
DiffSF: Diffusion Models for Scene Flow Estimation

Yushan Zhang Bastian Wandt Maria Magnusson Michael Felsberg
Linköping University

{firstname.lastname}@liu.se

Abstract

Scene flow estimation is an essential ingredient for a variety of real-world appli-
cations, especially for autonomous agents, such as self-driving cars and robots.
While recent scene flow estimation approaches achieve reasonable accuracy, their
applicability to real-world systems additionally benefits from a reliability mea-
sure. Aiming at improving accuracy while additionally providing an estimate
for uncertainty, we propose DiffSF that combines transformer-based scene flow
estimation with denoising diffusion models. In the diffusion process, the ground
truth scene flow vector field is gradually perturbed by adding Gaussian noise. In
the reverse process, starting from randomly sampled Gaussian noise, the scene
flow vector field prediction is recovered by conditioning on a source and a target
point cloud. We show that the diffusion process greatly increases the robustness
of predictions compared to prior approaches resulting in state-of-the-art perfor-
mance on standard scene flow estimation benchmarks. Moreover, by sampling
multiple times with different initial states, the denoising process predicts mul-
tiple hypotheses, which enables measuring the output uncertainty, allowing our
approach to detect a majority of the inaccurate predictions. The code is available at
https://github.com/ZhangYushan3/DiffSF.

1 Introduction

Scene flow estimation is an important research topic in computer vision with applications in various
fields, such as autonomous driving [25] and robotics [30]. Given a source and a target point cloud,
the objective is to estimate a scene flow vector field that maps each point in the source point cloud
to the target point cloud. Many studies on scene flow estimation aim at enhancing accuracy and
substantial progress has been made particularly on clean, synthetic datasets. However, real-world
data contains additional challenges such as severe occlusion and noisy input, thus requiring a high
level of robustness when constructing models for scene flow estimation.

Recently, Denoising Diffusion Probabilistic Models (DDPMs) have not only been widely explored in
image generation [12, 28] but also in analysis tasks, e.g. detection [3], classification [11], segmenta-
tion [1, 10], optical flow [29], human pose estimation [13], point cloud registration [14], etc. Drawing
inspiration from the recent successes of diffusion models in regression tasks and recognizing their
potential compatibility with scene flow estimation, we formulate scene flow estimation as a diffusion
process following DDPMs [12] as shown in Figure 1. The forward process initiates from the ground
truth scene flow vector field and gradually introduces noise to it. Conversely, the reverse process is
conditioned on the source and the target point cloud and is tasked to reconstruct the scene flow vector
field based on the current noisy input. To learn the denoising process, a new network is proposed
inspired by state-of-the-art scene flow estimation methods FLOT [26] and GMSF [43].

Previous methods [43, 5, 36, 4] usually suffer from inaccuracies when occlusions occur or when
dealing with noisy inputs. During inference, based on the fixed parameters learned during training,
they cannot provide information about their inaccurate predictions, which might lead to problems
in safety-critical downstream tasks. Our proposed method approaches this problem in two aspects:

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

111227 https://doi.org/10.52202/079017-3532

https://github.com/ZhangYushan3/DiffSF

Figure 1: Diffusion process. In the forward process, we start from a ground truth scene flow vector
field V0 and gradually add noise to it until we reach VT , which is completely Gaussian noise. In the
reverse process, we recover the scene flow vector field V0 from the randomly sampled noisy vector
field VT conditioned on the source point cloud Psource and the target point cloud Ptarget.

First, denoising diffusion models are capable of handling noisy data by modeling stochastic processes.
The noise caused by sensors in the real world is filtered out, which allows the model to focus
on learning underlying patterns. By learning feature representations that are robust to noise, the
prediction accuracy is improved. Second, since the diffusion process introduces randomness into the
inherently deterministic prediction task, it can provide a measure of uncertainty for each prediction
by averaging over a set of hypotheses, notably without any modifications to the training process.
Extensive experiments on multiple benchmarks, FlyingThings3D [24], KITTI Scene Flow [25], and
Waymo-Open [33], demonstrate state-of-the-art performance of our proposed method. Furthermore,
we demonstrate that the predicted uncertainty correlates with the prediction error, establishing it as a
reasonable measure that can be adjusted to the desired certainty level with a simple threshold value.

To summarize, our contributions are: (1) We introduce DiffSF, leveraging diffusion models to
solve the full scene flow estimation problem, where the inherent noisy property of the diffusion
process filters out noisy data, thus, increasing the focus on learning the relevant patterns. (2) DiffSF
introduces randomness to the scene flow estimation task, which allows us to predict the uncertainty
of the estimates without being explicitly trained for this purpose. (3) We develop a novel architecture
that combines transformers and diffusion models for the task of scene flow estimation, improving
both accuracy and robustness for a variety of datasets.

2 Related Work

Scene Flow Estimation has rapidly progressed since the introduction of FlyingThings3D [24], KITTI
Scene Flow [25], and Waymo-Open [33] benchmarks. Many existing methods [2, 23, 25, 27, 31, 35,
42] assume scene objects are rigid and break down the estimation task into sub-tasks involving object
detection or segmentation, followed by motion model fitting. While effective for autonomous driving
scenes with static background and moving vehicles, these methods struggle with more complex
scenes containing deformable objects, and their non-differentiable components impede end-to-end
training without instance-level supervision. Recent advancements in scene flow estimation focus on
end-to-end trainable models and are categorized into encoder-decoder, coarse-to-fine, recurrent, soft
correspondence methods, and runtime optimization-based methods. Encoder-decoder techniques,
exemplified by FlowNet3D [22, 39] and HPLFlowNet [9], utilize neural networks to learn scene
flow by adopting an hourglass architecture. Coarse-to-fine methods, such as PointPWC-Net [41],
progressively estimate motion from coarse to fine scales, leveraging hierarchical feature extraction
and warping. Recurrent methods like FlowStep3D [17], PV-RAFT [40], and RAFT3D [34] iteratively
refine the estimated motion, thus enhancing accuracy. Some approaches like FLOT [26], STCN[18],
and GMSF [43] frame scene flow estimation as an optimal transport problem, employing convolutional
layers and point transformer modules for correspondence computation. Different from the previously
mentioned methods, which are fully trained and supervised offline, the runtime optimization-based

2

111228https://doi.org/10.52202/079017-3532

methods [19, 20, 6] are optimized during the evaluation time based on each pair of inputs. While
these methods have the advantage of without the need for training datasets, it also means that they can
not take advantage of large-scale training datasets. Due to the online optimization, they also suffer
from slow inference speed. Moreover, most of them focus only on autonomous driving scenes. On
the other hand, we aim to estimate the scene flow of more general scenarios. Our proposed method
takes the current state-of-the-art soft correspondence method GMSF [43] as a baseline. Given the
fact that being able to indicate uncertainty of the estimation is an important feature for safety-critical
downstream tasks, we propose to leverage the diffusion models for this purpose, whose ability of
uncertainty indication has been proven by other relevant research areas [11, 29].

Diffusion Models for Regression. Diffusion models have been widely exploited for image genera-
tion [12, 28]. Beyond their capacity to generate realistic images and videos, researchers have also
explored their potential to approach regression tasks. CARD [11] introduces a classification and
regression diffusion model to accurately capture the mean and the uncertainty of the prediction. Dif-
fusionDet [3] formulates object detection as a denoising diffusion process from noisy boxes to object
boxes. Baranchuk et al. [1] employ diffusion models for semantic segmentation with scarce labeled
data. DiffusionInst [10] depicts instances as instance-aware filters and casts instance segmentation as
a denoising process from noise to filter. Jiang et al. [14] introduce diffusion models to point cloud
registration that operates on the rigid body transformation group. Recent research on optical flow and
depth estimation [29] shows the possibility of using diffusion models for dense vision tasks. While
there have been attempts to employ diffusion models for scene flow estimation [21], they mainly
focus on refining an initial estimation. On the contrary, our goal is to construct a model to estimate
the full scene flow vector field instead of a refinement plug-in module. To the best of our knowledge,
we are the first to propose using diffusion models to estimate the full scene flow directly from two
point clouds.

3 Proposed Method

3.1 Preliminaries

Scene Flow Estimation. Given a source point cloud Psource ∈ RN1×3 and a target point cloud
Ptarget ∈ RN2×3, where N1 and N2 are the number of points in the source and the target point cloud
respectively, the objective is to estimate a scene flow vector field V ∈ RN1×3 that maps each source
point to the correct position in the target point cloud.

Diffusion Models. Inspired by non-equilibrium thermodynamics, diffusion models [12, 32] are
a class of latent variable (x1, ..., xT) models of the form pθ(x0) =

∫
pθ(x0:T)dx1:T , where the

latent variables are of the same dimensionality as the input data x0 (any dimensionality). The joint
distribution pθ(x0:T) is also called the reverse process

pθ(x0:T) = p(xT)
∏T

t=1 pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (1)

The approximate posterior q(x1:T |x0) is called the forward process, which is fixed to a Markov chain
that gradually adds noise according to a predefined noise scheduler β1:T

q(x1:T |x0) =
∏T

t=1 q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (2)

The training is performed by minimizing a variational bound on the negative log-likelihood

Eq[− log pθ(x0)] ≤ Eq[− log pθ(x0:T)
q(x1:T |x0)

]

= Eq[DKL(q(xT |x0)∥p(xT))
+
∑

t>1DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))− log pθ(x0|x1)],
(3)

where DKL denotes the Kullback–Leibler divergence.

3.2 Scene Flow Estimation as Diffusion Process

We formulate the scene flow estimation task as a conditional diffusion process that is illustrated in
Figure 1. The forward process starts from the ground truth scene flow vector field V0 and ends at

3

111229 https://doi.org/10.52202/079017-3532

pure Gaussian noise VT by gradually adding Gaussian noise to the input data as in Eq. (2). Given
that βt is small, q(Vt|Vt−1) in Eq. (2) has a closed form [12]

q(Vt|V0) = N (Vt;
√
ᾱtV0, (1− ᾱt)I), (4)

where ᾱt :=
∏t

s=1(1− βs). The reverse process predicts the ground truth V0 from the noisy input
Vt conditioned on both the source point cloud Psource and the target point cloud Ptarget,

pθ(Vt−1|Vt,Psource,Ptarget) = N (Vt−1;µθ(Vt,Psource,Ptarget), I). (5)

The forward process posterior is tractable when conditioned on V0,

q(Vt−1|Vt,V0) = N (vt−1; µ̃t(Vt,V0), β̃tI), (6)

where µ̃t(Vt,V0) :=
√
ᾱt−1βt

1−ᾱt
V0 +

√
αt(1−ᾱt−1)

1−ᾱt
Vt, and β̃t := 1−ᾱt−1

1−ᾱt
βt. Minimizing the

variational bound in Eq. (3) breaks down to minimizing the difference between µ̃t(Vt,V0)
and µθ(Vt,Psource,Ptarget). Since Vt is constructed from V0 by a predefined fixed noise
scheduler β1:T , the training objective is further equivalent to learning V0 by a neural network
fθ(Vt,Psource,Ptarget). The training loss can be written as

L = ∥fθ(Vt,Psource,Ptarget)−V0∥, (7)

where the neural network fθ(Vt,Psource,Ptarget) takes the current noisy input Vt, the source point
cloud Psource, and the target point cloud Ptarget as input and output V̂pred, which is an prediction of
V0. The detailed architecture of fθ is presented in section 3.3. The reverse process in Eq. (5) can be
rewritten by replacing µθ with fθ as

pθ(Vt−1|Vt,Psource,Ptarget) = N (Vt−1; µ̃t(Vt, fθ(Vt,Psource,Ptarget)), I). (8)

During inference, starting from randomly sampled Gaussian noise VT , V0 is reconstructed with the
model fθ according to the reverse process in Eq. (8). The detailed training and sampling algorithms
are given in Algorithm 1 and Algorithm 2.

Algorithm 1: Training
1 repeat
2 V0 ∼ q(V0), ϵ ∼ N (0, I);
3 t ∼ Uniform({1, ..., T});
4 Vt =

√
ᾱtV0 +

√
1 − ᾱtϵ;

5 estimate V̂pred = fθ(Vt,Psource,Ptarget);
6 optimize loss: Lt = loss(V̂pred,V0);
7 until converged;

Algorithm 2: Sampling
1 VT ∼ N (0, I);
2 for t = T, ..., 1 do
3 estimate V̂pred = fθ(Vt,Psource,Ptarget);
4 if t > 1: z ∼ N (0, I);
5 else: z = 0;
6 Vt−1 = µ̃t(Vt, V̂pred) + z;

7 return V0;

3.3 Architecture

To train the diffusion process with Eq. (7), we need to design the neural network to predict V0, i.e. the
ground truth scene flow vector field. The reverse process with the detailed architecture of V̂pred =
fθ(Vt,Psource,Ptarget) is given in Figure 2. We take the state-of-the-art method GMSF [43] as
our baseline. All the building blocks, Feature Extraction, Local-Global-Cross Transformer, and
Global Correlation are the same as in GMSF [43]. We modify the model architecture of GMSF
following the recent work [26, 8, 17] of scene flow estimation by adding an initial estimation before
the final prediction. More specifically, the source point cloud Psource ∈ RN1×3 is first warped with
Vt ∈ RN1×3. The warped source point cloud and the target point cloud are sent to the Feature
Extraction block to expand the three-dimensional coordinate into higher-dimensional features for
each point. Based on the similarities between point pairs in the warped source and the target point
cloud, a Global Correlation is applied to compute an initial estimation V̂init ∈ RN1×3. We then
warp the source point cloud Psource ∈ RN1×3 with the initial estimation V̂init ∈ RN1×3. The same
Feature Extraction block is applied on both the warped source point cloud and the target point cloud,
but with different weights than the previous block. A Local-Global-Cross Transformer is then applied
to the higher-dimensional features to get a more robust and reliable feature representation for each
point. The output features are then sent into the Global Correlation block to get the final prediction
V̂pred ∈ RN1×3. The detailed architecture of Feature Extraction, Local-Global-Cross Transformer,
and Global Correlation is given in the following paragraphs using the same notation as GMSF [43].

4

111230https://doi.org/10.52202/079017-3532

Figure 2: The reverse process with detailed denoising block for scene flow estimation. The denoising
block takes the current noisy input Vt, the source point cloud Psource, and the target point cloud
Ptarget as input. The output V̂pred is the denoised scene flow prediction. Shared weights for the
feature extraction are indicated in the same color.

Feature Extraction The three-dimensional coordinate for each point is first projected into a higher
feature dimension xh

i ∈ R1×d by the off-the-shelf feature extraction backbone DGCNN [38]. Each
layer of the network can be written as

xh
i = max

xj∈N (i)
h(xi,xj − xi), (9)

where i and j denote the index of a single point in the point cloud. xj ∈ N (i) denotes the neighboring
points of point xi found by a k-nearest-neighbor (KNN) algorithm. The number of k is set to 16.
The point feature xi and the edge feature xj − xi are first concatenated together along the feature
dimension and then passed through a neural network h. h consists of a sequence of linear layer, batch
normalization, and leaky ReLU layer. The output feature dimension d is set to 128. The maximum
value of the k nearest neighbors is taken as the output. Multiple layers are stacked together to get the
final feature representation xh

i .

Local-Global-Cross Transformer takes the output high-dimensional features xh
i ∈ R1×d as input

to learn more robust and reliable feature representations,

xl
i =

∑
xj∈N (i) γ(φl(x

h
i)− ψl(x

h
j) + δ)⊙ (αl(x

h
j) + δ), (10)

xg
i =

∑
xj∈X1

⟨φg(x
l
i), ψg(x

l
j)⟩αg(x

l
j), (11)

xc
i =

∑
xj∈X2

⟨φc(x
g
i), ψc(x

g
j)⟩αc(x

g
j), (12)

where local, global, and cross transformers are given in Eq. (10) (11) (12) respectively. φ, ψ, and
α denote linear layers to generate the query, key, and value. The indices ·l, ·g, and ·c indicate local
transformer, global transformer, and cross transformer, respectively. For the local transformer, γ is
a sequence of linear layer, ReLU, linear layer, and softmax. δ is the relative positional embedding
that gives the information of the 3D coordinate distance between xi and xj . ⊙ denotes element-
wise multiplication. The output xl

i is further processed by a linear layer and a residual connection
from the input before being sent to the global transformer. For the global and cross transformer,
X1 = Psource + (Vt or V̂init) ∈ RN1×3 and X2 = Ptarget ∈ RN2×3 represent the warped source
point cloud and the target point cloud, respectively. ⟨, ⟩ denotes the scalar product. The output of
the global and cross transformer is further processed by a linear layer, a layer normalization, and a
residual connection from the input. A feedforward network with a multilayer perceptron and layer
normalization is applied to the output of the cross transformer to aggregate information. To acquire
more robust feature representations, the global-cross transformers are stacked and repeated multiple
times (14 times in our experiment). For simplicity, we only give the equations for learning the features
of X1. The features of X2 are computed by the same procedure. The output point features xc

i and xc
j

for each point cloud are stacked together to form feature matrices F1 ∈ RN1×d and F2 ∈ RN2×d.

5

111231 https://doi.org/10.52202/079017-3532

Global Correlation predicts the scene flow vector solely based on two feature similarity matrices,
cross feature similarity matrix Mcross ∈ RN1×N2 and self feature similarity matrix Mself ∈ RN1×N1 .

Mcross = softmax(F1F
T
2 /

√
d), (13)

Mself = softmax(Wq(F1)Wk(F1)
T /

√
d), (14)

where Wq and Wk are linear projections. d is the feature dimensions. The softmax is taken over the
second dimension of the matrices. The cross feature similarity matrix Mcross ∈ RN1×N2 encodes
the feature similarities between all the points in the source point cloud Psource and all the points
in the target point cloud Ptarget. The self feature similarity matrix Mself ∈ RN1×N1 encodes the
feature similarities between all points in the source point cloud Psource. The global correlation
is performed by a matching process guided by the cross feature similarity matrix followed by a
smoothing procedure guided by the self feature similarity matrix

V̂ = Mself(McrossPtarget −Psource). (15)

We follow GMSF [43] and employ a robust loss defined as

L =
∑

i(∥V̂pred(i)−Vgt(i)∥1 + ϵ)q, (16)

where V̂pred is the output prediction of the neural network, i.e. fθ(Vt,Psource,Ptarget) in Eq. (7).
Vgt denotes the ground truth scene flow vector field i.e. V0 in Eq. (7). i is the index of the points. ϵ
is set to 0.01 and q is set to 0.4.

4 Experiments

4.1 Implementation Details

We use the AdamW optimizer and a weight decay of 1 × 10−4. The initial learning rate is set to
4× 10−4 for FlyingThings3D [24] and 1× 10−4 for Waymo-Open [33]. We employ learning rate
annealing by using the Pytorch OneCycleLR learning rate scheduler. During training, we set N1 and
N2 to 4096, randomly sampled by furthest point sampling. The model is trained for 600k iterations
with a batch size of 24. During inference, we follow previous methods [43, 21, 5] and set N1 and N2

to 8192 for a fair comparison. The number of diffusion steps is set to 20 during training and 2 during
inference. The number of nearest neighbors k in DGCNN and Local Transformer is set to 16. The
number of global-cross transformer layers is set to 14. The number of feature channels is set to 128.
Further implementation details are given in the supplemental document and the provided code.

4.2 Evaluation Metrics

We follow the most recent work in the field [43, 21, 5] and use established evaluation metrics for
scene flow estimation. EPE3D measures the endpoint error between the prediction and the ground
truth ∥V̂pred −Vgt∥2 averaged over all points. ACCS measures the percentage of points with an
endpoint error smaller than 5 cm or relative error less than 5%. ACCR measures the percentage of
points with an endpoint error smaller than 10 cm or relative error less than 10%. Outliers measures
the percentage of points with an endpoint error larger than 30 cm or relative error larger than 10%.

4.3 Datasets

We follow the most recent work in the field [43, 21, 5] and test the proposed method on three
established benchmarks for scene flow estimation.

FlyingThings3D [24] is a synthetic dataset consisting of 25000 scenes with ground truth annotations.
We follow Liu et al. in FlowNet3D [22] and Gu et al. in HPLFlowNet [9] to preprocess the dataset
and denote them as F3Do, with occlusions, and F3Ds, without occlusions. The former consists of
20000 and 2000 scenes for training and testing, respectively. The latter consists of 19640 and 3824
scenes for training and testing, respectively.

KITTI Scene Flow [25] is a real autonomous driving dataset with 200 scenes for training and
200 scenes for testing. Since the annotated data in KITTI is limited, the dataset is mainly used

6

111232https://doi.org/10.52202/079017-3532

for evaluating the generalization ability of the models trained on FlyingThings3D. Similar to the
FlyingThings3D dataset, following Liu et al. in FlowNet3D [22] and Gu et al. in HPLFlowNet [9],
the KITTI dataset is preprocessed as KITTIo, with occlusions, and KITTIs, without occlusions. The
former consists of 150 scenes from the annotated training set. The latter consists of 142 scenes from
the annotated training set.

Waymo-Open [33] is a larger autonomous driving dataset with challenging scenes. The annotations
are generated from corresponding tracked 3D objects to scale up the dataset for scene flow estimation
by approximately 1000 times compared to previous real-world scene flow estimation datasets. The
dataset consists of 798 training sequences and 202 testing sequences. Each sequence consists of
around 200 scenes. Different preprocessing of the dataset exists [7, 15, 16], we follow the one
employed in our baseline method [7].

4.4 State-of-the-art Comparison

We give state-of-the-art comparisons on multiple standard scene flow datasets. Table 1 and Table 2
show the results on the F3Ds and the F3Do datasets, with generalization results on the KITTIs and the
KITTIo datasets. Table 3 shows the results on the Waymo-Open dataset. On the F3Ds dataset, DiffSF
shows an improvement (over the failure cases) of 31% in EPE3D, 44% in ACCS, 35% in ACCR, and
45% in Outliers compared to the current state-of-the-art method GMSF [43]. Similar improvement
is also shown on the F3Do dataset with an improvement of 32% in EPE3D, 34% in ACCS, 24% in
ACCR, and 38% in Outliers, demonstrating DiffSF’s ability to handle occlusions. The generalization
abilities on the KITTIs and the KITTIo datasets are comparable to state of the art. All the four metrics
show the best or second-best performances. On the Waymo-Open dataset, a steady improvement in
both accuracy and robustness is achieved, demonstrating DiffSF’s effectiveness on real-world data.

Table 1: State-of-the-art comparison on F3Ds and KITTIs. The models are only trained on F3Ds
without occlusions. The number of time steps is set to 20 for training and 2 for inference. The bold
and the underlined numbers represent the best and the second best performance respectively.

Method F3Ds KITTIs
EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓

FlowNet3D [22]CVPR’19 0.1136 41.25 77.06 60.16 0.1767 37.38 66.77 52.71
HPLFlowNet [9]CVPR’19 0.0804 61.44 85.55 42.87 0.1169 47.83 77.76 41.03
PointPWC [41]ECCV’20 0.0588 73.79 92.76 34.24 0.0694 72.81 88.84 26.48
FLOT [26]ECCV’20 0.0520 73.20 92.70 35.70 0.0560 75.50 90.80 24.20
Bi-PointFlow [4]ECCV’22 0.0280 91.80 97.80 14.30 0.0300 92.00 96.00 14.10
3DFlow [36]ECCV’22 0.0281 92.90 98.17 14.58 0.0309 90.47 95.80 16.12
MSBRN [5]ICCV’23 0.0150 97.30 99.20 5.60 0.0110 97.10 98.90 8.50
DifFlow3D [21]CVPR’24 0.0140 97.76 99.33 4.79 0.0089 98.13 99.30 8.25
GMSF [43]NIPS’23 0.0090 99.18 99.69 2.55 0.0215 96.22 98.25 9.84

DiffSF(ours) 0.0062 99.54 99.80 1.41 0.0098 98.59 99.44 8.31

Table 2: State-of-the-art comparison on F3Do and KITTIo. The models are only trained on F3Do
with occlusions. The number of time steps is set to 20 for training and 2 for inference.

Method F3Do KITTIo
EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓

FlowNet3D [22]CVPR’19 0.157 22.8 58.2 80.4 0.183 9.8 39.4 79.9
HPLFlowNet [9]CVPR’19 0.168 26.2 57.4 81.2 0.343 10.3 38.6 81.4
PointPWC [41]ECCV’20 0.155 41.6 69.9 63.8 0.118 40.3 75.7 49.6
FLOT [26]ECCV’20 0.153 39.6 66.0 66.2 0.130 27.8 66.7 52.9
Bi-PointFlow [4]ECCV’22 0.073 79.1 89.6 27.4 0.065 76.9 90.6 26.4
3DFlow [36]ECCV’22 0.063 79.1 90.9 27.9 0.073 81.9 89.0 26.1
MSBRN [5]ICCV’23 0.053 83.6 92.6 23.1 0.044 87.3 95.0 20.8
DifFlow3D [21]CVPR’24 0.047 88.2 94.0 15.0 0.029 95.9 97.5 10.8
GMSF [43]NIPS’23 0.022 95.0 97.5 5.6 0.033 91.6 95.9 13.7

DiffSF(ours) 0.015 96.7 98.1 3.5 0.029 94.5 97.00 13.0

4.5 Uncertainty-error Correspondence

One of the key advantages of our proposed method DiffSF compared to other approaches is that
DiffSF can model uncertainty during inference, without being explicitly trained for this purpose.

7

111233 https://doi.org/10.52202/079017-3532

Table 3: State-of-the-art comparison on Waymo-Open dataset. The number of time steps is set to
20 for training and 2 for inference.

Method EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓
FlowNet3D [22]CVPR’19 0.225 23.0 48.6 77.9
PointPWC [41]ECCV’20 0.307 10.3 23.1 78.6
FESTA [37]CVPR’21 0.223 24.5 27.2 76.5
FH-Net [7]ECCV’22 0.175 35.8 67.4 60.3
GMSF [43]NIPS’23 0.083 74.7 85.1 43.5

DiffSF(ours) 0.080 76.0 85.6 41.9

With uncertainty, we refer to the epistemic uncertainty, which reflects the confidence the model has in
its predictions. In our case, we predict an uncertainty for the prediction of each point. We exploit the
property of diffusion models to inject randomness into inherently deterministic tasks. Without having
to train multiple models, we predict multiple hypotheses using a single model with different initial
randomly sampled noise.

Figure 3 shows that the standard deviation of 20 hypotheses for each point gives a reliable uncertainty
estimation, which correlates very well with the inaccuracy of the prediction. Figure 3 (left) shows the
relationship between the EPE and the standard deviation of the predictions averaged over the F3Do
dataset. There is an almost linear correlation of the predicted uncertainty with the EPE underlining
the usefulness of our uncertainty measure. Figure 3 (right) shows the recall and precision of the
outlier prediction by the uncertainty. An outlier is defined as a point that has an EPE larger than 0.30
meters. The horizontal axis is the threshold applied to the uncertainty to determine the outliers. The
recall is defined as the number of correctly retrieved outliers divided by the number of all the outliers.
The precision is defined as the number of correctly retrieved outliers divided by the number of all the
retrieved outliers. The precision-recall break-even point obtains around 55% of recall and 55% of
precision.

[0.
00

, 0
.05

]

[0.
05

, 0
.10

]

[0.
10

, 0
.15

]

[0.
15

, 0
.20

]

[0.
20

, 0
.25

]

[0.
25

, 0
.30

]

[0.
30

, 0
.35

]

[0.
35

, 0
.40

]

[0.
40

, 0
.45

]

[0.
45

, 0
.50

]

[0.
50

, 0
.55

]

[0.
55

, 0
.60

]

[0.
60

, 0
.65

]

[0.
65

, 0
.70

]

[0.
70

, 0
.75

]

[0.
75

, 0
.80

]

[0.
80

, in
f]

0

2

4

6

8

·10−3

average uncertainty

0.0
00

1

0.0
00

2

0.0
00

3

0.0
00

4

0.0
00

5

0.0
00

6

0.0
00

7

0.0
00

8

0.0
00

9

0.0
01

0

0.0
01

1

0.0
01

2

0.0
01

3

0.0
01

4

0.0
01

5

0.0
01

6

0.0
01

7

0.0
01

8

0.0
01

9

0.0
02

0

0.2

0.4

0.6

0.8

1 Recall

Precision

Figure 3: Analysis of uncertainty estimation on F3Do dataset. Left: Uncertainty-error correspon-
dences. The horizontal axis is an interval of EPE. The vertical axis is the estimated uncertainty
averaged over all the points that fall in the interval and the indication of the scaled uncertainty standard
deviation. Right: Recall (red) and precision curve (blue) of outliers prediction. The horizontal axis is
the threshold of the estimated uncertainty to determine the outliers.

Figure 4 shows visual examples that compare our outlier prediction with the actual outliers. The
first row marks the scene flow estimation outliers with an EPE larger than 0.30 meters in red. The
second row marks the outliers predicted by the uncertainty estimation in red. In summary, while
every learned scene flow prediction model inevitably makes mistakes, our novel formulation of the
task as a diffusion process not only produces state-of-the-art results but also allows for an accurate
prediction of these errors. Moreover, our analysis shows that downstream tasks can select a threshold
according to its desired precision and recall, therefore, mitigating potential negative effects that
uncertain predictions might produce.

4.6 Ablation Study

We investigate several key design choices of the proposed method. For the denoising model architec-
ture, we investigate how the number of global-cross transformer layers and the number of feature

8

111234https://doi.org/10.52202/079017-3532

Figure 4: Visualization of outlier prediction on F3Do dataset. Black: Accurate prediction. Red:
Outliers. Top row: Outliers defined as EPE > 0.30. Bottom row: Outliers predicted by Uncertainty.

channels affect the results. For the diffusion process, we investigate the influence of the number of
time steps for training and sampling.

Model Architecture. To evaluate different architectural choices we select a diffusion model with five
denoising blocks during training and one denoising step during testing with the DDIM [32] sampling
strategy. Table 4 shows the influence of the number of global-cross transformer layers on the results.
The experiments show that the best performance is achieved at the number of 14 layers. Table 5
shows the influence of the number of feature channels on the results. The experiments show that a
smaller number of feature channels results in worse performance. The best performance is achieved
at 128 feature channels.

Table 4: Ablation study on the number of global-cross transformer layers on F3Do. The number of
feature channels is set to 128. The number of time steps is set to 5 for training and 1 for inference.

Layers EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓
all non-occ

8 0.0439 91.6 94.8 7.9 0.0205 95.2 97.5 5.1
10 0.0413 92.6 95.1 7.1 0.0189 95.8 97.6 4.5
12 0.0381 93.0 95.5 6.4 0.0168 96.1 97.8 3.9
14 0.0361 93.7 95.7 5.9 0.0153 96.5 98.0 3.5
16 0.0383 93.0 95.5 6.5 0.0168 96.1 97.8 4.0

Table 5: Ablation study on the number of feature channels on F3Do. The number of global-cross
transformer layers is set to 14. The number of time steps is set to 5 for training and 1 for inference.

Channels EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓
all non-occ

32 0.0612 88.2 92.9 11.7 0.0299 92.9 96.3 8.2
64 0.0431 92.3 95.0 7.4 0.0199 95.7 97.5 4.7

128 0.0361 93.7 95.7 5.9 0.0153 96.5 98.0 3.5

Number of Time Steps. We set the number of global-cross transformer layers to 14 and the number
of feature channels to 128. We investigate the influence of different number of time steps during
training and sampling on the results. The number of time steps investigated is 5, 20, and 100 for
training and 1, 2, 5, and 20 for sampling. The fast sampling is done by DDIM [32] instead of
DDPM [12] sampling. Table 6 shows the results on the F3Do dataset, where a@b denotes using b
training steps and a sampling steps. While the results are very stable across a wide range of values,
the best performance is achieved at 2@20 time steps. We hypothesize that compared to the standard
setting of image generation, the lower dimensionality and variance of the scene flow data results
in a smaller number of required time steps. For the number of time steps during inference, DDIM
sampling works well with the best performance achieved at 2 steps.

9

111235 https://doi.org/10.52202/079017-3532

Table 6: Ablation study on the number time steps for training and sampling on F3Do. The number
of global-cross transformer layers is set to 14. The number of feature channels is set to 128. a@b
denotes an inference of b training steps and a sampling steps.

Steps EPE3D(cm) ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D(cm) ↓ ACCS ↑ ACCR ↑ Outliers ↓
all non-occ

1@5 3.608 93.701 95.732 5.904 1.527 96.549 97.973 3.527
2@5 3.590 93.718 95.727 5.910 1.518 96.558 97.957 3.544
5@5 3.592 93.716 95.720 5.911 1.521 96.556 97.953 3.545
1@20 3.588 93.870 95.912 5.798 1.504 96.731 98.080 3.520
2@20 3.576 93.871 95.919 5.791 1.491 96.736 98.083 3.511
5@20 3.580 93.865 95.917 5.791 1.492 96.730 98.083 3.507
20@20 3.579 93.865 95.915 5.789 1.491 96.731 98.082 3.508
1@100 3.678 93.503 95.665 6.016 1.587 96.376 97.844 3.689
2@100 3.663 93.545 95.662 6.010 1.579 96.398 97.838 3.697
5@100 3.668 93.546 95.663 6.010 1.583 96.400 97.842 3.695
20@100 3.670 93.545 95.663 6.015 1.584 96.396 97.843 3.700

Ablation study compare to baseline GMSF. To show the improvement of our method compared to
the baseline GMSF [43], we provide an additional ablation study on F3Do. Since the original paper
GMSF has a different training setting as our proposed DiffSF, for a fair comparison we retrain the
GMSF baseline with our training setting. The result is given in Table 7 (first line). The check in the
two columns denotes the implementation of improved architecture and diffusion process, respectively.
The results clearly show that the proposed method DiffSF achieves superior performance than GMSF.
Both the improvement of the architecture and the introduction of the diffusion process contribute to
the superior performance. The improved percentage (for the introduction of the diffusion process)
over the failure case is marked in the table. The results show that the proposed method has a
moderate improvement in the accuracy metric EPE3D and a huge improvement (more than 10%) in
the robustness metrics ACCS, ACCR, and Outliers. Besides the better performance, the proposed
method can also provide a per-prediction uncertainty.

Table 7: Ablation Study compare to baseline GMSF on F3Do.

improved diffusion F3Do-all F3Do-nonoccluded
architecture process EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓

0.039 92.9 95.4 6.7 0.017 96.0 97.8 4.2
✓ 0.061 84.8 92.3 16.7 0.037 88.9 95.3 13.9

✓ 0.037 93.2 95.4 6.5 0.016 96.2 97.7 4.1
✓ ✓ 0.036(-2.7%) 93.9(+10.3%) 95.9(+10.9%) 5.8(-10.8%) 0.015(-6.3%) 96.7(+13.2%) 98.1(+17.4%) 3.5(-14.6%)

5 Conclusions

We propose to estimate scene flow from point clouds using diffusion models in combination with
transformers. Our novel approach provides significant improvements over the state-of-the-art in terms
of both accuracy and robustness. Extensive experiments on multiple scene flow estimation benchmarks
demonstrate the ability of DiffSF to handle both occlusions and real-world data. Furthermore, we
propose to estimate uncertainty based on the randomness inherent in the diffusion process, which
helps to indicate reliability for safety-critical downstream tasks. The proposed uncertainty estimation
will enable mechanisms to mitigate the negative effects of potential failures.

Limitations. The training process of the diffusion models relies on annotated scene flow ground
truth which is not easy to obtain for real-world data. Incorporating self-supervised training methods
to leverage unannotated data might further improve our approach in the future. Furthermore, the
transformer-based architecture and the global matching process limit the maximum number of points,
and further research is required for peforming matching at scale.

Potential Negative Social Impact. As any other tracking algorithm, scene flow estimation can
be used in surveillance scenarios, which might raise privacy concerns and ethical issues. From
an ecological perspective, training of deep learning models usually takes time and resources, thus
environmental impact should be taken into consideration when training and applying such compute-
intensive models. However, future development in more efficient implementations will enable the
positive impact of our work in e.g. robotics and autonomous driving without a significant negative
impact on the environment.

10

111236https://doi.org/10.52202/079017-3532

Acknowledgements. This work was partly supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP), funded by Knut and Alice Wallenberg Founda-
tion, and the Swedish Research Council grant 2022-04266; and by the strategic research environment
ELLIIT funded by the Swedish government. The computational resources were provided by the
National Academic Infrastructure for Supercomputing in Sweden (NAISS) at C3SE partially funded
by the Swedish Research Council grant 2022-06725, and by the Berzelius resource, provided by the
Knut and Alice Wallenberg Foundation at the National Supercomputer Centre.

References
[1] Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Label-

efficient semantic segmentation with diffusion models. In International Conference on Learning Represen-
tations, 2021.

[2] Aseem Behl, Omid Hosseini Jafari, Siva Karthik Mustikovela, Hassan Abu Alhaija, Carsten Rother, and
Andreas Geiger. Bounding boxes, segmentations and object coordinates: How important is recognition
for 3d scene flow estimation in autonomous driving scenarios? In Proceedings of the IEEE International
Conference on Computer Vision, pages 2574–2583, 2017.

[3] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffusiondet: Diffusion model for object detection.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 19830–19843, 2023.

[4] Wencan Cheng and Jong Hwan Ko. Bi-pointflownet: Bidirectional learning for point cloud based scene
flow estimation. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXVIII, pages 108–124. Springer, 2022.

[5] Wencan Cheng and Jong Hwan Ko. Multi-scale bidirectional recurrent network with hybrid correlation for
point cloud based scene flow estimation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10041–10050, 2023.

[6] Nathaniel Chodosh, Deva Ramanan, and Simon Lucey. Re-evaluating lidar scene flow for autonomous
driving. arXiv preprint arXiv:2304.02150, 2023.

[7] Lihe Ding, Shaocong Dong, Tingfa Xu, Xinli Xu, Jie Wang, and Jianan Li. Fh-net: A fast hierarchical
network for scene flow estimation on real-world point clouds. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIX, pages 213–229.
Springer, 2022.

[8] Xiaodong Gu, Chengzhou Tang, Weihao Yuan, Zuozhuo Dai, Siyu Zhu, and Ping Tan. Rcp: Recurrent
closest point for point cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8216–8226, 2022.

[9] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang. Hplflownet: Hierarchical
permutohedral lattice flownet for scene flow estimation on large-scale point clouds. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 3254–3263, 2019.

[10] Zhangxuan Gu, Haoxing Chen, Zhuoer Xu, Jun Lan, Changhua Meng, and Weiqiang Wang. Diffusioninst:
Diffusion model for instance segmentation. arXiv preprint arXiv:2212.02773, 2022.

[11] Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card: Classification and regression diffusion models.
Advances in Neural Information Processing Systems, 35:18100–18115, 2022.

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[13] Karl Holmquist and Bastian Wandt. Diffpose: Multi-hypothesis human pose estimation using diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15977–
15987, 2023.

[14] Haobo Jiang, Mathieu Salzmann, Zheng Dang, Jin Xie, and Jian Yang. Se(3) diffusion model-based
point cloud registration for robust 6d object pose estimation. Advances in Neural Information Processing
Systems, 36, 2024.

[15] Zhao Jin, Yinjie Lei, Naveed Akhtar, Haifeng Li, and Munawar Hayat. Deformation and correspondence
aware unsupervised synthetic-to-real scene flow estimation for point clouds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7233–7243, 2022.

[16] Philipp Jund, Chris Sweeney, Nichola Abdo, Zhifeng Chen, and Jonathon Shlens. Scalable scene flow
from point clouds in the real world. IEEE Robotics and Automation Letters, 7(2):1589–1596, 2021.

[17] Yair Kittenplon, Yonina C Eldar, and Dan Raviv. Flowstep3d: Model unrolling for self-supervised scene
flow estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4114–4123, 2021.

[18] Bing Li, Cheng Zheng, Silvio Giancola, and Bernard Ghanem. Sctn: Sparse convolution-transformer
network for scene flow estimation. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
1254–1262, 2022.

[19] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural scene flow prior. Advances in Neural
Information Processing Systems, 34:7838–7851, 2021.

[20] Xueqian Li, Jianqiao Zheng, Francesco Ferroni, Jhony Kaesemodel Pontes, and Simon Lucey. Fast neural
scene flow. arXiv preprint arXiv:2304.09121, 2023.

[21] Jiuming Liu, Guangming Wang, Weicai Ye, Chaokang Jiang, Jinru Han, Zhe Liu, Guofeng Zhang, Dalong
Du, and Hesheng Wang. Difflow3d: Toward robust uncertainty-aware scene flow estimation with diffusion

11

111237 https://doi.org/10.52202/079017-3532

model. arXiv preprint arXiv:2311.17456, 2023.
[22] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. Flownet3d: Learning scene flow in 3d point clouds. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 529–537,
2019.

[23] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and Raquel Urtasun. Deep rigid instance scene
flow. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3614–3622, 2019.

[24] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and
Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene flow
estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4040–4048, 2016.

[25] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 3061–3070, 2015.

[26] Gilles Puy, Alexandre Boulch, and Renaud Marlet. Flot: Scene flow on point clouds guided by optimal
transport. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXVIII, pages 527–544. Springer, 2020.

[27] Zhile Ren, Deqing Sun, Jan Kautz, and Erik Sudderth. Cascaded scene flow prediction using semantic
segmentation. In 2017 International Conference on 3D Vision (3DV), pages 225–233. IEEE, 2017.

[28] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022.

[29] Saurabh Saxena, Charles Herrmann, Junhwa Hur, Abhishek Kar, Mohammad Norouzi, Deqing Sun, and
David J Fleet. The surprising effectiveness of diffusion models for optical flow and monocular depth
estimation. Advances in Neural Information Processing Systems, 36, 2024.

[30] Daniel Seita, Yufei Wang, Sarthak J Shetty, Edward Yao Li, Zackory Erickson, and David Held. Toolflownet:
Robotic manipulation with tools via predicting tool flow from point clouds. In Conference on Robot
Learning, pages 1038–1049. PMLR, 2023.

[31] Leonhard Sommer, Philipp Schröppel, and Thomas Brox. Sf2se3: Clustering scene flow into se (3)-motions
via proposal and selection. In Pattern Recognition: 44th DAGM German Conference, DAGM GCPR 2022,
Konstanz, Germany, September 27–30, 2022, Proceedings, pages 215–229. Springer, 2022.

[32] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. International
Conference on Learning Representations, 2021.

[33] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo,
Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous driving: Waymo
open dataset. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 2446–2454, 2020.

[34] Zachary Teed and Jia Deng. Raft-3d: Scene flow using rigid-motion embeddings. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8375–8384, 2021.

[35] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3d scene flow estimation with a piecewise rigid scene
model. International Journal of Computer Vision, 115:1–28, 2015.

[36] Guangming Wang, Yunzhe Hu, Zhe Liu, Yiyang Zhou, Masayoshi Tomizuka, Wei Zhan, and Hesheng
Wang. What matters for 3d scene flow network. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIII, pages 38–55. Springer, 2022.

[37] Haiyan Wang, Jiahao Pang, Muhammad A Lodhi, Yingli Tian, and Dong Tian. Festa: Flow estimation
via spatial-temporal attention for scene point clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14173–14182, 2021.

[38] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

[39] Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor Prisacariu, and Min Chen. Flownet3d++: Geometric
losses for deep scene flow estimation. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision, pages 91–98, 2020.

[40] Yi Wei, Ziyi Wang, Yongming Rao, Jiwen Lu, and Jie Zhou. Pv-raft: Point-voxel correlation fields for
scene flow estimation of point clouds. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6954–6963, 2021.

[41] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li Fuxin. Pointpwc-net: Cost volume on point
clouds for (self-) supervised scene flow estimation. In European Conference on Computer Vision, pages
88–107. Springer, 2020.

[42] Gengshan Yang and Deva Ramanan. Learning to segment rigid motions from two frames. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1266–1275, 2021.

[43] Yushan Zhang, Johan Edstedt, Bastian Wandt, Per-Erik Forssén, Maria Magnusson, and Michael Felsberg.
Gmsf: Global matching scene flow. Advances in Neural Information Processing Systems, 36, 2024.

12

111238https://doi.org/10.52202/079017-3532

A Detailed model architecture

Feature Extraction In this section we give the detailed architecture of the feature extraction
backbone, DGCNN [38], in Figure 5.

The overall architecture of DGCNN is given in the upper figure. The input point cloud (∈ RN×3)
contains the three-dimensional coordinates of N points. The whole network consists of four layers.
The output feature of each layer, Feature 1 (∈ RN×64), Feature 2 (∈ RN×64), Feature 3 (∈ RN×64),
and Feature 4 (∈ RN×128), are concatenated together along the feature dimension (∈ RN×320) and
then sent into a multi-layer perceptron (MLP) (linear layer + batch normalization + leaky ReLU) to
get the final output feature (∈ RN×128).

The detailed architecture of each layer is given in the bottom figure. Xinput ∈ RN×Cin is the input
feature, where Cin is the number of input channels. A k-nearest-neighbor algorithm is first employed
on the input feature to find the neighbors Xneighbor ∈ RN×k×Cin . k is set to 16. The point feature
Xinput and the edge feature Xneighbor −Xinput are first concatenated together along the channel
dimension (∈ RN×k×2Cin) and then sent into an MLP (linear layer + batch normalization + leaky
ReLU). The output of the MLP has a dimension of RN×k×Cout , where Cout is the number of output
channels. Finally, max pooling is done on the k-nearest-neighbors to get the final output feature
(∈ RN×Cout).

Local Transformer The overall architecture of the local transformer is given in Figure 6 (left).
The input features have a dimension of RN×Cin . First, the input features are passed through a linear
layer to get Xinput ∈ RN×Cin . Then, the k-nearest-neighbors are found, Xneighbor ∈ RN×k×Cin .
The query is generated from Xinput by linear layer φ, Q ∈ RN×Cq . The key and value are generated
from Xneighbor by linear layers ψ and α, K ∈ RN×k×Ck and V ∈ RN×k×Cv . Cin = Cq = Ck =
Cv = Cout = 128. k = 16. γ is an MLP consisting of a sequence of linear layer, ReLU, linear layer,
and softmax. The attention output (∈ RN×Cout) is further processed by a linear layer and a residual
connection from the input.

The detailed positional encoding network is given in Figure 6 (right) which takes the coordinate of
the input features as input Xinput ∈ RN×3. First, the k-nearest-neighbors of each point are found,
Xneighbor ∈ RN×k×3. The distance between Xinput and Xneighbor is passed through an MLP (linear
layer + ReLU + linear layer) to get the final positional embedding δ.

Global Transformer In this section, we give the detailed architecture of the global transformer, in
Figure 7 (left). The input features have a dimension of Xinput ∈ RN×Cin . The query Q ∈ RN×Cq ,
key K ∈ RN×Ck , and value V ∈ RN×Cv are generated from the input features by linear layers φ,
ψ, and α. The attention matrix (∈ RN×N) is computed as the matrix multiplication of the query
and the key. The attention output (∈ RN×Cv) is the matrix multiplication of the attention matrix
and the value. The attention output is further processed by a linear layer, a layer normalization,
and a residual connection from the input features to get the final output feature (∈ RN×Cout).
Cin = Cq = Ck = Cv = Cout = 128.

Cross Transformer In this section, we give the detailed architecture of the cross transformer,
in Figure 7 (right). Xsource ∈ RN×Cin and Xtarget ∈ RN×Cin are the input features of the
source point cloud and the input features of the target point cloud. The query Q ∈ RN×Cq is
generated from the source point cloud feature by linear layer φ. The key K ∈ RN×Ck and value
V ∈ RN×Cv are generated from the target point cloud by linear layer ψ and α, respectively. Similarly
to the global transformer, the attention matrix (∈ RN×N) is computed as the matrix multiplication
of the query and the key. The attention output (∈ RN×Cv) is the matrix multiplication of the
attention matrix and the value. The attention output is further processed by a linear layer, a layer
normalization, and a residual connection from the input features to get the output feature (∈ RN×Cout).
Cin = Cq = Ck = Cv = Cout = 128. A feedforward network with a sequence of linear layer,
GeLU, linear layer, and layer normalization is applied to the output feature of the cross transformer to
aggregate information. The final output has a dimension of RN×Cout The proposed method is trained
on 4 × NVIDIA A40 GPUs.

13

111239 https://doi.org/10.52202/079017-3532

Figure 5: The detailed architecture of the feature extraction backbone DGCNN. The upper figure
shows the overall architecture of DGCNN. The bottom figure shows the detailed architecture of each
layer.

Figure 6: The detailed architecture of the local transformer. The left figure shows the overall
architecture of the local transformer. The right figure shows the detailed architecture for the positional
embedding.

Figure 7: The detailed architecture of the global transformer (left) and the cross transformer (right).

14

111240https://doi.org/10.52202/079017-3532

B Additional visualizations

Figure 8: Visualization of the reverse diffusion process on the KITTI dataset. The orange points
denote the source point cloud wrapped by the prediction of the current timestep. The green points
denote the target point cloud.

Figure 9: Visualization comparison of GMSF and DiffSF on the FlyingThings3D dataset. The blue
points represent the target point cloud. The green points represent the warped source points with an
EPE3D smaller than a certain threshold. The orange points represent the warped source points with
an EPE3D larger than a certain threshold.

Figure 10: Visualization comparison of GMSF and DiffSF on the KITTI dataset. The blue points
represent the target point cloud. The green points represent the warped source points with an EPE3D
smaller than a certain threshold. The orange points represent the warped source points with an EPE3D
larger than a certain threshold.

15

111241 https://doi.org/10.52202/079017-3532

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work can be found in the Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

16

111242https://doi.org/10.52202/079017-3532

Justification: There is no theoretical result in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed experiment setting can be found in the experiments section 4. The
detailed architecture of the model can be found in the Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

111243 https://doi.org/10.52202/079017-3532

Answer: [Yes]

Justification: The code is available at https://github.com/ZhangYushan3/DiffSF, with suffi-
cient instructions to faithfully reproduce the experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details can be found in the Experiment section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18

111244https://doi.org/10.52202/079017-3532

https://github.com/ZhangYushan3/DiffSF
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources we used are specified in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Societal impacts of the work can be found in the Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

111245 https://doi.org/10.52202/079017-3532

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work does not have a high risk for misuse such that safeguards are needed.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20

111246https://doi.org/10.52202/079017-3532

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets is introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

111247 https://doi.org/10.52202/079017-3532

