)]

(b)

≥
(
1− 1

k

)
E [f (O ∪Ai−1)] ,

where Mi is the set of elements with the top k marginal gains at iteration i, (a) is from submodularity,
and (b) is from nonnegativity. Thus, this expected value, while initially OPT (since A0 = ∅), may
degrade but is bounded.

Both of these recurrences are solved together to prove the expected ratio of 1/e for RANDOMGREEDY:
the worst-case evolution of the expected values of f(Ai), f(O ∪ Ai), according to this analysis,
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is illustrated in Fig. 1(a). Observe that f(Ai) converges to OPT/e (as required for the ratio), and
observe that f(O ∪Ai) also converges to OPT/e. Thus, very little gain is obtained in the later stages
of the algorithm, as illustrated in the plot. The overarching idea of the guided version of the algorithm
is to obtain a better degradation of E [f (O ∪Ai)], leading to better gains later in the algorithm that
improve the worst-case ratio. In the following, we elaborate on this goal, the achievement of which is
illustrated in Fig. 1(c).

Stage 1: Recurrences when avoiding Z. Suppose Z is an (α, β)-guidance set, and that RANDOM-
GREEDY selects elements as before, but excluding Z from the ground set. Then, the recurrences
change as follows. The recurrence for the gain becomes:

E [f (Ai)− f (Ai−1)] ≥
1

k
E [f ((O \ Z) ∪Ai−1)− f (Ai−1)] , (1)

where O \ Z replaces O since we select elements outside of the set Z. For the second recurrence, we
can lower bound the term E [f (O ∪Ai−1 ∪Mi)] using submodularity and the fact that Z∩Ai−1 = ∅:

E [f (O ∪Ai)] ≥
(
1− 1

k

)
E [f (O ∪Ai−1)] +

1

k
E [f (O)− f (O ∪ Z)] . (2)

Finally, a similar recurrence to (2) also holds for f ((O \ Z) ∪Ai); both are needed for the analysis.
Since Z is a guidance set, by submodularity, f(O \ Z) ≥ f(O)− f(O ∩ Z) ≥ (1− α)OPT, which
ensures that some gain is available by selection outside of Z. And f(O)− f(O ∪Z) ≥ (1− β)OPT,
which means that the degradation recurrences are improved.

The blue line in Figure 1(b) depicts this improved degradation with the size of the partial solution.
However, this improvement comes at a cost: a smaller increase in E [f (Ai)] is obtained over the
unguided version. Therefore, to obtain an improved ratio we switch back to the regular behavior of
RANDOMGREEDY – intuitively, this shifts the relatively good, earlier behavior of RANDOMGREEDY
to later in the algorithm.

Stage 2: Switching back to selection from whole ground set. After the switch, the recurrences revert
back to the original ones, but with different starting values. Since E [f (O ∪Ai)] was significantly
enhanced in the first stage, in the final analysis we get an overall improvement over the unguided
version. The blue line in Figure 1(c) demonstrates the degradation of E [f (O ∪Ai)] over two stages,
while the orange line depicts how the approximation ratio converges to a value 0.385 > 1/e.

The above analysis sketch can be formalized and the resulting recurrences solved: the results are
stated in the following lemma, which is formally proven in Appendix C.2.1.
Lemma 2.3. With an input size constraint I and a ((1 + ε)α, α)-guidance set Z, GUIDE-
DRG returns set Ak with O (kn) queries, s.t. E [f (Ak)] ≥

[(
2− t− 1

k

) (
1− 1

k

)
et−1 − e−1

−(1 + ε)α
((

1− 1
k

)2
et−1 − e−1

)
− α

((
1 + 1−t

1− 1
k

)
et−1 −

(
2− 1

k

)
e−1
)]

f (O) .

From Lemma 2.3, we can directly prove the main result for size constraint.

Proof of Theorem 2.1 under size constraint. Let (f, I) be an instance of SM, with optimal solution
set O. If f (Z) ≥ (0.385− ε)f (O) under size constraint, the approximation ratio holds immediately.
Otherwise, by Lemma 2.2, FASTLS returns a set Z which is an ((1 + ε)α, α)-guidance set, where
α = 0.385− ε. By Lemma 2.3,

E [f (Ak)] ≥
[
(2− t− ε) (1− ε)et−1 − e−1 − (0.385− 0.615ε)

(
(1− ε)2et−1 − e−1

)
−(0.385− ε)

((
1 +

1− t

1− ε

)
et−1 − (2− ε)e−1

)]
f (O) (∀k ≥ 1

ε )

≥ (0.385− ε)f (O) . (t = 0.372)

2.3 Deterministic approximation algorithms

In this section, we outline the deterministic algorithms, for size and matroid constraints. The main
idea is similar, but we replace GUIDEDRG with a deterministic subroutine. For simplicity, we
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present a randomized version in Appendix D.2 as Alg. 10, which we then derandomize (Alg. 11 in
Appendix D.3). Further discussion is provided in Appendix D.

Algorithm overview. Chen and Kuhnle [11] proposed a randomized algorithm, INTERPOLATED-
GREEDY, which may be thought of as an interpolation between standard greedy [25] and RANDOM-
GREEDY [9]. Instead of picking k elements, each randomly chosen from the top k marginal gains, it
picks ℓ = O (1/ε) sets randomly from O (ℓ) candidates. Although it uses only a constant number
of rounds, the recurrences for INTERPOLATEDGREEDY are similar to the RANDOMGREEDY ones
discussed above, so we can guide it similarly.

To select the candidate sets in each iteration, we replace INTERLACEGREEDY (the subroutine of
INTERPOLATEDGREEDY proposed in Chen and Kuhnle [11]) with a guided version: GUIDEDIG-S
(Alg. 9 in Appendix D.1.1) for size constraint, and GUIDEDIG-M (Alg. 8 in Appendix D.1) for
matroid constraint. Since only ℓ random choices are made, each from O (ℓ) sets, there are at most
O
(
ℓO(ℓ)

)
possible solutions, where ℓ is a constant number depending on ε. Notably, we are still able

to obtain the same approximation factors as in Section 2. The proof of Theorem 2.4 is provided in
Appendices D.2 and D.3.

Theorem 2.4. Let (f, k) be an instance of SM, with the optimal solution set O. Alg. 11 achieves
a deterministic (0.385 − ε) approximation ratio with t = 0.372, and a deterministic (0.305 − ε)
approximation ratio with t = 0.559. The query complexity of the algorithm is O

(
knℓ2ℓ−1

)
where

ℓ = 10
9ε .

3 Deterministic Algorithm with Nearly Linear Query Complexity

In this section, we sketch a deterministic algorithm with (0.377 − ε) approximation ratio and
Oε (n log(k)) query complexity for the size constraint. A full pseudocode (Alg. 14) and analysis is
provided in Appendix E.

Description of algorithm. Our goal is to improve the asymptotic Oε(kn) query complexity. Re-
call that in Section 2, we described a deterministic algorithm that employed the output of local
search to guide the INTERPOLATEDGREEDY algorithm, which obeys similar recurrences to RAN-
DOMGREEDY. To produce the ℓ candidate sets for each iteration of INTERPOLATEDGREEDY,
a greedy algorithm (guided INTERLACEGREEDY) is used. These algorithms can be sped up
using a descending thresholds technique. This results in THRESHGUIDEDIG (Alg. 12 in Ap-
pendix E.1), which achieves Oε (n log k) query complexity for the guided part of our algorithm.

Figure 2: Depiction of how analysis
of INTERPOLATEDGREEDY changes if
there is no (0.377, 0.46)-guidance set.

However, the local search FASTLS still requires O (kn/ε)
queries, so we seek to find a guidance set in a faster way.
Recall that, in the definition of guidance set Z, the value
f(Z) needs to dominate both f(O∩Z) and f(O∪Z). To
achieve this with faster query complexity, we employ a run
of unguided INTERPOLATEDGREEDY. Consider the recur-
rences plotted in Fig. 1(a) – if the worst-case degradation
occurs, then at some point the value of f(Ai) becomes
close to f(O ∪Ai). On the other hand, if the worst-case
degradation does not occur, then the approximation fac-
tor of INTERPOLATEDGREEDY is improved (see Fig. 2).
Moreover, if we ensure that at every stage, Ai contains no
elements that contribute a negative gain, then we will also
have f(Ai) ≥ f(O ∩Ai).

To execute this idea, we run (derandomized, unguided)
INTERPOLATEDGREEDY, and consider all O

(
ℓℓ
)

inter-
mediate solutions. Each one of these is pruned (by which
we mean, any element with negative contribution is dis-
carded until none such remain). Then, the guided part of our algorithm executes with every possible
candidate intermediate solution as the guiding set; finally, the feasible set encountered with maximum
f value is returned.
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Figure 3: The objective value (higher is better) and the number of queries (log scale, lower is better)
are normalized by those of STANDARDGREEDY. Our algorithm (blue star) outperforms every baseline
on at least one of these two metrics.

The tradeoff between the first and second parts of the algorithm is optimized with α = 0.377 and
β = 0.46. That is, if INTERPOLATEDGREEDY produces an (α, β)-guidance set, the guided part of
our algorithm achieves ratio 0.377; otherwise, INTERPOLATEDGREEDY has ratio at least 0.377. We
have the following theorem. The algorithms and analysis sketched here are formalized in Appendix
E.

Theorem 3.1. Let (f, k) be an instance of SM, with the optimal solution set O. Algorithm 14
achieves a deterministic (0.377 − ε) approximation ratio with O(n log(k)ℓ1

2ℓ1ℓ2
2ℓ2−1) queries,

where ℓ1 = 10
3ε and ℓ2 = 5

ε .

4 Empirical Evaluation

In this section, along with Appendix F, we implement and empirically evaluate our randomized
(0.385 − ε)-approximation algorithm (Alg. 2, FASTLS+GUIDEDRG) on two applications of size-
constrained SM, and compare to several baselines in terms of objective value of solution and number
of queries to f . In summary, our algorithm uses roughly twice the queries as the standard greedy
algorithm, but obtains competitive objective values with an expensive local search that uses one to
two orders of magnitude more queries. 1

Baselines. 1) STANDARDGREEDY: the classical greedy algorithm [25], which often performs well
empirically on non-monotone objectives despite having no theoretical guarantee. 2) RANDOM-
GREEDY, the current state-of-the-art combinatorial algorithm as discussed extensively above. 3)
The local search algorithm of Lee et al. [21], which is the only prior polynomial-time local search
algorithm with a theoretical guarantee: ratio 1/4− ε in O

(
k5 log(k)n/ε

)
queries. As our emphasis

is on theoretical guarantees above 1/e, we set ε = 0.01 for our algorithm, which yields ratio at
least 0.375 in this evaluation. For Lee et al. [21], we set ε = 0.1, which is the standard value of
the accuracy parameter in the literature – running their algorithm with ε = 0.01 produced identical
results.

Applications and datasets. For instances of SM upon which to evaluate, we chose video summariza-
tion and maximum cut (MC). For video summarization, our objective is to select a subset of frames
from a video to create a summary. As in Banihashem et al. [1] , we use a Determinantal Point Process
objective function to select a diverse set of elements [20]. Maximum cut is a classical example of
a non-monotone, submodular objective function. We run experiments on unweighted Erdős-Rényi
(ER), Barabási-Albert (BA) and Watts-Strogatz (WS) graphs which have been used to model many
real-world networks. The formal definition of problems, details of datasets, and hyperparameters
of graph generation can be found in the Appendix F. In video summarization, there are n = 100
frames. On all the instances of maximum cut, the number of vertices n = 10000. The mean of 20
independent runs is plotted, and the shaded region represents one standard deviation about the mean.

Results. As shown in Figure 3 in this section, and Figure 5 and 6 in Appendix F, on both applications,
FASTLS +GUIDEDRG produces solutions of higher objective value than STANDARDGREEDY, and
also higher than RANDOMGREEDY. The objective values of FASTLS +GUIDEDRG often matches
with Lee et al. [21] which performs the best; this agrees with the intuition that, empirically, local
search is nearly optimal. In terms of queries, our algorithm uses roughly twice the number of queries

1Our code is available at https://gitlab.com/luciacyx/guided-rg.git.
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as STANDARDGREEDY, but we improve on Lee et al. [21] typically by at least a factor of 10 and
often by more than a factor of 100.

5 Discussion and Limitations

Prior to this work, the state-of-the-art combinatorial ratios were 1/e ≈ 0.367 and 0.283 for size
constrained and matroid constrained SM, respectively, both achieved by the RANDOMGREEDY
algorithm. In this work, we show how to guide RANDOMGREEDY with a fast local search algorithm
to achieve ratios 0.385 and 0.305, respectively, in O (kn/ε) queries. The resulting algorithm is
practical and empirically outperforms both RANDOMGREEDY and standard greedy in objective value
on several applications of SM. However, if k is on the order of n, the query complexity is quadratic
in n, which is too slow for modern data sizes. Therefore, an interesting question for future work is
whether further improvements in the query complexity to achieve these ratios (or better ones) could
be made.

In addition, we achieve the same approximation ratios and asymptotic query complexity with
deterministic algorithms, achieved by guiding a different algorithm; moreover, we speed up the
deterministic algorithm to Oε(n log k) by obtaining the guidance set in another way. This result is a
partial answer to the limitation in the previous paragraph, as we achieve a ratio beyond 1/e in nearly
linear query complexity. However, for all of our deterministic algorithms, there is an exponential
dependence on 1/ε, which makes these algorithms impractical and mostly of theoretical interest.
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A Additional Preliminaries

A.1 Constraints

In this paper, our focus lies on two constraints: size constraint and matroid constraint. For size
constraint, we define the feasible subsets as I(k) = {S ⊆ U : |S| ≤ k}. For matroid constraint, the
definition is as follows:

Definition A.1. A matroidM is a pair (U , I), where U is the ground set and I is the independent
sets with the following properties: (1) ∅ ∈ I; (2) hereditary property: A ∈ I ⇒ B ∈ I,∀B ⊆ A; (3)
exchange property: A,B ∈ I, |A| > |B| ⇒ ∃x ∈ A \B, s.t.B + x ∈ I.

Specifically, we use I(M) to represent the independent sets of matroidM. A maximal independent
set in I(M) is called a basis. Let k be the size of the maximal independent set.

In the following, we consider an extended matroid with k dummy elements added to the ground set
M′ = (U ′, I ′). We show that SM onM′ return the same solution as onM.

Lemma A.1. LetM = (U , I) be a matroid, and U ′ = U ∪ E, where E = {e10, . . . , ek0} and ei0 is a
dummy element for each i ∈ [k]. Let I ′ =

⋃
S∈I{S, S ∪ {e10}, . . . , S ∪ {e10, . . . , e

k−|S|
0 }}. Then,

M′ = (U ′, I ′) is also a matroid and maxS∈I f (S) = maxS∈I′ f (S).

Proof. Firstly, we prove thatM′ = (U ′, I ′) is also a matroid by Definiton A.1.

Since ∅ ∈ I and I ⊆ I ′, it holds that ∅ ∈ I ′.
Let A′ ∈ I ′, and A = A′ \ E. Then, A ∈ I. For every B′ ⊆ A′, since (U , I) is a matroid,
B = B′ \E ⊆ A ∈ I . Since |B′ ∩E| ≤ |A′ ∩E| ≤ k− |A| ≤ k− |B|, it holds that B ∈ I ′ by the
construction of I ′.
Let A′, B′ ∈ I ′ and |A′| > |B′|. Let A = A′ \E and B = B′ \E. Then, A,B ∈ I . If |A| > |B|, by
Def. A.1, there exists x ∈ A \B s.t. B+x ∈ I . Since (B′+x) \ (B+x) ⊆ E and |B′| < |A′| ≤ k,
B′+x ∈ I ′. Otherwise, |A| < |B|, which indicates that |A′∩E| > |B′∩E|. Since |B′| < |A′| ≤ k,
by adding a dummy element e0 ∈ A′ ∩ E \B′ to B′, it holds that B′ + e0 ∈ I ′.
Thus, by Def. A.1,M′ = (U ′, I ′) is also a matroid.

As for SM on I ′, since dummy element does not contribute to the objective value, it holds that, for
every S ∈ I, f (S) = f (S ∪ E′), where E′ ⊆ E. Then, {f (S) : S ∈ I} = {f (S) : S ∈ I ′}.
Further, maxS∈I f (S) = maxS∈I′ f (S).

A.2 Technical Lemma

Lemma A.2. (Brualdi [4]) If B1 and B2 are finite bases, then there exists a bijection σ : B1 \B2 →
B2 \B1 such that B2 + e− σ(e) is a basis for all e ∈ B1 \B2

Lemma A.3. Let a ∈ R+, b,X0 ∈ R. If Xi ≥ aXi−1 + b for every i ∈ [k], then

Xk ≥ akX0 +
b
(
1− ak

)
1− a

.

Proof. By repeatedly implementing that Xi ≥ aXi−1 + b, we can bound Xk as follows,

Xk ≥ aXk−1 + b

≥ a2Xk−2 + ab+ b

. . .

≥ akX0 + b

(
k−1∑
i=0

ai

)

= akX0 +
b
(
1− ak

)
1− a

.
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Lemma A.4.

1− 1

x
≤ log(x) ≤ x− 1, ∀x > 0

1− 1

x+ 1
≥ e−

1
x , ∀x ∈ R

(1− x)y−1 ≥ e−xy, ∀xy ≤ 1

B Query Complexity Analysis of the Continuous Algorithm in Buchbinder
and Feldman [6]

Algorithm 3: Aided Measured Continuous Greedy (f, P, Z, ts) [6]
input :oracle f , a solvable down-closed polytope P , a set Z ∈ U , ts ∈ (0, 1)
/* Initialization */

1 Let δ̄1 ← ts · n−4 and δ̄2 ← (1− ts) · n−4

2 Let t← 0 and y(t)← 1∅
/* Growing y(t) */

3 while t < 1 do
4 foreach u ∈ U do
5 Let wu(t) be an estimate of E [∆(u|R(y(t)))] obtained by averaging the values of

∆(u|R(y(t))) for r =
⌈
48n6 log(2n)

⌉
independent samples of R(y(t))

6 end

7 Let x(t)←

{
argmaxx∈P

{∑
u∈U\Z wu(t) · xu(t)−

∑
u∈Z xu(t)

}
if t ∈ [0, ts) ,

argmaxx∈P

{∑
u∈U wu(t) · xu(t)

}
if t ∈ [ts, 1) .

8 Let δt be δ̄1 when t < ts and δ̄2 when t ≥ ts
9 Let y (t+ δt)← y(t) + δt (1U − y(t)) ◦ x(t)

10 Update t← t+ δt
11 end
12 return y(1)

In this section, we analyze the query complexity of Aided Measured Continuous Greedy (Alg. 3)
proposed by Buchbinder and Feldman [6], which is O

(
n11 log(n)

)
.

In Alg. 3, queries to the oracle f only occur on Line 5. For each element u in the ground set U ,
r =

⌈
48n6 log(2n)

⌉
queries are made. These queries correspond to r independent samples of R(y(t))

to estimate E [∆(u|R(y(t)))]. Therefore, there are nr = O
(
n7 log(n)

)
queries for each iteration of

the while loop (Line 3-11).

Time variable t is increased by δ̄1 = ts · n−4, when t < ts, and is increased by δ̄2 = (1− ts) · n−4,
when t ≥ ts. Thus, there are a total of 2n4 iterations within the while loop. In conclusion, the total
number of queries made by the algorithm is O

(
n11 log(n)

)
.

C Analysis of Randomized Approximation Algorithm, Alg. 2

In this section, we provide a detailed analysis of our randomized approximation algorithm and its
two components, FASTLS and GUIDEDRG. This section is organized as follows: Appendix C.1
analyzes the theoretical guarantee of single run of FASTLS (Appendix C.1.1), which is needed to
show that it finds a good guidance set. Then, although it is not needed for our results, we show the
FASTLS independently achieves an approximation ratio achieved for SMCC under monotone and
non-monotone objectives (Appendix C.1.2).

In Appendix C.2, we provide pseudocode and formally prove the results for GUIDEDRG. Specifically,
we solve the recurrences for both size and matroid constraint.
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Algorithm 4: A fast local search algorithm with query complexity O (kn/ε).
1 Procedure FASTLS (f, I(M), Z0, ε):
2 Input: oracle f , matroid constraint I(M), an approximation result Z0, accuracy parameter ε
3 Initialize: Z ← Z0 /* add dummy elements to Z until |Z| = k */
4 while ∃a ∈ Z, e ∈ U \ Z, s.t.Z − a+ e ∈ I(M) and ∆(e|Z)−∆(a|Z \ a) ≥ ε

kf (Z)
5 do
6 Z ← Z − a+ e
7 end
8 return Z

C.1 Analysis of FASTLS (Alg. 4)

Pseudocode for FASTLS is provided in Alg. 4.

C.1.1 Finding A Good Guidance Set – Proofs for Lemma 2.2 of Alg. 4 in Section 2.1

Recall that FASTLS (Alg. 4) takes a matroid constraint I(M) and an approximation result Z0 as
inputs, and outputs a local optimum Z. Here, we restate the theoretical guarantees of FASTLS
(Lemma 2.2). Using the conclusions drawn from Lemma 2.2, we demonstrate in Corollary C.1 that
Z is a ((1 + ε)α, α)-guidance set. At the end of this section, we provide the proof for Lemma 2.2.
Lemma 2.2. Let ε > 0, and let (f, I(M)) be an instance of SM. The input set Z0 is an α0-
approximate solution to (f, I(M)). FASTLS (Alg. 4) returns a solution Z with O (kn log(1/α0)/ε)
queries such that f (S ∪ Z) + f (S ∩ Z) < (2 + ε)f (Z), where S ∈ I(M).

Corollary C.1. Let Z be the solution of FASTLS (f, I(M), Z0, ε). If f (Z) < αOPT, Z is a
((1 + ε)α, α)-guidance set.

Proof of Corollary C.1. By Lemma 2.2, let S = O and S = O ∩ Z respectively, it holds that

f (O ∪ Z) + f (O ∩ Z) < (2 + ε)f (Z) ,

f (O ∩ Z) < (1 + ε)f (Z) .

If f (Z) < αOPT, then

f (O ∪ Z) + f (O ∩ Z) < (2 + ε)αOPT,
f (O ∩ Z) < (1 + ε)αOPT.

By Definition 2.1, Z is a ((1 + ε)α, α)-guidance set.

In the following, we prove Lemma 2.2 for Alg. 4.

Proof of Lemma 2.2. Query Complexity. For each successful replacement of elements on Line 6, it
holds that ∆(e|Z)−∆(a|Z − a) ≥ ε

kf (Z). By submodularity,

f (Z − a+ e)− f (Z) = ∆(e|Z − a)−∆(a|Z − a) ≥ ∆(e|Z)−∆(a|Z − a) ≥ ε

k
f (Z) .

Hence, the oracle value f(Z) is increased by a factor of at least (1 + ε/k) after the swap. Therefore,
there are at most

⌈
log1+ε/k

(
f(O)
f(Z0)

)⌉
iterations, since otherwise, it would entail f (Z) > f (O),

which contradicts the fact that O is the optimal solution. Then, since the algorithm makes at most
O (n) queries at each iteration, the query complexity can be bounded as follows,

# queries ≤ O
(
n

⌈
log1+ε/k

(
f (O)

f (Z0)

)⌉)
≤ O

(
n
k

ε
log

(
1

α

))
(f (Z0) ≥ αf (O); Lemma A.4)

Objective Value. For any S ∈ I(M), we consider adding dummy elements into S until |S| = k.
By Lemma A.1, we consider Z and S are bases of matroidM with or without dummy elements.
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Then, by Lemma A.2, there exits a bijection σ : S \ Z → Z \ S such that Z + e − σ(e) is
a basis for all e ∈ S \ Z. After the algorithm terminates, for every e ∈ S \ Z, it holds that,
∆(e|Z)−∆(σ(e)|Z − σ(e)) < ε

kf (Z). Then,

εf (Z) >
∑

e∈S\Z

∆(e|Z)−
∑

a∈Z\S

∆(a|Z − a)

Let ℓ = |S \ Z| = |Z \ S|, S \ Z = {e1, . . . , eℓ}, Z \ S = {a1, . . . , aℓ}. By submodularity,∑
e∈S\Z

∆(e|Z) = (f (Z + e1)− f (Z)) + (f (Z + e2)− f (Z)) + . . .+ (f (Z + eℓ)− f (Z))

≥ (f (Z + e1 + e2)− f (Z)) + (f (Z + e3)− f (Z)) + . . .+ (f (Z + eℓ)− f (Z))

≥ . . .

≥ f (Z + e1 + . . .+ eℓ)− f (Z) = f (S ∪ Z)− f (Z) . Also by submodularity,∑
a∈Z\S

∆(a|Z − a) =

ℓ∑
i=1

∆(ai|Z − ai) ≤
ℓ∑

i=1

∆(ai|Z − a1 − . . .− ai) = f (Z)− f (S ∩ Z)

Thus,

εf (Z) > f (S ∪ Z)− f (Z)− (f (Z)− f (S ∩ Z))

⇒(2 + ε)f (Z) > f (S ∪ Z) + f (S ∩ Z) .

C.1.2 Approximation Ratio achieved by FASTLS

In this section, we show that FASTLS can be employed independently to achieves approximation
ratios of nearly 1/2 and 1/4 for both the monotone and non-monotone versions of the problem,
respectively.

Monotone submodular functions. By employing FASTLS once, it returns an 1
2+ε -approximation

result in monotone cases.

Theorem C.1. Let ε > 0, and let (f, I(M)) be an instance of SM, where f is monotone. The input
set Z0 is an α0-approximate solution to (f, I(M)). FASTLS (Alg. 4) returns a solution Z such that
f (Z) ≥ f (O) /(2 + ε) with O (kn log(1/α0)/ε) queries.

Proof. By Lemma 2.2, set S = O, it holds that

(2 + ε)f (Z) > f (O ∪ Z) + f (O ∩ Z) ≥ f (O) ,

where the last inequality follows by monotonicity and non-negativity.

Non-monotone submodular functions. For the non-monotone problem, 2 repetitions of FASTLS
(Alg. 5) yields a ratio of 1

4+2ε . The theoretical guarantees and the corresponding analysis are provided
as follows. We remark that this is a primitive implementation of the guiding idea: the second run of
FASTLS avoids the output of the first one.

Algorithm 5: An 1/(4 + 2ε)-approximation algorithm with O (kn/ε)

1 Input: oracle f , constraint I, an approximation result Z0, switch point t, error rate ε
2 Z1 ← FASTLS(f,U , I, Z0, ε) /* run FASTLS with ground set U */
3 Z2 ← FASTLS(f,U \ Z1, I, Z0, ε) /* run FASTLS with ground set U \ Z1 */
4 return Z ← argmax{f (Z1) , f (Z2)}

Theorem C.2. Let ε > 0, and let (f, I(M)) be an instance of SM, where f is not necessarily
monotone. The input set Z0 is an α0-approximate solution to (f, I(M)). Alg. 5 returns a solution Z
such that f (Z) ≥ f (O) /(4 + 2ε) with O (kn log(1/α0)/ε) queries.
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Proof. By repeated application of Lemma 2.2 for the two calls of FASTLS in Alg. 5, it holds that

f (O ∪ Z1) + f (O ∩ Z1) < (2 + ε)f (Z1)

f ((O \ Z1) ∪ Z2) + f ((O \ Z1) ∩ Z2) < (2 + ε)f (Z2)

By summing up the above two inequalities, it holds that

(4 + ε)f (Z) ≥ (2 + ε)f (Z1) + (2 + ε)f (Z2)

≥ f (O ∪ Z1) + f (O ∩ Z1) + f ((O \ Z1) ∪ Z2) + f ((O \ Z1) ∩ Z2)

≥ f (O ∪ Z1) + f ((O \ Z1) ∪ Z2) + f (O ∩ Z1) (nonnegativity)
≥ f (O \ Z1) + f (O ∩ Z1) (submodularity)
≥ f (O) . (submodularity)

C.2 Pseudocode of GUIDEDRG (Alg. 6) and its Analysis

Algorithm 6: An algorithm guided by an (α, β)-guidance set Z with O (kn) queries
1 Procedure GUIDEDRG (f, I, Z, t):
2 Input: oracle f , constraint I, guidance set Z, switch point t
3 A0 ← k dummy elements /* Equivalent to an empty set */
4 for i← 1 to k do
5 if i ≤ t · k then Mi ← argmaxM⊆U\(Ai−1∪Z),M is a basis

∑
a∈M ∆(a|Ai−1)

6 else Mi ← argmaxM⊆U\Ai−1,M is a basis
∑

a∈M ∆(a|Ai−1)

7 if I represents the size constraint then
8 ai ← randomly pick an element from Mi

9 Ai ← Ai−1 + ai − e0 /* e0 is the dummy element */
10 else if I represents the matroid constraint then
11 σi ← a bijection from Mi to Ai−1, where Ai−1 + x− σi (x) ∈ I(M),∀x ∈Mi

12 ei ← randomly pick an element from Mi

13 Ai ← Ai−1 + ei − σi(ei)
14 end
15 return Ak

In this section, we present the pseudocode for GUIDEDRG as Alg. 6. Then, we provide the detailed
proof of Lemma 2.3 in Appendix C.2.1, which addresses size constraints. Finally, we analyze the
algorithm under matroid constraints and provide the guarantees and its analysis in Appendix C.2.2.

C.2.1 GUIDEDRG under Size Constraints

In Sec. 2.2, we introduce the intuition behind GUIDEDRG under size constraint. Below, we reiterate
theoretical guarantees achieved by GUIDEDRG under size constraints and provide the detailed
analysis.
Lemma 2.3. With an input size constraint I and a ((1 + ε)α, α)-guidance set Z, GUIDE-
DRG returns set Ak with O (kn) queries, s.t. E [f (Ak)] ≥

[(
2− t− 1

k

) (
1− 1

k

)
et−1 − e−1

−(1 + ε)α
((

1− 1
k

)2
et−1 − e−1

)
− α

((
1 + 1−t

1− 1
k

)
et−1 −

(
2− 1

k

)
e−1
)]

f (O) .

We provide the recurrence of f ((O \ Z) ∪Ai), f (O ∪Ai) and f (Ai) in Lemmata C.3 and C.4 and
their analysis below to help prove Lemma 2.3 under size constraint.
Lemma C.3. When 0 < i ≤ t · k, it holds that

E [f ((O \ Z) ∪Ai)] ≥
(
1− 1

k

)
E [f ((O \ Z) ∪Ai−1)] +

1

k
[f (O \ Z)− f (O ∪ Z)] ,

E [f (O ∪Ai)] ≥
(
1− 1

k

)
E [f (O ∪Ai−1)] +

1

k
[f (O)− f (O ∪ Z)] .
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When t · k < i ≤ k, it holds that

E [f (O ∪Ai)] ≥
(
1− 1

k

)
E [f (O ∪Ai−1)]

Proof. At iteration i, condition on a given Ai−1. When i ≤ tk, Ai−1 ∩ Z = ∅ and Mi is selected
out of Ai−1 ∪ Z, so

(O ∪ Z) ∩ ((O \ Z) ∪Ai−1 ∪Mi) = O \ Z (3)
((O ∪ Z) ∩ (O ∪Ai−1 ∪Mi) = O. (4)

Then,

E [f ((O \ Z) ∪Ai) | Ai−1] =
1

k

∑
x∈Mi

f ((O \ Z) ∪Ai−1 ∪ {x}) (selection of next element)

≥ 1

k
[(k − 1)f ((O \ Z) ∪Ai−1) + f ((O \ Z) ∪Ai−1 ∪Mi)] (submodularity)

≥ 1

k
[(k − 1)f ((O \ Z) ∪Ai−1) + f (O \ Z) + f (O ∪ Z ∪Ai−1 ∪Mi)− f (O ∪ Z)]

(submodularity)

≥ 1

k
[(k − 1)f ((O \ Z) ∪Ai−1) + f (O \ Z)− f (O ∪ Z)] (nonnegativity)

E [f (O ∪Ai) | Ai−1] =
1

k

∑
x∈Mi

f (O ∪Ai−1 ∪ {x})

≥ 1

k
[(k − 1)f (O ∪Ai−1) + f (O ∪Ai−1 ∪Mi)] (submodularity)

≥ 1

k
[(k − 1)f (O ∪Ai−1) + f (O) + f (O ∪ Z ∪Ai−1 ∪Mi)− f (O ∪ Z)] (submodularity)

≥ 1

k
[(k − 1)f (O ∪Ai−1) + f (O)− f (O ∪ Z)] (nonnegativity)

When i > tk, it holds that

E [f (O ∪Ai) | Ai−1] =
1

k

∑
x∈Mi

f (O ∪Ai−1 ∪ {x})

≥ 1

k
[(k − 1)f (O ∪Ai−1) + f (O ∪Ai−1 ∪Mi)] (submodularity)

≥
(
1− 1

k

)
f (O ∪Ai−1) (nonnegativity)

By unconditioning Ai−1, the lemma is proved.

Lemma C.4. When 0 < i ≤ t · k, it holds that

E [f (Ai)]− E [f (Ai−1)] ≥
1

k
(E [f ((O \ Z) ∪Ai−1)]− E [f (Ai−1)]) .

When t · k < i ≤ k, it holds that

E [f (Ai)]− E [f (Ai−1)] ≥
1

k
(E [f (O ∪Ai−1)]− E [f (Ai−1)]) .

Proof. Given Ai−1 at iteration i. When i ≤ t · k, it holds that

E [f (Ai)− f (Ai−1) | Ai−1] =
1

k

∑
x∈Mi

∆(x|Ai−1)

≥ 1

k

∑
x∈O\(Ai−1∪Z)

∆(x|Ai−1) (Line 5 in Alg. 6)

≥ 1

k
[f ((O \ Z) ∪Ai−1)− f (Ai−1)] . (submodularity)
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When i > t · k, it holds that

E [f (Ai)− f (Ai−1) | Ai−1] =
1

k

∑
x∈Mi

∆(x|Ai−1)

≥ 1

k

∑
x∈O\Ai−1

∆(x|Ai−1) (Line 6 in Alg. 6)

≥ 1

k
[f (O ∪Ai−1)− f (Ai−1)] . (submodularity)

By unconditioning Ai−1, the lemma is proved.

Proof of Lemma 2.3. It follows from Lemma C.3 and the closed form for a recurrence provided in
Lemma A.3 that

E [f ((O \ Z) ∪Ai)] ≥ f (O \ Z)−

(
1−

(
1− 1

k

)i
)
f (O ∪ Z) , ∀0 < i ≤ tk

E [f (O ∪Ai)] ≥
(
1− 1

k

)i−⌊tk⌋
[
f (O)−

(
1−

(
1− 1

k

)⌊tk⌋
)
f (O ∪ Z)

]
, ∀tk < i ≤ k

(5)
With the above inequalities, we can solve the recursion in Lemma C.4 as follows,

E
[
f
(
A⌊tk⌋

)] (a)

≥

(
1−

(
1− 1

k

)⌊tk⌋
)
f (O \ Z)−

(
1−

(
1− 1

k

)⌊tk⌋

− t

(
1− 1

k

)⌊tk⌋−1
)
f (O ∪ Z)

E [f (Ak)]
(b)

≥
(
1− 1

k

)k−⌊tk⌋

E
[
f
(
A⌊tk⌋

)]
+ (1− t)

(
1− 1

k

)k−⌊tk⌋−1
[
f (O)−

(
1−

(
1− 1

k

)⌊tk⌋
)
f (O ∪ Z)

]

≥ (1− t)

(
1− 1

k

)k−⌊tk⌋−1

f (O) +

((
1− 1

k

)k−⌊tk⌋

−
(
1− 1

k

)k
)
f (O \ Z)

−

((
1 +

1− t

1− 1
k

)(
1− 1

k

)k−⌊tk⌋

−
(
2− 1

k

)(
1− 1

k

)k−1
)
f (O ∪ Z)

(Inequality (a))

≥ (1− t)

(
1− 1

k

)(1−t)k

f (O) +

((
1− 1

k

)(1−t)k+1

−
(
1− 1

k

)k
)
f (O \ Z)

−

((
1 +

1− t

1− 1
k

)(
1− 1

k

)(1−t)k

−
(
2− 1

k

)(
1− 1

k

)k−1
)
f (O ∪ Z)

(tk − 1 < ⌊tk⌋ ≤ tk)

≥ (1− t)

(
1− 1

k

)
et−1f (O) +

((
1− 1

k

)2

et−1 − e−1

)
f (O \ Z)

−
((

1 +
1− t

1− 1
k

)
et−1 −

(
2− 1

k

)
e−1

)
f (O ∪ Z) (nonnegativity;Lemma A.4)

≥ (1− t)

(
1− 1

k

)
et−1f (O) +

((
1− 1

k

)2

et−1 − e−1

)
(f (O)− f (O ∩ Z))

−
((

1 +
1− t

1− 1
k

)
et−1 −

(
2− 1

k

)
e−1

)
f (O ∪ Z) (submodularity)

=

((
2− t− 1

k

)(
1− 1

k

)
et−1 − e−1

)
f (O)−

((
1− 1

k

)2

et−1 − e−1

)
f (O ∩ Z)

−
((

1 +
1− t

1− 1
k

)
et−1 −

(
2− 1

k

)
e−1

)
f (O ∪ Z) ,
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where Inequality (a) and (b) follow from Inequality 5, Lemma C.4 and A.3.

C.2.2 GUIDEDRG under Matroid Constraints

Algorithm 7: RANDOMGREEDY for Matroid
1 Procedure RANDOMGREEDY (f,M):
2 Input: oracle f , matroid constraintM
3 Initialize: A0 ← arbitrary basis in I(M)
4 for i← 1 to k do
5 Mi ← argmaxS⊆U,S is a basis

∑
x∈S ∆(x|Ai−1)

6 σ ← a bijection from Mi to Ai−1

7 xi ← a uniformly random element from Mi

8 Ai ← Ai−1 + xi − σ(xi)
9 end

10 return Ak

Discussion about Intuition behind GUIDEDRG under Matroid Constraints. The pseudocode
for RANDOMGREEDY under matroid constraints is provided in Alg. 7. To deal with the feasibility
for matroid constraints, Alg. 7 starts with an arbitrary basis and builds the solution by randomly
swapping the elements in ground set with a candidate basis. The analysis of it proceeds according to
two main recurrences.

1) E [f (Ai)− f (Ai−1)] ≥
1

k
E [f (O ∪Ai−1)− 2f (Ai−1)] ,

2) E [f (O ∪Ai)] ≥
(
1− 2

k

)
E [f (O ∪Ai−1)] +

1

k
E [f (O) + f (O ∪Ai−1 ∪Mi)] .

Fig. 4(a) depicts the worse-case behavior of E [f (Ai)] and E [f (O ∪Ai)]. As discussed in Sec-
tion 2.2, we consider improving the degradation of E [f (O ∪Ai)] by selecting elements from outside
of an (α+ ε, α)-guidance set Z to enhance the lower bound of E [f (O ∪Ai−1 ∪Mi)]. The blue line
in Fig. 4(b) illustrated the improvement of E [f (O ∪Ai)] with an (α+ ε, α)-guidance set. However,
restricting the selection only to elements outside Z restricts the increase in E [f (Ai)] to the difference
between E [f ((O \ Z) ∪Ai−1)] and E [f (Ai−1)]. This restriction is illustrated by the red line in
Figure 4(b), indicating degradation in E [f ((O \ Z) ∪Ai)].

To benefit from the improved degradation of E [f (O ∪Ai)], we consider transitioning to selecting
elements from the whole ground set at a suitable point. The blue line in Fig. 4(b) illustrates how
E [f (O ∪Ai)] degrades before and after we switch, and the orange line illustrates the evolution
of E [f (Ai)]. Even starting with an inferior selection at the first stage, we still get an overall
improvement on the objective value.

We provide the updated recursions for f ((O \ Z) ∪Ai), f (O ∪Ai) and f (Ai) in Lemma C.5 and
C.6 below. Then, the closed form of the solution value, derived from these lemmata, is presented in
Lemma C.7. After that, we prove the approximation ratio of the randomized algorithm under matroid
constraint.

Lemma C.5. When 0 < i ≤ t · k, it holds that

E [f ((O \ Z) ∪Ai)] ≥
(
1− 2

k

)
E [f ((O \ Z) ∪Ai−1)] +

1

k
[2f (O \ Z)− f (O ∪ Z)] ,

E [f (O ∪Ai)] ≥
(
1− 2

k

)
E [f (O ∪Ai−1)] +

1

k
[2f (O)− f (O ∪ Z)] .

When t · k < i ≤ k, it holds that

E [f (O ∪Ai)] ≥
(
1− 2

k

)
E [f (O ∪Ai−1)] +

1

k
f (O)
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0 k
(a)

1 + e 2

4 f (O)

f (O)
[f (O Ai)]

[f (Ai)]
0 k

(b)

1 + e 2

4 f (O)

f (O \ Z)

f (O)

[f (O Ai)]

[f ((O \ Z) Ai)]

0 tk k
(c)

1 + e 2

4 f (O)

f (O \ Z)

f (O) [f (O Ai)]

[f ((O \ Z) Ai)]

[f (Ai)]

Figure 4: This set of figures indicates how guiding benefits RANDOMGREEDY under matroid
constraints. The figure (a) depicts the evolution of f (O ∪Ai) and f (Ai) with RANDOMGREEDY.
The figure (b) illustrates how the degradation of f (O ∪Ai) changes as we introduce an (0.305 +
ε, 0.305)-guidance set. Additionally, we also need to consider the degradation of f ((O \ Z) ∪Ai),
which is the value that the solution approaches with the guidance. The figure (c) shows the updated
degradation with a switch point tk, where the algorithm starts with guidance and then switches
to running without guidance. It demonstrates that even though the value of Ai decreases initially
when the selection starts outside of Z, it benefits from the improved degradation of f (O ∪Ai) upon
switching back to the original algorithm.

Proof. When i ≤ tk, it holds that

E [f ((O \ Z) ∪Ai) | Ai−1] =
1

k

∑
x∈Mi

f ((O \ Z) ∪ (Ai−1 + x− σi(x)))

≥ 1

k

∑
x∈Mi

[∆(x|(O \ Z) ∪Ai−1) + f ((O \ Z) ∪ (Ai−1 − σi(x)))] (submodularity)

≥ 1

k
[f ((O \ Z) ∪Ai−1 ∪Mi)− f ((O \ Z) ∪Ai−1) + (k − 1)f ((O \ Z) ∪Ai−1) + f (O \ Z)]

(submodularity)

≥ 1

k
[(k − 2)f ((O \ Z) ∪Ai−1) + 2f (O \ Z)− f (O ∪ Z)] (submodularity; nonnegativity)

E [f (O ∪Ai) | Ai−1] =
1

k

∑
x∈Mi

f (O ∪ (Ai−1 + x− σi(x)))

≥ 1

k

∑
x∈Mi

[∆(x|O ∪Ai−1) + f (O ∪ (Ai−1 − σi(x)))] (submodularity)

≥ 1

k
[f (O ∪Ai−1 ∪Mi)− f (O ∪Ai−1) + (k − 1)f (O ∪Ai−1) + f (O)] (submodularity)

≥ 1

k
[(k − 2)f (O ∪Ai−1) + 2f (O)− f (O ∪ Z)] (submodularity; nonnegativity)

When i > tk, it holds that

E [f (O ∪Ai) | Ai−1] =
1

k

∑
x∈Mi

f (O ∪ (Ai−1 + x− σi(x)))

≥ 1

k

∑
x∈Mi

[∆(x|O ∪Ai−1) + f (O ∪ (Ai−1 − σi(x)))] (submodularity)

≥ 1

k
[f (O ∪Ai−1 ∪Mi)− f (O ∪Ai−1) + (k − 1)f (O ∪Ai−1) + f (O)] (submodularity)

≥ 1

k
[(k − 2)f (O ∪Ai−1) + f (O)] (nonnegativity)

By unconditioning Ai−1, the lemma is proved.

21

108949 https://doi.org/10.52202/079017-3459



Lemma C.6. When 0 < i ≤ t · k, it holds that

E [f (Ai)]− E [f (Ai−1)] ≥
1

k
(E [f ((O \ Z) ∪Ai−1)]− 2E [f (Ai−1)]) .

When t · k < i ≤ k, it holds that

E [f (Ai)]− E [f (Ai−1)] ≥
1

k
(E [f (O ∪Ai−1)]− 2E [f (Ai−1)]) .

Proof. Given Ai−1 at iteration i. When i ≤ t · k, since O is a base, O \ (Ai−1 ∪ Z) with dummy
elements is also a base. It holds that

E [f (Ai)− f (Ai−1) | Ai−1] =
1

k

∑
x∈Mi

[f (Ai−1 + x− σi(x))− f (Ai−1)]

≥ 1

k

∑
x∈Mi

[∆(x|Ai−1) + f (Ai−1 − σi(x))− f (Ai−1)] (submodularity)

≥ 1

k

∑
x∈O\(Ai−1∪Z)

∆(x|Ai−1) +
1

k

∑
x∈Mi

[f (Ai−1 − σi(x))− f (Ai−1)] (Line 5 in Alg. 6)

≥ 1

k
[f ((O \ Z) ∪Ai−1)− f (Ai−1)]−

1

k
f (Ai−1) . (submodularity)

When i > t · k, it holds that

E [f (Ai)− f (Ai−1) | Ai−1] =
1

k

∑
x∈Mi

[f (Ai−1 + x− σi(x))− f (Ai−1)]

≥ 1

k

∑
x∈Mi

[∆(x|Ai−1) + f (Ai−1 − σi(x))− f (Ai−1)] (submodularity)

≥ 1

k

∑
x∈O

∆(x|Ai−1) +
1

k

∑
x∈Mi

[f (Ai−1 − σi(x))− f (Ai−1)] (Line 6 in Alg. 6)

≥ 1

k
[f (O ∪Ai−1)− f (Ai−1)]−

1

k
f (Ai−1) . (submodularity)

Lemma C.7. With an input matroid constraint I and a ((1 + ε)α, α)-guidance
set Z, GUIDEDRG returns set Ak with O (kn) queries, s.t. E [f (Ak)] ≥
1
2

(
1
2 +

(
3
2 − t− 1

k

) (
1− 2

k

)
e2(t−1) − e−2 − (1 + ε)α

((
1− 2

k

)2
e2(t−1) − e−2

)
−α

((
1
2 + 1−t

1− 2
k

)
e2(t−1) −

(
3
2 −

1
k

)
e−2
))

f (O) .

Proof. It follows from Lemma C.5 and the closed form for a recurrence provided in Lemma A.3 that
E [f ((O \ Z) ∪Ai)] ≥ f (O \ Z)− 1

2

(
1−

(
1− 2

k

)i
)
f (O ∪ Z) , ∀0 < i ≤ tk

E [f (O ∪Ai)] ≥
1

2

(
1 +

(
1− 2

k

)i−⌊tk⌋
)
f (O)− 1

2

((
1− 2

k

)i−⌊tk⌋

−
(
1− 2

k

)i
)
f (O ∪ Z) , ∀tk < i ≤ k

(6)
Then, by sovling the recursion in Lemma C.6 with the above inequalities, it holds that

E
[
f
(
A⌊tk⌋

)] (a)

≥ 1

2

[
1−

(
1− 2

k

)⌊tk⌋
]
f (O \ Z)−

[
1

4
− 1

4

(
1− 2

k

)⌊tk⌋

− t

2

(
1− 2

k

)⌊tk⌋−1
]
f (O ∪ Z)

E [f (Ak)]
(b)

≥
(
1− 2

k

)k−⌊tk⌋

E
[
f
(
A⌊tk⌋

)]
+

1

2

[
1

2
+

(
1

2
− t+

1

k

)(
1− 2

k

)k−⌊tk⌋−1
]
f(O)
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− 1− t

2

[(
1− 2

k

)k−⌊tk⌋−1

−
(
1− 2

k

)k−1
]
f (O ∪ Z)

≥ 1

2

[((
1− 2

k

)k−⌊tk⌋

−
(
1− 2

k

)k
)
f (O \ Z) +

(
1

2
+

(
1

2
− t+

1

k

)(
1− 2

k

)k−⌊tk⌋−1
)
f(O)

−

((
1

2
+

1− t

1− 2
k

)(
1− 2

k

)k−⌊tk⌋

−
(
3

2
− 1

k

)(
1− 2

k

)k−1
)]

f (O ∪ Z)

(Inequality (a))

≥ 1

2

[((
1− 2

k

)(1−t)k+1

−
(
1− 2

k

)k
)
f (O \ Z) +

(
1

2
+

(
1

2
− t+

1

k

)(
1− 2

k

)(1−t)k
)
f(O)

−

((
1

2
+

1− t

1− 2
k

)(
1− 2

k

)(1−t)k

−
(
3

2
− 1

k

)(
1− 2

k

)k−1
)]

f (O ∪ Z)

(tk − 1 < ⌊tk⌋ ≤ tk)

≥ 1

2

[((
1− 2

k

)2

e2(t−1) − e−2

)
f (O \ Z) +

(
1

2
+

(
1

2
− t+

1

k

)(
1− 2

k

)
e2(t−1)

)
f(O)

−
((

1

2
+

1− t

1− 2
k

)
e2(t−1) −

(
3

2
− 1

k

)
e−2

)
f (O ∪ Z)

]
(nonnegativity;Lemma A.4)

≥ 1

2

[(
1

2
+

(
3

2
− t− 1

k

)(
1− 2

k

)
e2(t−1) − e−2

)
f (O)−

((
1− 2

k

)2

e2(t−1) − e−2

)
f (O ∩ Z)

−
((

1

2
+

1− t

1− 2
k

)
e2(t−1) −

(
3

2
− 1

k

)
e−2

)
f (O ∪ Z)

]
, (submodularity)

where Inequality (a) and (b) follow from Inequality 6, Lemma C.6 and A.3.

Proof of Theorem 2.1 under matroid constraint. Let (f, I) be an instance of SM, with optimal so-
lution set O. If f (Z) ≥ (0.305− ε)f (O) under matroid constraint, the approximation ratio holds
immediately. Otherwise, by Corollary C.1, FASTLS returns a set Z which is an ((1+ε)α, α)-guidance
set, where α = 0.305− ε.

By Lemma C.7 and Z is an ((1 + ε)α, α)-guidance set with α = 0.305− ε,

E [f (Ak)] ≥
1

2

[
1

2
+

(
3

2
− t− ε

)
(1− 2ε)e2(t−1) − e−2 − (0.305− 0.695ε)

(
(1− 2ε)

2
e2(t−1) − e−2

)
− (0.305− ε)

((
1

2
+

1− t

1− 2ε

)
e2(t−1) −

(
3

2
− ε

)
e−2

)]
f (O) (∀k ≥ 1

ε )

≥ (0.305− ε)f (O) . (t = 0.559)

D Analysis of Deterministic Approximation Algorithm

In this section, we present the pseudocode of deterministic algorithm and its analysis. The organization
of this section is as follows: firstly, in Appendix D.1, we introduce the deterministic subroutine,
GUIDEDIG-S and GUIDEDIG-M, along with their analysis; then, in Appendix D.2, we provide a
randomized version of the deterministic algorithm for analytical purposes; finally, in Appendix D.3,
we provide the deterministic algorithm and its theoretical guarantee.

D.1 Deterministic Subroutines - GUIDEDIG-S and GUIDEDIG-M

Inspired by INTERLACEGREEDY algorithm, a subroutine of INTERPOLATEDGREEDY, proposed
by Chen and Kuhnle [11], we introduce guided versions of it for both size and matroid constraints.
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Algorithm 8: A guided INTERLACEGREEDY subroutine for matroid constraints.
1 Procedure GUIDEDIG-M (f, I(M), Z,G, ℓ):
2 Input: oracle f , matroid constraintM, guidance set Z, starting set G , set size ℓ
3 Initialize: A,A1, . . . , Aℓ ← ∅
4 for i← 1 to k do
5 Xi ← {x ∈ U \ (G ∪A ∪ Z) : A+ x ∈ I(M)}
6 j∗i , a

∗
i ← argmaxj∈[ℓ],x∈X ∆(x|G ∪Aj)

7 A← A+ a∗i , Aj∗i
← Aj∗i

+ a∗i
8 end
9 σ ← a bijection from G to A s.t. (G ∪Aj) \

(∑
x∈Aj

σ−1(x)
)

is a basis

10 return
{
(G ∪Aj) \

(∑
x∈Aj

σ−1(x)
)
: 1 ≤ j ≤ ℓ

}

The algorithm for the size constraint closely resembles INTERLACEGREEDY in Chen and Kuhnle
[11]. Hence, we provide the pseudocode (Alg. 9), guarantees, and analysis in Appendix D.1.1. In
this section, we focus on presenting GUIDEDIG-M for matroid constraints as Alg. 8. This algorithm
addresses the feasibility issue by incorporating INTERLACEGREEDY into matroid constraints. More-
over, while it compromises the approximation ratio over size constraint to some extent, it no longer
has the drawback of low success probability, which the size-constrained version has.

Algorithm overview. Under size constraints, INTERPOLATEDGREEDY [11] constructs the solution
with ℓ iterations, where each iteration involves calling the INTERLACEGREEDY subroutine and adding
k/ℓ elements into the solution. However, this approach is not applicable to matroid constaint due to
the feasibility problem. Consequently, we propose GUIDEDIG-M for matroid constraints designed as
follows: 1) consider adding a basis (k elements) A to ℓ solution sets, where each addition dominates
the gain of a distinct element in O; 2) by exchange property, establish a bijection between the basis A
and the starting set G; 3) delete elements in each solution set that are mapped to by the basis A. This
procedure avoids the extensive guessing of GUIDEDIG-S for size constraints and reduces the number
of potential solutions from ℓ(ℓ + 1) to ℓ. We provide the theoretical guarantees and the detailed
analysis below.
Lemma D.1. Let O ∈ I(M), and suppose GUIDEDIG-M(Alg. 8) is called with (f,M, Z,G, ℓ),
where Z ∩G = ∅. Then GUIDEDIG-M outputs ℓ candidate sets with O (ℓkn) queries. Moreover, a
randomly selected set G′ from the output satisfies that:

1) E [f(G′)] ≥
(
1− 2

ℓ

)
f(G) +

1

ℓ+ 1

(
1− 1

ℓ

)
f((O \ Z) ∪G);

2) E [f(O ∪G′)] ≥
(
1− 2

ℓ

)
f(O ∪G) +

1

ℓ
(f(O) + f (O ∪ (Z ∩G))− f(O ∪ Z)) ;

3) E [f ((O \ Z) ∪G′)] ≥
(
1− 2

ℓ

)
f((O \ Z) ∪G) +

1

ℓ
(f(O \ Z) + f ((O \ Z) ∪ (Z ∩G))− f(O ∪ Z)) .

Proof. A = {a∗1, a∗2, . . . , a∗k} be the sequence with the order of elements being added. Since A and
O\Z are basis ofM (by adding dummy elements into O\Z), we can order O\Z = {o1, o2, . . . , ok}
s.t. for any 1 ≤ i ≤ k, {a∗1, . . . , a∗i−1, oi} is an independent set. Thus, oi ∈ Xi. Let A(i)

j be Aj after
i-th iteration. Therefore, for any 1 ≤ j ≤ ℓ, by submodularity,

∆(oi|G ∪Aj) ≤ ∆
(
oi|G ∪A

(i−1)
j

)
≤ ∆

(
a∗i |G ∪A

(i−1)
j∗i

)
⇒ f ((O \ Z) ∪G ∪Aj)−f (G ∪Aj) ≤

k∑
i=1

∆(oi|G ∪Aj) ≤
k∑

i=1

∆
(
a∗i |G ∪A

(i−1)
j∗i

)
=

ℓ∑
l=1

∆(Al|G)

By summing up the above inequality with 1 ≤ j ≤ ℓ,

(ℓ+ 1)

ℓ∑
j=1

∆(Aj |G) ≥
ℓ∑

j=1

f ((O \ Z) ∪G ∪Aj)− ℓf(G)
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≥ (ℓ− 1)f ((O \ Z) ∪G) + f ((O \ Z) ∪G ∪A)− ℓf(G)

≥ (ℓ− 1)f ((O \ Z) ∪G)− ℓf(G) (nonnegativity)

Then, we can prove the first inequality as follows,

E [f(G′)− f(G)] =
1

ℓ

ℓ∑
j=1

(
f
(
G \ σ−1(Aj) ∪Aj

)
− f(G)

)
≥ 1

ℓ

ℓ∑
j=1

(
∆(Aj |G) + f

(
G \ σ−1(Aj)

)
− f(G)

)
≥ 1

ℓ+ 1

(
1− 1

ℓ

)
f ((O \ Z) ∪G)− 1

ℓ+ 1
f(G)− 1

ℓ
f(G)

⇒ E [f(G′)] ≥
(
1− 2

ℓ

)
f(G) +

1

ℓ+ 1

(
1− 1

ℓ

)
f ((O \ Z) ∪G)

By submodularity, nonnegativity, and Z ∩A = ∅, the last two inequalities can be proved as follows,

E [f (O ∪G′)] =
1

ℓ

ℓ∑
j−1

f
(
O ∪

(
G \ σ−1(Aj) ∪Aj

))
≥ 1

ℓ

ℓ∑
j−1

[
∆(Aj |O ∪G) + f

(
O ∪

(
G \ σ−1(Aj)

))]
≥ 1

ℓ
(f(O ∪G ∪A)− f(O ∪G) + (ℓ− 1)f(O ∪G) + f(O))

≥
(
1− 2

ℓ

)
f(O ∪G) +

1

ℓ
(f(O) + f (O ∪ (Z ∩G))− f(O ∪ Z))

E [f ((O \ Z) ∪G′)] =
1

ℓ

ℓ∑
j−1

f
(
(O \ Z) ∪

(
G \ σ−1(Aj) ∪Aj

))
≥ 1

ℓ

ℓ∑
j−1

[
∆(Aj |(O \ Z) ∪G) + f

(
(O \ Z) ∪

(
G \ σ−1(Aj)

))]
≥ 1

ℓ
(f((O \ Z) ∪G ∪A)− f((O \ Z) ∪G) + (ℓ− 1)f((O \ Z) ∪G) + f((O \ Z)))

≥
(
1− 2

ℓ

)
f((O \ Z) ∪G) +

1

ℓ
(f(O \ Z) + f ((O \ Z) ∪ (Z ∩G))− f(O ∪ Z))

D.1.1 GUIDEDIG-S and its Analysis

In this section, we provide the pseudocode, guarantees and analysis of GUIDEDIG-S, which highly
resembles INTERLACEGREEDY in Chen and Kuhnle [11].

Lemma D.2. Let O ⊆ U be any set of size at most k, and suppose GUIDEDIG-S(Alg. 9) is
called with (f, k, Z,G, ℓ). Then GUIDEDIG-S outputs ℓ(ℓ+ 1) candidate sets with O (ℓkn) queries.
Moreover, with a probability of (ℓ+ 1)−1, a randomly selected set A from the output satisfies that:

1) E [f (A)] ≥ 1

ℓ+ 1
E [f ((O \ Z) ∪A)] +

ℓ

ℓ+ 1
f (G) ;

2) E [f(O ∪A)] ≥
(
1− 1

ℓ

)
f(O ∪G) +

1

ℓ
(f (O ∪ (Z ∩G))− f (O ∪ Z))

3) E [f ((O \ Z) ∪A)] ≥
(
1− 1

ℓ

)
f ((O \ Z) ∪G) +

1

ℓ
(f ((O \ Z) ∪ (Z ∩G))− f(O ∪ Z)).
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Algorithm 9: A (≈ℓ)-approximation that interlaces ℓ greedy procedures together and uses only
1/ℓ fraction of the budget.

1 Procedure GUIDEDIG-S (f, k, Z,G, ℓ):
2 Input: oracle f , constraint k, guidance set Z, starting set G , set size ℓ
3 {a1, . . . , aℓ} ← top ℓ elements in U \ (G ∪ Z) with respect to marginal gains on G
4 for u← 0 to ℓ in parallel do
5 if u = 0 then
6 Au,l ← G ∪ {al}, for all 1 ≤ l ≤ ℓ
7 else
8 Au,l ← G ∪ {au}, for any 1 ≤ l ≤ ℓ
9 end

10 for j ← 1 to k/ℓ− 1 do
11 for i← 1 to ℓ do
12 xj,i ← argmaxx∈U\Z\(∪ℓ

l=1A
j
u,l)

∆(x|Au,i)

13 Au,i ← Au,i ∪ {xj,i}
14 end
15 end
16 end
17 return {Au,i : 1 ≤ i ≤ ℓ, 0 ≤ u ≤ ℓ}

Proof. Let omax = argmaxo∈O\(G∪Z) ∆(o|G), and let {a1, . . . , aℓ} be the largest ℓ elements of
{∆(x|G) : x ∈ U \ (G ∪ Z)}, as chosen on Line 3. We consider the following two cases.

Case (O \ (G∪Z))∩ {a1, . . . , aℓ} = ∅. Then, omax ̸∈ {a1, . . . , aℓ} which implies that ∆(au|G) ≥
∆(o|G), for every 1 ≤ u ≤ ℓ and o ∈ O \ (G ∪ Z); and, after the first iteration of the for loop on
Line 10 of Alg. 9, none of the elements in O \ (G ∪ Z) is added into any of {A0,i}ℓi=1. We will
analyze the iteration of the for loop on Line 4 with u = 0.

Since none of the elements in O \ (G ∪ Z) is added into the collection when j = 0, we can order
O \ (G ∪ Z) = {o1, o2, . . .} such that the first ℓ elements are not selected in any set before we
get to j = 1, the next ℓ elements are not selected in any set before we get to j = 2, and so on.
Let i ∈ {1, . . . , ℓ}. Let Aj

0,i be the value of A0,i after j elements are added into it, and define

A0,i = A
k/ℓ
0,i , the final value. Finally, denote by δj the value ∆

(
xj,i|Aj

0,i

)
. Then,

f ((O \ Z) ∪A0,i)− f (A0,i) ≤
∑

o∈O\(A0,i∪Z)

∆(o|A0,i) (submodularity)

≤
∑

o∈O\(G∪Z)

∆(o|A0,i) (G ⊆ A0,i)

≤
ℓ∑

l=1

∆
(
ol|A0

0,i

)
+

2ℓ∑
l=ℓ+1

∆
(
ol|A1

0,i

)
+ . . . (submodularity)

≤ ℓ

k/ℓ∑
j=1

δj = ℓ(f (A0,i)− f (G)),

where the last inequality follows from the ordering of O and the selection of elements into the sets.
By summing up the above inequality with all 1 ≤ i ≤ ℓ, it holds that,

E [f(A)] =
1

ℓ

ℓ∑
i=1

f (A0,i) ≥
1

ℓ(ℓ+ 1)

ℓ∑
i=1

f((O \ Z) ∪A0,i) +
ℓ

ℓ+ 1
f(G)

=
1

ℓ+ 1
E [f ((O \ Z) ∪A)] +

ℓ

ℓ+ 1
f (G) ,
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Since A0,i1 ∩A0,i2 = G for any 1 ≤ i1 ̸= i2 ≤ ℓ, and each xj,i is selected outside of Z, by repeated
application of submodularity, it can be shown that

E [f ((O \ Z) ∪A)] =
1

ℓ

ℓ∑
i=1

f((O \ Z) ∪A0,i)

≥
(
1− 1

ℓ

)
f ((O \ Z) ∪G) +

1

ℓ
f
(
(O \ Z) ∪

(
∪ℓi=1A0,i

))
≥
(
1− 1

ℓ

)
f ((O \ Z) ∪G) +

1

ℓ
(f ((O \ Z) ∪ (Z ∩G))− f(O ∪ Z))

E [f (O ∪A)] =
1

ℓ

ℓ∑
i=1

f(O ∪A0,i) ≥
(
1− 1

ℓ

)
f (O ∪G) +

1

ℓ
f
(
O ∪

(
∪ℓi=1A0,i

))
≥
(
1− 1

ℓ

)
f (O ∪G) +

1

ℓ
(f (O ∪ (Z ∩G))− f (O ∪ Z)) .

Therefore, if we select a random set from {A0,i : 1 ≤ i ≤ ℓ}, the three inequalities in the Lemma
hold and we have probability 1/(ℓ+ 1) of this happening.

Case (O \ (G ∪ Z)) ∩ {a1, . . . , aℓ} ≠ ∅. Then omax ∈ {a1, . . . , aℓ}, so au = omax, for some
u ∈ 1, . . . , ℓ. We analyze the iteration u of the for loop on Line 4. Similar to the previous case, let
i ∈ {1, . . . , ℓ}, define Aj

u,i be the value of Au,i after we add j elements into it, and we will use Au,i

for Ak/ℓ
u,i , Also, let δj = ∆

(
xj,i|Aj−1

u,i

)
. Finally, let x1,i = au and observe A1

u,i = G ∪ {au}, for
any i ∈ {1, . . . , ℓ}.

Then, we can order O \G = {o1, o2, . . .} such that: 1) for the first ℓ elements {ol}ℓl=1, ∆(ol|G) ≤
∆(omax|G) = δ1; 2) the next ℓ elements {ol}2ℓl=ℓ+1 are not selected by any set before we get to j = 2,
which implies that ∆

(
ol|A1

u,i

)
≤ δ2, and so on. Therefore, analagous to the the previous case, we

have that
E [f (A)] ≥ 1

ℓ+ 1
E [f ((O \ Z) ∪A)] +

ℓ

ℓ+ 1
f (G) (7)

Since, Au,i1 ∩ Au,i2 = G ∪ {au} for any 1 ≤ i1 ̸= i2 ≤ ℓ, au ∈ O \ Z, and each xj,i is selected
outside of Z, by submodularity and nonnegativity of f , it holds that

E [f ((O \ Z) ∪A)] =
1

ℓ

ℓ∑
i=1

f((O \ Z) ∪Au,i)

≥
(
1− 1

ℓ

)
f ((O \ Z) ∪G) +

1

ℓ
f
(
(O \ Z) ∪

(
∪ℓi=1Au,i

))
≥
(
1− 1

ℓ

)
f ((O \ Z) ∪G) +

1

ℓ
(f ((O \ Z) ∪ (Z ∩G))− f(O ∪ Z))

E [f (O ∪A)] =
1

ℓ

ℓ∑
i=1

f(O ∪Au,i) ≥
(
1− 1

ℓ

)
f (O ∪G) +

1

ℓ
f
(
O ∪

(
∪ℓi=1Au,i

))
≥
(
1− 1

ℓ

)
f (O ∪G) +

1

ℓ
(f (O ∪ (Z ∩G))− f (O ∪ Z)) .

Therefore, if we select a random set from {Au,i : 1 ≤ i ≤ ℓ}, the three inequalities in the lemma
holds, and this happens with probability (ℓ+ 1)−1.

D.2 Randomized Version of our Deterministic Algorithm

In this section, we provide the randomized version (Alg 10) of our deterministic algorithm (Alg. 11,
provided in Appendix D). The deterministic version simply evaluates all possible paths and returns the
best solution. In the following, we provide the theoretical guarantee and its analysis under different
constraints.
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Algorithm 10: The randomized algorithm suitable for derandomization.
1 Input: oracle f , constraint I, an approximation result Z0, switch point t, error rate ε
2 Z ← FASTLS(f, I, Z0, ε)

3 Initialize ℓ← 10
9ε , A0 ← ∅

4 if I is a size constraint then
5 for i← 1 to ℓ do
6 if i ≤ tℓ then Ai ← a random set in GUIDEDIG-S(f, I, Z,Ai−1, ℓ)
7 elseAi ← a random set in GUIDEDIG-S(f, I, ∅, Ai−1, ℓ)
8 end
9 else

10 for i← 1 to ℓ do
11 if i ≤ tℓ then Ai ← a random set in GUIDEDIG-M(f, I, Z,Ai−1, ℓ)
12 else Ai ← a random set in GUIDEDIG-M(f, I, ∅, Ai−1, ℓ)
13 end
14 end
15 return A∗ ← argmax{f(Z), f(Aℓ)}

Theorem D.3. Let (f, I) be an instance of SM, with the optimal solution set O. Algorithm 10
achieves an expected (0.385− ε) approximation ratio with (ℓ+ 1)−ℓ success probability and input
t = 0.372 under size constraint, where ℓ = 10

9ε . Moreover, it achieves an expected (0.305 − ε)
approximation ratio with t = 0.559 under matroid constraint. The query complexity of the algorithm
is O (kn/ε).

D.2.1 Size constraints

By Lemma D.2 in Appendix D.1.1 and the closed form for a recurrence provided in Lemma A.3, the
following corollary holds,
Corollary D.1. After iteration i of the for loop in Alg. 10, the following inequalities hold with a
probability of (ℓ+ 1)−i

E [f (Ai)] ≥
ℓ

ℓ+ 1
E [f (Ai−1)] +

1

ℓ+ 1

(
f (O \ Z)−

(
1−

(
1− 1

ℓ

)i
)
f (O ∪ Z)

)
, 1 ≤ i ≤ tℓ

E [f (Ai)] ≥
ℓ

ℓ+ 1
E [f (Ai−1)] +

1

ℓ+ 1

(
1− 1

ℓ

)i−⌊tℓ⌋
(
f(O)−

(
1−

(
1− 1

ℓ

)⌊tℓ⌋
)
f (O ∪ Z)

)
, tℓ < i ≤ ℓ

Proof of approximation ratio. If f (Z) ≥ (0.385− ε)f (O), the approximation ratio holds immedi-
ately. So, we analyze the case f (Z) < (0.385− ε)f (O) in the following.

Recall in Corollary C.1 that Z is a (1 + ε)α, α)-guidance set, it holds that f (O ∪ Z)+ f (O ∩ Z) <
(0.77− 1.615ε)f (O) and f (O ∩ Z) < (0.385− 0.615ε)f (O).

By repeatedly implementing Lemma A.3 with the recursion in Corollary D.1, it holds that

E
[
f
(
A⌊tℓ⌋

)]
≥

(
1−

(
1− 1

ℓ+ 1

)⌊tℓ⌋
)
(f (O \ Z)− f (O ∪ Z)) +

⌊tℓ⌋
ℓ+ 1

(
1− 1

ℓ

)⌊tℓ⌋

f (O ∪ Z)

≥

(
1−

(
1− 1

ℓ+ 1

)⌊tℓ⌋
)
(f (O)− f (O ∩ Z)− f (O ∪ Z)) +

⌊tℓ⌋
ℓ+ 1

(
1− 1

ℓ

)⌊tℓ⌋

f (O ∪ Z)

(submodularity)

E [f (Aℓ)] ≥
(
1− 1

ℓ+ 1

)ℓ−⌊tℓ⌋

E
[
f
(
A⌊tℓ⌋

)]
+

ℓ− ⌊tℓ⌋
ℓ+ 1

(
1− 1

ℓ

)ℓ−⌊tℓ⌋
(
f (O)−

(
1−

(
1− 1

ℓ

)⌊tℓ⌋
)
f (O ∪ Z)

)

≥

((
1− 1

ℓ+ 1

)(1−t)ℓ+1

−
(
1− 1

ℓ+ 1

)ℓ
)
(f (O)− f (O ∩ Z)− f (O ∪ Z))
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+
tℓ

ℓ+ 1

(
1− 1

ℓ+ 1

)(1−t)ℓ+1(
1− 1

ℓ

)tℓ

f (O ∪ Z)

+ (1− t)

(
1− 1

ℓ+ 1

)(
1− 1

ℓ

)(1−t)ℓ+1
(
f(O)−

(
1−

(
1− 1

ℓ

)tℓ−1
)
f (O ∪ Z)

)
(tℓ− 1 < ⌊tℓ⌋ ≤ tℓ)

=

((
1− 1

ℓ+ 1

)(
1− 1

ℓ+ 1

)(1−t)ℓ

−
(
1 +

1

ℓ

)(
1− 1

ℓ+ 1

)ℓ+1
)
(f (O)− f (O ∩ Z)− f (O ∪ Z))

+ t · ℓ− 1

ℓ+ 1

(
1− 1

ℓ+ 1

)(
1− 1

ℓ+ 1

)(1−t)ℓ(
1− 1

ℓ

)tℓ−1

f (O ∪ Z)

+ (1− t)

(
1− 1

ℓ+ 1

)2
[(

1− 1

ℓ

)(
1− 1

ℓ

)(1−t)ℓ−1

f(O)

−
(
1− 1

ℓ

)(1−t)ℓ

f (O ∪ Z) +

(
1− 1

ℓ

)(
1− 1

ℓ

)ℓ−1

f (O ∪ Z)

]

≥
((

1− 1

ℓ

)
et−1 − e−1

)
(f (O)− f (O ∩ Z)− f (O ∪ Z)) + t ·

(
1− 1

ℓ

)3

e−1f (O ∪ Z)

+ (1− t)

(
1− 1

ℓ

)2((
1− 1

ℓ

)
et−1f(O)− et−1f(O ∪ Z) +

(
1− 1

ℓ

)
e−1f(O ∪ Z)

)
(f (O)− f (O ∩ Z)− f (O ∪ Z) > 0; nonnegativity; Lemma A.4)

≥
[
c(c2(1− t) + 1)et−1 − e−1

]
f (O)−

[
c(c(1− t) + 1)et−1 − (c3 + 1)e−1

]
(f (O ∪ Z) + f (O ∩ Z))

−
[
c3e−1 − c2(1− t)et−1

]
f (O ∩ Z) (Let c = 1− 9ε

10 = 1− 1
ℓ )

≥
[
c(c2(1− t) + 1)et−1 − e−1

]
f (O)−

[
c(c(1− t) + 1)et−1 − (c3 + 1)e−1

]
(0.77− 1.615ε)f (O)

−
[
c3e−1 − c2(1− t)et−1

]
(0.385− 0.615ε)f (O)

(f (O ∪ Z) + f (O ∩ Z) < (0.77− 1.615ε)f (O); f (O ∩ Z) < (0.385− 0.615ε)f (O))
≥ (0.385− ε)f (O) (0 < ε < 0.385; t = 0.372)

D.2.2 Matroid Constraints

By Lemma D.1 in Appendix D.1 and the closed form for a recurrence provided in Lemma A.3, the
following corollary holds,

Corollary D.2. After iteration i of the for loop in Alg. 10, the following inequalities hold,

E [f (Ai)] ≥
(
1− 2

ℓ

)
E [f (Ai−1)]

+
1

ℓ+ 1

(
1− 1

ℓ

)(
f (O \ Z)− 1

2

(
1−

(
1− 2

ℓ

)i−1
)
f (O ∪ Z)

)
, 1 ≤ i ≤ tℓ

E [f (Ai)] ≥
(
1− 2

ℓ

)
E [f (Ai−1)]

+
1

ℓ+ 1

(
1− 1

ℓ

)(
1

2

(
1 +

(
1− 2

ℓ

)i−tℓ
)
f(O)− 1

2

((
1− 2

ℓ

)i−tℓ

−
(
1− 2

ℓ

)i
)
f(O ∪ Z)

)
, tℓ < i ≤ ℓ

Proof of approximation ratio. If f (Z) ≥ (0.305− ε)f (O), the approximation ratio holds immedi-
ately. So, we analyze the case f (Z) < (0.305− ε)f (O) in the following.

Recall that Z is a (1 + ε)α, α)-guidance set in Corollary C.1, it holds that f (O ∪ Z)+ f (O ∩ Z) <
(0.61− 1.695ε)f (O) and f (O ∩ Z) < (0.305− 0.695ε)f (O).
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By repeatedly implementing Lemma A.3 with the recursion in Corollary D.2, it holds that

E
[
f
(
A⌊tℓ⌋

)]
≥ ℓ− 1

2(ℓ+ 1)

[(
1−

(
1− 2

ℓ

)⌊tℓ⌋
)(

f (O \ Z)− 1

2
f (O ∪ Z)

)
+ t

(
1− 2

ℓ

)⌊tℓ⌋−1

f (O ∪ Z)

]

≥ ℓ− 1

2(ℓ+ 1)

[(
1−

(
1− 2

ℓ

)⌊tℓ⌋
)(

f (O)− f (O ∩ Z)− 1

2
f (O ∪ Z)

)
+ t

(
1− 2

ℓ

)⌊tℓ⌋−1

f (O ∪ Z)

]
(submodularity)

E [f (Aℓ)] ≥
(
1− 2

ℓ

)ℓ−⌊tℓ⌋

E
[
f
(
A⌊tℓ⌋

)]
+

ℓ− 1

2(ℓ+ 1)

[(
1

2
+

(
1

2
− t+

1

ℓ

)(
1− 2

ℓ

)ℓ−⌊tℓ⌋−1
)
f(O)

−(1− t)

((
1− 2

ℓ

)ℓ−⌊tℓ⌋−1

−
(
1− 2

ℓ

)ℓ−1
)
f(O ∪ Z)

]

≥ ℓ− 1

2(ℓ+ 1)

[(
1

2
+

(
3

2
− t− 1

ℓ

)(
1− 2

ℓ

)ℓ−tℓ

−
(
1− 2

ℓ

)ℓ
)
f (O)

−

((
1− 2

ℓ

)(1−t)ℓ

−
(
1− 2

ℓ

)ℓ
)
f (O ∩ Z)

−

((
1

2
+

1− t

1− 2
ℓ

)(
1− 2

ℓ

)ℓ−tℓ

−
(
3

2
− 1

ℓ

)(
1− 2

ℓ

)ℓ−1
)
f (O ∪ Z)

]
(tℓ− 1 < ⌊tℓ⌋ ≤ tℓ)

≥ ℓ− 1

2(ℓ+ 1)

[(
1

2
+

(
3

2
− t− 1

ℓ

)(
1− 2

ℓ

)
e2(t−1) − e−2

)
f (O)−

(
e2(t−1) −

(
1− 2

ℓ

)
e−2

)
f (O ∩ Z)

−
((

1

2
+

1− t

1− 2
ℓ

)
e2(t−1) −

(
3

2
− 1

ℓ

)
e−2

)
f (O ∪ Z)

]
(Lemma A.4; nonnegativity)

≥ ℓ− 1

2(ℓ+ 1)

[(
1

2
+

(
3

2
− t− 1

ℓ

)(
1− 2

ℓ

)
e2(t−1) − e−2

)
f (O)−

((
1

2
+

1

ℓ

)
e−2 −

(
1

2
− t

)
e2(t−1)

)
f (O ∩ Z)

−
((

1

2
+

1− t

1− 2
ℓ

)
e2(t−1) −

(
3

2
− 1

ℓ

)
e−2

)
(f (O ∪ Z) + f (O ∩ Z))

]
≥ ℓ− 1

2(ℓ+ 1)

[
1

2
+

(
3

2
− t− 1

ℓ

)(
1− 2

ℓ

)
e2(t−1) − e−2 − (0.305− 0.695ε)

((
1

2
+

1

ℓ

)
e−2 −

(
1

2
− t

)
e2(t−1)

)
−(0.61− 1.695ε)

((
1

2
+

1− t

1− 2
ℓ

)
e2(t−1) −

(
3

2
− 1

ℓ

)
e−2

)]
f (O)

≥ (0.305− ε)f (O) (ℓ = 10
9ε ; 0 < ε < 0.305; t = 0.559)

D.3 Derandomize Alg. 10 in Section 2.3

In this section, we present the deranmized version of Alg. 10, which simply evaluates all possible
paths and returns the best solution. We reiterate the guarantee as follows.
Theorem 2.4. Let (f, k) be an instance of SM, with the optimal solution set O. Alg. 11 achieves
a deterministic (0.385 − ε) approximation ratio with t = 0.372, and a deterministic (0.305 − ε)
approximation ratio with t = 0.559. The query complexity of the algorithm is O

(
knℓ2ℓ−1

)
where

ℓ = 10
9ε .

E Proofs for Nearly Linear Time Deterministic Algorithm in Section 3

In this section, we provide the pseudocode and additional analysis of our nearly linear time determin-
istic algorithm introduced in Section 3. We organize this section as follows: in Appendix E.1, we
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Algorithm 11: Deterministic combinatorial approximation algorithm with the same ratio as
Alg. 2

1 Input: oracle f , constraint I, an approximation result Z0, switch point t, error rate ε
2 Z ← FASTLS(f, I, Z0, ε)

3 Initialize ℓ← 10
9ε , G0 ← {∅}

4 if I is a size constraint then
5 for i← 1 to ℓ do
6 Gi ← ∅
7 for Ai−1 ∈ Gi−1 do
8 if i ≤ tℓ then
9 Gi ← Gi ∪ GUIDEDIG-S(f, k, Z,Ai−1, ℓ)

10 else
11 Gi ← Gi ∪ GUIDEDIG-S(f, k, ∅, Ai−1, ℓ)
12 end
13 end
14 end
15 else
16 for i← 1 to ℓ do
17 Gi ← ∅
18 for Ai−1 ∈ Gi−1 do
19 if i ≤ tℓ then
20 Gi ← Gi ∪ GUIDEDIG-M(f, k, Z,Ai−1, ℓ)
21 else
22 Gi ← Gi ∪ GUIDEDIG-M(f, k, ∅, Ai−1, ℓ)
23 end
24 end
25 end
26 end
27 return A∗ ← argmax{f (Z) , f (Aℓ) : Aℓ ∈ Gℓ}

provide a speedup version of GUIDEDIG-S which queries O (n log(k)) times; in Appendix E.2, we
analyze the subroutine, PRUNE; at last, in Appendix E.3, we provide the pseudocode of nearly linear
time deterministic algorithm and its analysis.

E.1 GUIDEDIG-S Speedup

In this section, we provide the algorithm THRESHGUIDEDIG, which combines the guiding and
descending threshold greedy techniques with INTERLACEGREEDY [11].

Lemma E.1. Let O ⊆ U be any set of size at most k, and suppose THRESHGUIDEDIG(Alg. 12)
is called with (f, k, Z,G, ℓ). Then THRESHGUIDEDIG outputs ℓ(ℓ + 1) candidate sets with
O
(
ℓ2n log(k)/ε

)
queries. Moreover, with a probability of (ℓ + 1)−1, a randomly selected set

A from the output satisfies that:

1)
(

ℓ

1− ε
+ 1

)
E [f (A)] ≥ E [f ((O \ Z) ∪A)] +

ℓ

1− ε
f (G)− εf(O);

2) E [f(O ∪A)] ≥
(
1− 1

ℓ

)
f(O ∪G) +

1

ℓ
(f (O ∪ (Z ∩G))− f (O ∪ Z))

3) E [f ((O \ Z) ∪A)] ≥
(
1− 1

ℓ

)
f ((O \ Z) ∪G) +

1

ℓ
(f ((O \ Z) ∪ (Z ∩G))− f(O ∪ Z)).

Proof. Let omax = argmaxo∈O\(G∪Z) ∆(o|G), and let {a1, . . . , aℓ} be the largest ℓ elements of
{∆(x|G) : x ∈ U \ (G ∪ Z)}, as chosen on Line 13. We consider the following two cases.

Case (O \ (G∪Z))∩ {a1, . . . , aℓ} = ∅. Then, omax ̸∈ {a1, . . . , aℓ} which implies that ∆(au|G) ≥
∆(o|G), for every 1 ≤ u ≤ ℓ and o ∈ O \ (G ∪ Z); and, after the first iteration of the while loop on
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Algorithm 12: A guided INTERLACEGREEDY subroutine with descending threshold technique
for size constraints.

1 Procedure THRESHGUIDEDIG (f, k, Z,G, ℓ, ε):
2 Input: oracle f , constraint k, guidance set Z, starting set G, set size ℓ, error ε > 0
3 {a1, . . . , aℓ} ← top ℓ elements in U \ (G ∪ Z) with respect to marginal gains on G
4 for u← 0 to ℓ in parallel do
5 if u = 0 then
6 M ← ∆(aℓ|G)
7 Au,l ← G ∪ {al}, for any l ∈ [ℓ]
8 else
9 M ← ∆(au|G)

10 Au,l ← G ∪ {au}, for any l ∈ [ℓ]
11 end
12 τl ←M , Il ← true, for any l ∈ [ℓ]

13 while ∨ℓl=1Il do
14 for i← 1 to ℓ do
15 if Ii then
16 V ← U \

(
∪ℓl=1Au,l ∪ Z

)
17 Au,i, τi ← ADD(f, V,Au,i, ε, τi,

εM
k )

18 if |Au,i \G| = k/ℓ ∨ τi <
εM
k then Ii ← false

19 end
20 end
21 end
22 Gm ← Gm ∪ {Au,1, Au,2, . . . , Au,ℓ}
23 end
24 return S∗ ← argmax{f(Sℓ) : Sℓ ∈ Gℓ}
25 Procedure ADD (f, V,A, ε, τ, τmin):
26 Input: oracle f , candidate set V , solution set A, ε, threshold τ , and its lower bound τmin

27 while τ ≥ τmin do
28 for x ∈ V do
29 if ∆(x|A) ≥ τ then return A← A ∪ {x}, τ
30 τ ← (1− ε)τ
31 end
32 end
33 return A, τ

Line 13, none of the elements in O \ (G ∪ Z) is added into any of {A0,i}ℓi=1. We will analyze the
iteration of the for loop on Line 4 with u = 0.

For any l ∈ [ℓ], let A(j)
0,l be A0,l after we add j elements into it, τ (j)l be τl when we adopt j-th

elements into A0,l, and τ
(1)
l = M . By Line 7, it holds that A(1)

0,l = G ∪ {al}. Since (O \ (G ∪Z)) ∪
{a1, . . . , aℓ} = ∅, and we add elements to each set in turn, we can order O \ (G∪Z) = {o1, o2, . . .}
such that the first ℓ elements are not selected by any set before we get A(1)

0,l , the next ℓ elements

are not selected in any set before we get A(2)
0,l , and so on. Therefore, for any j ≤ |A0,l \ G| and

ℓ(j − 1) + 1 ≤ i ≤ ℓj, oi are filtered out by A0,l with threshold τ
(j)
l /(1 − ε), which follows that

∆
(
oi|A(j)

0,l

)
< τ

(j)
l /(1−ε) ≤ (f(A

(j)
0,l )−f(A

(j−1)
0,l ))/(1−ε); for any ℓ|A0,l\G| < i ≤ |O\(G∪Z)|,

oi are filtered out by A0,l with threshold εM
k , which follows that ∆(oi|A0,l) < εM/k. Thus,

f ((O \ Z) ∪A0,l)− f (A0,l) ≤
∑

o∈O\A0,l

∆(o|A0,l) (submodularity)

≤
∑

o∈O\(G∪Z)

∆(o|A0,l) (G ⊆ A0,l)
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≤
ℓ∑

i=1

∆
(
oi|A(1)

0,l

)
+

2ℓ∑
i=ℓ+1

∆
(
oi|A(2)

0,l

)
+ . . .+

∑
i>ℓ|A0,l\G|

∆(oi|A0,l) (submodularity)

≤ ℓ · f (A0,l)− f (G)

1− ε
+ εM

≤ ℓ · f (A0,l)− f (G)

1− ε
+ εf (O) .

By summing up the above inequality with all 1 ≤ l ≤ ℓ, it holds that(
ℓ

1− ε
+ 1

)
E [f (A)] ≥ E [f ((O \ Z) ∪A)] +

ℓ

1− ε
f (G)− εf (O) . (8)

Since Au,l1 ∩ Au,l2 = G for any 1 ≤ l1 ̸= l2 ≤ ℓ it holds that ((O \ Z) ∪Au,l1) ∩
((O \ Z) ∪Au,l2) = (O \ Z) ∪G. By repeated application of submodularity, it holds that

E [f ((O \ Z) ∪A)] =
1

ℓ

ℓ∑
i=1

f((O \ Z) ∪A0,i)

≥
(
1− 1

ℓ

)
f ((O \ Z) ∪G) +

1

ℓ
f
(
(O \ Z) ∪

(
∪ℓi=1A0,i

))
≥
(
1− 1

ℓ

)
f ((O \ Z) ∪G) +

1

ℓ
(f ((O \ Z) ∪ (Z ∩G))− f(O ∪ Z))

E [f (O ∪A)] =
1

ℓ

ℓ∑
i=1

f(O ∪A0,i) ≥
(
1− 1

ℓ

)
f (O ∪G) +

1

ℓ
f
(
O ∪

(
∪ℓi=1A0,i

))
≥
(
1− 1

ℓ

)
f (O ∪G) +

1

ℓ
(f (O ∪ (Z ∩G))− f (O ∪ Z)) .

Therefore, the last two inequalities in the theorem hold.

Case (O \ (G ∪ Z)) ∩ {a1, . . . , aℓ} ≠ ∅. Then omax ∈ {a1, . . . , aℓ}. Suppose that au = omax. We
analyze that lemma holds with sets {Au,l}ℓl=1.

Similar to the analysis of the previous case, let A(j)
0,l be A0,l after we add j elements into it, τ (j)l be τl

when we adopt j-th elements into A0,l, and τ
(1)
l = M . By Line 10, it holds that A(1)

u,l = G ∪ {au}.
Then, we can order O \ (G ∪ Z ∪ {au}) = {o1, o2, . . .} such that the first ℓ elements are not selected
by any set before we get A(1)

u,l , the next ℓ elements are not selected in any set before we get A(2)
u,l , and

so on. Therefore, Inequality 8 also holds in this case, where A is a random set from {Au,l}ℓl=1.

Since, au ∈ O, and Au,l1 ∩ Au,l2 = G ∪ {au} for any 1 ≤ l1 ̸= l2 ≤ ℓ, it holds that
((O \ Z) ∪Au,i1) ∩ ((O \ Z) ∪Au,i2) = O ∪ G. Following the proof of case (O \ (G ∪ Z)) ∩
{a1, . . . , aℓ} = ∅, the last two inequalities still hold in this case.

Overall, since either one of the above cases happens, the theorem holds.

E.2 Pruning Subroutine

PRUNE is used in Alg. 14 to help construct the (α, β)-guidance set, where α = 0.377 and β = 0.46.
In this section, we provide the pseudocode, guarantee and its analysis.

Lemma E.2. Suppose PRUNE(Alg. 13) is called with (f,A) and returns the setA′. For every A ∈ A
and its related output set A′ ∈ A′, it holds that,

1) f (A′) ≥ f (A) ;

2) f (S ∪A′) ≥ f (S ∪A) ,∀S ⊆ U ;
3) f (T ) ≤ f (A′) ,∀T ⊆ A′.
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Algorithm 13: A pruning algorithm which deletes element with negative marginal gain
1 Procedure PRUNE (f,A):
2 Input: oracle f , a sequence of subsets A
3 Initialize: A′ ← ∅
4 for A ∈ A do
5 for x ∈ A do
6 if ∆(x|A− x) < 0 then A← A− x
7 end
8 A′ ← A′ ∪ {A}
9 end

10 return A′

Proof. Let Ai be A after we delete i-th element xi, A0 be the input set A, Am be the output set A′.
Since any element xi being deleted follows that ∆(xi|Ai) < 0, it holds that f (Ai) > f (Ai + xi) =
f (Ai−1). Therefore, f (A′) = f (Am) > . . . > f (A0) = f (A). The first inequality holds.

For any xi ∈ A \A′, it holds that ∆(xi|Ai) < 0. By submodularity,

f (S ∪A)− f (S ∪A′) =

m∑
i=1

∆(xi|S ∪Ai) ≤
m∑
i=1

∆(xi|Ai) < 0.

The second inequality holds.

For any y ∈ A′ \ T , since it is not deleted, there exists 0 ≤ iy ≤ m such that ∆
(
y|Aiy

)
≥ 0. By

submodularity,

f (A′)− f (T ) ≥
∑

y∈A′\T

∆(y|A′) ≥
∑

y∈A′\T

∆
(
y|Aiy

)
≥ 0.

The third inequality holds.

E.3 Proofs for Theorem 3.1 of Alg. 14

Prior to delving into the proof of Theorem 3.1, we provide the following corollary first. It demonstrates
the progression of the intermediate solution of THRESHGUIDEDIG, after the pruning process, relying
on Lemma E.2 and E.1.
Corollary E.1. Let O ⊆ U be any set of size at most k. Then
PRUNE(THRESHGUIDEDIG(f, k, ∅, G, ℓ)) outputs ℓ(ℓ + 1) candidate sets with O

(
ℓ2n log(k)/ε

)
queries. Moreover, with a probability of (ℓ + 1)−1, a randomly selected set A from the output
satisfies that:

1)
(

ℓ

1− ε
+ 1

)
E [f (A)] ≥

(
1− 1

ℓ

)
f(O ∪G) +

ℓ

1− ε
f (G)− εf(O);

2) E [f(O ∪A)] ≥
(
1− 1

ℓ

)
f(O ∪G);

3) f(O ∩A) ≤ f(A).

Theorem 3.1. Let (f, k) be an instance of SM, with the optimal solution set O. Algorithm 14
achieves a deterministic (0.377 − ε) approximation ratio with O(n log(k)ℓ1

2ℓ1ℓ2
2ℓ2−1) queries,

where ℓ1 = 10
3ε and ℓ2 = 5

ε .

Proof. Following the proof of Theorem 3.1, we consider two cases of the algorithm.

Case 1. For every A ∈ Z, it holds that f(O∪A) ≥ 0.46f(O). Then, we prove that maxC∈Z f (C) ≥
(0.377− ε)f (O).

In the following, we prove the theorem by analyzing the random case of the algorithm, where we
randomly select a set from the output of PRUNE (THRESHGUIDEDIG). Suppose that we successfullly
select a set where the inequalities in Corollary E.1 hold. Let Ai and Ai−1 be random sets in Zi
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Algorithm 14: Nearly linear-time deterministic algorithm for size constraint
1 Input: oracle f , size constraint k, error rate ε

2 Initialize ε′ = 2
ε , ℓ1 ←

5
3ε′ , ℓ2 ←

5
2ε′ , t← 0.3

3 ▷ Create guided sets
4 Z0 ← ∅
5 for i← 1 to ℓ1 do
6 Zi ← ∅
7 for Ai−1 ∈ Zi−1 do
8 Zi ← Zi ∪ PRUNE(THRESHGUIDEDIG(f, k, ∅, Ai−1, ℓ1, ε

′))
9 end

10 end
11 Z ← ∪ℓ1i=1Zi

12 ▷ Build solution based on guided sets
13 G← ∅
14 for A ∈ Z do
15 G0 ← ∅
16 for i← 1 to ℓ2 do
17 Gi ← ∅
18 for Bi−1 ∈ Gi−1 do
19 if i ≤ tℓ then
20 Gi ← Gi ∪ THRESHGUIDEDIG(f, k,A,Bi−1, ℓ2, ε

′)
21 else
22 Gi ← Gi ∪ THRESHGUIDEDIG(f, k, ∅, Bi−1, ℓ2, ε

′)
23 end
24 end
25 end
26 G← G ∪Gℓ2

27 end
28 return C∗ ← argmaxC∈Z∪G f(C)

and Zi−1, respectively. Let
(
1− 1

ℓ1

)i∗−1

> 0.46 ≥
(
1− 1

ℓ1

)i∗
. Then, by Inequality (2) in

Corollary E.1, when i < i∗, E [f(O ∪Ai)] ≥
(
1− 1

ℓ1

)i
f(O); when i ≥ i∗, f(O∪Ai) ≥ 0.46f(O)

by assumption. By applying Inequality (1) in Corollary E.1,

E [f (Ai∗)] ≥

 i∗

ℓ1
1−ε′ + 1

(
1− 1

ℓ1

)i∗

− ε′

1−

(
1− 1

ℓ1
1−ε′ + 1

)i∗
 f (O)

E [f (Aℓ1)] ≥

(
1− 1

ℓ1
1−ε′ + 1

)ℓ1−i∗

E [f (Ai∗)] +

1−

(
1− 1

ℓ1
1−ε′ + 1

)ℓ1−i∗
 (0.46− ε′)f(O)

≥

 i∗

ℓ1
1−ε′ + 1

(
1− 1

ℓ1

)i∗
(
1− 1

ℓ1
1−ε′ + 1

)ℓ1−i∗

+

1−

(
1− 1

ℓ1
1−ε′ + 1

)ℓ1−i∗
 0.46

−ε′
1−

(
1− 1

ℓ1
1−ε′ + 1

)ℓ1
 f(O)

≥

 log(0.46)(
ℓ1

1−ε′ + 1
)
log
(
1− 1

ℓ1

) (1− 1

ℓ1

)
e−1 +

1− eε
′−1

0.46

(
1− 1

ℓ1
1−ε′ +1

)
 0.46− ε′

(
1− e−1+ε′

) f(O)

(Lemma A.4;
(
1− 1

ℓ1

)i∗−1

> 0.46 ≥
(
1− 1

ℓ1

)i∗
)
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≥ (0.377− ε)f (O) (ℓ1 = 5
3ε′ ; ε

′ = ε
2 ; 0 < ε < 0.377)

Since we return the best solution in Z and G, it holds that f(C∗) ≥ E [f (Aℓ1)] ≥ (0.377− ε)f(O).

Case 2. There exists A ∈ Z, such that f(O∪A) < 0.46f(O). Then, we prove that maxC∈G f (C) ≥
(0.377− ε)f (O).

Suppose that f(A) < 0.377f(O). Otherwise, f(C∗) ≥ 0.377f(O) immediately. By Inequality (3)
in Corollary E.2, it holds that f (O ∩A) ≤ f (A) < 0.377f (O). Let Bℓ2 be a randomly selected
set in Gℓ2 , where we calculate Gℓ2 with the guidance set A and inequalities in Theorem D.2 hold
successfully. In the following, we also consider that randomized version of the algorithm, where we
randomly select a set Bi from all the solution set returned by THRESHGUIDEDIG. Suppose that we
successfully select a set where the inequalities in Lemma E.1 hold. Then, the recursion of E [f (Bi)]
can be calculated as follows,

E [f (Bi)] ≥
ℓ2

1−ε′

ℓ2
1−ε′ + 1

E [f (Bi−1)] +
1

ℓ2
1−ε′ + 1

(
f (O \A)−

(
1−

(
1− 1

ℓ2

)i
)
f (O ∪A)− ε′f (O)

)
,

1 ≤ i ≤ tℓ2

E [f (Bi)] ≥
ℓ2

1−ε′

ℓ2
1−ε′ + 1

E [f (Bi−1)] +
1

ℓ2
1−ε′ + 1

[((
1− 1

ℓ2

)i−⌊tℓ2⌋

− ε′

)
f (O)

−

((
1− 1

ℓ2

)i−⌊tℓ2⌋

−
(
1− 1

ℓ2

)i
)
f (O ∪A)

]
, tℓ2 < i ≤ ℓ2

Then, by solving the above recursion, it holds that

E
[
f
(
B⌊tℓ2⌋

)]
≥

(
1−

(
1− 1

ℓ2

)⌊tℓ2⌋
)
(f (O \A)− f (O ∪A)− ε′f (O)) +

⌊tℓ2⌋
ℓ2

1−ε′ + 1

(
1− 1

ℓ2

)⌊tℓ2⌋

f (O ∪A)

E [f (Bℓ2)] ≥
(
1− 1

ℓ2

)ℓ2⌊tℓ2⌋

E
[
f
(
B⌊tℓ2⌋

)]
+

ℓ2⌊tℓ2⌋
ℓ2

1−ε′ + 1

(
1− 1

ℓ2

)ℓ2⌊tℓ2⌋
[
f (O)−

(
1−

(
1− 1

ℓ2

)⌊tℓ2⌋
)
f (O ∪A)

]

− ε′ℓ2
ℓ2

1−ε′ + 1

(
1−

(
1− 1

ℓ2

)ℓ2⌊tℓ2⌋
)
f (O)

≥

((
1− 1

ℓ2

)(1−t)ℓ2+1

−
(
1− 1

ℓ2

)ℓ2
)
(f (O)− f (O ∩A)− f (O ∪A)− ε′f (O))

+
(1− t)ℓ2
ℓ2

1−ε′ + 1

(
1− 1

ℓ2

)(1−t)ℓ2+1

f (O)− ℓ2
ℓ2

1−ε′ + 1

(
(1− t)

(
1− 1

ℓ2

)(1−t)ℓ2

−
(
1− 1

ℓ2

)ℓ2
)
f (O ∪A)

− ε′ℓ2
ℓ2

1−ε′ + 1

(
1−

(
1− 1

ℓ2

)(1−t)ℓ2+1
)
f (O) (tℓ2 − 1 < ⌊tℓ2⌋ ≤ tℓ2)

≥

((
1− 1

ℓ2

)2

et−1 − e−1

)
(f (O)− f (O ∩A)− f (O ∪A)− ε′f (O))

+
(1− t)(ℓ2 − 1)

ℓ2
1−ε′ + 1

(
1− 1

ℓ2

)
et−1f (O)− ℓ2

ℓ2
1−ε′ + 1

(
(1− t)et−1 −

(
1− 1

ℓ2

)
e−1

)
f (O ∪A)

− ε′ℓ2
ℓ2

1−ε′ + 1

(
1−

(
1− 1

ℓ2

)2

et−1

)
f (O)

(f (O ∩A) + f (O ∪A) ≥ 0.837f (O); Lemma A.4)

≥

[(
(1− t)(ℓ2 − 1)

ℓ2
1−ε′ + 1

+ 1− 1

ℓ2

)(
1− 1

ℓ2

)
et−1 − e−1 − ε′

(
1− e−1

)]
f (O)

−
(
et−1 − e−1

)
f (O ∩A)−

(
(2− t)et−1 −

(
2− 1

ℓ2

)
e−1

)
f (O ∪A)
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≥

[(
(1− t)(ℓ2 − 1)

ℓ2
1−ε′ + 1

+ 1− 1

ℓ2

)(
1− 1

ℓ2

)
et−1 − e−1 − ε′

(
1− e−1

)
−0.377

(
et−1 − e−1

)
− 0.46

(
(2− t)et−1 −

(
2− 1

ℓ2

)
e−1

)]
f (O)

(f (O ∩A) < 0.377f (O); f (O ∪A) < 0.46f (O))

≥ (0.377− ε)f (O) (t = 0.3; ℓ2 = 5
2ε′ ; ε

′ = ε
2 )

F Experiments

Experimental setup We run all experiments on an Intel Xeon(R) W5-2445 CPU at 3.10 GHz with
20 cores, 64 GB of memory, and one NVIDIA RTX A4000 with 16 GB of memory. For Maximum
Cut experiments, we use the standard multiprocessing provided in Python, which takes about 20
minutes to complete, while the video summarization finishes in under a minute.

F.1 Additional tables and plots

In this section, you can find the tables and plots omitted in the main paper due to space constraints. In
Figure 5, we compare the frames selected by FASTLS +RANDOMGREEDY and STANDARDGREEDY,
and in Figure 6, we report the results for Barab’asi-Albert and Watts-Strogatz models for Maximum
Cut.

F.2 Problem Formulation

In this section, we formally introduce video summarization and Maximum Cut.

F.2.1 Video summarization

Formally, given n frames from a video, we present each frame by a p-dimensional vector. Let
X ∈ Rn×n be the Gramian matrix of the n resulting vectors so Xij quantifies the similarity between
two vectors through their inner product. The Determinantal Point Process (DPP) objective function
is defined by the determinant function f : 2n → R : f(S) = log(det(XS) + 1), where XS is the
principal submatrix of X indexed by S following Banihashem et al. [1] to make the objective function
f a non-monotone non-negative submodular function.

(a) FASTLS +GUIDEDRG (b) STANDARDGREEDY

Figure 5: Frames selected for Video Summarization

F.2.2 Maximum cut

Given an undirected graph G(V,E), where V represents the set of vertices, E denotes the set of
edges and weights w(u, v) on the edges (u, v) ∈ E, the goal of the Maximum Cut problem is to find
a subset of nodes S ⊆ V that maximizes the objective function, f(S) =

∑
u∈S,v∈V \S w(u, v).

F.3 Hyperparameters

For all experiments, we set the error rate, ϵ, to 0.01 for FASTLS +GUIDEDRG and to 0.1 for Lee
et al. [21]. Additionally, for video summarization, we run RANDOMGREEDY 20 times and report the
standard deviation of these runs. For all other experiments, we run the algorithms once per instance
and report the standard deviation over instances.

37

108965 https://doi.org/10.52202/079017-3459



0.0 0.2 0.4
k/n

0.8

0.9

1.0
Ob

je
ct

iv
e 

/ G
re

ed
y

FastLS+GuidedRG
Random Greedy
Lee et al.

(a) BA, solution value

0.0 0.2 0.4
k/n

100

101

102

Qu
er

ie
s /

 G
re

ed
y

(b) BA, queries

0.0 0.2 0.4
k/n

0.950

0.975

1.000

1.025

Ob
je

ct
iv

e 
/ G

re
ed

y

(c) Watts Strogatz, solution value

0.0 0.2 0.4
k/n

100

101

102

103

Qu
er

ie
s /

 G
re

ed
y

(d) Watts Strogatz, queries

Figure 6: The objective value (higher is better) and the number of queries (lower is better) are
normalized by those of STANDARDGREEDY. Our algorithm (blue star) outperforms every baseline
on at least one of these two metrics.

F.4 Datasets

The video we select [29] (available under CC BY license) for video summarization lasts for roughly 4
minutes, and we uniformly sample 100 frames from the video to form the ground set. For maximum
cut, we run experiments on synthetic random graphs, each distribution consisting of 20 graphs of size
10, 000 vertices generated using the Erdős-Renyi (ER), Barabasi-Albert (BA), and Watts-Strogatz
(WS) models. The ER graphs are generated with p = 0.001, while the WS graphs are created with
p = 0.001 and 10 edges per node. For the BA model, graphs are generated by adding m = 2 edges in
each iteration. Data and code are provided in the supplementary material to regenerate the empirical
results provided in the paper.

F.5 Implementation of FASTLS+GUIDEDRG

For our implementation of FASTLS, we take the solution of STANDARDGREEDY as our initial
solution Z0; the theoretical guarantee is thus f(Z0) > OPT/k, since Z0 has higher f -value than the
maximum singleton. This increases the theoretical query complexity of our algorithm as implemented
to O

(
kn
ε log(kε )

)
. Then, for each swap, we find the best candidates to remove from and add to the

current solution set (including the dummy element), rather than any pair that satifies the criterion.
For guided GUIDEDRG, we implement exactly as in the pseudocode (Alg. 6) – we remark that we
could instead use (a guided version of) the linear-time variant of RANDOMGREEDY [10] to reduce
the empirical number of queries further, but for simplicity we did not do this in our evaluation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims made in the abstract and introduction are matched by theorem
statements with detailed proofs in the main text and appendices or by empirical evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: All formal theorem statements include the assumed hypotheses, and theoretical
and empirical limitations are discussed explicitly in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All assumptions are clearly specified. In the main text, we discuss the intuition
behind the analysis and sketch the main arguments, while complete detailed proofs are
provided in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All parameter settings and implementation choices for the evaluated algorithms
are reported. Further, the source code and documentation is provided, with instructions for
how to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The complete data, source code, and instructions to reproduce the experimental
results are provided in the supplementary material. Once this manuscript is published, we
plan to make this available on an open-source repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: No training is involved in the evaluation. All hyperparameters for random
graph generation and for the algorithms are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In out plots, we plot the mean over 20 independent repetitions. The shaded
regions of the plots indicate one standard deviation about the mean.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiments are not large-scale, and modern desktop hardware should be
sufficient to reproduce all results in a few hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms in every respect to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Ours is foundational research, not tied to any particular application or de-
ployment. The applications upon which we implemented and empirically evaluated our
algorithms are proof-of-concept and thus our provided implementations are unlikely to lead
directly to negative societal impact.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The only pre-existing asset used is the video in the summarization experiment.
We explicitly mention the license in Appendix F and properly respect the terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The released source code is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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