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Abstract

Predicting molecular impact on cellular function is a core challenge in therapeutic
design. Phenomic experiments, designed to capture cellular morphology, utilize
microscopy based techniques and demonstrate a high throughput solution for un-
covering molecular impact on the cell. In this work, we learn a joint latent space
between molecular structures and microscopy phenomic experiments, aligning
paired samples with contrastive learning. Specifically, we study the problem of
Contrastive PhenoMolecular Retrieval, which consists of zero-shot molecular struc-
ture identification conditioned on phenomic experiments. We assess challenges
in multi-modal learning of phenomics and molecular modalities such as experi-
mental batch effect, inactive molecule perturbations, and encoding perturbation
concentration. We demonstrate improved multi-modal learner retrieval through
(1) a uni-modal pre-trained phenomics model, (2) a novel inter sample similarity
aware loss, and (3) models conditioned on a representation of molecular concentra-
tion. Following this recipe, we propose MolPhenix, a molecular phenomics model.
MolPhenix leverages a pre-trained phenomics model to demonstrate significant
performance gains across perturbation concentrations, molecular scaffolds, and
activity thresholds. In particular, we demonstrate an 8.1× improvement in zero shot
molecular retrieval of active molecules over the previous state-of-the-art, reaching
77.33% in top-1% accuracy. These results open the door for machine learning to
be applied in virtual phenomics screening, which can significantly benefit drug
discovery applications.

1 Introduction

Quantifying cellular responses elicited by genetic and molecular perturbations represents a core
challenge in medicinal research [4, 57]. Out of an approximate 1060 druglike molecule designs,
a small number are able to alter cellular properties to reverse the course of diseases [5, 27]. In
recent years, microscopy-based cell morphology screening techniques, demonstrated potential for
quantitative understanding of a molecule’s biological effects. Experimental techniques such as
cell-painting are used to capture cellular morphology, which correspond to physical and structural
properties of the cell [6, 7]. Cells treated with molecular perturbations can change morphology,
which is captured by staining and high throughput microscopy techniques. Perturbations with similar
cellular impact induce analogous morphological changes, allowing to capture underlying biological
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effects in phenomic experiments. Identifying such perturbations with similar morphological changes
can aid in discovery of novel therapeutic drug candidates [50, 29, 22].

Determining molecular impact on the cell can be formulated as a multi-modal learning problem,
allowing us to build on a rich family of methods [43, 62, 53]. Similar to text-image models,
paired data is collected from phenomic experiments along with molecules used to perturb the cells.
Contrastive objectives have been used as an effective approach in aligning paired samples from
different modalities [43, 32]. A model that has learned a cross-modal joint latent space must be
able to retrieve a molecular perturbant conditioned on the phenomic experiment. We identify this
problem as contrastive phenomolecular retrieval (see Figure 2). Addressing this problem can allow
for identification of molecular impact on cellular function, however, this comes with its own set of
challenges. [18, 2, 65].

(1) Firstly, multi-modal paired phenomics molecular data suffers from lower overall dataset sizes and
is subject to batch effects. Challenges with uniform processing and prohibitive costs associated with
acquisition of paired data, leads to an order of magnitude fewer data points compared to text-image
datasets [49, 11]. Furthermore, data is subject to random batch effects that capture non-biologically
meaningful variation [33, 55]. (2) Paired phenomic-molecular data contains inactive perturbations
that do not have a biological effect or do not perturb cellular morphology. It is difficult to infer a
priori whether a molecule has a cellular effect, leading to the collection of paired molecular structures
with unperturbed cells. These data-points are challenging to filter out without an effective phenomic
embedding, as morphological effects are rarely discernible. These samples can be interpreted as
misannotated, under the assumption of all collected pairs having biologically meaningful interactions.
(3) Finally, a complete solution for capturing molecular effects on cells must capture molecular
concentration. The same molecule can have drastically different effects along its dose response curve,
thus making concentration an essential component for learning molecular impact.

In this work, we explore the problem of contrastive phenomolecular retrieval by addressing the above
challenges circumvented in prior works. Our key contributions are as follows:

• We demonstrate significantly higher phenomolecular retrieval rates by utilizing a pretrained uni-
modal phenomic encoder. Thus alleviating the data availability challenge, reducing the impact of
batch effects, and identifying molecular activity levels.

• We propose a novel soft-weighted sigmoid locked loss (S2L) that addresses the effects of inactive
molecules. This is done by leveraging distances computed in the phenomic embedding space to
learn inter-sample similarities.

• We explore explicit and implicit methods to encode molecular concentration, assessing the model’s
ability to perform retrieval in an inter-concentration setting and generalize to unseen concentrations.
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Figure 1: Illustration of proposed guidelines when incorporated in our MolPhenix contrastive
phenomolecular retrieval framework. We address challenges by utilizing uni-modal pretrained MAE
& MPNN models, inter-sample weighting with a dosage aware S2L loss, undersampling inactive
molecules, and encoding molecular concentration.
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Following these principles, we build MolPhenix, a multi-modal molecular phenomics model address-
ing contrastive phenomolecular retrieval (Figure 1). MolPhenix demonstrates large and consistent
improvements in the presence of batch effects, generalizing across different concentrations, molecules,
and activity thresholds. Additionally, MolPhenix outperforms baseline methods in zero-shot setting,
achieving 77.33% top-1% retrieval accuracies on active molecules, which corresponds to a 8.1×
improvement over the previous state-of-the-art (SOTA) [48].

2 Related Work
Uni-modality Pretraining: Self-supervised methods have demonstrated success across a variety
of domains such as computer vision, natural language processing and molecular representations
[3, 44, 61]. In vision, contrastive methods have been used to minimize distance in the model’s
latent space of two views of the same sample [12, 51, 19, 21]. Reconstruction objectives have
also permeated computer vision, such as masked autoencoders (MAE). MAEs typically utilize
vision transformers to partition the image into learnable tokens and reconstruct masked patches
[20, 17, 10, 14]. These methods have been extended to microscopy experimental data designed
to capture cell morphology [60, 28]. Phenom1 utilizes a masked autoencoder with a ViT-L/8+
architecture and a custom Fourier domain reconstruction loss, yielding informative representations of
phenomic experiments [28, 13]. From a representational perspective, Graph Neural Networks (GNN)
have been used to predict molecular properties by reasoning over graph structures. A combination
of reconstruction and supervised objectives have led to models generalizing to a diverse range of
prediction tasks [36, 66, 56, 47]. Our work leverages uni-modal foundation models, which are used
to generate embeddings of phenomic images and molecular graphs.

Multi-Modal Objectives: Multi-modal models combine samples from two or more domains, to
learn rich representations and demonstrate flexible ways to predict sample properties [43, 1, 23].
Contrastive methods minimize distances between paired samples, traditionally in text-image domains.
However, training these models is computationally expensive, requiring large datasets. Multiple
contributions have allowed for a reduction in compute and data budgets by an order of magnitude. In
LiT, the authors demonstrate that utilizing uni-modal pretrained models for one or both modalities
matches zero-shot performance with an order of magnitude fewer paired examples seen [63]. Zhai
et al. (2023) demonstrate that by replacing the softmax operation over cosine similarities with an
element wise sigmoid loss, allows contrastive learners to improve performance under label noise
regime [62]. By using a uni-modal pre-trained modal to calculate similarities between samples from
one of the modalities, Srinivasa et al. (2023) have demonstrated improved performance on zero-shot
evaluation [53]. In our work, we build along these directions in molecular phenomic multi-modal
training.

Molecular-Phenomic Contrastive Learning: Prior works in contrastive phenomic retrieval have
utilized the InfoNCE objective as a pre-training technique to construct uni-modal representations
[38, 64]. Nguyen et al. (2023) propose a multi-modal objective trained on hand-engineered visual
features and a GNN molecular encoder. The work demonstrates improved molecular property
prediction with no image encoder pre-training [37, 54]. Recent methods have attempted to improve
retrieval by using the InfoLOOB objective [41]. Specifically, CLOOME utilizes the InfoLOOB loss
with hopfield networks for zero-shot retrieval on unseen data samples [45, 48]. InfoCORE aims to
mitigate batch effects in multimodal molecular representations, improving retrieval capabilities and
property prediction by adaptively reweighting samples to minimize confounding from non-biological
associations [59]. Our work is parallel to the above directions, demonstrating a significant increase
in molecular-phenomic retrieval by building on algorithmic improvements from the multi-modality
literature.

3 Methodology

In this section, we explain key challenges facing phenomolecular retrieval and provide guidelines
that are key methodological improvements behind the success of MolPhenix 1.

Preliminaries: Our setting studies the problem of learning multi-modal representations of molecules
and phenomic experiments of treated cells [48]. The aim of this work is to learn a joint latent space
which maps phenomic experiments of treated cells and the corresponding molecular perturbations
into the same latent space. We consider a set of lab experiments E defined as the tuple (X,M,C,Ψ).
Each experiment ϵ ∈ E consists of data samples xi ∈ X (such as images) and perturbations mi ∈ M
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(such as molecules) which are obtained at a specific dosage concentration ci ∈ C, while ψ ∈ Ψ
denotes molecular activity threshold.

Contrastive 
PhenoMolecular

Retrieval

Figure 2: Illustration of the contrastive phe-
nomolecular retrieval challenge. Image xi and a
set of molecules and corresponding concentrations
(mk, ck) get mapped into a Rd latent space. Their
similarities get computed with fsim and ranked to
evaluate whether the paired perturbation appears
in the top K%.

Figure 2 describes the problem of contrastive
phenomolecular retrieval, where for a single
image xi, the challenge consists of identify-
ing the matching perturbation, mi, and con-
centration, ci, used to induce morphologi-
cal effects. This can be accomplished in a
zero-shot way by generating embeddings for
(m1, c1), ...(mj , cj) and xi using functions
fθm(m, c), fθx(x) which map samples into
Rd. Then, by defining a similarity metric be-
tween generated embeddings zxi

and zmi
, fsim,

we can rank (m1, c1)...(mj , cj) based on com-
puted similarities. An effective solution to the
contrastive phenomolecular retrieval problem
would learn fθm(m, c) and fθx(x) that results
in consistently high retrieval rates of (mi, ci)
used to perturb xi.

In practice, the image embeddings are generated
using a phenomics microscopy foundation MAE
model [28, 20]. We use phenomic embeddings
to marginalize batch effects, infer inter-sample
similarities, and undersample inactive molecules. Activity is determined using consistency of replicate
measurements for a given perturbation. For each sample, a p value cutoff ψ ∈ Ψ is used to quantify
molecular activity. Only molecules below the p value cutoff ψ are considered active.

Prior methods in multi-modal contrastive learning utilize the InfoNCE loss, and variants thereof
[38] to maximize the joint likelihood of xi and mi. Given a set of N × N random samples
(x1,m1, c1), · · · , (xN ,mN , cN ) containing N positive samples at kth index and (N − 1) × N
negative samples, optimizing Equation 1 maximizes the likelihood of positive pairs while minimizing
the likelihood of negative pairs:

LInfoNCE = − 1

N

N∑
i=1

[
log

exp(⟨zxi
, zmi

⟩/ τ)∑N
k=1 exp(⟨zxi

, zmk
⟩ /τ)

+ log
exp(⟨zxi

, zmi
⟩/ τ)∑N

k=1 exp(⟨zmi
, zxk

⟩ /τ)

]
. (1)

Where zx, zm correspond to phenomics and molecular embeddings respectively, τ is softmax
temperature, and ⟨·⟩ corresponds to cosine similarity.

Challenge 1: Phenomic Pretraining and Generalization

We find that using a phenomics foundation model to embed microscopy images allows for mitigation
of batch effects, reduces the required number of paired data points, and improves generalization in the
process. While CLIP, a hallmark model in the field of text-image multi-modality, was trained on 400
million curated paired data points, there is an order of magnitude fewer paired molecular-phenomic
molecule samples [43]. Cost and systematic pre-processing of data make large scale data generation
efforts challenging, and resulting data is affected by experimental batch effects. Batch effects induce
noise in the latent space as a result of random perturbations in the experimental process, while
biologically meaningful variation remains unchanged [39, 52]. Limited dataset sizes and batch effects
make it challenging for contrastive learners to capture molecular features affecting cell morphology,
yielding low retrieval rates [48].

We address data availability and generalization challenges by utilizing representations from a large uni-
modal pre-trained phenomic model, θPh, trained to capture representations of cellular morphology.
θPh is pretrained on microscopy images using a Fourier modified MAE objective, utilizing the
ViT-L/8 architecture with methodology similar to Kraus et al. (2024) [20, 14, 28]. For simplicity
in future sections, we refer to this model as Phenom1. This pretrained model allows a drastic
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reduction in the required number of paired multi-modal samples [63]. In addition, using phenomic
representations alleviates the challenge of batch effects by averaging samples, zx, generated with the
same perturbation mi over multiple lab experiments ϵi. Averaging model representations 1

NΣ1
i∈Nzxi

allows marginalizing batch effect induced by individual experiments.

Guideline 1 Utilizing pre-trained uni-modal encoder, θPh, can be used to reduce the num-
ber of paired data-points compared to training θ without prior optimization. In addition,
averaging phenomic embeddings zx from matched perturbations can alleviate batch effects.

To reason over molecular structures, we make use of features learned from GNNs trained on molecular
property prediction [34]. We utilize a pretrained MPNN foundational model up to the order of 1B
parameters for extracting molecular representations following a similar procedure to Sypetkowski et
al. (2024) [56]. We refer to this model as MolGPS.

Challenge 2: Inactive Molecular Perturbations

Figure 3: Data generation process of a phe-
nomic experiment on cells xi with molecular
perturbations mi and concentrations ci.

The phenomics-molecular data collection process can
result in pairing of molecular structures with unper-
turbed cells in cases where the molecule has no effect
on cell morphology (Figure 3)

Since the morphological effects observed in cell xi

is conditioned on the perturbation, in the absence of
a molecular effect P (xi|x0

i , ci,mi) ∼ P (xi|x0
i ). In

these samples, phenomic data will be independent,
from paired molecular data, which results in misanno-
tation under the assumption of data-pairs having an
underlying biological relationship. We demonstrate how utilizing Phenom1 to undersample inactive
molecules and learn continuous similarities between samples can alleviate this challenge.

To undersample inactive molecules, we extract the embeddings from Phenom1 and calculate the
relative activity of each perturbation (mi, ci) ∈ (M,C). This is done using the rank of cosine simi-
larities between technical replicates produced for a molecular perturbation against a null distribution.
The null distribution is established by calculating cosine similarities from random pairs of Phenom1
embeddings generated with perturbation (mj , cj), (mk, ck). Hence, we can compute a p-value and
filter out samples likely to belong to the null distribution with an arbitrary threshold ψ.

In addition, by utilizing an inter-sample aware S2L training objective, the model can learn similari-
ties between inactive molecules. S2L is grounded in previous work which demonstrates improved
robustness to label noise (SigLip) and learnable inter-sample associations (CWCL) [62, 53]. Continu-
ous Weighted Contrastive Loss (CWCL) provides better multi-modal alignment using a uni-modal
pretrained model to suggest sample distances, relaxing the negative equidistant assumption present in
InfoNCE [53]:

LCWCL, M→X = − 1

N

N∑
i=1

 1∑N
j=1 w

X
i,j

N∑
j=1

wX
i,j log

exp
(
⟨zxi

, zmj
⟩/τ

)∑N
k=1 exp

(
⟨zxj

, zmk
⟩/τ

)
 . (2)

CWCL weights logits with a continuous measure of similarity wX , resulting in better alignment of
embeddings zxi

and zmj
across modalities. In equation 2, wX is computed using a within modality

similarity function such as wX
i,j = ⟨zxi , zxj ⟩/2 + 0.5. Note, the above formula is used only for

mapping samples from modality M to X for which a pre-trained model θPhis available.

Another work, SigLIP, demonstrates robustness to label noise and reduces computational requirements
during contrastive training [62]. It does so by avoiding computation of a softmax over the entire set
of in-batch samples, instead relying on element-wise sigmoid operation:

LSigLIP = − 1

N

N∑
i=1

N∑
j=1

[
log

1

1 + exp
(
yi,j(−α ⟨zxi , zmj ⟩+ b)

)] . (3)
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Algorithm 1 S2L loss pseudo-implementation.

1: # mol_emb : molecule model embedding [n, dim]
2: # phn_emb : phenomics model embedding [n, dim]
3: # t_prime, b : learnable temperature and bias
4: # n : mini-batch size
5: # ⟨·⟩ : custom similarity function
6: # γ, ζ : similarity dampening parameters
7:
8: t = exp(t_prime)
9: zmol = l2_normalize(mol_emb)

10: zphn = l2_normalize(phn_emb)
11: logits = dot(zmol, zphn.T) * t + b
12: sim_matrix = ⟨zphn, zphn.T⟩ # [n, n] sample similarity matrix
13: pos = log_sigmoid(logits)
14: neg = log_sigmoid(- logits)
15: l = sim_matrix * pos + (γ - ζ sim_matrix) * neg
16: l = - sum(l) / n

In equation 3, α and b are learned, calibrating the model confidence conditioned on the ratio of
positive to negative pairs. yi,j is set to 1 if i = j and -1 otherwise.

Inspired by prior works, we introduce S2L for molecular representation learning, which leverages
inter-sample similarities and robustness to label noise to mitigate weak or inactive perturbations.

LS2L = − 1

N

N∑
i=1

N∑
j=1

log

[
wX

i,j

1 + exp
(
−α⟨zxi , zmj ⟩+ b)

) +
(1−wX

i,j)

1 + exp
(
α⟨zxi , zmj ⟩+ b)

)] . (4)

In the equation above, zxi
and zmj

correspond to latent representations of images and molecules,
respectively. α and b correspond to learnable temperature and bias parameters for the calibrated
sigmoid function. wX

ij is an inter-sample similarity function computed from images using the
pretrained model θPh. To compute wX

i,j , we use the arctangent of L2 distance instead of cosine
similarity, as was the case for Equation 2 (more details in Appendix D.3). Intuitively, S2L can be
thought of as shifting from a multi-class classification to a soft multi-label problem. In our problem
setting, the labels are continuous and determined by sample similarity in the phenomics space.

Guideline 2 When training a molecular-phenomic model, mitigating the effect of inac-
tive molecules in training data distribution can be carried out by undersampling inactive
molecules and using an inter-sample similarity aware, S2L loss (equation 4).

Challenge 3: Variable Concentrations

Perturbation effect on a cell is determined by both molecular structure and corresponding concentra-
tion [58]. A model capturing molecular impact on cell morphology must be able to generalize across
different doses, since variable concentrations can correspond to different data distributions.

We note that providing concentrations ci as input to the model would benefit performance, as this
would indicate the magnitude of molecular impact. However, we find that simply concatenating
concentrations does not result in effective training due to its compressed dynamic range. To that end,
we add concentration information in two separate ways: implicit and explicit formulations.

We add implicit concentration as molecular perturbation classes by using the S2L loss (Equation 4)
to treat perturbation mi with concentrations ci and cj as distinct classes. This pushes samples apart
in the latent space proportionally to similarities between phenomic experiments.

We add explicit concentration ci by passing it to the molecular encoder. We explore different
formulation for dosage concentrations, f ′(ci), where f ′ maps ci → R. Encoded representations f ′(ci)
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are concatenated at the initial layer of the model. We find simple functional encodings f ′ (such as
one-hot and logarithm) to work well in practice.

Guideline 3 When training a molecular-phenomic model, conditioning on an (implicit and
explicit) representation of concentration f ′(ci) aids in capturing molecular impacts on cell
morphology and improves generalization to previously unseen molecules and concentrations.

4 Experimental Setup

In this section, we describe evaluation datasets used, and descriptions of the underlying data modalities.
To assess phenomolecular retrieval, we use 1% recall metric unless stated otherwise, as it allows
direct comparison between datasets with different number of samples. Additional implementation
and evaluation details can be found in Appendix D.

Datasets: Our training dataset consists of fluorescent microscopy images paired with molecular
structures and concentrations, which are used as perturbants. We assess models’ phenomolecular
retrieval capabilities on three datasets of escalating generalization complexity. First dataset, consisting
of unseen microscopy images and molecules present in the training dataset. Second, a dataset consist-
ing of previously unseen phenomics experiments and molecules split by the corresponding molecular
scaffold. Finally, we evaluate on an open source dataset with a different data generating distribution
[16]. In the case of the latter two datasets, the model is required to perform zero-shot classification,
as it has no access to those molecules in the training data. This requires the model to reason over
molecular graphs to identify structures inducing corresponding cellular morphology changes. Using
methodology described in guideline 2 we report retrieval results for all molecules as well as on an
active subset. Finally, all datasets are comprised of molecular structures at multiple concentrations
(.01, .1, 1.0, 10, etc.) Additional details regarding the datasets can be found in Appendix C.

Modality Representations: In our evaluations, we consider different representations for molecular
perturbations and phenomic experiments and quantitatively evaluate their impact.

• Images: Image encoders utilize 6-channel fluorescent microscopy images of cells representing
phenomic experiments. Images are 2048 × 2048 pixels, capturing cellular morphology changes post
molecular perturbation. We downscale each image to 256 × 256 using block mean downsampling.

• Phenom1: We characterize phenomic experiments by embedding high resolution microscopy
images in the latent space of a phenomics model θPh as described in guideline 1.

• Fingerprints: Molecular fingerprints utilize RDKIT [31], MACCS [30] and MORGAN3 [46] bit
coding, which represent binary presence of molecular substructures. Additional information such
as atomic identity, atomic radius and torsional angles are included in the fingerprint representations.

• MolGPS: We generate molecular representations from a large pretrained GNN. Specifically, we
obtain molecular embeddings from a 1B parameter MPNN [34].

Table 1: Impact of pre-trained Phenom1 and MolGPS on CLOOME and MolPhenix for a matched
number of seen samples (Top), where we observe an 8.1 × improvement of MolPhenix over the
CLOOME baseline for active unseen molecules. SOTA results trained with a higher number of steps
by utilizing the best hyperparameters (Bottom *). We note that MolPhenix’s main components such
as S2L and embedding averaging relies on having a pre-trained uni-modal phenomics model.

Active Molecules All Molecules

Method Modality Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

CLOOME Images & Multi-FPS .0756± .0042 .0787± .0065 .0528± .0057 .0547± .0028 .0661± .0020 .0223± .0014
CLOOME Phenom1 & Multi-FPS .4659± .0042 .5057± .0014 .2065± .0146 .3009± .0053 .2474± .0013 .1337± .0045
MolPhenix Phenom1 & Multi-FPS .7807± .0025 .6365± .0014 .3545± .0097 .5253± .0029 .3655± .0017 .2163± .0021
MolPhenix Phenom1 & MolGPS .7646± .0014 .6387± .0056 .4160± .0016 .5012± .0002 .3511± .0004 .2508± .0026

MolPhenix* Phenom1 & MolGPS .9689± .0017 .7733± .0036 .5860± .0082 .5583± .0007 .3824± .0016 .2809± .0060
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Table 2: Top-1% recall accuracy with use of the proposed MolPhenix guidelines, such as Phenom1
and embedding averaging. We omit explicit concentration from this experiment.

Active Molecules All Molecules

Loss Unseen
Images

Unseen
Im. + Mol.

Unseen
Dataset

Unseen
Images

Unseen
Im. + Mol.

Unseen
Dataset

CLIP .3373± .0043 .4228± .0008 .1514± .0038 .1761± .0043 .1867± .0022 .0734± .0022
Hopfield-CLIP .2578± .0042 .3559± .0042 .1256± .0092 .1531± .0046 .1709± .0029 .0673± .0020
InfoLOOB .3351± .0011 .4206± .0031 .1563± .0028 .1746± .0003 .1860± .0029 .0745± .0019
CLOOME .3572± .0026 .4348± .0039 .1658± .0063 .1968± .0029 .2005± .0026 .0911± .0022
DCL .6363± .0025 .6177± .0047 .3184± .0087 .3277± .0047 .2562± .0008 .1364± .0067
CWCL .7091± .0045 .6529± .0020 .3556± .0094 .3635± .0064 .2696± .0019 .1526± .0058
SigLip .7763± .0045 .6401± .0065 .3396± .0042 .3729± .0039 .2544± .0014 .1470± .0038
S2L (ours) .9097± .0020 .6759± .0012 .4181± .0012 .4688± .0009 .2852± .0001 .1838± .0007

Table 3: Top-1% recall accuracy across different concentration encoding choices with use of the
proposed MolPhenix guidelines, such as Phenom1 and embedding averaging.

Active Molecules All Molecules

Implicit
Concentration

Explicit
Concentration

Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

✗ ✗ .7350± .0071 .6509± .0104 .3333± .0004 .3610± .0025 .2668± .0034 .1532± .0007
✓ ✗ .9097± .0020 .6759± .0012 .4181± .0012 .4688± .0009 .2852± .0001 .1838± .0007
✓ sigmoid .9423± .0011 .7155± .0016 .4573± .0022 .5071± .0024 .3441± .0026 .2144± .0026
✓ logarithm .9426± .0066 .7451± .0050 .4727± .0056 .5183± .0027 .3700± .0036 .2275± .0032
✓ one-hot .9430± .0029 .7490± .0052 .4850± .0020 .5433± .0030 .3819± .0032 .2384± .0049

5 Results and Discussion

To evaluate the effectiveness of Guidelines 1, 2, and 3 we carry out evaluation in two different
settings: (1) cumulative concentrations, and (2) held-out concentrations, testing the models’ ability
to generalize to new molecular doses. Finally, we perform comprehensive ablations testing model
performance with varying data, model, and optimization parameters. The comprehensive set of results
can be found in Tables 10, 11, 12, and 13.

5.1 Evaluation on cumulative concentrations:

106 107

Number of Samples Seen

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p 

1%
 R

et
ri

ev
al

- -   All Compounds
   Active Compounds

Molecular Retrieval
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Figure 4: Comparison of training phenomic en-
coder from scratch and utilizing pre-trained Phe-
nom1 unseen dataset. X-axis plotted on logarith-
mic scale.

We demonstrate improvements in phenomolec-
ular recall due to usage of a phenomics
pre-trained foundation model, identify that
MolPhenix set of design choices results in
higher final performance, and more data effi-
cient learning. Figure 4 demonstrates recall ac-
curacy on all molecules and an active subset for
CLOOME and MolPhenix models, as a function
of training samples seen.

We observe a large performance gap between
models trained on Phenom1 embeddings as op-
posed to images, emphasizing the utility of us-
ing a pre-trained encoder for microscopy im-
ages (Table 1). We note that provision of
Phenom1 (CLOOME-Phenom1 Vs CLOOME-
Images) significantly improves both active and
all molecule retrieval by 5.69× and, 4.75× re-
spectively (Table 1).

Furthermore, we identify that while all
molecules retrieval stagnates throughout train-
ing, the performance on an active subset keeps
improving, underscoring the importance of iden-
tification of the active subset. Finally, we com-
pare CLOOME and MolPhenix trained using Phenom1 embeddings and find there is a consistent
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retrieval performance gap, throughout training, with a 1.26 × final improvement (Figure 4, Table 1).
Compared to CLOOME [48] trained directly on images, MolPhenix achieves an average improve-
ment of 8.78× on active molecules on the unseen dataset. These results verify the effectiveness of
Guideline 1 in accelerating training, and the importance of Guidelines 2 and 3 in recall improvements
over CLOOME.

We evaluate the impact of different loss objectives on the proposed MolPhenix training frame-
work. Table 2 presents top-1% retrieval accuracy across different contrastive losses utilized to
train molecular-phenomics encoders on cumulative concentrations. Compared to prior methods, the
proposed S2L loss demonstrates improved retrieval rates in cumulative concentration setting. Label
noise and inter-sample similarity aware losses such as CWCL and SigLip also demonstrate improved
performance. The effectiveness of S2L can be attributed to smoothed inter-sample similarities and
implicit concentration information.

Finally, in Table 3, we observe recall improvements when considering both molecular structures and
concentration. We note the importance of the addition of implicit concentration, further confirming the
importance of considering molecular effects at different concentrations as different classes. Explicitly
encoding molecular concentration with one-hot, logarithm and sigmoid yields improved recall
performance, where one-hot performs the best in a cumulative concentration setting. These findings
verify the efficacy of implicit and explicit concentration encoding outlined in Guideline 3.

Table 4: Top-1% recall accuracy of dif-
ferent loss objectives while using the
proposed MolPhenix guidelines, such as
Phenom1 and embedding averaging.

Loss Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

CLIP .2109 .2425 .1519
Hopfield-CLIP .1581 .2034 .1198
InfoLOOB .2122 .2496 .1501
CLOOME .2164 .2461 .1479
DCL .4717 .4027 .2841
CWCL .5731 .4403 .3232
SigLip .5718 .4217 .3021
S2L (ours) .8334 .4615 .3792

Table 5: Top-1% recall accuracy across different concentra-
tion encoding choices while using the proposed MolPhenix
guidelines, such as Phenom1 and embedding averaging.

Implicit
Concentration

Explicit
Concentration

Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

✗ ✗ .5942 .4315 .3129
✓ ✗ .8334 .4615 .3792
✓ sigmoid .8256 .4692 .3765
✓ logarithm .7953 .4466 .3664
✓ one-hot .7489 .4088 .3379

Results are averaged across experiments for each dropped concentration, and across three seeds.
Recall is reported for active molecules, while the results for all molecules can be found in Table 13.

5.2 Evaluation on held-out concentrations:

Next, we evaluate recall on held-out concentrations to obtain a measure of generalization performance.
This evaluation allows us to capture the utility of our models for prediction of unseen concentrations,
hence resembling in-silico testing. We omit concentrations from the training set and evaluate recall
at the excluded data, where we observe a drop in retrieval performance for unseen concentrations.
Similar to cumulative concentration results, we find that using S2L improves recall over other losses
and outperforms CLOOME by up to 126% (Table 4). While one-hot encoding exhibits significant
improvements in cumulative concentrations, its expressivity on unseen concentrations is limited
(Table 5) and sigmoid encoding provides a sufficient representation of concentration.

5.3 Ablation Studies

We assess the importance of our design decisions by conducting an ablation study over our proposed
guidelines. Figure 5 presents the variation of top-1% recall accuracy across key components such as
cutoff p value, fingerprint type, and embedding averaging. We observe that employing a lower cutoff
p value yields improved generalization for unseen dataset, while employing a higher cutoff appears to
be optimal for unseen images + unseen molecules. For molecular structure representations, we find
that using embeddings from the large pretrained MPNN graph based model (e.g., MolGPS) surpasses
traditional fingerprints. Finally, utilization of embedding averaging demonstrates improved recall.
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Figure 5: Ablations of top-1 % recall accuracy with (top-left) the size of embedding dimension,
(top-center) number of parameters, (top-right) batch size, (bottom-left) cutoff p value, (bottom-
center) fingerprint type, and (bottom-right) random batch averaging. Compact embedding sizes
from pretrained models, larger number of parameters, larger batch sizes, lower cutoff p-values,
pretrained MolGPS fingerprints and presence of random batch averagin improving retrieval of our
MolPhenix framework.

6 Conclusion

In this work, we investigate the problem of contrastive phenomolecular retrieval by constructing a
joint multi-modal embedding of phenomic experiments and molecular structures. We identify a set of
challenges afflicting molecular-phenomic training and proposed a set of guidelines for improving
retrieval and generalization. Empirically, we observed that contrastive learners demonstrate higher
retrieval rates when using representations from a high-capacity uni-modal pretrained model. Use
of inter-sample similarities with a label noise resistant loss such as S2L allows us to tackle the
challenge of inactive molecules. Finally, adding implicit and explicit concentrations allows models to
generalize to previously unseen concentrations. MolPhenix demonstrates an 8.1× improvement in
zero shot retrieval of active molecules over the previous state-of-the-art, reaching 77.33% in top-1%
accuracy. In addition, we conduct a preliminary investigation on MolPhenix’s ability to uncover
biologically meaningful properties (activity prediction, zero-shot biological perturbation matching,
and molecular property prediction in Appendix E.1, E.2, and E.3, respectively.). We expect a wide
range of applications for MolPhenix, particularly in drug discovery. While there’s a remote chance of
misuse for developing chemical weapons, such harm is unlikely, with our primary focus remaining
on healthcare improvement.

Limitations and Future Work: While our study covers challenges in phenomolecular recall, we
leave three research directions for future work. (1) Future investigations could consider studying
additional modalities such as text, genetic perturbations and chemical multi-compound interventions.
(2) While we propose and evaluate our guidelines on previously conducted phenomic experiments,
we note that a rigorous evaluation would evaluate model predictions in a wet-lab setting. (3) In
addition, our work makes the assumption that the initial unperturbed cell state x0i can be marginalized
by utilizing a single cell line with an unperturbed genetic background. Future works can relax this
assumption, aiming to capture innate intercellular variation.
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7 NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract, we claim that we build a multi-modal molecular-phenomics
model and demonstrate improvements over prior works. This is done by taking using a
uni-modal pre-trained phenomics model, tackling inactive molecules by undersampling and
learning inter-sample similarities. In addition, we take into account concentration in our
model training. We demonstrate comprehensive results supporting these claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion, we have a limitations subsection discussing future research
directions and assumptions in our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work does not contain proofs or theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our work documents our design decisions in detail and has comprehensive
details about the underlying dataset. We document all our hyperparameter choices and model
architectural decisions. Our evaluation is performed on a publicly accessible dataset RXRX3,
allowing for benchmarking of other methods. To reproduce the pre-trained phenomics model,
we base our architecture on the work from [28], for which they have also provided access
to a snakker model, namely Phenom-Beta via a web platform hosted on the BioNeMo
platform https://www.rxrx.ai/phenom. To reproduce the pre-trained molecular model,
we based our architecture on [56], for which the authors provide all the code and data
needed to reproduce it. We further note that the molecular model can be replaced by simple
molecular fingerprints with only a slight drop in performance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: As part of the submission, we are unable to provide code to reproduce model
training due to use of its proprietary nature. The training dataset is also an asset of a private
institution, meaning that we are unable to be made publicly accessible. The unseen dataset
RXRX3 is, however, open source and can be used by the community to evaluate public
phenomics models.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details regarding our hyperparameter choices in the Appendix
C. In addition we document the use of scaffold splitting for Unseen Molecules & Images
dataset. Unseen Dataset RXRX3 is publicly accessible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our reported results are averaged over 3 random seeds used to initialize the
model and dictating stochasticity during model training. We report most standard deviations
in the main text, and the remaining ones are all present in the Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on compute time for each experiment in Appendix D.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research described does not violate the NeurIPS Code of Ethics. Our
experiments do not include human subjects, we follow fair use of data, privacy, and do not
release model weights for mitigating impact measures.

Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work discusses the potential in which MolPhenix can have positive societal
impact and we touch on the extenralities in our concluding statements.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: In our work we do not release model weights or the underlying code.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Assetts used are referenced and licenses checked or otherwise not released
publicly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing not human subject research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing not human subject research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

110688https://doi.org/10.52202/079017-3513



A Glossary

Cell morphology: The examination and characterization of cellular structure, including shape, size,
and organization, which can provide insights into cellular function and health [40].

Cell line (ARPE-19): A specific immortalized human retinal pigment epithelial cell line, widely
utilized in ophthalmic research due to its differentiated properties and stability [15].

Molecular concentration: The quantitative measure of a specific molecule’s abundance within a
defined volume, typically expressed in molar units [42].

Cell staining: A laboratory technique involving the application of dyes or fluorescent markers to
enhance the visibility and differentiation of cellular components under microscopic examination [9].

Molecular perturbations: Induced alterations in cellular molecular systems, often used to study
cellular responses and regulatory networks [26].

Inactive molecule perturbations: Cellular system alterations caused by molecules lacking significant
biological activity.

Batch effects: Systematic non-biological variation between groups of samples in an experiment,
resulting from technical or experimental factors rather than true biological differences. This phe-
nomenon is commonly observed in high-throughput molecular biology experiments, such as microar-
ray studies, mass spectrometry, and single-cell RNA sequencing [24].

Molecular fingerprints: Distinctive patterns of molecular features that characterize specific cellular
states or responses, often used for comparative analyses and classification [8].

B Assumption of the Initial Cell State

There is an important distinction between phenomics - molecule and text - image contrastive training
although there are initial similarities. In the text - image domain the two modalities are directly
generated by the same latent variable which is the underlying semantic class. Whereas in phenomics -
molecule, the observed phenomics variable is actually conditioned on molecular structure and the
initial state. There are two important conclusions from this: (1) This indicates that if molecular
structure has no effect on the initial cell state, there will not be a positive pairing between the
molecular structure and morphological patterns captured by phenomics, making it indistinguishable
from a control image. (2) There is an underlying assumption that the initial cell state x0i is constant.
In accordance with this assumption we utilize experiments with a fixed cell line, HUVEC-19, and
a constant genetic background. Future works can relax this assumption by taking into account
phenomics experiments of the cells prior to the perturbation. This can allow the models to generalize
beyond a single cell line and to diverse genetic backgrounds.

C Dataset

Models have been trained using our in house training set and we have conducted our evaluation on
two novel datasets and an open-source molecule dataset [16]:

• Training Set: Our training dataset comprises 1,316,283 pairs of molecules and concentration
concentration combinations, complemented by fluorescent microscopy images generated through
over 2,150,000 phenomic experiments.

• Evaluation set 1 - Unseen Images + Seen Molecules: The first set consists of unseen
images and seen molecules. Unseen microscopy images are associated with 15,058 pairs of
molecules and concentrations from the training set and selected randomly.

• Evaluation set 2 - Unseen Images + Unseen Molecules: The second set includes pre-
viously unseen molecules, and images (consisting of 45,771 molecule and concentration pairs).
Predicting molecular identities of previously unseen molecular perturbations corresponds to zero-
shot prediction. Scaffold splitting was used to split this validation dataset from training ensuring
minimal information leakage.

• Evaluation set 3 - Unseen Dataset: Finally, we utilize the RXRX3 dataset [16], an open-
source out of distribution (OOD) dataset consisting of 6,549 novel molecule and concentration
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pairs associated with phenomic experiments. The distribution of molecular structures differs from
previous datasets, making this a challenging zero-shot prediction task.

C.1 Concentration Details

Additional details regarding the number of molecules at significant concentrations of each evaluation
set are available in Table 6.

Table 6: Separated number of molecules for different concentrations at various pvalue cut-offs
pvalue=1.0 pvalue=.1 pvalue=.01

Concentration Unseen Im. Unseen
Im. + Mol. Unseen Data Unseen Im. Unseen

Im. + Mol. Unseen Data Unseen Im. Unseen
Im. + Mol. Unseen Data

.1 1497 1109 0 387 170 0 161 68 0
.25 1775 1111 1638 600 203 237 334 121 165
1.0 2721 11392 1639 1259 734 390 672 390 268
2.5 1787 4018 1636 1329 644 516 929 413 375
3.0 74 10454 0 12 1540 0 4 729 0
5.0 3 50 0 0 27 0 0 20 0

10.0 2712 11392 1636 2544 8117 792 2116 4815 625
25.0 0 2916 0 0 1734 0 0 950 0

Unique
molecules 3026 14256 1639 2729 9857 823 2309 5778 642

D Implementation Details

In our experiments we report the top 1% recall metric as it is agnostic to the size of the dataset used.
Across different datasets, top 1 metric can correspond to varying levels of difficulty due to the number
of negatives evaluated. Top 1% can be used to compare models with different batch sizes, datasets,
and evaluations with different number of concentrations.

D.1 Hyperparameters

Our design choices and utilized hyperparameters for is presented in Table 7. We set batch size to 512
through experiments presented in top section of Table 1 and Figure 4 since training CLOOME model
on images is not efficient compared to using pretrained models. In addition, results presented at
bottom section of Table 1 are based on the best parameters found through described ablation studies
(section E.5).

Table 7: Hyperparameter values utilized in our proposed MolPhenix training framework for MolGPS
version. For non-MolGPS version γ 2.75 ζ is 1.0.

Parameter Value
number of seeds 3

learning rate 1e-3
weight decay 3e-3

optimizer AdamW
training batch size 8192

validation batch size 12000
embedding dim 512

model size medium (38.7 M)
model structure 6 ResNet Blocks + 1 Linear layer + 1 ResNet Block + 1 Linear layer

epochs 100
self similarity clip val .75

learnable temperature initialization 2.302
learnable bias initialization -1.0

Distance function arctangent of l2 distance
γ 1.7
ζ 0.75

D.2 Resource Computation

We utilized an NVIDIA A100 GPU to train Molphenix using Phenom1 and MolGPS embeddings,
which takes approximately ∼4.75 hours each. For loss comparison experiments, we run each model
using 3 different seeds and 8 different losses, resulting in a total of 114 hours of GPU processing
time. For concentration experiments we train 7 runs, one for each concentration, with 3 seeds each
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Figure 6: Plotted are cumulative densities of distance metrics for cosine similarity and arctangent of
l2 distances between embeddings. Random mol corresponds to Phenom1 distances between random
molecules, high pval corresponds to distances between molecules with high p-values, low pval
corresponds to distances between active molecules with low p-values, finally high-low corresponds
to distances between active and inactive molecules.

totaling 21 runs per set of parameters. With 25 sets of parameters evaluated (13), that amounts to
2,500 A100 compute hours. Moreover, we employed 8 NVIDIA A100 GPUs to train CLOOME
model on phenomics images, with an average of 40 hour usage per run. Across three seeds, that
amounts to ∼ 1000 hours of A100 GPU usage (8 GPUs for 40 hours 3 times).

Note that, without accounting for the time to train Phenom1, MolPhenix is 8.4 × faster than the
CLOOME baseline.

D.3 S2L Distance function

To calculate inter sample distances, we utilize arctangent of l2 distances between Phenom1 embed-
dings. More specifically, we calculate distances with

arctan(∥zxi
− zxj

∥22/c) ∗
4

π
− 1, (5)

where c is a constant indicating the median l2 distance between a null set of embeddings. Empirically,
we’ve found that setting similarities below a threshold k to 0 improves model performance: ⌈w⌉k.

Usage of arctan-l2 distances is motivated by an observation that cosine similarities do not effectively
separate inactive molecules from other molecular pairs (Figure 6). To alleviate inactive molecule
challenge, we require significant separation of CDF curves of inactive perturbations (p value > .9) and
active molecules (p < .01). We observe that in both the plots using arctangent and cosine similarities
achieves this purpose. However, if we compare high p-value curves with high-low, we find that
in the case of cosine similarities they are almost identical. This indicates that the distribution of
cosine similarities between active - inactive molecules is almost identical to that of inactive - inactive
molecules. In contrast, when using arctangent similarities, we observe that the two CDF curves are
well separated.
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This property of l2 distances can inform our model training to identify inactive-inactive molecules.
These results informed our decision to utilize arctangent of l2 distances to specify sample similarities
for the S2L loss.

D.4 Intuition for S2L Loss

In this section we aim to provide some additional intuition for the S2L loss and further relate it to
previous works. We will first assess the conceptual similarities between InfoNCE and CWCL loss
and then justify a similar extrapolation for the relationship between S2L and SigLIP losses.

InfoNCE can be considered a special case of the CWCL loss where wij is set to 0 for all pairs of i
and j unless i = j. Conceptually this is equivalent to stating that all the negative pairs are equally
distant from the reference sample. We will consider a uni directional loss CWCL, for identifying X
from M:

LCWCL,:M→X = − 1

N

N∑
i=1

 1∑N
j=1 w

X
i,j

N∑
j=1

wX
i,j log

exp
(
⟨zxi

, zmj
⟩/τ

)∑N
k=1 exp

(
⟨zxj

, zmk
⟩/τ

)
 .

If we set wij = 0 when i ̸= j and 1 otherwise then the term ΣN
j=1w

X
i,j evaluates to 1 and the above

expression simplifies to:

LInfoNCE = − 1

N

N∑
i=1

[
log

exp(⟨zxi , zmi⟩/τ)∑N
k=1 exp(⟨zxi

, zmk
⟩/τ)

]
.

In the case of CWCL, a non 0 wi,j determined by a within modality similarity function informed by
a pre-trained model, allows for an additional inductive bias. It is especially beneficial in a training
setting with a limited dataset-size and in the presence of inactive negative molecules.

Similarly SigLip can be considered a special case of S2L when wX
i,j = 0 when i ̸= j and wX

i,j = 1 in
the case i = j. This is the formulation of S2L

LS2L = − 1

N

N∑
i=1

N∑
j=1

log

[
wX

i,j

1 + exp
(
−α⟨zxi

zmj
⟩+ b

) +
(1−wX

i,j)

1 + exp
(
α⟨zxi

zmj
⟩+ b

)] .
It can be simplified to SigLIP by setting wX

i,j to 1 when yi,j = 1 thus setting the term
(1−wX

i,j)

1+exp(αzxi
·zmj

+b)
, corresponding to i ̸= j, we set wX

i,j to 0 thus negating the first part of the

LS2L loss, evaluating to:

LSigLIP = − 1

N

N∑
i=1

N∑
j=1

[
log

1

1 + exp
(
yi,j(−α⟨zxi , zmj ⟩+ b)

)] .
Having a 0 ≤ wX

i,j ≤ 1 allows us to inform the training by going between discrete negative labels to
continuous informed by some prior information. This information is given by a pre-trained encoder
θPhi, in our case but can be informed by any pre-trained model.

There are a lot of domain specific choices that can be made to inform the choice for setting wX
i,j

which we discuss in the appendix. Briefly, we identify that a modified l2 loss is most effective for
identifying inactive molecules.

E Additional Results

E.1 Predicting molecular activity

Given the significance of identifying active molecules, we evaluate the ability of the chemical encoder
to predict molecular activity. To do so, we assessed whether embeddings generated from the chemical
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encoder can be used to predict calculated p-values for unseen molecules. We fit a logistic regression
on molecular embeddings from the training set, classifying whether a molecular perturbation and
concentration have a p-value below .01. We find that the trained logistic regression is capable of
predicting molecular activity on two downstream datasets with a non-overlapping set of molecules,
Figure 8. In addition, we provide a u-map of molecular embedding for the unseen dataset RXRX3,
colored by p-value. We qualitatively observe a clustering of active molecules using a U-map (Figure
7). It demonstrates that predicting compounds activity is possible using MolPhenix chemical encoder
as molecules representations are distinct, independent of the experimented dosage concentration.
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UMAP Mol embeddings RXRX3 
 colored by p-values

0.01
0.1
1.0

Figure 7: U-map demonstrating dimensionality reduction of the chemical embeddings of unseen
dataset RXRX3. First two dimensions are visualized and points are colored corresponding to their
activity measured in phenomics experiments. Activity is evaluated using p-values calculated using
technical replicability of Phenom1 embeddings. Top plot shows the u-map figure of all chemical
embeddings, and bottom figure contains u-map figure of representations at specific concentrations.
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Figure 8: Top left: ROC AUC of logistic regression predicting molecular activity on new dataset.
Top right: ROC AUC of logistic regression predicting molecular activity on validation dataset with
new molecules and new images.

E.2 Zero Shot Biological Validation

We conduct a preliminary investigation into whether MolPhenix can be used to identify biological
relationships without the need for conducting the underlying experiments. To this end, we evaluate
on a subset of ChEMBL with curated pairs of gene knockouts and molecular perturbants [35]. These
pairs of perturbations were curated due to the similarity of their effects on cells, although these might
not always be captured through phenomic experiments. Thus, there is maximum performance that
can be reached through just phenomic data, which we assume to be achieved by experimental data
embedded using Phenom1.

To evaluate MolPhenix’s ability to identify previously known biological associations directly from
data, we embed phenomics experiments from gene knockouts using the vision encoder. To perform
in-silico screening, we then embed the molecular structures associated with positive pairs using the
chemical encoder. Generating molecular embeddings and the corresponding concentrations does not
utilize any experimental data. We then calculate cosine similarities between embeddings of phenomics
experiments evaluating gene knockouts, and representations of the chemical representations along
with encoded concentrations. Using the computed cosine similarities we are then able to assess
whether MolPhenix is capable of identifying known associations between gene knockouts and
molecular structures. Since there is no information on molecular concentration at which the cells
must be treated with, we repeat the experiment across 4 concentrations. To get a null distribution of
cosine similarities we take pairs of genes knockouts and molecules for which there are no annotated
relationships. We calculate a cut-off for a low and high percentiles, and then evaluate what percentage
of pairs of genes and molecules with known relationships exceed the set thresholds.

Figure 9 demonstrates that in-silico screening using MolPhenix Molecular encoder is capable of
recovering a significant portion of known interactions. This is performed without the use of exper-
imental data on the molecular encoder. It is difficult to estimate an upper bound on the expected
performance due to uncertainty in the quality of curation of known pairs, presence of unknown
associations between genes and molecules, and uncertainty regarding molecular concentration. There
is a clear trend however that MolPhenix molecular encoder is capable of recovering a meaningful
fraction of these interactions.
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Figure 9: Evaluation of 0-shot ChEMBL identification of gene knockout and molecular phenomic
similarities. On the X axis are percentile ranges, at which points the threshold is computed for cosine
similarities. On the y axis is plotted total recall of recovered known interactions. Grey x plotted for
each range indicate baseline recall. Orange line indicates MolPhenix-Molecular encoding of chemical
compounds and MolPhenix-Vision for encoding gene knockout phenomics experiment. Blue line
indicates Phenom1 encoding of phenomics experiments for both the molecular perturbation and gene
knockouts. In-silico encoding of molecular perturbation, as well as the corresponding concentration,
recovers a significant fraction of observed interactions.

E.3 Molecular Property Prediction

We expand our evaluation with additional experiments supporting the utility of MolPhenix beyond
retrieval. We conduct a KNN evaluation of the MolPhenix latent space, assessing the learned
embedding on 35 molecular property prediction tasks across the Polaris and TDC datasets (Table
8 and 9). We find that MolPhenix trained with fingerprint embeddings consistently outperforms
standalone input fingerprints, demonstrating that the MolPhenix latent space effectively clusters
molecules according to their biological properties. We observed an interesting effect where prediction
quality is positively correlated with implied dosage, indicating that MolPhenix learns dosage-specific
effects. In addition, utilizing

Table 8: Comparison of a KNN applied on MolPhenix molecular embedding with traditional
fingerprints on different tasks of TDC and Polaris datasets. Mean results for TDC, Polaris and
together are available in the last three columns. Binary fingerprints use tanimoto similarity, while
floating-point fingerprints use cosine similarity.

co
n

ce
n

tr
a

ti
o

n

a
d

m
e-

fa
n

g
-H

C
L

in
t-

1

a
d

m
e-

fa
n

g
-H

P
P

B
-1

a
d

m
e-

fa
n

g
-P

E
R

M
-1

a
d

m
e-

fa
n

g
-R

C
L

in
t-

1

a
d

m
e-

fa
n

g
-R

P
P

B
-1

a
d

m
e-

fa
n

g
-S

O
L

U
-1

a
m

es

b
b

b
_m

a
rt

in
s

b
io

a
v

a
il

a
b

il
it

y
_m

a

ca
co

2_
w

a
n

g

cl
ea

ra
n

ce
_h

ep
a

to
cy

te
_a

z

cl
ea

ra
n

ce
_m

ic
ro

so
m

e_
a

z

cy
p

2c
9_

su
b

st
ra

te
_c

a
rb

o
n

m
a

n
g

el
s

cy
p

2c
9_

v
ei

th

cy
p

2d
6_

su
b

st
ra

te
_c

a
rb

o
n

m
a

n
g

el
s

cy
p

2d
6_

v
ei

th

cy
p

3a
4_

su
b

st
ra

te
_c

a
rb

o
n

m
a

n
g

el
s

cy
p

3a
4_

v
ei

th

d
il

i

h
a

lf
_l

if
e_

o
b

a
ch

h
er

g

h
ia

_h
o

u

ld
50

_z
h

u

li
p

o
p

h
il

ic
it

y
_a

st
ra

ze
n

ec
a

p
g

p
_b

ro
cc

a
te

ll
i

p
k

is
2-

eg
fr

-w
t-

c-
1

p
k

is
2-

eg
fr

-w
t-

r-
1

p
k

is
2-

k
it

-w
t-

c-
1

p
k

is
2-

k
it

-w
t-

r-
1

p
k

is
2-

re
t-

w
t-

c-
1

p
k

is
2-

re
t-

w
t-

r-
1

p
p

b
r_

a
z

so
lu

b
il

it
y

_a
q

so
ld

b

v
d

ss
_l

o
m

b
a

rd
o

T
D

C
 S

ta
n

d
a

rd
iz

ed
 M

ea
n

P
o

la
ri

s 
S

ta
n

d
a

rd
iz

ed
 M

ea
n

S
ta

n
d

a
rd

iz
ed

 M
ea

n

metric

pe
ar
so
n

pe
ar
so
n

pe
ar
so
n

pe
ar
so
n

pe
ar
so
n

pe
ar
so
n

au
ro
c

au
ro
c

au
ro
c

m
ae

sp
ea
rm

an

sp
ea
rm

an

au
pr
c

au
pr
c

au
pr
c

au
pr
c

au
ro
c

au
pr
c

au
ro
c

sp
ea
rm

an

au
ro
c

au
ro
c

m
ae

m
ae

au
ro
c

au
pr
c

pe
ar
so
n

au
pr
c

pe
ar
so
n

au
pr
c

pe
ar
so
n

m
ae

m
ae

sp
ea
rm

an

rdkit 0.32 0.34 0.48 0.23 0.38 0.29 0.69 0.72 0.58 -0.54 0.25 0.45 0.31 0.45 0.45 0.29 0.54 0.59 0.71 0.26 0.61 0.71 -0.70 -0.84 0.76 0.20 0.42 0.33 0.53 0.36 0.45 -13.03 -1.63 0.22 -2.62 -0.51 -1.88

ecfp 0.46 0.60 0.49 0.43 0.60 0.39 0.69 0.75 0.48 -0.43 0.37 0.50 0.32 0.52 0.44 0.33 0.60 0.64 0.67 0.47 0.73 0.65 -0.73 -0.78 0.79 0.41 0.57 0.33 0.51 0.40 0.55 -9.91 -1.27 0.47 -1.96 0.03 -1.26

maccs 0.37 0.56 0.52 0.22 0.43 0.44 0.71 0.77 0.53 -0.47 0.35 0.42 0.32 0.49 0.45 0.32 0.62 0.61 0.75 0.43 0.66 0.70 -0.66 -0.83 0.79 0.21 0.35 0.25 0.32 0.44 0.49 -10.13 -1.47 0.46 -1.91 -0.45 -1.40

Concatnated fps 0.41 0.66 0.58 0.33 0.40 0.37 0.70 0.77 0.58 -0.43 0.38 0.52 0.33 0.54 0.42 0.33 0.57 0.62 0.74 0.45 0.70 0.72 -0.67 -0.80 0.84 0.36 0.56 0.34 0.57 0.44 0.57 -10.94 -1.46 0.48 -1.78 0.00 -1.15

Molphenix fingerprint 1 0.57 0.75 0.57 0.55 0.72 0.57 0.70 0.74 0.54 -0.48 0.29 0.46 0.32 0.57 0.47 0.38 0.59 0.64 0.77 0.55 0.67 0.69 -0.71 -0.70 0.80 0.20 0.41 0.30 0.43 0.31 0.39 -8.93 -1.10 0.55 -1.64 0.14 -1.01

Molphenix fingerprint 25 0.64 0.71 0.65 0.62 0.67 0.58 0.69 0.78 0.54 -0.42 0.30 0.43 0.32 0.56 0.49 0.42 0.60 0.67 0.77 0.38 0.69 0.74 -0.67 -0.66 0.84 0.17 0.42 0.32 0.39 0.37 0.46 -8.43 -1.02 0.50 -1.40 0.26 -0.82
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Table 10: Evaluation on cumulative concentrations for active molecules: Average Top-1% and
Top-5% recall accuracies of methods utilizing different contrastive learning loss functions and
concentration encoding information. We evaluate all methods on unseen images, unseen images
and unseen molecules and an unseen dataset for zero-shot retrieval. Entries in bold denote best
performance when the loss function is fixed while entries in highlight denote best performance
across all guidelines.

top-1% top-5%
Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.

Concentration (ours) Unseen Molecules (0-shot) Unseen Molecules (0-shot)
CLIP ✗ Phenom1 .3373 .4228 .1514 .3038 .6162 .7182 .3660 .5668

Hopfield-CLIP ✗ Phenom1 .2578 .3559 .1256 .2464 .5457 .6751 .3270 .5159

InfoLOOB ✗ Phenom1 .3351 .4206 .1563 .3040 .6128 .7204 .3730 .5687

CLOOME ✗ Phenom1 .3572 .4348 .1658 .3193 .6330 .7259 .3918 .5836
CLOOME sigmoid Phenom1 .5813 .4968 .2360 .4380 .8748 .7658 .4859 .7088
CLOOME logarithm Phenom1 .6057 .5255 .2445 .4586 .8858 .8117 .4957 .7310
CLOOME one-hot Phenom1 .5967 .5255 .2380 .4534 .8800 .8120 .4829 .7250

DCL ✗ Phenom1 .6363 .6177 .3184 .5241 .8638 .8180 .5632 .7483
DCL sigmoid Phenom1 .8858 .6694 .4527 .6693 .9600 .8472 .6845 .8305
DCL logarithm Phenom1 .8934 .6952 .4511 .6799 .9581 .8788 .6889 .8419
DCL one-hot Phenom1 .8901 .7002 .4601 .6834 .9591 .8770 .6873 .8411

CWCL ✗ Phenom1 .7091 .6529 .3556 .5725 .9018 .8368 .6027 .7804
CWCL sigmoid Phenom1 .9138 .6985 .4810 .6977 .9681 .8643 .7070 .8464
CWCL logarithm Phenom1 .9141 .7248 .4815 .7068 .9651 .8920 .7131 .8567
CWCL one-hot Phenom1 .9128 .7261 .4850 .7079 .9665 .8927 .6998 .8530

SigLip ✗ Phenom1 .7763 .6401 .3396 .5853 .9361 .83038 .5714 .7792
SigLip sigmoid Phenom1 .9463 .6931 .4576 .6990 .9816 .8606 .6759 .8393
SigLip logarithm Phenom1 .9493 .7256 .4868 .7205 .9814 .8926 .7019 .8586
SigLip one-hot Phenom1 .9489 .7210 .4859 .7186 .9823 .8868 .7045 .8578

MolPhenix (ours) ✗ Phenom1 .9097 .6759 .4181 .6679 .9768 .8539 .6436 .8247
MolPhenix (ours) sigmoid Phenom1 .9423 .7155 .4573 .7050 .9808 .8775 .6778 .8453
MolPhenix (ours) logarithm Phenom1 .9426 .7451 .4727 .7201 .9808 .8964 .6952 .8574
MolPhenix (ours) one-hot Phenom1 .9430 .7490 .4850 .7256 .9816 .8984 .7040 .8613
MolPhenix (ours) ✗ Phenom1 + MolGPS .9105 .6710 .4501 .6772 .9755 .8527 .7098 .8460
MolPhenix (ours) sigmoid Phenom1 + MolGPS .9395 .7034 .5252 .7227 .9811 .8729 .7630 .8723
MolPhenix (ours) logarithm Phenom1 + MolGPS .9413 .7505 .5473 .7463 .9811 .9085 .7878 .8924
MolPhenix (ours) one-hot Phenom1 + MolGPS .9430 .7514 .5577 .7507 .9830 .9043 .7821 .8898

Table 9: Comparison of a KNN applied on MolPhenix molecular embedding with MolGPS on
different tasks of TDC and Polaris datasets. Mean results for TDC, Polaris and together are available
in the last three columns.

co
n

ce
n

tr
a

ti
o

n

a
d

m
e-

fa
n

g
-H

C
L

in
t-

1

a
d

m
e-

fa
n

g
-H

P
P

B
-1

a
d

m
e-

fa
n

g
-P

E
R

M
-1

a
d

m
e-

fa
n

g
-R

C
L

in
t-

1

a
d

m
e-

fa
n

g
-R

P
P

B
-1

a
d

m
e-

fa
n

g
-S

O
L

U
-1

a
m

es

b
b

b
_m

a
rt

in
s

b
io

a
v

a
il

a
b

il
it

y
_m

a

ca
co

2_
w

a
n

g

cl
ea

ra
n

ce
_h

ep
a

to
cy

te
_a

z

cl
ea

ra
n

ce
_m

ic
ro

so
m

e_
a

z

cy
p

2c
9_

su
b

st
ra

te
_c

a
rb

o
n

m
a

n
g

el
s

cy
p

2c
9_

v
ei

th

cy
p

2d
6_

su
b

st
ra

te
_c

a
rb

o
n

m
a

n
g

el
s

cy
p

2d
6_

v
ei

th

cy
p

3a
4_

su
b

st
ra

te
_c

a
rb

o
n

m
a

n
g

el
s

cy
p

3a
4_

v
ei

th

d
il

i

h
a

lf
_l

if
e_

o
b

a
ch

h
er

g

h
ia

_h
o

u

ld
50

_z
h

u

li
p

o
p

h
il

ic
it

y
_a

st
ra

ze
n

ec
a

p
g

p
_b

ro
cc

a
te

ll
i

p
k

is
2-

eg
fr

-w
t-

c-
1

p
k

is
2-

eg
fr

-w
t-

r-
1

p
k

is
2-

k
it

-w
t-

c-
1

p
k

is
2-

k
it

-w
t-

r-
1

p
k

is
2-

re
t-

w
t-

c-
1

p
k

is
2-

re
t-

w
t-

r-
1

p
p

b
r_

a
z

so
lu

b
il

it
y

_a
q

so
ld

b

v
d

ss
_l

o
m

b
a

rd
o

T
D

C
 S

ta
n

d
a

rd
iz

ed
 M

ea
n

P
o

la
ri

s 
S

ta
n

d
a

rd
iz

ed
 M

ea
n

S
ta

n
d

a
rd

iz
ed

 M
ea

n

metric

pe
ar
so
n

pe
ar
so
n

pe
ar
so
n

pe
ar
so
n

pe
ar
so
n

pe
ar
so
n

au
ro
c

au
ro
c

au
ro
c

m
ae

sp
ea
rm

an

sp
ea
rm

an

au
pr
c

au
pr
c

au
pr
c

au
pr
c

au
ro
c

au
pr
c

au
ro
c

sp
ea
rm

an

au
ro
c

au
ro
c

m
ae

m
ae

au
ro
c

au
pr
c

pe
ar
so
n

au
pr
c

pe
ar
so
n

au
pr
c

pe
ar
so
n

m
ae

m
ae

sp
ea
rm

an

MolGPS 0.54 0.66 0.70 0.56 0.64 0.55 0.69 0.76 0.49 -0.50 0.40 0.57 0.30 0.62 0.50 0.41 0.66 0.68 0.81 0.52 0.70 0.74 -0.69 -0.71 0.84 0.34 0.51 0.44 0.55 0.30 0.48 -9.71 -0.98 0.63 -1.19 0.36 -0.65

Molphenix with Molgps 1 0.60 0.78 0.69 0.61 0.68 0.65 0.70 0.79 0.59 -0.49 0.36 0.51 0.29 0.62 0.55 0.42 0.58 0.67 0.72 0.45 0.74 0.79 -0.71 -0.65 0.83 0.14 0.33 0.34 0.44 0.32 0.42 -8.28 -1.00 0.63 -1.23 0.29 -0.69

Molphenix with Molgps 25 0.68 0.74 0.70 0.67 0.77 0.63 0.71 0.78 0.60 -0.47 0.38 0.53 0.33 0.62 0.50 0.43 0.66 0.67 0.79 0.40 0.73 0.83 -0.70 -0.62 0.84 0.12 0.29 0.41 0.45 0.29 0.43 -8.46 -0.97 0.62 -.92 0.38 -0.46

E.4 Addressing Challenges in Contrastive Phenomic Retrieval

Table 10 and 12 show the complete Top 1% and 5% results of evaluation on cumulative concentrations
on only active and all molecules, respectively. Similarly, Table 11 and 13 presents the full retrieval
results of held-out concentrations experiments. In comparison to prior loss functions, S2L loss
objective demonstrates consistent high retrieval rate in all tasks and molecular groups (i.e. all or active
molecules), while using the same modality (Phenom1) and with or without explicit concentration
information.

E.5 Ablation Studies

Figure 10 and Table 15, 16, 17, 18 and 19 present top-1% recall accuracy across for the full ablation
study on the variation of MolPhenix key components. We note that compact embedding sizes from
pretrained models stabilize training. This indicates that embeddings are expressive and accurately
capture intricate aspects of molecules. Larger batch sizes result in a greater number of negative
samples, hence improving performance. This is in line with prior contrastive learning methods
continuing to improve by increasing the batch size [12]. Increasing the number of parameters leads
to more expressive models thereby enhancing retrieval performance. This result is in accordance with
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Table 11: Evaluation on held-out concentration for active molecules: Average Top-1% and Top-5%
recall accuracies of methods utilizing different contrastive learning loss functions and concentration
encoding information. We evaluate all methods on unseen images, unseen images and unseen
molecules and an unseen dataset for zero-shot retrieval. Entries in bold denote highest performance
when the loss function is fixed while entries in highlight denote highest performance across all
guidelines.

top-1% top-5%
Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.

Concentration (ours) Unseen Molecules (0-shot) Unseen Molecules (0-shot)
CLIP ✗ Phenom1 .2109 .2425 .1519 .2018 .4458 .4968 .3591 .4339

Hopfield-CLIP ✗ Phenom1 .1581 .2034 .1198 .1604 .3783 .4413 .3045 .3747
InfoLOOB ✗ Phenom1 .2122 .2496 .1501 .2040 .4443 .5003 .3515 .4320
CLOOME ✗ Phenom1 .2164 .2461 .1479 .2035 .4590 .4956 .3528 .4358
CLOOME sigmoid Phenom1 .3338 .2681 .1801 .2606 .6037 .5202 .3879 .5039
CLOOME logarithm Phenom1 .3094 .2345 .1665 .2368 .5960 .4874 .3534 .4790
CLOOME one-hot Phenom1 .3073 .2040 .1670 .2261 .5997 .4246 .3657 .4633

DCL ✗ Phenom1 .4717 .4027 .2841 .3861 .7352 .6579 .5322 .6417
DCL sigmoid Phenom1 .7282 .4100 .3560 .4980 .9226 .6561 .6015 .7267
DCL logarithm Phenom1 .6903 .3558 .3211 .4557 .8869 .6146 .5667 .6894
DCL one-hot Phenom1 .6562 .3607 .3272 .4480 .8831 .5983 .5659 .6824

CWCL ✗ Phenom1 .5731 .4403 .3232 .4455 .8218 .6833 .5706 .6919
CWCL sigmoid Phenom1 .7780 .4425 .3777 .5327 .9386 .6844 .6244 .7491
CWCL logarithm Phenom1 .7452 .3989 .3523 .4988 .9117 .6482 .5962 .7187
CWCL one-hot Phenom1 .7048 .4009 .3593 .4883 .9037 .6284 .6061 .7127

SigLip ✗ Phenom1 .5718 .4217 .3021 .4318 .8104 .6602 .5176 .6627
SigLip sigmoid Phenom1 .8366 .4640 .3830 .5612 .9623 .7023 .6080 .7575
SigLip logarithm Phenom1 .8097 .4391 .3747 .5411 .9437 .6746 .6046 .7409
SigLip one-hot Phenom1 .7561 .4020 .3345 .4975 .9279 .6248 .5557 .7028

MolPhenix (ours) ✗ Phenom1 .8334 .4615 .3792 .5580 .9638 .6937 .6128 .7567
MolPhenix (ours) sigmoid Phenom1 .8256 .4692 .3765 .5571 .9638 .7068 .6115 .7607
MolPhenix (ours) logarithm Phenom1 .7953 .4466 .3664 .5361 .9466 .6889 .5924 .7426
MolPhenix (ours) one-hot Phenom1 .7489 .4088 .3379 .4985 .9325 .6465 .5644 .7144

MolPhenix (ours) ✗ Phenom1 & MolGPS .8277 .4739 .4071 .5695 .9602 .7041 .6798 .7813
MolPhenix (ours) sigmoid Phenom1 & MolGPS .8218 .4771 .4287 .5758 .9588 .7117 .7045 .7916
MolPhenix (ours) logarithm Phenom1 & MolGPS .7836 .4757 .4297 .563 .9402 .7138 .7011 .7850
MolPhenix (ours) one-hot Phenom1 & MolGPS .7391 .4307 .3940 .5212 .9198 .6724 .6698 .7540

Table 12: Evaluation on cumulative concentrations for active and inactive perturbations Average
Top-1% and Top-5% Recall accuracy of methods utilizing different contrastive learning methods.
Best performing methods are highlighted in bold.

top-1% top-5%
Loss Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.

Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)
CLIP ✗ Phenom1 .1761 .1867 .0734 .1454 .3710 .3769 .2065 .3181

Hopfield-CLIP ✗ Phenom1 .1531 .1709 .0673 .1304 .3464 .3637 .1942 .3014

InfoLOOB ✗ Phenom1 .1746 .1860 .0745 .1450 .3697 .3756 .2058 .3170

CLOOME ✗ Phenom1 .1968 .2005 .0911 .1628 .3938 .3888 .2321 .3383
CLOOME sigmoid Phenom1 .3875 .2592 .1415 .2627 .5662 .4601 .2940 .4401
CLOOME logarithm Phenom1 .4088 .3046 .1503 .2879 .5730 .5166 .3053 .4650
CLOOME one-hot Phenom1 .4080 .3123 .1496 .2900 .5801 .5306 .3054 .4720

DCL ✗ Phenom1 .3277 .2562 .1364 .2401 .4856 .4170 .2768 .3931
DCL sigmoid Phenom1 .4881 .3380 .2009 .3423 .6222 .5186 .3381 .4930
DCL logarithm Phenom1 .4983 .3615 .2122 .3573 .6311 .5581 .3587 .5160
DCL one-hot Phenom1 .5226 .3790 .2288 .3768 .6791 .5870 .3968 .5543

CWCL ✗ Phenom1 .3635 .2696 .1526 .2619 .5122 .4267 .2933 .4107
CWCL sigmoid Phenom1 .5070 .3457 .2101 .3542 .6378 .5272 .3462 .5037
CWCL logarithm Phenom1 .5146 .3725 .2246 .3706 .6437 .5733 .3660 .5277
CWCL one-hot Phenom1 .5401 .3849 .2336 .3862 .6882 .5991 .4001 .5625
SigLip ✗ Phenom1 .3729 .2544 .1470 .2581 .5200 .4179 .2838 .4072
SigLip sigmoid Phenom1 .5021 .3275 .2072 .3456 .6360 .5231 .3430 .5007
SigLip logarithm Phenom1 .5156 .3636 .2233 .3675 .6452 .5689 .3653 .5265
SigLip one-hot Phenom1 .5354 .3745 .2317 .3805 .6858 .5928 .3945 .5577

S2L (ours) ✗ Phenom1 .4688 .2852 .1838 .3126 .5970 .4519 .3171 .4554
S2L (ours) sigmoid Phenom1 .5071 .3441 .2144 .3552 .6428 .5315 .3554 .5099
S2L (ours) logarithm Phenom1 .5183 .3700 .2275 .3720 .6492 .5650 .3756 .5300
S2L (ours) one-hot Phenom1 .5433 .3819 .2384 .3879 .6954 .5895 .4030 .5626
S2L (ours) ✗ Phenom1 .4688 .2729 .2001 .3139 .5956 .4374 .3430 .4587

& MolGPS
S2L (ours) sigmoid Phenom1 .4983 .3230 .2397 .3537 .6343 .5035 .3790 .5056

& MolGPS
S2L (ours) logarithm Phenom1 .5101 .3589 .2535 .3742 .6398 .5660 .3992 .5350

& MolGPS
S2L (ours) one-hot Phenom1 .5370 .3720 .2676 .3922 .6870 .5888 .4326 .5695

& MolGPS
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Table 13: Evaluation on held-out concentrations for active and inactive perturbations Average
Top-1% and Top-5% Recall accuracy of methods utilizing different contrastive learning methods.
Best performing methods are highlighted in bold.

top-1% top-5%
Loss Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.

Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)
CLIP ✗ Phenom1 .1684 .1111 .0964 .1253 .3916 .2545 .2356 .2476

Hopfield-CLIP ✗ Phenom1 .1290 .0921 .0756 .0989 .3485 .2287 .2095 .2217

InfoLOOB ✗ Phenom1 .1715 .1114 .0948 .1259 .3944 .2578 .2349 .2495

CLOOME ✗ Phenom1 .1745 .1088 .0910 .1248 .4093 .2487 .2355 .2439
CLOOME sigmoid Phenom1 .2573 .1208 .1062 .1614 .5169 .2638 .2513 .3440
CLOOME logarithm Phenom1 .2379 .1081 .0992 .1484 .4958 .2444 .2324 .3242
CLOOME one-hot Phenom1 .2346 .0970 .0974 .1430 .5014 .2224 .2348 .3195

DCL ✗ Phenom1 .3516 .1655 .1533 .2235 .5693 .3125 .3006 .3082
DCL sigmoid Phenom1 .4741 .1725 .1726 .2731 .6637 .3261 .3105 .3204
DCL logarithm Phenom1 .4286 .1596 .1581 .2488 .6244 .3071 .3032 .3056
DCL one-hot Phenom1 .4308 .1495 .1600 .2468 .6244 .2938 .3015 .2966

CWCL ✗ Phenom1 .4126 .1801 .1667 .2531 .6128 .3266 .3066 .3194
CWCL sigmoid Phenom1 .5112 .1856 .1811 .2926 .6901 .3384 .3190 .3314
CWCL logarithm Phenom1 .4664 .1696 .1709 .2690 .6502 .3195 .3066 .3148
CWCL one-hot Phenom1 .4681 .1612 .1734 .2676 .6465 .3019 .3104 .3050

SigLip ✗ Phenom1 .3942 .1578 .1390 .2303 .5931 .3015 .2737 .2914
SigLip sigmoid Phenom1 .5392 .1828 .1710 .2977 .7102 .3399 .3121 .3298
SigLip logarithm Phenom1 .5022 .1698 .1669 .2796 .6841 .3240 .3068 .3177
SigLip one-hot Phenom1 .4657 .1443 .1451 .2517 .6544 .2879 .2790 .2847

S2L (ours) ✗ Phenom1 .5336 .1842 .1713 .2963 .6961 .3322 .3045 .3221
S2L (ours) sigmoid Phenom1 .5409 .1899 .1753 .3020 .7178 .3469 .3201 .3372
S2L (ours) logarithm Phenom1 .5036 .1791 .1727 .2851 .6925 .3342 .3157 .3275
S2L (ours) one-hot Phenom1 .4726 .1537 .1521 .2595 .6696 .2998 .2887 .2958

S2L (ours) ✗ Phenom1 .5248 .1829 .1910 .2996 .6904 .3268 .3305 .3281
& MolGPS

S2L (ours) sigmoid Phenom1 .5338 .1897 .2029 .3088 .7098 .3427 .3495 .3452
& MolGPS

S2L (ours) logarithm Phenom1 .4900 .1839 .2031 .2923 .6776 .3354 .3511 .3411
& MolGPS

S2L (ours) one-hot Phenom1 .4622 .1569 .1762 .2651 .6578 .3030 .3187 .3087
& MolGPS

recent advances in language modelling and scaling laws across different data and compute budgets
[25].

Model size Depth Width Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

Tiny - 2.7m 4 ResBlocks 256 .8337 .7186 .4030
Small - 9.4m 6 ResBlocks 512 .9174 .7352 .4562

Medium - 38.7m 8 ResBlocks 1024 .9430 .7490 .485

Table 14: Ablations across different model sizes. Larger capacity models are found to be more
expressive.

Batch size Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

128 .8600 .7163 .4044
512 .9252 .7511 .4657
2048 .9450 .7616 .4940
8192 .9489 .7563 .4966

Table 15: Ablation across different batch sizes. Larger batch sizes benefit contrastive learning.

E.6 Investigating Other Pre-trained Phenomic Encoders

To investigate the impact of pre-trained encoders, we perform additional experiments evaluating a
supervised phenomic image encoder (Table 20). Instead of Phenom1, we trained Molphenix frame-
work using AdaBN, a CNN-based supervised phenomic encoder, with an analogous implementation
discussed in [55]. We find that the general trends between Phenom1 and AdaBN are consistent with a
slight decrease in overall performance. These findings provide additional support to the generality of
the proposed guidelines.

E.7 Integrating MolGPS Embeddings With Other Fingerprints

Molphenix architecture is flexible, allowing that the proposed components be replaced by other
phenomic or molecular pretrained models. We leveraged from MolGPS, which is a MPNN based
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Figure 10: Ablations of top-1 % recall accuracy with (top-left) the size of embedding dimension,
(top-center) number of parameters, (top-right) batch size, (bottom-left) cutoff p value, (bottom-
center) fingerprint type, and (bottom-right) random batch averaging. Compact embedding sizes
from pretrained models, larger number of parameters, larger batch sizes, lower cutoff p-values,
pretrained MolGPS fingerprints and presence of random batch averagin improving retrieval of our
MolPhenix framework.

Dim size Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

256 .9452 .7510 .4929
512 .9430 .7490 .4850

1024 .9392 .7288 .4710
Table 16: Ablation across different embedding dimensions. Compact embedding sizes capture more
molecular information.

GNN model with 1B parameters which allows us to maximize architecture expressivity while
minimizing the risk of overfitting [34, 56]. For additional investigation, we combine MolGPS
molecular embeddings with RDKIT, MACCS, and Morgan fingerprints and show that they can
provide Molphenix with richer molecular information and yields overall higher performance of
MolPhenix in both cumulative and held-out concentration scenarios. Results for active and all
molecules retrieval of Molphenix trained on the discussed combinational molecular embeddings are
available in table 21 and 22.
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cut-off Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

p < 1.0 .9312 .7057 .3686
p < .1 .9430 .7490 .4850

p < .01 .9284 .7192 .5005
Table 17: Ablation across different p-value cutoff threhsolds. p values < .1 benefit retrieval of active
molecules.

fingerprint unseen images unseen images + unseen dataset
unseen molecule

MACCS .9180 .5503 .3526
RDKit .9341 .6693 .3925
Morgan .9524 .7417 .4613

Multi-FPs .9430 .7490 .485
Phenom1 + MolGPS .9430 .7514 .5577

Table 18: Ablation across different fingerprint types. A combination of embeddings bootstrapped
from Phenom1 and MolGPS significantly benefit retrieval.

Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

W/O Random Embedding Avg. .9482 .7198 .4759
With Random Embedding Avg. .9430 .7490 .485

Table 19: Ablation across random embedding averaging. Utilizing random batch averaging stabilizes
training and benefits retrieval.

Table 20: Evaluation on cumulative concentrations while using AdaBN. Molphenix is trained on
combination of RDKIT, MACCS, and Morgan fingerprints in this experiment

Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.
Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)

top-1% active molecules top-5% active molecules
MolPhenix - AdaBN .8568 .5336 .3525 .581 .9562 .7603 .5772 .7646
MolPhenix sigmoid AdaBN .911 .5858 .4 .6323 .971 .7997 .6203 .797
MolPhenix logarithm AdaBN .9155 .6106 .4242 .6501 .9729 .8332 .6503 .8188
MolPhenix one-hot AdaBN .9187 .6125 .4225 .6512 .9744 .8302 .6419 .8155

top-1% all molecules top-5% all molecules
MolPhenix - AdaBN .4593 .2409 .1599 .2867 .5983 .4081 .285 .4305
MolPhenix sigmoid AdaBN .5104 .3142 .1957 .3401 .6496 .5165 .331 .499
MolPhenix logarithm AdaBN .5379 .3393 .2071 .3614 .6867 .5561 .3606 .5345
MolPhenix one-hot AdaBN .5476 .3425 .2082 .3661 .7007 .5641 .3603 .5417

Table 21: Evaluation on cumulative concentrations while combining MolGPS, RDKIT, MACCS,
and Morgan fingerprints.

Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.
Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)

top-1% active molecules top-5% active molecules
MolPhenix - Phenom1 & MolGPS & 3 fps .9185 .7212 .4717 .7038 .9784 .8805 .718 .859
MolPhenix sigmoid Phenom1 & MolGPS & 3 fps .9395 .7408 .5119 .7307 .9817 .8932 .7458 .8736
MolPhenix logarithm Phenom1 & MolGPS & 3 fps .9454 .7798 .5658 .7637 .9815 .9163 .7849 .8942
MolPhenix one-hot Phenom1 & MolGPS & 3 fps .9419 .7687 .5526 .7544 .9807 .9113 .7681 .8867

top-1% all molecules top-5% all molecules
MolPhenix - Phenom1 & MolGPS & 3 fps .4764 .3011 .2068 .3281 .604 .4647 .3415 .4701
MolPhenix sigmoid Phenom1 & MolGPS & 3 fps .5076 .342 .2382 .3626 .6383 .521 .3769 .512
MolPhenix logarithm Phenom1 & MolGPS & 3 fps .525 .379 .2648 .3896 .658 .5743 .411 .5478
MolPhenix one-hot Phenom1 & MolGPS & 3 fps .5355 .3845 .265 .395 .6862 .5916 .4233 .567

Table 22: Evaluation on heldout concentrations while combining MolGPS, RDKIT, MACCS, and
Morgan fingerprints.

Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.
Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)

top-1% active molecules top-5% active molecules
MolPhenix - Phenom1 & MolGPS & 3 fps .8364 .5115 .4263 .5914 .9640 .7363 .6850 .7951
MolPhenix sigmoid Phenom1 & MolGPS & 3 fps .8300 .5021 .4363 .5895 .9640 .7409 .6931 .7993
MolPhenix logarithm Phenom1 & MolGPS & 3 fps .8112 .5107 .4376 .5865 .9544 .7406 .6866 .7939
MolPhenix one-hot Phenom1 & MolGPS & 3 fps .7467 .4409 .3830 .5235 .9320 .6827 .6520 .7556

top-1% all molecules top-5% all molecules
MolPhenix - Phenom1 & MolGPS & 3 fps .5339 .1980 .1966 .3095 .6968 .2909 .4274 .4717
MolPhenix sigmoid Phenom1 & MolGPS & 3 fps .5463 .2026 .2066 .3185 .7179 .3116 .4359 .4885
MolPhenix logarithm Phenom1 & MolGPS & 3 fps .5247 .2009 .2078 .3111 .7067 .3133 .4319 .4840
MolPhenix one-hot Phenom1 & MolGPS & 3 fps .4690 .1653 .1756 .2700 .6635 .2592 .4118 .4448
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