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Abstract

The advent of foundation models (FMs) in healthcare offers unprecedented op-
portunities to enhance medical diagnostics through automated classification and
segmentation tasks. However, these models also raise significant concerns about
their fairness, especially when applied to diverse and underrepresented populations
in healthcare applications. Currently, there is a lack of comprehensive benchmarks,
standardized pipelines, and easily adaptable libraries to evaluate and understand
the fairness performance of FMs in medical imaging, leading to considerable chal-
lenges in formulating and implementing solutions that ensure equitable outcomes
across diverse patient populations. To fill this gap, we introduce FairMedFM, a fair-
ness benchmark for FM research in medical imaging. FairMedFM integrates with
17 popular medical imaging datasets, encompassing different modalities, dimen-
sionalities, and sensitive attributes. It explores 20 widely used FMs, with various
usages such as zero-shot learning, linear probing, parameter-efficient fine-tuning,
and prompting in various downstream tasks — classification and segmentation. Our
exhaustive analysis evaluates the fairness performance over different evaluation
metrics from multiple perspectives, revealing the existence of bias, varied utility-
fairness trade-offs on different FMs, consistent disparities on the same datasets
regardless FMs, and limited effectiveness of existing unfairness mitigation methods.
Checkout FairMedFM’s project page and open-sourced codebase, which supports
extendible functionalities and applications as well as inclusive for studies on FMs
in medical imaging over the long term.

1 Introduction

Foundation Model (FM) facilitated medical image analysis is playing a pivotal role in healthcare [2,
]. These models, which leverage large-scale pretraining and fine-tuning [6], have demonstrated

remarkable capabilities in various medical imaging tasks, including classification [69, 41] and
segmentation [55, 39]. As the use of FMs proliferates in medical imaging, addressing the challenges
of evaluating and ensuring their fairness and utility becomes increasingly critical [28, 24, 77], where

biases in model performance can result in significant disparities in patient care and outcomes.

Creating benchmarks for algorithm fairness in medical imaging can lead to consistent experiment
settings and ensure standardization. There are efforts to benchmark fairness algorithms in non-FM-
based traditional machine learning for medical imaging [77, 50, 23, 76, 13, 72]. However, the fairness
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Table 1: Comparisons between FairMedFM and other medical imaging fairness literature and bench-

marks.
Catego: Subcategor- Ttems FairMedFM Khan MedFA- Turada RadFusion CXR- Fair-
ory gory (ours)  etal [28] IR[77] etal [23] etal. [76] Fairness[72] Tune[l3]
Models | Study includes FM | v v
Domains ‘ General-purpose ‘ v v
Foundation Models, Medical-specific v v
Sec. 3.2 Types Vision Models v v
P Vision-language Models v
Tasks Classification v v v v v v v
Segmentation v
Zero-shot v
Linear Probing v v
Usages CLIP-Adaptation v
Functionaliti sages Prompt-based Segmentation v
lgnc 'g na; ;es Parameter-efficient Fine-tuning v
©C. 2 and - Full Training > v v v v v
Group Rebalancing v v
Debias Adversarial Training v v v
Algorithms Fairness Constraint v v v v
& i Subgroup-tailored Modeling v v
Domain Generalization v v v v
2D v v v v v v
Dimensions 2.5D v
3D v v v
X-ray v v v v v v
CT v v v
MRI v v v
Modalities U'F‘;a:(;’;‘s‘”‘d 5 v v
Data OCT v v v
Sec. 3.1 Dermatology v v v v
Sex v v v v v v v
Age v v v v v
Sensitive Race v v v v v v
Al[r;gL:I\;:i Preferred language v
S Skin tone v v v v
Marital states v
Handedness v
BMI v
Utility v v v v v v v
Outcome-consistency Fairness v v v v v v v
. . Predictive-alignment Fairness v v v
Evaluation Metl%lcs Taxnonmy Fairness-utility Tradeoff v
Sec. 3.4 Positive-parity Fairness > v v v v v
Representation Fairness 2 v
Statistics Test 2 v v

! Only studies that involve FMs are ticked in this category.
2 Results presented in the Appendix.

of modern FMs differs due to their extensive pre-training on diverse and often large-scale datasets.
The varied nature of general-purpose and medical-specific FMs, as well as their application to medical
imaging downstream tasks, introduces unique fairness challenges. A growing body of literature has
begun to explore various aspects of fairness in FMs for medical imaging, including developing bias
mitigation strategies [24, 67], and fairness evaluation [28]. However, these studies are often limited
in scope, e.g., focusing on a single category of FMs, data modality, or tasks.

Why is our benchmark needed? First, no existing literature nor framework provides standardized
pipeline to investigate fairness on comprehensive FMs (domains and types), comprehensive func-
tionalities (tasks, applications, and debiasing algorithms), comprehensive data (dimensions, organs,
modalities, and sensitive attributes (SA)), and comprehensive evaluation aspects in medical imaging,
as shown in Tab. 1. Second, insufficient understanding of the fairness issues and utility trade-offs
associated with the development and deployment of FMs for medical imaging persists due to a lack
of comprehensive analysis based on extensive experimentation. Lastly, there is a pressing need for a
versatile fairness evaluation codebase that is easily extensible to essential segmentation tasks and
adaptable to FMs for various uses in medical imaging. Existing libraries, though acknowledged by
the fair machine learning community [5, 4, 77], do not adequately fulfill these requirements.

To fill these gaps, we propose the first comprehensive pipeline, FairMedFM, along with benchmarking
observations for the fairness of FMs in medical imaging. Our contribution mainly includes the
following two folds:

1. We offer a comprehensive evaluation pipeline covering 17 diverse medical imaging datasets,
20 FMs, and their usages (see Tab. 1). This benchmark addresses the need for a consistent
evaluation and standardized process to investigate FMs’ fairness in medical imaging.
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Figure 1: Overview of the FairMedFM framework, a standardized pipeline to investigate fairness on
diverse datasets (2D, 2.5D, and 3D), comprehensive functionalities (various FMs, tasks, usages, and
debias algorithms), thorough evaluation metrics. The details are explained in Sec. 3.

2. With FairMedFM, we conducted a thorough analysis from various perspectives, where we
found that (1) Bias is prevalent in using FMs for medical imaging tasks, and the fairness-
utility trade-off in these tasks is influenced not only by the choice of FMs but also by
how they are used; (2) There is significant dataset-aware disparities between SA groups in
most FMs; (3) Consistent disparities in SA occur across various FMs on the same dataset;
and (4) Existing bias mitigation strategies do not demonstrate strong effectiveness in FM
parameter-efficient fine-tuning scenarios.

3. We open-source FairMedFM, an extensible implementation for launching the FMs for
medical image analysis, to prompt the study of FMs for medical imaging and fairness
evaluation in the community.

The scope of our work is to establish a more comprehensive benchmark for medical imaging, focusing
on classification and segmentation tasks, binarized SAs and commonly used FM strategies from
the literature. Our objective is to raise awareness of fairness issues within the medical imaging
community and assist in developing fair algorithms in the machine learning community, by promoting
more accessible and reproducible methods for fairness evaluation.

2 Preliminaries on Foundation Models, Medical Imaging, and Fairness

2.1 FMs in Medical Imaging

FMs have recently garnered widespread interest due to their powerful generalization capabilities.
These large models are designed to learn from large-scale unsupervised data. In medical applications,
FMs are particularly valuable because massive amounts of unlabeled medical data are easier to obtain
than labeled data, which requires costly expert annotations. Typically, FMs are pre-trained on broad
datasets to acquire medical knowledge using two primary training objectives: recovering masked
words or vision patches [06], and aligning features of paired text and images through contrastive
learning [49]. Their pre-trained representations can be successfully applied to various downstream
medical tasks with minimal or no reliance on expert labels. In this paper, we focus primarily on
classification and segmentation tasks.
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Classification FMs in Medical Imaging. Classificaiton FMs vary in architecture, which can be
roughly categorized into two groups. The first one is vision models (VMs), which takes images as
input and learns a general representation across diverse datasets by different self-supervised proxy
tasks. MedMAE [66] and MedLLVM [43] are trained by masked imaging modeling [17] and graph
matching, respectively; DINOv2 [45], MoCo-CXR [59], and C2L [75] decrease the feature disparities
of the paired and augmented vision patches. Another group is vision-language models (VLMs) (e.g.,
CLIP [16], MedCLIP [65], PubMedCLIP [15], BiomedCLIP [74]), which are trained to attract the
feature of paired text and images, while BLIP [33] design a g-former for vision-text alignment.

In classification, we follow the common workflow [8] to consider D = (X, ), A) to be a set of
distributions where we have input = in space X, the disease label y € {0,1}¢ in space ), and
sensitive attributes a in space A. Let f,(-) : X — v € R¥ denote the vision encoder of a foundation
model which embeds the inputs into feature v with dimension k.

Segmentation FMs in Medical Imaging. Following the trend of the large model, the Segment
Anything Model (SAM) [30] shows great potential in segmentation task, which is trained on 1B
labeled natural data and offers the zero-shot ability to generate segmentations mask only based on
point or box prompts as input. In terms of both data structure and context, medical images exhibit
significant differences from natural images. First, medical images vary in modalities, including 2D
grayscale images (X-ray), 2D RGB images (dermatology), and 3D volumes (CT). Especially for 3D
images, MedSAM [38] processes 3D volumes with slice-wise operations, while SAM-Med3D [63]
is a 3D model trained on massive labeled 3D medical volumes. Furthermore, considering the
domain gap between medical and natural images, fine-tuning is necessary for applying Segmentation
FMs (SegFMs) (pre-trained on natural images like SAM [30]) in medical to learn medical context.
Similar to classification, we consider D = (X, S, .A), where we have the segmentation mask
s € {RW*"*d1C in label space S.

2.2 Fairness in Medical Imaging

Defintion of Fairness. Fairness, a critical aspect of Al ethics, urging that deep learning models
should not have skewed outcomes towards personalities with diverse demographics, has been widely
studied in computer vision [260] and natural language processing [35]. Among various fairness
definitions, group fairness is the most common one, which ensures that the model’s performance is

consistent across different groups. Let Y, Y be the ground truth label and prediction of the model,
respectively, and A € {0, 1} be the SA. One of the group fairness metrics, Accuracy Parity, is defined

as P(Y =Y|[A=0)=P(Y =Y]|A=1).

Fairness in Medical Imaging. Fairness issues do exist in deep learning-based medical image
analysis, especially for the marginalized populations. For example, Seyyed-Kalantari et al. [52]
find that their Chest X-ray classifier has a higher underdiagnosis rate for Hispanic female patients.
Similar phenomenons also occur in other medical tasks, including regression [47], segmentation [48],
reconstruction [11], etc.

2.3 FMs Meet Fairness in Medical Imaging

Previous studies have shown that unfairness can be induced to FMs from the pre-training datasets, the
fine-tuning process, the application of downstream tasks [35]. However, most of the current studies on
fairness in medical imaging mainly focus on the traditional models, while evaluating and mitigating
unfairness in FMs is still in its infancy. Khan et al. [28] benchmarked six classification FMs on sex
and race. However, the fairness metrics and datasets involved in their study are limited. Therefore,
extra efforts is required to evaluate whether these FMs in medical imaging have fair outcomes before
applying them in real clinical scenarios.

3 FairMedFM

Fig. 1 presents the pipeline of FairMedFM framework, which offers an easy-to-use codebase for
benchmarking the fairness of FMs in medical imaging. FairMedFM contains 17 datasets (9 for
classification and 8 for segmentation) and 20 FMs (11 for classification and 9 for segmentation).
It also integrates 9 fairness metrics (5 for classification and 4 for segmentation) and 6 unfairness
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mitigation algorithms (3 for classification and 3 for segmentation), trying to provide a relatively
comprehensive benchmark for fairness in medical imaging FMs.

3.1 Datasets

The following 17 publicly avaliable datasets are included in FairMedFM to evaluate fairness in FMs in
medical imaging: CheXpert [22], MIMIC-CXR [25], HAM10000 (CLS) [61], FairVLMed10k [36],
GF3300 [37], PAPILA [31], BRSET [42], HAM10000 (SEG) [61], TUSC [53], FairSeg [60],
Montgomery County X-ray [7], KiTS 2023 [18], CANDI [27], IRCADb [58], SPIDER [62]. These
datasets vary in the following aspects: (1) Task type: classification and segmentation; (2) Dimension:
2D and 3D; (3) Modality: OCT, X-ray, CT, MRI, Ultrasound, Fundus, OCT, and dermatology; (4)
Body part: brain, eyes, skin, thyroid, chest, liver, kidney, and spine; (5) Number of classes: ranging
from 2 to 15; (6) Number of samples: ranging from 20 to more than 350k; (7) Sensitive attribute:
sex, age, race, preferred language, skin tone, etc. (8) SA skewness (Male : Female): ranging from
0.19 to 1.67. The details of these datasets can be found in the Appendix B.

3.2 Models

Classification FMs. Eleven FMs from two categories are used for evaluation: (1)
vision models (VMs): C2L [75], DINOvV2 [45], MedLVM [43], MedMAE [66], MoCo-CXR [59];
(2) vision-language models (VLMs). CLIP [16], BLIP [34], BLIP2 [33], MedCLIP [65], PubMed-
CLIP [15], BiomedCLIP [74]. For all models, LP is used for fine-tuning; for VLMs, we also conduct
CLIP-ZS and CLIP-Adapt. Since these FMs are 2D models, we use 2.5D slices for 3D data and report
volume-wise results.

FairMedFM evaluate the fairness of FMs under three commonly used protocols for classification:

e Linear probing (LP). A classification head h(-) : v — Y is trained to map the FM’s embedding v to
the prediction § = h(f,(z)).

o Parameter-efficient fine-tuning (PEFT). PEFT aims to fine-tune FMs with a classification head to
new downstream tasks with minimal computational overhead. FairMedFM evalute fairness of FMs
in the fine-tuning setting with modern PEFT strategies (e.g., LoORA [20] and pruning).

e CLIP-ZS and CLIP-Adapt. Vision-language models offer the zero-shot classification ability for
FMs, which compares the similarities of the vision embedding f, (z) between different class-wise
prototypes text embeddings f:(x) of positive and negative prompts (e.g., “There is no pneumonia.”)
for each class. We consider both zero-shot (CLIP-ZS) inference as well as a simple adaptation strategy
(CLIP-Adapt) [57] which fine-tunes the class prototypes initialized with CLIP zero-shot prototypes.

Segmentation FMs. Nine SegFMs are selected from three categories for evaluation: (1)
general-SegFMs: SAM [30], MobileSAM [71], TinySAM [56]; (2) 2D Med-SegFMs: MedSAM [38],
SAM-Med2D [9], and FT-SAM [9]; (3) 3D Med-SegFMs: SAM-Med3D [63], FastSAM3D [54].
All the four segmentation prompts described in Sec. 2.1 are used for 2D SegFMs. we adopt rand
and rands for SAM-Med3D and FastSAM, rands and bbox for SegVol following their official
implementation.

For SAM-family models, extra point prompts ppeinc Or bounding box prompt pyhox are required in
the inference stage. Therefore, FairMedFM examine the fairness of SegFMs with different types of
prompts including (1) center: the center point of the mask; (2) rand: 1 random point inside the mask;
(3) rands: 5 random points inside the mask; (4) bbox: the bounding box of the mask. These prompts
can be generated either directly from the ground truth mask or manually annotated. To thoroughly
evaluate the fairness of SegFMs, FairMedFM provides the interface for both 2D and 3D SAM, and
the access to fine-tune the SAM on the specific medical dataset with full supervision.

3.3 Unfairness Mitigation Methods
FairMedFM provides popular and generalizable bias mitigation strategies and integrates them with

the FMs. Following literature specialized in bias mitigation algorithms [77], we categorize them into
the following:
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(1) Group rebalancing is a technique used to address bias in datasets by adjusting the representation of
different subgroups [2 1, 48], ensuring that minority groups have equal representation during training.
This helps to mitigate biases that can arise from imbalanced datasets. (2) Adversarial training
is a method for reducing bias by training models in a way that they learn to make predictions
while simultaneously being penalized for recognizing SA [70, 29]. This promotes fairness by
minimizing the influence of biased features. (3) Fairness constraints are used to ensure that models
are trained to produce fair outcomes for different subgroups. This approach involves adding the
differentiable form of fairness metrics to the training objective directly [44], or adjusting weights of
the loss function for different subgroups to penalize the model for making biased predictions [60].
(4) Subgroup-tailored modeling is a method that allows subgroups to have different model parameters,
enabling the model to learn different representations for subgroups. This specialized modification
can be applied on part of the model, i.e. fairness-aware adaptors [68], or the entire model [64].
(5) Domain generalization aims to improve a model’s ability to perform well across various domains,
including those not encountered during training [64]. This approach seeks to create models that
generalize better by finding robust solutions that work well in different scenarios [51].

3.4 Evaluation Metrics Taxnonmy

Utility refers to the effectiveness of the model in making accurate predictions. Examples include
the Area Under the receiver operating characteristic Curve (AUC) for classification and Dice
similarity score (DSC) for segmentation.

Group fairness is evaluated from four aspects following common practice [8]: (1)
Outcome-consistency fairness, which evaluates discrepancies in the model’s performance (e.g., ac-
curacy, components of confusion matrix, etc.) between different sensitive groups. In classification,
we include delta AUC (AUCa), which is measured as the maximum AUC gap among subgroups;
and Equalized Odds (EqOdds), which measures the differences in true positive and false posi-
tive rates between advantaged and disadvantaged groups. In segmentation, we include delta DSC
(DSCA), which assesses if both groups receive approximately equal predictive performance; and
DSC skewness (DSCggew), which measures the degree of skewness of DSC between advantaged and
disadvantaged groups. (2) Predictive alignment fairness, which focuses on the alignment between
predicted probabilities and actual outcomes. It ensures that predicted scores accurately reflect true
likelihoods, providing a reliable basis for decision-making across different groups. We report the
expected calibration error gap (ECEA) in classification, where a high value indicates an optimal
decision threshold; (3) Positive-parity fairness, which ensures that the positive classification rate is
equal for both unprivileged and privileged groups, preventing any group from being overlooked. We
note that this is an optional evaluative aspect that may not be applicable to all scenarios. For example,
positive parity is compromised in diagnosing glaucoma, where morbidity rates differ between males
and females; (4) Representation fairness, which evaluates fairness from the aspects of feature rep-
resentation learned in the latent space, by estimating either group-wise feature separability among
subgroups. We report the last two metrics in the Appendix E.2.

Utility-fairness trade-off takes both utility and fairness into account. It can be evaluated by
combining utility and fairness metrics. Besides, equity scaling measurements that involve both
aspects could also be used. In classification, we measure the equity-scaled AUC (AUCEgg), which
takes both utility and fairness into account. In segmentation, we report the equity-scaled DSC
(DSCggs), which measures the tradeoff between overall utility and utility variations [60].

The mathematical definitions of the above metrics are presented in the Appendix C.

4 Results

In this section, we highlight the representative observations and takeaways from benchmarking the
fairness of FMs on image classification and segmentation tasks utilizing FairMedFM framework.
We choose to present the fairness results concerning sex since it is the most common SA shared
across datasets. However, our method supports a broader range of SAs as listed in the Tab. 1.
We direct readers to Appendix E.I for additional results on more SAs and extensive evaluations,
which corroborate the observations discussed in the main text. We also present the evaluation for
positive-parity-fairness, representation-fairness, and statistics test in Appendix E.2.
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Figure 2: Bias in classification tasks. AUCA, is the fairness evaluation metric. “1” denotes vision-
language models, and “+” denotes pure vision models, where CLIP-ZS and CLIP-Adapt are not

applicable.
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Figure 3: Bias in segmentation tasks. DSC is the fairness evaluation metric. Note that SAM-Med3D,
FastSAM-3D, and SegVol are only applicable for 3D datasets.

Bias widely exists in FMs for medical imaging. Fig. 2 and Fig. 3 present the fairness metrics on
various classification and segmentation tasks as stated in Sec. 1. In classification, the AUCA has an
average value larger than 5% over all methods but presents large variations across methods. Similarly,
in segmentation, our results in both 2D and 3D datasets reveal similar disparities, with notable high
DSCa of SegVol and FT-SAM reaching up to 10%.

Careful selection and use of FMs are needed for ensuring a good fairness-utility trade-off. These
pervasive biases challenge the fairness-utility tradeoff of FMs in medical applications. We observe
that the fairness-utility trade-off in these tasks is influenced not only by the choice of FMs but also
by how they are used as shown in Fig. 4. We report trade-off scores AUCgs and DSCgg, for each
datasets on the selected models for both tasks respectively. Compared with CLIP-ZS models, a simple
adaptation, CLIP-Adapt, has proven effective in significantly boosting the fairness-utility trade-off in
medical applications. Further, we evaluate the effects of segmentation tasks on the choice of prompts
(including center, rand, rands, and bbox), and the types of SegFMs (including 2D General-SegFMs
and 2D Med-SegFMs). Compared to center and rand, models using rands and bbox tend to be fairer
across different datasets. This might be due to the tighter constraints on the segmentation provided by

rands and bbox. Regarding models, General-SegFMs achieve a better fairness-utility trade-off than
Med-SegFMs.

Consistent disparities in SA occur across various FMs on the same dataset. The performance of
FMs shows dataset-specific biases, favoring one category of the given SA over the other, depending on
the dataset. We present the four datasets in classification tasks and use sex as an example, presented
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Figure 4: Fairness-utility tradeoff in FMs for different components on (a-b) classification and (c-d)
segmentation tasks. We use AUCgg and DSCgg as evaluation metrics. (a) Fairness-utility tradeoff for
different classification usages (using CLIP as an example); (b) Fairness-utility tradeoff for general-
purpose and medical-specific FMs in classification; (c) Fairness-utility tradeoff for different prompts
in segmentation (using SAM-Med2D as an example); (d) Degree of fairness for different SegFM
categories in segmentation.

in Fig. 5. The BREST and MIMIC-CXR dataset shows a higher performance for females compared
to males across various models. Conversely, the FairVLMed 10k and GF3300 dataset indicates better
performance for males. Results on other SAs and segmentation tasks can be found in Appendix E.1.

Existing unfairness mitigation strategies are not always effective. While various unfairness
mitigation methods for traditional neural networks have been proposed, their effectiveness on FMs
for medical imaging remains underexplored. This study evaluates three mitigation algorithms for
both classification and segmentation tasks. For classification, we apply two PEFT strategies (LP and
LoRA) on three datasets (MIMIC-CXR, HAM10000 (CLS), and FairVLMed10k), while experiments
for segmentation are conducted on the HAM 10000 (SEG) dataset following the SAMed pipeline [73].
As shown in Tab. 2, although some mitigation strategies show better fairness metrics compared to the
baseline, their utility-fairness tradeoffs do not always exceed (for example, LORA + GroupDRO vs.
LoRA). Besides, some mitigation algorithms show both lower utility and worse fairness (SAMed +
InD vs. SAMed), which means that existing unfairness mitigation strategies are not always effective
for FMs. Potential reasons could come from the scaling gap in training data and model parameters
between the ‘small models’ and large-scale FMs. Although there have been studies that focus on
unfairness mitigation for FMs [24, 67], extra efforts are required to guarantee the fairness of FMs.

5 Conclusion

In this work, we introduced FairMedFM, a pioneering benchmark aimed at comprehensively evaluat-
ing the fairness of FMs in healthcare. Our pipeline demonstrates versatility by supporting various
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Figure 5: Consistent disparities in SA occur across various FMs on the same dataset. (a) LP; (b)
CLIP-Adapt. Points on the black dashline represent equal utility.
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Table 2: Evaluation of bias mitigation methods. Best and second best results are highlighted. All re-
sults are in percentage. Results for classification (CLS) are averaged across MIMIC-CXR, HAM 10000
(CLS), and FairVLMed10k; Results for segmentation (SEG) are computed on HAM 10000 (SEG).

Category | Method AUCpg T AUCpemae T AUCwge T AUCa | EqOddst ECEa )}  AUCgs 1
LP 76.07 75.51 76.04 0.53 96.08 0.75 75.87
LP + GroupDRO [51] 75.70 75.15 75.68 0.54 95.93 0.83 75.50
LP + Resampling [77] 75.66 76.01 7545 0.56 94.65 1.78 75.45
cLs | LP+LAFTR [40] 75.80 76.15 75.69 0.46 95.13 0.93 75.63
LoRA 82.52 83.25 81.30 1.95 96.18 0.35 81.72
LoRA + GroupDRO [51] 79.54 79.95 78.73 1.22 96.74 0.17 79.06
LoRA + Resampling [77] 83.27 84.32 82.46 1.86 95.65 1.01 83.04
LoRA + LAFTR [40] 80.50 80.08 80.70 0.62 97.87 0.22 80.25
| Method DSCave T DSCremate T DSCpae T DSCa | DSCstp |  DSCskew {  DSCgs T
SAM (best) 83.55 84.47 82.74 173 0.86 L11 82.83
SAMed [73] 90.92 90.98 90.87 0.10 0.05 1.01 90.87
SEG | SAMed + FEBS [60] 91.63 91.64 91.62 0.02 0.01 1.00 91.62
SAMed + Resampling [77]  91.51 91.60 91.43 0.17 0.09 1.02 91.43
SAMed + InD [64] 88.85 89.61 88.19 1.42 0.71 1.14 88.22

tasks, such as classification and segmentation, and by adapting to 20 different FMs, including both
general-purpose and medical-specific models. By integrating a wide range of functionalities, such as
LP, CLIP-Adapt, prompt-based segmentation, PEFT, and bias mitigation strategies, our framework
enables comprehensive evaluations that are essential for developing fair and effective medical imaging
solutions. With FairMedFM, we conducted in-depth analysis and revealed four key findings and
takeaways: (1) Bias widely exists in FMs for medical imgaing tasks; (2) Different FMs and their
variant usages present different fairness-utility trade-offs, therefore careful selection and proper use
of FMs are crucial for ensuring a good fairness-utility trade-off; (3) The performance of various
FMs exhibits consistent dataset-specific biases, which aligns with the SA distribution in individual
datasets; and (4) The existing unfairness mitigation strategies are not always effective in FM settings.

Future development plan. Despite our efforts to include a wide range of datasets, FM methods, and
fairness algorithms in our work to greatly enhance the comprehensiveness of existing benchmarks,
there remains potential for further refinement and expansion. Our future work will continue to improve
the comprehensiveness of our benchmark based on the framework and codebase of FairMedFM.
The current pipeline FairMedFM is sufficiently flexible to extend; therefore, we will continue to
incorporate new medical imaging datasets and emerging FM architectures over time. In addition to
medical image classification and segmentation, the scope of our study will encompass predictive
modeling, object detection, and vision-based question answering. Moreover, we intend to incorporate
a broader range of fairness definitions in our evaluations and to investigate a wider array of bias-
mitigation algorithms. We will ensure that FairMedFM’s open-sourced codebase remains actively
maintained and updated at the forefront of promoting equitable healthcare technologies.

Acknowledgments and Disclosure of Funding

Y. Zhong and Q. Dou are supported by the Research Grants Council of Hong Kong Special Admin-
istrative Region, China (Project No. T45-401/22-N). Z. Xu, O. Yao, and S.K. Zhouare supported
in part by the Natural Science Foundation of China under Grant 62271465, SuzhouBasic Research
Program under Grant SYG202338, and Open Fund Project of Guangdong Academy of Medical
Sciences, China (No. YKY-KF202206). R. Jin and X. Li are supported by the UBC Advanced
Research Computing and Digital Research Alliance of Canada. We thank the reviewers for their
insightful feedback and comments.

References

[1] Parnian Afshar, Shahin Heidarian, Nastaran Enshaei, Farnoosh Naderkhani, Moezedin Javad
Rafiee, Anastasia Oikonomou, Faranak Babaki Fard, Kaveh Samimi, Konstantinos N Plataniotis,
and Arash Mohammadi. Covid-ct-md, covid-19 computed tomography scan dataset applicable
in machine learning and deep learning. Scientific Data, 8(1):121, 2021. 5

111326 https://doi.org/10.52202/079017-3535



[2] Bobby Azad, Reza Azad, Sania Eskandari, Afshin Bozorgpour, Amirhossein Kazerouni, Islem
Rekik, and Dorit Merhof. Foundational models in medical imaging: A comprehensive survey
and future vision. arXiv preprint arXiv:2310.18689, 2023. 1

[3] Shekoofeh Azizi, Laura Culp, Jan Freyberg, Basil Mustafa, Sebastien Baur, Simon Kornblith,
Ting Chen, Nenad Tomasev, Jovana Mitrovié, Patricia Strachan, et al. Robust and data-efficient
generalization of self-supervised machine learning for diagnostic imaging. Nature Biomedical
Engineering, 7(6):756-779, 2023. 1

[4] Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie Houde,
Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic,
et al. Ai fairness 360: an extensible toolkit for detecting. Understanding, and Mitigating
Unwanted Algorithmic Bias, 2, 2018. 1

[5] Sarah Bird, Miro Dudik, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa Milan,
Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker. Fairlearn: A toolkit for assessing
and improving fairness in ai. Microsoft, Tech. Rep. MSR-TR-2020-32, 2020. 1

[6] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021. 1

[7] Sema Candemir, Stefan Jaeger, Kannappan Palaniappan, Jonathan P Musco, Rahul K Singh,
Zhiyun Xue, Alexandros Karargyris, Sameer Antani, George Thoma, and Clement J] McDonald.
Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration.
IEEE transactions on medical imaging, 33(2):577-590, 2013. 3.1, 6

[8] Simon Caton and Christian Haas. Fairness in machine learning: A survey. ACM Computing
Surveys, 56(7):1-38, 2024. 2.1,3.4,C.2

[9] Junlong Cheng, Jin Ye, Zhongying Deng, Jianpin Chen, Tianbin Li, Haoyu Wang, Yanzhou Su,
Ziyan Huang, Jilong Chen, Lei Jiangand Hui Sun, Junjun He, Shaoting Zhang, Min Zhu, and
Yu Qiao. Sam-med2d, 2023. 3.2, 4

[10] Andrew Chester, Yun Sing Koh, Jorg Wicker, Quan Sun, and Junjae Lee. Balancing utility and
fairness against privacy in medical data. In 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1226-1233. IEEE, 2020. A.1

[11] Yuning Du, Yuyang Xue, Rohan Dharmakumar, and Sotirios A Tsaftaris. Unveiling fairness
biases in deep learning-based brain mri reconstruction. In Workshop on Clinical Image-Based
Procedures, pages 102—111. Springer, 2023. 2.2

[12] Yuxin Du, Fan Bai, Tiejun Huang, and Bo Zhao. Segvol: Universal and interactive volumetric
medical image segmentation. arXiv preprint arXiv:2311.13385,2023. 4

[13] Raman Dutt, Ondrej Bohdal, Sotirios A Tsaftaris, and Timothy Hospedales. Fairtune: Opti-
mizing parameter efficient fine tuning for fairness in medical image analysis. arXiv preprint
arXiv:2310.05055,2023. 1, ??

[14] Garabed Eknoyan. Adolphe quetelet (1796—1874)—the average man and indices of obesity,
2008. B.2

[15] Sedigheh Eslami, Gerard de Melo, and Christoph Meinel. Does clip benefit visual question
answering in the medical domain as much as it does in the general domain? arXiv preprint
arXiv:2112.13906,2021. 2.1,3.2,3

[16] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang,
Xinlong Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation
learning at scale. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19358-19369, 2023. 2.1, 3.2

[17] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll4r, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000-16009, 2022. 2.1

https://doi.org/10.52202/079017-3535 111327



[18] Nicholas Heller, Fabian Isensee, Dasha Trofimova, Resha Tejpaul, Zhongchen Zhao, Huai Chen,
Lisheng Wang, Alex Golts, Daniel Khapun, Daniel Shats, Yoel Shoshan, Flora Gilboa-Solomon,
Yasmeen George, Xi Yang, Jianpeng Zhang, Jing Zhang, Yong Xia, Mengran Wu, Zhiyang
Liu, Ed Walczak, Sean McSweeney, Ranveer Vasdev, Chris Hornung, Rafat Solaiman, Jamee
Schoephoerster, Bailey Abernathy, David Wu, Safa Abdulkadir, Ben Byun, Justice Spriggs,
Griffin Struyk, Alexandra Austin, Ben Simpson, Michael Hagstrom, Sierra Virnig, John French,
Nitin Venkatesh, Sarah Chan, Keenan Moore, Anna Jacobsen, Susan Austin, Mark Austin,
Subodh Regmi, Nikolaos Papanikolopoulos, and Christopher Weight. The kits21 challenge:
Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase ct,
2023. 3.1,6

[19] Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in neural
information processing systems, 15, 2002. C.2

[20] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 3.2

[21] Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data
balancing achieves competitive worst-group-accuracy. In Conference on Causal Learning and
Reasoning, pages 336-351. PMLR, 2022. 3.3

[22] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute,
Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chexpert: A large
chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pages 590-597, 2019. 3.1, 5, D.1.2

[23] Leonardo Iurada, Silvia Bucci, Timothy M Hospedales, and Tatiana Tommasi. Fairness meets
cross-domain learning: A benchmark of models and metrics. IEEE Access, 2024. 1, ??

[24] Ruinan Jin, Wenlong Deng, Minghui Chen, and Xiaoxiao Li. Universal debiased editing for fair
medical image classification. arXiv preprint arXiv:2403.06104,2024. 1,4, A.1

[25] Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P
Lungren, Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a de-identified
publicly available database of chest radiographs with free-text reports. Scientific data, 6(1):317,
2019. 3.1, 5

[26] Kimmo Karkkainen and Jungseock Joo. Fairface: Face attribute dataset for balanced race,
gender, and age for bias measurement and mitigation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 1548—1558, 2021. 2.2

[27] David N Kennedy, Christian Haselgrove, Steven M Hodge, Pallavi S Rane, Nikos Makris, and

Jean A Frazier. Candishare: a resource for pediatric neuroimaging data. Neuroinformatics,
10:319-322,2012. 3.1, 6

[28] Muhammad Osama Khan, Muhammad Muneeb Afzal, Shujaat Mirza, and Yi Fang. How fair
are medical imaging foundation models? In Machine Learning for Health (ML4H), pages
217-231. PMLR, 2023. 1, ??,2.3

[29] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learning not
to learn: Training deep neural networks with biased data. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9012-9020, 2019. 3.3

[30] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4015-4026,
2023. 2.1,3.2,4

[31] Oleksandr Kovalyk, Juan Morales-Sanchez, Rafael Verdd-Monedero, Inmaculada Sellés-
Navarro, Ana Palazén-Cabanes, and José-Luis Sancho-Gémez. Papila: Dataset with fundus

images and clinical data of both eyes of the same patient for glaucoma assessment. Scientific
Data, 9(1):291, 2022. 3.1, 5

111328 https://doi.org/10.52202/079017-3535



[32] Ira Ktena, Olivia Wiles, Isabela Albuquerque, Sylvestre-Alvise Rebuffi, Ryutaro Tanno, Ab-
hijit Guha Roy, Shekoofeh Azizi, Danielle Belgrave, Pushmeet Kohli, Taylan Cemgil, et al.
Generative models improve fairness of medical classifiers under distribution shifts. Nature
Medicine, pages 1-8, 2024. A.l

[33] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pages 19730-19742. PMLR, 2023. 2.1,3.2,3

[34] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
conference on machine learning, pages 12888-12900. PMLR, 2022. 3.2, 3

[35] Yingji Li, Mengnan Du, Rui Song, Xin Wang, and Ying Wang. A survey on fairness in large
language models. arXiv preprint arXiv:2308.10149, 2023. 2.2,2.3

[36] Yan Luo, Min Shi, Muhammad Osama Khan, Muhammad Muneeb Afzal, Hao Huang, Shuai-
hang Yuan, Yu Tian, Luo Song, Ava Kouhana, Tobias Elze, et al. Fairclip: Harnessing fairness
in vision-language learning. arXiv preprint arXiv:2403.19949,2024. 3.1, B.1, 5

[37] Yan Luo, Yu Tian, Min Shi, Louis R Pasquale, Lucy Q Shen, Nazlee Zebardast, Tobias Elze,
and Mengyu Wang. Harvard glaucoma fairness: a retinal nerve disease dataset for fairness
learning and fair identity normalization. IEEE Transactions on Medical Imaging, 2024. 3.1, 5,
C3

[38] Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. Segment anything in
medical images. Nature Communications, 15(1):654, 2024. 2.1,3.2, 4

[39] Jun Ma and Bo Wang. Towards foundation models of biological image segmentation. Nature
Methods, 20(7):953-955, 2023. 1

[40] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially
fair and transferable representations. In International Conference on Machine Learning, pages
3384-3393. PMLR, 2018. 2

[41] Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz, Jure
Leskovec, Eric J Topol, and Pranav Rajpurkar. Foundation models for generalist medical
artificial intelligence. Nature, 616(7956):259-265, 2023. 1

[42] Luis Filipe Nakayama, Mariana Goncalves, L Zago Ribeiro, Helen Santos, Daniel Ferraz, Fer-
nando Malerbi, Leo Anthony Celi, and Caio Regatieri. A brazilian multilabel ophthalmological
dataset (brset), 2023. 3.1, 5

[43] Duy MH Nguyen, Hoang Nguyen, Nghiem T Diep, Tan N Pham, Tri Cao, Binh T Nguyen,
Paul Swoboda, Nhat Ho, Shadi Albarqouni, Pengtao Xie, et al. Lvm-med: Learning large-scale
self-supervised vision models for medical imaging via second-order graph matching. arXiv
preprint arXiv:2306.11925,2023. 2.1,3.2,3

[44] Tochi Oguguo, Ghada Zamzmi, Sivaramakrishnan Rajaraman, Feng Yang, Zhiyun Xue, and
Sameer Antani. A comparative study of fairness in medical machine learning. In 2023 IEEE
20th International Symposium on Biomedical Imaging (ISBI), pages 1-5. IEEE, 2023. 3.3

[45] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023. 2.1,3.2, 3

[46] Ronald Carl Petersen, Paul S Aisen, Laurel A Beckett, Michael C Donohue, Anthony Collins
Gamst, Danielle J Harvey, CR Jack Jr, William J Jagust, Leslie M Shaw, Arthur W Toga,
et al. Alzheimer’s disease neuroimaging initiative (adni) clinical characterization. Neurology,
74(3):201-209, 2010. 5

[47] Carolina Pigarra and Ben Glocker. Analysing race and sex bias in brain age prediction. In
Workshop on Clinical Image-Based Procedures, pages 194-204. Springer, 2023. 2.2

https://doi.org/10.52202/079017-3535 111329



[48] Esther Puyol-Antén, Bram Ruijsink, Stefan K Piechnik, Stefan Neubauer, Steffen E Petersen,
Reza Razavi, and Andrew P King. Fairness in cardiac mr image analysis: an investigation of
bias due to data imbalance in deep learning based segmentation. In Medical Image Computing
and Computer Assisted Intervention—-MICCAI 2021: 24th International Conference, Strasbourg,
France, September 27—October 1, 2021, Proceedings, Part I1I 24, pages 413—423. Springer,
2021.2.2,3.3

[49] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021. 2.1, 3

[50] Eliane R66sli, Selen Bozkurt, and Tina Hernandez-Boussard. Peeking into a black box, the
fairness and generalizability of a mimic-iii benchmarking model. Scientific Data, 9(1):24, 2022.
1

[51] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731,2019. 3.3, 2

[52] Laleh Seyyed-Kalantari, Haoran Zhang, Matthew BA McDermott, Irene Y Chen, and Marzyeh
Ghassemi. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs
in under-served patient populations. Nature medicine, 27(12):2176-2182, 2021. 2.2

[53] Stanford AIMI shared datasets. Thyroid ultrasound cine-clip. https://stanfordaimi.
azurewebsites.net/datasets/a72f2b02-7b53-4c5d-963c-d7253220bfd5. 3.1, 6

[54] Yiqing Shen, Jingxing Li, Xinyuan Shao, Blanca Inigo Romillo, Ankush Jindal, David Dreizin,
and Mathias Unberath. Fastsam3d: An efficient segment anything model for 3d volumetric
medical images. arXiv preprint arXiv:2403.09827,2024. 3.2, 4

[55] Peilun Shi, Jianing Qiu, Sai Mu Dalike Abaxi, Hao Wei, Frank P-W Lo, and Wu Yuan. Generalist
vision foundation models for medical imaging: A case study of segment anything model on
zero-shot medical segmentation. Diagnostics, 13(11):1947, 2023. 1

[56] Han Shu, Wenshuo Li, Yehui Tang, Yiman Zhang, Yihao Chen, Hougiang Li, Yunhe Wang, and
Xinghao Chen. Tinysam: Pushing the envelope for efficient segment anything model. arXiv
preprint arXiv:2312.13789, 2023. 3.2, 4

[57] Julio Silva-Rodriguez, Sina Hajimiri, Ismail Ben Ayed, and Jose Dolz. A closer look at the
few-shot adaptation of large vision-language models. arXiv preprint arXiv:2312.12730, 2023.
32

[58] Luc Soler, Alexandre Hostettler, Vincent Agnus, Arnaud Charnoz, J Fasquel, Johan Moreau,
A Osswald, Mourad Bouhadjar, and Jacques Marescaux. 3d image reconstruction for comparison
of algorithm database: A patient specific anatomical and medical image database. IRCAD,
Strasbourg, France, Tech. Rep, 1(1), 2010. 3.1, 6

[59] Hari Sowrirajan, Jingbo Yang, Andrew Y Ng, and Pranav Rajpurkar. Moco-cxr: Moco pretrain-
ing improves representation and transferability of chest x-ray models. 2.1, 3.2, 3

[60] Yu Tian, Min Shi, Yan Luo, Ava Kouhana, Tobias Elze, and Mengyu Wang. Fairseg: A large-
scale medical image segmentation dataset for fairness learning using segment anything model
with fair error-bound scaling. In International Conference on Learning Representations (ICLR),
2024. 3.1,3.3,34,2,6,C.3

[61] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data,
5(1):1-9, 2018. 3.1, 5,6

[62] Jasper W van der Graaf, Miranda L van Hooff, Constantinus FM Buckens, Matthieu Rutten,
Job LC van Susante, Robert Jan Kroeze, Marinus de Kleuver, Bram van Ginneken, and Nikolas
Lessmann. Lumbar spine segmentation in mr images: a dataset and a public benchmark.
Scientific Data, 11(1):264,2024. 3.1, 6

111330 https://doi.org/10.52202/079017-3535


https://stanfordaimi.azurewebsites.net/datasets/a72f2b02-7b53-4c5d-963c-d7253220bfd5
https://stanfordaimi.azurewebsites.net/datasets/a72f2b02-7b53-4c5d-963c-d7253220bfd5

[63] Haoyu Wang, Sizheng Guo, Jin Ye, Zhongying Deng, Junlong Cheng, Tianbin Li, Jianpin Chen,
Yanzhou Su, Ziyan Huang, Yiqing Shen, et al. Sam-med3d. arXiv preprint arXiv:2310.15161,
2023. 2.1,3.2,4

[64] Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, Kyle Genova, Prem Nair, Kenji Hata,
and Olga Russakovsky. Towards fairness in visual recognition: Effective strategies for bias
mitigation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8919-8928, 2020. 3.3, 2

[65] Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, and Jimeng Sun. Medclip: Contrastive learning
from unpaired medical images and text. arXiv preprint arXiv:2210.10163, 2022. 2.1,3.2, 3

[66] Junfei Xiao, Yutong Bai, Alan Yuille, and Zongwei Zhou. Delving into masked autoencoders for
multi-label thorax disease classification. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 3588-3600, 2023. 2.1,3.2, 3

[67] Zikang Xu, Fenghe Tang, Quan Quan, Qingsong Yao, and S Kevin Zhou. Apple: Adversarial
privacy-aware perturbations on latent embedding for unfairness mitigation. arXiv preprint
arXiv:2403.05114,2024. 1,4, A.1,E.2

[68] Zikang Xu, Shang Zhao, Quan Quan, Qingsong Yao, and S. Kevin Zhou. Fairadabn: Mitigating
unfairness with adaptive batch normalization and its application to dermatological disease clas-
sification. In Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James
Duncan, Tanveer Syeda-Mahmood, and Russell Taylor, editors, Medical Image Computing and
Computer Assisted Intervention — MICCAI 2023, pages 307-317, Cham, 2023. Springer Nature
Switzerland. 3.3

[69] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong
Hu, Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for
computer vision. arXiv preprint arXiv:2111.11432,2021. 1

[70] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with
adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on Al, Ethics, and
Society, pages 335-340, 2018. 3.3

[71] Chaoning Zhang, Dongshen Han, Yu Qiao, Jung Uk Kim, Sung-Ho Bae, Seungkyu Lee, and
Choong Seon Hong. Faster segment anything: Towards lightweight sam for mobile applications.
arXiv preprint arXiv:2306.14289, 2023. 3.2, 4

[72] Haoran Zhang, Natalie Dullerud, Karsten Roth, Lauren Oakden-Rayner, Stephen Pfohl, and
Marzyeh Ghassemi. Improving the fairness of chest x-ray classifiers. In Conference on health,
inference, and learning, pages 204-233. PMLR, 2022. 1, ??

[73] Kaidong Zhang and Dong Liu. Customized segment anything model for medical image
segmentation. arXiv preprint arXiv:2304.13785, 2023. 4,2

[74] Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam
Preston, Rajesh Rao, Mu Wei, Naveen Valluri, et al. Biomedclip: a multimodal biomedical
foundation model pretrained from fifteen million scientific image-text pairs. arXiv preprint
arXiv:2303.00915,2023. 2.1,3.2,3

[75] Hong-Yu Zhou, Shuang Yu, Cheng Bian, Yifan Hu, Kai Ma, and Yefeng Zheng. Comparing
to learn: Surpassing imagenet pretraining on radiographs by comparing image representations.
In Medical Image Computing and Computer Assisted Intervention—-MICCAI 2020: 23rd Inter-
national Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part I 23, pages 398—407.
Springer, 2020. 2.1, 3.2, 3

[76] Yuyin Zhou, Shih-Cheng Huang, Jason Alan Fries, Alaa Youssef, Timothy J Amrhein, Marcello
Chang, Imon Banerjee, Daniel Rubin, Lei Xing, Nigam Shah, et al. Radfusion: Benchmarking
performance and fairness for multimodal pulmonary embolism detection from ct and ehr. arXiv
preprint arXiv:2111.11665,2021. 1, ??

[77] Yongshuo Zong, Yongxin Yang, and Timothy Hospedales. Medfair: benchmarking fairness for
medical imaging. arXiv preprint arXiv:2210.01725,2022. 1,??,3.3,2, A.1,C4,D.1.2

https://doi.org/10.52202/079017-3535 111331



Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See abstract.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We have included our main claim and summarized our
contributions in both the abstract and the introduction.

(b) Did you describe the limitations of your work? [Yes] We have described our limitations
in the appendix.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our
benchmark focuses on investigating fairness in medical imaging, which does not have
a negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We confirm that our paper conforms with the ethics review guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Our benchmark
focuses on investigating fairness in medical imaging, which does not include theoretical
analysis.

(b) Did you include complete proofs of all theoretical results? [N/A] Our benchmark
focuses on investigating fairness in medical imaging, which does not include theoretical
analysis.

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] We provide
publically available code on GitHub, which is linked through our abstract.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes. We provide our training details in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Yes, we executed the experiments in three random seeds
and reported the averaged results. The error bar is provided whenever the visualization
allows.

(d) Did you include the total amount of computing and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We provide our computing
resources in the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] For all datasets and
existing baselines we used in the study, we include proper citations.

(b) Did you mention the license of the assets? [Yes] Our code is provided under the
Creative License, which we declared in the Appendix and in the URL.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
We do not include any further assets except what we talked about above.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We did not use any private resources that need consent.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] All data we used in the work are secondary
data coming from existing resources (publically available). They are properly handled
by the corresponding party before their release.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We are not using crowdsourcing or conducting research with human
subjects. We are not using crowdsourcing or conducting research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We are not using crowdsourcing or
conducting research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We are not using crowdsourcing or conduct-
ing research with human subjects.
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Road Map of Appendix Our appendix is organized into five sections. The related work is in Sec. A,
where Sec. A.1 restates the need for a fairness benchmark in medical FMs based on existing literature
in fairness in medical imaging. Sec. A.2 reviews existing FMs and their usages, and details the
FMs used in our work. Sec. B provides detailed dataset information and SA subgroup distribution.
Sec. C explains the metrics used in FairMedFV, including their mathematical formulas. Sec. D
lists the detailed implementation of our experiments. Finally, Sec. E presents additional results and
observations.

A Related Work

A.1 Fairnesss in Medical Imaging

Bias widely exists in deep learning-based medical image analysis and has been studied by several
recent studies. In the FM domain, [67] proposed to add perturbations with adversarial training on the
latent embedding space to mitigate bias in segmentation while [24] adds the debiased edit on the
input image to mitigate the bias when FM’s gradient is inaccessible. In the non-FM deep learning
tasks, [10] investigates the trade-off among the fairness, privacy and utility in medical data; [32] uses
diffusion model to generate the synthetic images and argument the training data for mitigating the
bias; [77] benchmarks the commonly used bias mitigation strategies on medical image classifications.

However, with the quick development of FM in medical image analysis, FM-based diagnostics
become more and more popular. In the fairness domain, except the very recent study tastes the
bias mitigation strategies in them [67, 24], few literatures provide a comprehensive overview of
FMs in medical image analysis in the perspective of fairness. This gap motivates us to create the
comprehensive benchmark, FairMedFM, which offers an evaluation pipeline covering 17 diverse
medical imaging datasets, 20 FMs, and their usages. This benchmark addresses the need for a
consistent evaluation and standardized process to investigate FMs’ fairness in medical imaging. To
restate, our objective is to raise awareness of fairness issues within the medical imaging community
and assist in developing fair algorithms in the machine learning community, by promoting more
accessible and reproducible methods for fairness evaluation.

A.2 Foundation Models

FairMedFM focuses on benchmarking the FMs for classification and segmentation as details in A.2.1
and A.2.2. Fig. 6 visualized the usages of FMs in this study.

m . 7”’9'-‘:?53 ‘ {a Trainable Freeze O Prompt
| ‘ | ﬁ | | Adaptor Head 94 Prediction
Image Encoder 4{ Mask Decoder ]_.n

l l 1 [ Prompt Encoder ]

Text o,

Encoder - /D

, %
> o
O %

CLIP-ZS Linear
CLIP-Adapt Probing PEFT Center Rand Rands Bbox

(a) Classification (b) Segmentation

Figure 6: (a) Usages for classification, where the embedding of FM’s image encoder is applied
for CLIP-ZS, CLIP-Adapt, LP and PEFT; (b) Usages of SAM-family for segmentation, where the
embedding of the image is passed to the mask decoder for generating the segmentation mask.
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A.2.1 Classification

In classification, FairMedFM implements both the VM and the VLM ranging from general-purpose
and medical-specific FMs as detailed in Tab. 3. The usages of FMs for classification are outlined in
Fig. 6, where CLIP-ZS, CLIP-Adapt, LP, and PEFT are included in FairMedFM as shown in Fig. 6
and detailed in Sec. 3.2 in the main paper.

Table 3: FMs used in classification.

Category | Domain | Model Link
| General | DINOV2 [45] https://github.com/facebookresearch/dinov2
VM LVM-Med [43] https://github.com/duyhominhnguyen/LVM-Med
Medical MedMAE [66] https://github.com/lambert-x/medical_mae
MoCo-CXR [59] https://github.com/stanfordmlgroup/MoCo-CXR
C2L [75] https://github.com/funnyzhou/C2L_MICCAI2020
BLIP [34] https://github.com/salesforce/BLIP
General | BLIP2 [33] https://github.com/salesforce/LAVIS/tree/main/projects/blip2
VLM CLIP [49] https://github.com/openai/CLIP
MedCLIP [65] https://github.com/RyanWangZf/MedCLIP
Medical | PubMedCLIP [15] https://github.com/sarahESL/PubMedCLIP/tree/main/PubMedCLIP
BiomedCLIP [74]  https://huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patchl16_224

A.2.2 Segmentation

Tab. 4 details the segmentation FMs used in this paper, which can be categorized into 2D natural
SegFMs, 2D medical SegFMs, and 3D medical SegFMs. These models are based on the origin SAM
architecture as shown in Fig. 6 (b), which consists of an image encoder, a prompt encoder and a mask

decoder.

Table 4: FMs used in segmentation.

Category | Domain | Model

Link

SAM [30] https://github.com/facebookresearch/segment-anything
Natural | MobileSAM [71]  https://github.com/ChaoningZhang/MobileSAM
) TinySAM [56] https://github.com/xinghaochen/TinySAM
MedSAM [38] https://github.com/bowang-lab/MedSAM
Medical | SAM-Med2D [9]  https://github.com/OpenGVLab/SAM-Med2D
FT-SAM [9] https://drive.google.com/file/d/1J4qQt9MZZYdv1eoxMT JAFL8Fz65iUFM8/view
SAM-Med3D [63] https://github.com/OpenGVLab/SAM-Med2D
3D Medical | FastSAM3D [54]  https://github.com/arcadelab/FastSAM3D
SegVol [12] https://github.com/BAAI-DCAI/SegVol
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B Datasets Details
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Figure 7: SA distribution of classification datasets.

B.1 Classification Datasets

CheXpert is a large dataset of chest X-rays labeled for the presence of 14 different observations
as well as uncertainty labels. It includes 221006 chest X-ray images, making it widely used for the
development and evaluation of medical imaging models. Many FMs, like MedCLIP, adapt it as part
of the training data.

MIMIC-CXR is another publicly available dataset of chest radiographs with corresponding radiology
reports. This dataset, consisting of 357542 chest X-ray images, is part of the MIMIC family, providing
rich clinical context and metadata alongside imaging data.

HAM10000 dataset consists of 9948 dermatoscopic images of pigmented skin lesions. These images
are categorized into seven different types of skin conditions. It is used for both classification and
segmentation fairness evaluation.

FairVLMed10k is a medical dataset containing 10000 diverse visual-linguistic pairs designed to
address fairness in medical Al, where it was first used to train the FairCLIP [36]. It includes various
types of medical images of the eye paired with descriptive text annotations.

GF3300 also a dataset designed for evaluating medical fairness, which includes 3,300 subjects with
both 2D and 3D imaging data of the retinal nerve, helping to promote fairness in medical Al for
glaucoma detection.

PAPILA is a dataset of papillary thyroid carcinoma images, accompanied by detailed clinical and
pathological information. This dataset includes 420 color fundus images of the eye, aiming to aid in
the development of diagnostic tools for thyroid cancer.

BRSET consists of 16266 breast ultrasound images, annotated with benign and malignant labels.
These color fundus images of the eye are crucial for advancing breast cancer detection and classifica-
tion algorithms.

COVID-CT-MD is a dataset of computed tomography scans for patients diagnosed with COVID-
19. It includes 305 lung CT images with annotations for COVID-19 manifestations, aiding in the
development of diagnostic tools for the pandemic.

ADNI-1.5T is part of the Alzheimer’s Disease Neuroimaging Imaging and includes MRI scans
acquired at 1.5 Tesla. It consists of 550 brain MRI images, used extensively in research focused on
early detection and progression tracking of Alzheimer’s disease.

Tab. 5 lists the references, modality, body part, size, and SAs information of these datasets.
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Table 5: Classification datasets details.

Type Dataset Modality Body Part #Images Sensitive Attribute
CheXpert [22 Chest X-ray Chest 221,006 Sex, Age, Race
MIMIC-CXR [25] Chest X-ray Chest 357,542 Sex, Age, Race
HAM10000 [61] Dermatoscopy Skin 9,948  Sex, Age

2D FairVLMed10k [36] SLO Fundus Eye 10,000 Sex, Age, Race, Language
GF3300 [37] OCT RNFL thickness Eye 3,300 Sex, Age, Race, Language
PAPILA [31] Color Fundus Eye 420  Sex, Age
BRSET [42] Color Fundus Eye 16,266  Sex, Age

3D COVID-CT-MD [I] Lung CT Chest 305 Sex, Age
ADNI-1.5T [46] Brain MRI Brain 550  Sex, Age
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Figure 8: SA distribution of segmentation datasets.

B.2 Segmentation Datasets

HAM10000 contains 10,000 2D RGB dermatology images, with binary segmentation masks for skin
lesion. We use sex and age as the sensitive attribute. For age, we regard age larger than 60 as the old
group, and age smaller than 60 as the young group.

TUSC contains 860 2D thyroid ultrasound images, with binary segmentation masks for thyroid
nodule. We use sex and age as the sensitive attribute. For age, we regard age larger than 60 as the old
group, and age smaller than 60 as the young group.

FairSeg contains 10,000 2D OCT images, with three-class segmentation masks for optic cup and rim.
We use sex, age, race, language, and marital status as the sensitive attribute. For age, we regard age
larger than 60 as the old group, and age smaller than 60 as the young group. We categorize race into
White, Black, and Asian. We categorize language into English, Spanish, and Other. We categorize
marital status into Marriage or Partnered, Single, Divorced, Widowed and Legally seperated. We
categorize ethnicity into Hispanic and Non-Hispanic.

Montgomery County X-ray (montgomery) contains 137 2D chest X-ray images, with three-class
segmentation masks for left lung and right lung. We use sex and age as the sensitive attribute. For
age, we regard age larger than 60 as the old group, and age smaller than 60 as the young group.

KiTS2023 (KiTS) contains 489 3D kidney CT volumes, with four-class segmentation masks for
kidney, tumor, and cyst. We use sex and bmi as the sensitive attribute. For bmi, we categorize into
underweight, normal, overweight, and obese following [14].

CANDI contains 103 3D brain MRI volumes, with multi-class segmentation masks for many brain
structures. We select six classes including left/right brain white matter, left/right cerebral cortex, and
left/right ventricle for segmentation. We use sex, age, and handedness as the sensitive attribute. For
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Table 6: Segmentation datasets details.

Type Dataset Modality Body Part # Images Sensitive Attribute
HAMI10000 [61] Dermatology ~ Skin 10,015  Sex, Age
D TUSC [53] Ultra Sound ~ Thyroid 860 Sex, Age
FairSeg [00] OCT Eye 10,000  Sex, Age, Race, Marital Status, etc.
Montgomery County X-ray [7]  X-ray Chest 137  Sex, Age
KiTS 2023 [18] CT Kidney 489  Sex, Body Mass Index (BMI)
3D CANDI [27] MRI Brain 103 Sex, Age, Handedness
N IRCADD [58] CT Liver 20  Sex
SPIDER [62] MRI Spine 218  Sex

age, we regard age larger than 10 as the old group, and age smaller than 10 as the young group as the
maximum age in CANDI dataset is about 16. For handedness, we categorize it into left-handed and

right-handed.

IRCADDb contains 20 3D liver CT volumes, with multi-class segmentation masks for many abdomen
organs. We select six classes including class 1, 17, 33, 65, 129, and 193 for segmentation. We use sex

as the SA.

SPIDER contains 218 3D spine MRI volumes, with multi-class segmentation masks for vertebra and
disc. We use all the fifteen classes for segmentation, and use sex as the sensitive attribute.

Tab. 6 lists reference, modality, body part, size, and SAs information of these datasets.
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C DMetrics

C.1 Utility

We use Area Under the receiver operating characteristic Curve (AUC) and Accuracy for evaluating
utility in classification and Dice Similarity Coefficient (DSC) for segmentation. The formulas for
these metrics are:

ni no
1

AUC = - gz 1(si > s5)

i=1 j=1

where n; is the number of positive samples, n is the number of negative samples, s; is the score
for the i-th positive sample, and s; is the score for the j-th negative sample. The indicator function
1(s; > s;)is 1if s, is greater than s;, and O otherwise.

TP+TN
TP+TN+FP+FN

ACC =

where T'P is the number of true positives, 7'V is the number of true negatives, F'P is the number of
false positives, and F'N is the number of false negatives.

2.y nY]
Y[+1Y]

where Y is the set of predicted positive samples, and Y is the set of actual positive samples. The
DSC measures the overlap between the predicted and actual positive samples.

C.2 Fairness

Fairness measurements are categorized into three criteria: Positive-Parity Fairness, Outcome-
Consistency Fairness, and Predictive-Alignment Fairness [8].

Positive-Parity Fairness metrics primarily consider the positive rate, ensuring equal consideration in
positive classifications for both unprivileged and privileged groups. For example, in disease screening,
it is crucial that both groups have an equal chance of being flagged as positive cases, ensuring no
group is overlooked. We apply Demographic Parity (DP) as the criterion for this group. The formula
for Disparity Impact is given by:

DP = Pr(Y =1|A=0) - Pr(Y = 1|4 =1)

where Y is the prediction conditioned by SA. This ratio measures the disparity between the group
with the minimum performance and the group with the maximum performance.

Outcome-Consistency Fairness measures assess the discrepancies in confusion matrix components
between different sensitive groups. Common metrics include Equal Opportunity and Equal Odds.
Equal Opportunity assesses whether both groups receive approximately equal scores by calculating
the gaps in Accuracy (Acca), AUC (AUCa), and DSC (DSCa). Equalized Odds ensures that the
model performs equally well across SA groups in terms of both TPR and FPR. In our study, we
measure equal odds by calculating the differences in TPR and FPR between the advantaged and
disadvantaged groups. The formulas for these metrics are:

AUC/ACC/DSCa = AUC/ACC/DSCax — AUC/ACC/DSCrmin

AUC/ACC/DSCpin = min AUC/ACC/DSC

max; (1 — AUC/ACC/DSC,)
min; (1 — AUC/ACC/DSC,)

AUC/ACC/DSCgsgew =
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Predictive-Alignment Fairness metrics focus on the predicted probabilities or scores, aiming to
evaluate how well the predicted probabilities of outcomes align with the actual outcomes. The
Expected Calibration Error (ECE) evaluates if the predicted scores are indicative of true likelihoods,
thus providing a reliable basis for decision-making across different groups, where a high value leads
to an optimal decision threshold. We measure the gap of ECE between different SA group, ECEx,
where a higher gap indicates strong bis in terms of the predictive alignment. The formulas for it is:

1 N 1 al ’ ’
ECEx = NZIPi—OiI—ﬁZ\Pj_ q
i=1 Jj=1

where N is the total number of samples, p; is the predicted probability for sample ¢, and o, is the
actual outcome for sample 7. N and N’ belong to two different subgroups.

Representation Fairness inspects the integration between the model and the dataset, trying to figure
out the relationship between fairness and the feature distribution in the latent space. Generally, a
feature distribution that is hard to separate will result in lower bias. In this paper, we visualize the
representation fairness by t-SNE [19].

C.3 Fairness-utility Tradeoff

The fairness-utility tradeoff pursues a balance between fairness and utility. Following [37, 60],
we use Equity Scaling measurements of AUC (AUCgs) and DSC (DSCgg) for classification and
segmentation, respectively. The equations are as follows.

AUC

AUCgg = ———— 2

ES = 11 AUCA @
DSC

D - - 3

SCes = 7 +DSCx )

where AUC and DSC are the average AUC and DSC over all data samples. AUCA and DSCx are the
standard deviation of AUC and DSC across all subgroups defined by sensitive attributes, respectively.

C.4 Statistics Test

We perform statistical significance tests to ensure that any observed performance in benchmarking
FMs’ s performance in medical imaging is not due to occasion on specific datasets. It assesses
their performance across various datasets to draw meaningful and robust conclusions. We adapt the
statistics evaluation in [77], where the relative ranks for each FM’s performance are calculated on
individual datasets and then averaged. The Friedman test is executed and the Critical Difference (CD)
figure is plotted.
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D Experimental Details

D.1 Classification

The classification pipeline follows a straightforward approach, employing common data pre-
processing strategies. During hyper-parameter selection, we first determine the optimal learning rate
using LP. This learning rate is then applied to CLIP-Adapt and other PEFT methods, given the similar
parameter scales of the adapters.

D.1.1 Data Pre-processing

For 2D datasets, we resize all images to 256 x 256 and then apply CenterCrop to achieve a size of
224 x 224. All datasets are normalized using the ImageNet mean and standard deviation, as most
FMs are initialized with these parameters. For 3D datasets, we utilize a 2.5D loading approach.
Initially, the volumes are resized to a longitudinal axis size of 32. Subsequently, slices are processed
independently through the 2D pre-processing pipeline and input into 2D foundation models. The
final volume-wise prediction is obtained by maximizing the predictions of all slices in the volume.

D.1.2 Subgroup Definition
We follow previous works to binarize sensitive attributes and define subgroup pairs [22, 77]. The
sensitive attributes included in FairMedFM are listed in Tab. 5 and Tab. 6.

Sex. We follow the metadata in the original dataset to binarize the data into Male and Female
subgroups.

Age. We use different thresholds to distinguish between Young and Old data points. By default, we
use a threshold of 60 for all datasets except COVID-CT-MD and ADNI-1.5T, where the thresholds
are 50 and 75, respectively. These threshold choices are primarily aimed at constructing a balanced
testing set and ensuring a sufficient number of data points.

Race. We split data samples into White and Non-white subgroups.
Language. We split data samples into English and Non-English subgroups.

BMI & Handedness & Marital Status. The subgroup splitting of these sensitive attributes is
introduced in Sec. B.2.

D.1.3 Hyper-parameters

In classification, we initially use LP to identify the optimal learning rate and batch size. Once the loss
converges and the training and testing performance align, we apply the same set of hyper-parameters
for CLIP-Adapt, LP, and full fine-tuning. For all experiments, we use the AdamW optimizer with
cosine annealing schedule configured with batch size of 128 and weight decay of 0.05. All models
are trained for 100 epochs, during which we observe the convergence of loss and the alignment of
training and testing metrics. Our experiments are conducted on a single NVIDIA A100 GPU.

We also include multiple unfairness mitigation algorithms, of which the hyper-parameters are grid-
searched and listed as follows:

LP & CLIP-Adapt & Resampling. Learning rate: 2.5 x 1074
Group DRO. Learning rate: 2.5 x 10~%; Group adjustments: 1.
LAFTR. Learning rate: 3 x 10~—*; Adversarial coefficients: 0.1.

D.2 Segmentation
The evaluation of SegFMs consists of two step, i.e. data pre-processing, prompt generation, and

network inference. Note that for multi-class tasks, we process each class seperately, and average the
results across different classes.
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D.2.1 Data Pre-processing
As there are 2D datasets and 3D datasets used in this paper, and different SegFMs can only accept
either 2D or 3D input, we first pre-process the datasets as follows:

2D models + 2D datasets. The RGB grayscale images and grayscale images are resize to (1024,
1024, 3), and directly sent to 2D SegFMs including SAM, MobileSAM, TinySAM, MedSAM,
SAM-Med2D, and FT-SAM.

2D models + 3D datasets. The 3D MRI/CT volumes are firstly normalized to [0, 1]. Then, the slices
along the Axial plane are splited, and only slices that have ground truth segmentation masks are
resized to (1024, 1024, 3) and saved for evaluation using 2D SegFMs.

3D models + 3D datasets. The 3D MRI/CT volumes are firstly normalized to [0, 1], and directly
sent to 3D SegFMs including SAM-Med3D, FastSAM-3D, and SegVol.

D.2.2 Prompt Generation

In this paper, the prompts are generated from the ground truth mask to obtain better utilities. For
rand and rands, we use Random Number Generator with equal weights for each point. Following the
official implementation, we use center, rand, rands and bbox for all the 2D SegFMs, use rand and
rands for SAM-Med3D and FastSAM-3D, and use rands and bbox for SegVol.

D.2.3 Network Inference

The DSC scores are computed based on the origin shape of the input image. For 2D models + 2D
datasets and 3D models + 3D datasets, we directly compute the sample-wise DSC, for 2D models +
3D dataset, we first aggregate slice-wise results to get sample-wise prediction, and then compute the
sample-wise DSC.

D.2.4 t-SNE Visualization

t-SNE are presented for only 2D datasets + 2D models. We use feature map after the image encoder,
which is of shape (256, 64, 64). We average the feature map across the second and the third channel to
get a feature vector with the shape of 256, and t-SNE is computed using Python scikit-learn package.

D.2.5 Hyper-parameters

We finetune the original SAM using the implementation of SAMed on HAM10000 dataset. The
HAMI10000 dataset is randomly split into train and test with a ratio of 8:2. Earlystop strategy is
applied in the training procedure. The hyper-parameters for unfairness mitigation are as follows:

SAMed. Learning rate: 0.005; Optimizer: AdamW; Max epoch: 100; Batchsize: 16.

FEBS. Learning rate: 0.005; Optimizer: AdamW; Max epoch: 20; Batchsize: 16; Dice loss
coefficient: 0.8. FEBS loss temperature coefficient: 1.

Resampling. Learning rate: 0.005; Optimizer: AdamW; Max epoch: 20; Batchsize: 8.
InD. Learning rate: 0.005; Optimizer: AdamW; Max epoch: 20; Batchsize: 16.
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E Additional Benchmarking Results

E.1 Results of More Sensitive Attributes

In this section, we validate our conclusions in Sec. 4 with experiments on more sensitive attributes,
including age, race, language, BMI, etc. The results demonstrate consistency in our findings across
various sensitive attributes.

Bias widely exists in FMs for medical imaging. Similar to Fig. 2, we report classification results on
more sensitive attributes in Fig. 9 and Fig. 10, where AUCA and DP are fairness metrics, respectively.
Fig. 11 reports segmentation results on more sensitive attributes, where DSCx is the fairness metric.

Careful selection and use of FMs are needed for ensuring a good fairness-utility trade-off.
Similar to Fig. 3, we report the fairness-utility trade-off with additional sensitive attributes regard-
ing various usages, prompts, FM types on classification and segmentation in Fig. 12 and Fig. 13,
respectively.

Consistent disparities in SA occur across various FMs on the same dataset. Similar to Fig. 5,
we further investigate the utility skewness between the Male and the Female on segmentation tasks.
As shown in Fig. 14, the utility skewness is basically consistent within each dataset, despite of the
type of SegFMs. For example, SegFMs perform worse on the Male group than the Female group
in the HAM10000 dataset, while it is easier for SegFMs to segment lung for the Male group in the
Montgomery dataset. Besides, compared to 3D models, this trend is more consistent for 2D models.
Potential reasons for this phenomenon could be the differences in the size of the masks (the mask in
3D datsets are larger) and the number of classes of masks (3D datasets have more than 2 classes of

masks). This task complexity may lead to performance variations for different SegFMs.
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Figure 12: Fairness-utility tradeoff in FMs for different components on classification with more
SAs. We use AUCgs and DSCgg as evaluation metrics. (a, c) Fairness-utility tradeoff for different
classification usages (using CLIP as an example); (b, d) Fairness-utility tradeoff for general-purpose
and medical-specific FMs.
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E.2 More Observations

No FM significantly outperforms others in terms of utility and fairness. Fig. 15 presents the
statistical test using a CD diagram. In CD diagrams, FMs connected by a horizontal line belong
to the same group, indicating no significant difference based on the p-value. As shown, all models
belong to the same group in terms of overall AUC in (a), meaning no FM outperforms the others in
utility. Similarly, for fairness metrics, EqOdds in (c), AUCA in (e), and ECEA in (f) also show all
models grouped in a single fold. Additionally, the utility-fairness tradeoff indicated by AUCgg in
(d) shows that no FM outperforms the others. The plots indicate that no FM consistently achieves a
superior tradeoff; all models are statistically similar and fall within the same performance group.
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Representation fairness. The t-SNE of 2D SegFMs on the four 2D datasets are shown in Fig. 16.
Here we use sex as an example. As shown in Fig. 16, compared to the TUSC dataset and FairSeg
dataset, the latent space of the HAM 10000 dataset is more separatable. This is roughly aligned with
the results in Fig. 3, where the DSCa of the HAM10000 dataset are larger than the rest datasets.
This finding provides potential for us to mitigate unfairness for SegFMs by manipulating the latent
space, which has been explored in APPLE [67]. On the other hand, considering that the group-wise
separablity is similar acrosss different SegFMs, these four tasks might suffer more unfairness from
the data than from the model.

HAM 10000

TUSC

FairSeg

Montgomery

MobileSAM TinySAM MedSAM SAM-Med2D FT-SAM

Figure 16: Unfairess potentially exists in the latent space of SegFMs. e: data points of the Male; e:
data points of the Female.
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Visualization of the fairness-utility trade-off. In Fig. 17 and Fig. 18, we visualize the fairness-utility
trade-off of various foundation models across different datasets, using different tasks or prompts
for classification and segmentation tasks. Our results demonstrate that careful selection and use
of foundation models are crucial for achieving a favorable fairness-utility trade-off in both tasks.
This observation is consistent with the results using fixed equity-scaling metrics, as shown in Fig. 4.
Additionally, the analysis from Sec. 4 is reflected in these new visualization results.
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Figure 17: The fairness-utility trade-off for classification tasks across different datasets, usages, and
foundation models, using sex as the sensitive attribute. The dotted line represents the adaptation of
CLIP models. The upper left corner of each plot signifies optimal fairness-utility trade-offs.
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Figure 18: The fairness-utility trade-off for segmentation tasks across different datasets, prompts, and
foundation models, using sex as the sensitive attribute. The upper left corner of each plot signifies
optimal fairness-utility trade-offs.
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E.3 Detailed Results

In this part, we provide the detailed numeric results in this paper. Table 7-9 list the results of the
classification task, and Table 10-18 list the results of the segmentation task. Please note that the
codebase gets refactored and continuously evolves to adapt new models and tasks, thus we highly
recommend you use the open-sourced FairMedFM following App. F to launch the code.

Table 7: Classification results for ADNI, BERST, and COVID datasets, sex as the sensitive attribute.
All experiments are repeated three times and mean =+ std are reported (%).

Dataset Usage  Model AUC ACC BCE ECE AAUC AECE EOD AUCyge  AUCrmue ECEyuc  ECErcmac
BLIP 55794252 4776045 69323029 1627238 1644824  4.872.75 12015439 50.03£7.07 60.78+10.49  18.28+328 16.9042.26

BLIP2 56.7544.53 49044623  68.29+120 13.15+1.68 99145.18 60341318 53.69+394  17.99+1.38 14.3242.57

BiomedCLIP  56.541227  48.40+£6.58  69.89+1.02 14.08+2.56 10.11£7.16 5855896 55794583 16224095 17.13+£2.20

3 [&) 56.13£7.35  4679+9.10  69.50+0.41 14.50+2.51 3994279  57.53+4.84 5461+1215  1831+£1.62 18424260

2 CLIP 55494068 41034045 69224015 14344393 5334122 54994128  5627+096 14094225 18.59+4.95

o DINOv2 57874422 54174505 67.97+0.66 12794123 8534441  58.58+9.02 5597285 1682+ 19.3240.94

g MedCLIP  57.743.70 45834432 69.37+022 1454147 4531164 6037100 53924513 19394311 18.10+0.98

3 MedLVM  55.98+7.33 42314236  68.64+145 14.46+1.48 6404562 55531418  56.71£7.80  17.92+0.82 15324393
MedMAE 56954516 48404668  69.06:025 11.67+0.39 8.3 7504049 55484450 6111671 17114495 17.99:42.00

MoCo-CXR ~ 47.60+10.58  4551+7.94  69.85+096 14.66+1.57 1026£16.13  1173+1481 471151119 47.08£1037 19234288 20.02+0.34

3 PubMedCLIP _ 5930+526  5545:48.65  69.17:£0.03 15.3042.10 8.33+11.10 10934929 55074875  63.13:£1.41 19174271 16.60+1.72
3 50412000 64422000 68882000 16.23£0.00 13462000 84872000 66212000 52842000 17.53£0.00 25.69+0.00
< q BLIP2 56414000 42314000 80203000 25.47+0.00 385£000 96014000 58374000  54.69+0.00  26.91+£0.00 27.59+0.00
2 BiomedCLIP 51304078  39.74+0.56 338.7445021 58.58+1.41 0.10+£0.10 97.08£093  56.53+1.08  44.70+1.87  S8.69+1.17 58.65+1.32

3 CLIP 55612000 39424000 7044000 14.8140.00 11512000 97.62£000 41324000  70.66+0.00  22.50£0.00 10.99::0.00

o MedCLIP  552547.56  49.68+6.75 75453256 22.72+1.59 2.19+1.25 93.06:2.31 53514294 56.84=11.96 23484263 24.74+0.75
PubMedCLIP _ 53.03:40.00  41.35£000  75.07::0.00 18.19-£0.00 0.500.00 94394000 40.09+£0.00 6544000  19.18::0.00 19.68+0.00

- BLIP SITTE530 4776474 69.65E216 124TE232 §2952.23 93.63E238  53.124422 56731193 1621F4.14 14905757

g BLIP2 58.60+£3.11 49364840  67.54+0.63 13.2244.13 148£1.67 102641059  86.69+7.26  59.06+46.35  57.76+2.03 14374307 13.60+1.86

32 BiomedCLIP  60.55£6.02 57.05+8.18  76.88+5.66 17.39+138 697+7.77  1026+1.11  §8.02+234 64931384 55.50+10.68 21.10+531 2537+568

& CLIP 65404270 57.0546.26  6549+1.16 10.48+2.37 5194226 128+111  97.08+322 63394277  6626+3.15 15164346 18.63+1.98

5] MedCLIP  5733+1.68 50324242 67.413020 10.18+3.65 336312 83 90.66+7.30  57.86+4.22  SS91+1.87  14.884534 12.98+5.14
PubMedCLIP ~ 74.45+£0.56  69.23+2.54  62.60+0.33 13.2242.57 4.34+4.76 8264118 71024231  77.01+1.98 19574220 15234328

BLIP 84212011  9215+0.57  50.8420.09 32.02+0.07 3.99+0.05 0434203  8207+0.14  8822£007  30.04+0.08 34.03+0.08

BLIP2 91614008  94.64+0.13  38.09+0.04 23.89+0.04 3.02+0.04 7354085 91814010  91.53£0.09  2236+005 25.3840.03

BiomedCLIP  85.09+0.19  92.42+£046  43.812003 25.87+0.07 2.86+0.16 459+£027 82214007  89.26+034  24.424005 27.28+0.12

3 [&) 77324017  8527+1.09 6576032  40.94+0.19 2.74£0.02 12104235 75.09£031  81.26+0.16  39.56+0.20 4230+0.18

2 CLIP 84762012 91.00+£0.41  53.53:0.06 34.06:0.03 3.12£0.14 0.19+0.74  82.03+0.16  88.85+0.11  32.68+£0.05 35.80+0.16

= DINOV2 91354011 94954022  33.05+007 19.55+0.06 2.700.10 5604136 89.92+0.08  93.59+0.15  18.18+0.10 20.8840.03

g MedCLIP  78.05+0.18  83.18+4.10  50.51+024 3041+0.17 1.96:£0.01 188£1.10 76264036  8042+0.11 29412017 31.38+0.17

3 MedLVM  85.56+£0.09  91.50+0.00  49.16+0.13 30.01£0.10 1.69+0.01 4742247 8426+0.10  87.34+0.07  29.16£0.10 30.84+0.10
MedMAE  70.58+£020  71.08+2.86  64.09+0.04 39.45+0.02 1342004 3764298  70.37+0.13 7053028  38.78+0.01 40.12+0.04

MoCo-CXR 82174122 91524054 56544074  35.49+0.57 2.52+0.16 214213 80854134  84.03+£126 34224051 36.74:+0.62

& PubMedCLIP _ 80.64-0.02  90.08:1.02  56.35:0.06 35.45+0.04 2.19:£0.04 9.67£0.72  75.38+0.06  87.53:+0.04 34424004 36.6140.05
& BLIP 20595000 752000 453.89£0.00 OT.4230.00 2612000 99.022000 41432000 4005£0.00  90.10£0.00 O92.71£0.00
2 q BLIP2 50.00£0.05 61.45+27.39  335.77+0.00 89.86:0.00 251£0.00 99.14£038  49.53:+£0.00  50.58+0.12  88.58+0.00 91.10::0.00
2 BiomedCLIP  78.16:046 85274056  28.62+0.86  5.58+1.50 2.742.24 88624315 77424045  80.37+089  S98+142  6.20+2.83

3 CLIP 6123£0.00  7696+0.00  88.43+0.00 52.17+0.00 1.74:£0.00 95.50£0.00  59.93:+£0.00  62.78+0.00  51.29+0.00 53.030.00

o MedCLIP  52.18+7.78  54.80+£40.43  67.79+4.02 41.58+2.25 2.63£0.05 9653417  53.89+6.58 49.97+1128 402614224 42.80+2.24
PubMedCLIP  5033:£0.00  63.28::0.00  192.25:0.00 _79.5120.00 2.38:£0.00 8927000  54.15+£0.00  44.42+0.00  78.39+0.00 80.77::0.00

Z BLIP 89395002 9448007 16592001  T8IZ0.06 T3820.03 96705042 8831L002 91332002 1762002 3.14=001

g BLIP2 85.01£0.03 91874021  20.58+0.02  3.1040.00 025021 99.47+037 8394005  86.70+0.03 2504003  2.75+0.23

2 BiomedCLIP  88.08+£0.09 9460040 1658005  0.70+0.14 0.64-£0.26 97514026  87.62+0.16  88.83+0.03  1.80£020  1.17:0.08

& CLIP 87.76£0.00  92.57+0.07 1851000  1.65+0.03 0.26£0.01 99.00£0.14  88.64:£0.00  86.89+0.00 2274002  2.01:0.03

2 MedCLIP 89294051  94.11£0.62  17.97+0.13  3.36:0.08 0.600.38 98.04+1.00 88214049  91.00+052 2974022  3.57+0.29
PubMedCLIP  83.44-0.00  93.10+£0.00  19.98+0.00 199002  2.69+0.03  0.58+0.02 96.57+0.00 8238001  85.08+0.01  2.124002  2.70+0.01

BLIP 50.67£13.90  54.17+741 69352063 17.05+171 1573%1224  740+534 2782241 6762267 45.69£1999 544311506 26931546 19.53+2.59

BLIP2 50844578 S9.03E7.67 69124036 18.11+334  9.56+631 7463327 2083+1502 2040+1325 65504661 62004661  25.55+3.63 20.79+2.84

BiomedCLIP 60474371  60.42£295  69.28+142 1882335 1014£11.34  8.63+570 1528+1684 I18.53+11.31  5699+9.52  67.13£572  2038+2.13 29.0142.68

2 (&) 57.03£1.56 51394196  69.26:0.02 15.66:4.73 12.82+1023  9.56+2.52 : 9.56+42.02  55.83+7.13 61.89+1058  2932+£0.15 24.99+8.86

£ CLIP 50.58+£4.06 52784428 69453022 13842242 23431865 4524345 11.66+725 61.89+1271  3846+6.07 22.78+432 2233+2.58

! DINOV2 5038222 53474393 7438631 1957432 17.83+1245 10.77+5.50 7.58+359  552449.00  39.74+7.39 22341064 27.45+0.43

g MedCLIP 45464696 49314098  69.70+0.44 18.87+2.11 11.908.11 7584272 40331441 48254280 24454726 23.0146.28

3 MedLVM 43724538  52.08+1.70  70.81+048 21.29+6.72 5.59:£1.92 7344245 42774984 4557158 27744474 25294553
MedMAE  4557+1.58 47924000  70.17+0.56 16.68+1.77 7234228 3854000 41964459 5338505 25414366 21.274358

MoCo-CXR 453141021 52084295  69.62+027 17.81+3.50 635+6.44 11314654 38341347 51284811 18554240 21.2246.15

2 PubMedCLIP _ 47.74+7.21  47.92+1.70  69.42+0.09 19.02+1.59 27342.27 7344245 48.604822  44.87+7.9 22714400  19.9842.18
2 BLIP 56362000 66671000 88442000 26.92£0.00 7532000 97.062000 72272000  39.060.00 23.20£0.00 30.72£0.00
[S) q BLIP2 63.43£0.00  75.00£0.00  78.25+0.00 23.95:0.00 8.25:£0.00 80462000  68.07£0.00  57.03+0.00  23.08£0.00 31.340.00
2 BiomedCLIP  9178+1.54  84.03+241  57.67+637 2146+1.75 1.98+0.93 04.52+2.50  89.64:£1.28  95.05+1.19  21.80+1.10 21.77+1.54

3 CLIP 50514000  66.67+0.00  192.06+0.00 31.0620.00 4.07+0.00 96.880.00  31.09+0.00  6641+0.00  29.08+0.00 33.16+0.00

o MedCLIP 51184729  68.06+120  66.94+2.50 17.24::3.96 4.96+2.19 9230+4.18  56.02+14.95 48701196 22474075 27424273
PubMedCLIP  8121+0.00  77.08£0.00  76.95:0.00 _26.57+0.00 3.17£0.00 85.1620.00  84.03:+£0.00  75.78+0.00  27.13£0.00 30.30::0.00

Z BLIP 652551053 71535524 64805886 15865231 T3RE0T 928642 60S0E1399  69.5358.203  23.99F5.66 21.40+282

g BLIP2  66.60£1535 69.44+3.18 6249390 17.69+1.77 2.60+2.05 91704473 72.83+17.83  60.42+17.01 23324228 20.88+3.56

2 BiomedCLIP 9461135 88194120 25184328  6.43+024 4.10£1.88 9217330  9496+0.84 94274239  7.94+184 10.67+2.88

& CLIP 645151424 68.75£3.61 65512840 21.79+4.29 5.69+0.61 93914546 627542271  65.80+7.09  27.04+4.02 28494378

2 MedCLIP 643841856  73.61£670  61.69+4.93 18.52+3.10 5.03+4.51 9190361  68.35+20.86 61.9816.09 22254271 27.28+1.88
PubMedCLIP ~ 87.0042.37 78474241  47.34+1.97 15744349 4.45+3.79 71.99+2.84  88.52+44.63  867242.07 18834292 20.16+3.60
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Table 8: Classification results for CheXpert, FairVLMed 10k, and GF3300 datasets, sex as the sensitive
attribute. All experiments are repeated three times and mean = std are reported (%).

Dataset  Usage Model AUC ACC BCE ECE AAUC AECE DP AUCe AUCkemale ECEyq. ECEgemae

BLIP 77.90£0.00  81.69+0.02 56.10+0.00  31.2240.00 0.76+0.00 2.33+0.00 3.27+0.03 78.36+0.00  77.60+0.00  32.38+0.00 30.05+0.00

BLIP2 82.91+0.00  84.55+0.04 51.63+0.00 28.48+0.00 0.074+0.00 0.50+0.00 1.2040.01 82.96+0.00  82.88+0.00  28.72+0.00 28.23+0.00

BiomedCLIP  83.60+0.00  84.81+0.02 50.30+0.00  26.29+0.00 0.7740.00 1.59+0.01  1.72+0.02 83.23+0.00  84.01+0.00  27.08+0.01 25.49+0.00

2 C2L 81.88+£0.00  84.94+0.00 65.53£0.00  38.26+0.00 1.454+0.00 0.11£0.00 0.04+0.00 81.18+0.00  82.63+0.00  38.31+0.00 38.20+0.00

& CLIP 76.61+0.00  81.01:£0.00 59.3240.00  34.16£0.00  0.9140.00 2.65+0.00 2.7140.02 77.25£0.00  76.34+£0.00  35.49+0.00 32.84::0.00

5 DINOv2 83.4940.00  85.5440.02 50.124£0.01  27.16£0.01  0.55£0.01 0.73+0.01  0.774+0.02 83.2240.00  83.78+0.01 26.79+£0.01  27.5240.01

E MedCLIP 89.7740.00  89.33+0.02 43.04+0.14  21.90+£0.09  1.11+£0.00 0.23£0.01  1.04+0.01 89.214£0.00  90.324+0.00  21.78+0.10  22.01+0.09

a MedLVM 83.15+0.01 86.4440.01 51.2740.02  28.03+0.01 0.76+0.00 0.81+£0.02 1.21+0.03 82.78+0.01 83.5440.01 28.4440.00 27.6340.02

MedMAE 84.39+0.00  86.30+0.45 51.14£0.01  28.67+0.01  1.0840.00 0.00+£0.00 1.63+0.01 2.0 .07 83.87+0.00  84.96+0.00  28.67+0.00 28.67+0.01

= MoCo-CXR 82.04+0.22  84.61+0.52 54.2740.19  30.96+0.16 0.694+0.09 2.64+0.26 540+1.24  7.81+1.89  81.85+0.28  82.53+0.20  32.28+0.26 29.64+0.07

2 PubMedCLIP  78.: 83.9240.17 56.8140.00  32.38+ 0.38+0.00  2.33+0.00 2.13+0.03 4 78.81+0. 78.434+0.00  33.55+0.00 31.224+0.00
% BLIP B 8.14£0.00 79.90L 4573 4L 0.62E EX 0 7.33E 4.89 L 4542000 46.04 L

S q BLIP2 63.65+0.00  64.14+1.41 49.85+£0.00 25.71+0.00 3.57+0.01 027+0.00 9.11+£0.08 88.1 .35 61.87+£0.00  65.4440.01 25.58+0.00  25.85+0.00

a BiomedCLIP  72.5042.33  81.90+2.47 155.70+8.82  48.73+3.22 2.624+0.52 4.87£1.17 226120 97.19£1.58  71.20+2.46  73.82+£224  46.32+3.77 51.18+2.61

=i CLIP 54.05+0.00  29.154£0.00  120.38+£0.00 61.80+0.00 1.61+0.00 0.66+0.00 2.9740.00 96.74+0.00  53.1840.00  54.794+0.00  61.47+0.00 62.13+0.00

© MedCLIP 48.274+14.32  30.77+35.66 72374£7.10  41.48+4.02 3.71£1.01 1.09+£0.29 4.25+7.29 47.614£16.65 49.23:£12.60  42.02+3.88 40.93+4.16

PubMedCLIP  67.45+0.00  76.79+0.00 66.14+0.00  38.26+0.00 0.81:£0.00 0.57+0.00 3.78+0.00 67.03+£0.00  67.84:£0.00  37.97+0.00  38.54+0.00

= BLIP 79.94£0.00  85.22+0.03 27.04£0.00  0.75£0.01 0.36+0.00 0.05£0.00 0.37£0.01 79.77£0.00  80.12£0.00 0.78:0.00  0.83£0.00

_é% BLIP2 81.65+£0.74  85.324+0.51 26434043 1.14£0.46  0.55+0.26  0.25+0.12  0.33+0.12 81.37+0.61 81.9240.87 1.21+0.53 1.2440.22

< BiomedCLIP ~ 84.07+0.00  86.0640.31 25.2040.00  0.68+0.01 0.8840.00 0.37+0.07 1.5140.09 83.65+£0.00  84.53+0.00 0.53£0.03  0.91+0.04

[ CLIP 81.23+£0.00  84.8340.03 26.524+0.00  0.76+0.01  0.16+0.00 0.14+0.01  0.87+0.04 81.17+£0.00  81.3240.00 0.85£0.00  0.72+0.01

d MedCLIP 81.50+0.10  85.35+0.64 26.39+0.05  0.69+0.06 0.56+0.18 0.27+0.01 ~ 0.20+0.08 81.21+0.18  81.7840.07 0.63+0.10  0.91+0.10

PubMedCLIP ~ 82.37+0.00  85.27+0.01 25.9240.00  0.55£0.01  0.5440.00 0.21£0.01  1.50£0.01 82.12+0.00  82.66+0.00 0.70£0.01  0.91£0.01

BLIP 69.90+0.03 61.47+0.87 63.18£0.01 3.19+0.06 5.77+0.07 4.28+0.33 2.18+0.64 72.8240.05 67.0540.03 6.61+£0.30  2.33+0.05

BLIP2 74.14£0.00  64.97£1.66 59.8840.02  2.94+0.13 3.274+0.04 2.35+0.19 1.53£0.13 75.7840.01  72.52+0.03 5.65£0.07  3.30£0.10

BiomedCLIP  71.33+£0.02  59.5840.77 61.99+0.02  3.27+0.62 5.03+0.10 1.93+0.47 2.37+0.54 73.86+0.08  68.83+0.02 276£0.32  4.69+0.31

2 C2L 69.66+0.01  60.02+0.05 66.33+0.01  10.84+0.07 3.15+0.01  1.96+0.30  3.0940.11 71.24+0.02  68.09+0.01 12.10£0.15  10.14+0.10

& CLIP 68.47+0.06  63.12+0.26 64.23£0.02  5.77+0.15 4.26£0.02 1.64+0.74 3.78+0.64 70.51+0.07  66.25+0.06 7.09+£0.48  5.44+0.47

5 DINOv2 76.63+0.05  66.02+£1.03 57.33£0.02 2874035 1.45+0.11 0.51+£0.49 1.49+0.23 77.34+0.04  75.89+0.10 3.86+£0.04  3.56:+0.54

E MedCLIP 72444009  63.90+1.23 62.05£0.04  5.57+0.14 4.94+0.09 2.18+0.61 3.28+0.63 74.914£0.10  69.98:£0.11 7.34+£0.25  5.1640.40

3 MedLVM 73.1240.01 64.7640.48 60.90+0.01 2954048 4424021 2204088 1.11+0.13 75.3240.11 70.904+0.09 3.50+0.16  5.70+0.83

™ MedMAE 68.7240.01 60.9240.38 64.2940.01 47340.14  2.1740.06  3.00+0.14  3.514+0.74 69.76+0.04  67.594+0.03 6.50+£0.04  3.50+0.15

=1 MoCo-CXR 69.2240.45 61.7240.82 64.2640.25 5524049 3.704+1.08 3.01+£0.21 3.44+£1.16 70.99+0.84  67.29+0.53 7.48+0.25  4.48+0.38

3 PubMedCLIP  67.84+0.07  60.9440.08 64.4440.02  5.3840.23  4.5540.02  2.30£0.56  5.23+0.07 70.084+0.07  65.53+0.07 6.76+0.57  4.46+0.12

5 44.43£0.00 T1.49£0.00 T.84£0.00 19.67£0.00 4.48F0.00 3.13£0.00 0.00£0.00 42.18£0.00  46.67£0.00  21.20£0.00 18.06£0.00

Z q BLIP2 43.83+0.01  51.32+£0.00 78.02+0.00 18.05+0.00 2.954+0.01 0.61+0.04 0.11£0.00 42474001 45.42+0.01 18.23+0.00  18.84+0.04

g o BiomedCLIP  54.33+£2.39  51.3240.00 110.30+25.16 29.48+9.47 2.12£1.58 2.07£1.42 0.11£0.00 53244294 5537+1.89 30.59+10.08 28.52+8.93

=i CLIP 60.19£0.00  52.52+0.00 72.61£0.00 15.13£0.00 0.2840.00 0.40£0.00  0.00£0.00 60.04+0.00  60.33+£0.00  15.03+£0.00 15.43:£0.00

© MedCLIP 54.234+6.33 51.4940.15 69.91+0.27  6.51£2.53  1.91+£097 0.37+0.54 0.15+0.07 54.304£7.19  54.20+£5.65 7.39+£3.30  7.10£2.69

PubMedCLIP  50.024+0.00  51.3240.00 74.9540.00  14.49+0.00 0.49+0.00 1.20+0.00 0.114+0.00 49.814+0.00  50.30-£0.00 13.84:40.00  15.04:0.00

- BLIP 75.35+0.0T 67.60+0.35 58.98+0.01 1.62+0.04  381+0.0T 023+£0.19 0.61+0.13 77.29+0.02  73.48+0.01 3.64+0.21 3.4140.05

'i% BLIP2 73.2840.13 67.1640.44 60.80+0.10  3.48+0.49 0.7840.66  1.49+0.30 74.8140.33 71.6740.12 4.66+0.16  4.88+1.15

< BiomedCLIP 72.62+0.08  65.71£0.75 61.1540.08 3.53+0.05 0.73+0.61  2.4840.17 74.11£0.04  71.06+0.16 4.51£0.29 3.78+0.35

[ CLIP 74.3840.02  65.23+0.06 59.60+0.02  2.83+0.29 1.40£0.31  0.84+0.24 75.3240.05  73.41£0.00 4.28+0.12  2.88+0.24

d MedCLIP 75294041 65.77+2.55 58.94+0.34  2.85+091 0.72£0.21  1.9140.13 77.02+0.33 73514047 4.24+0.77  3.52+0.59

PubMedCLIP  73.69+0.00  66.65+0.34 60.37+0.01 2.36+0.06 1.47£0.12 2.52+0.20 75.60£0.01  71.66+0.01 3.36+0.02  4.83+0.11

BLIP 77.45+0.16  69.4740.21 57.01£0.20  8.48+0.80 2.30+1.56  4.154+0.85 78.9240.16  76.1840.22 8.73+1.62  10.62+0.28

BLIP2 80.09+0.08  70.5441.67 53.8140.06  7.61+0.50 3.99+0.88 3.59+2.72 81.00+0.05  79.3640.23 9.88+0.59  5.89+0.31

BiomedCLIP  80.13+0.18  75.25+0.50 52.974+0.34  7.67+0.38 2624031  5.16£0.70 81.64+0.29  79.1940.08 9.94+0.43  7.32+0.54

2 C2L 82.33+£0.21  72.2840.08 63.19£0.27  20.46+0.01 0.65+0.24  1.0140.58 82.60+0.46  82.084+0.17  21.20+0.45 21.23+0.23

& CLIP 80.23+£0.15  74.0240.16 58.2040.02  12.55+0.02 1.42+£0.31  7.41:£0.00 79.23+0.23  81.45+0.09  12.65£0.15 14.07:£0.40

5 DINOv2 80.79+£0.45  74.2440.24 53.02£049  6.64+0.23 3.77+0.83  2.92+0.97 81.69+0.63  80.02+0.39 9.14£0.25  5.38+0.92

El MedCLIP 76.39+0.15 67.2340.40 62.09£0.00 10.43£0.17 3.74+094  1.234+0.19 77.26+0.15 75.6840.12 12.63£0.45 8.89+0.31

a MedLVM 82.54+0.03 75.314+0.40 49.73+0.07 5.61+0.13 0.54:£0.60  3.03+£0.58 83.40+0.03 81.98+0.07 7.71+0.19  7.17+0.30

MedMAE 80.60+0.01 71.0440.00 54.7840.04  10.65+0.14 2514051 6.6240.39 81.73+0.02  79.59+0.05 12.7240.16  10.2140.26

MoCo-CXR 82.34+0.19 75424048 55.4240.81 12844152 0.9340.11 1.98+£0.99 3.48+0.39 82.51+0.75 82.2840.36 13.74£0.24  12.3141.83

§ PubMedCLIP  78.40+0.01 64.4240.21 57.33£0.03  11.86+0.17 2.86:+0.02 3.72+1.22 5.2740.19 79.9740.01 77.11£0.01 13.84+£0.47 10.1140.53

0 BLIP 42.47£0.00  50.84£0.00 107.25F0.00 33.83£0.00 0.95F0.00 0.36£0.00 0.34£0.00 99.68£0.00 41.88E0.00 42.83£0.00 4.2420.00  33.88£0.00

© gq BLIP2 42.75+0.01  50.84+0.00 81.84+0.01  20.87+0.00 1.314+0.07 3.09£0.00 0.34+0.00 .68+0.00  43.44+0.05  42.13£0.02 19.26+0.00  22.35+0.00

o BiomedCLIP  56.65£1.90  50.8440.00 214.87+67.59 43.02+5.68 1.98+1.51 1.82+0.79 34+0.00 99.67+0.01  5573+£2.50  57.724+1.65  44.18+6.17 42.36+5.51

3 CLIP 70.64+0.00  62.79+0.00  215.284+0.00 47.68+0.00 1.63+0.00 3.05+0.00 3.3740.00 95.83+0.00  71.69+0.00  70.06+0.00  49.17+0.00 46.12+0.00

o MedCLIP 46.274+16.46  54.3245.88 70.704£2.52 12524454 4424374 2.74+3.31 2814399 96.97+4.38 44.98+19.35 47.54+13.85 13.924£6.77  11.81£2.90

PubMedCLIP  39.8740.00  50.84:£0.00 87.674£0.00  23.904£0.00 3.314£0.00 2.31+0.00 0.3440.00 99.68+0.00  38.22:40.00  41.53+0.00  25.97£0.00 23.66:-0.00

= BLIP 83.52£0.03 74.80+£0.26 49.411£0.04 4931049 T1.651£0.09 2841038 3371034 84.1410.07  82.49+£0.03 6.9610.17  4.1310.42

_@ BLIP2 71.36+£7.48  59.93+9.50 61.88+6.75 6.89+2.12 5.8543.24 5.04+2.04 2.58+0.19 74454579 68.5949.02 10.4442.15  5.4040.38

< BiomedCLIP 83.12+0.14  74.974+2.04 49.77+0.16  4.72+1.86 3.15£041 3.07+0.84 236+2.05 81.64+0.28  84.7940.16 5.88+1.24  7.17+£2.78

[ CLIP 82.82+0.03  72.95+0.26 50.1940.04  6.50+0.44 0.46+0.07 0.89+0.24  3.03+0.89 83.02+0.01  82.5740.07 7.36+0.54  6.47+0.72

d MedCLIP 81.93+0.44  72.6240.83 51.66+0.38  5.95+1.88 1.23+0.36 3.53£2.79 3.25+1.85 82.60+0.64  81.38+0.34 829+1.60  4.75+1.20

PubMedCLIP  80.57+0.03  71.21+0.29 52.70+0.04  4.32+0.23  2.10+0.08 1.91+£0.61 5.39+1.21 81.75£0.05  79.64+0.04 6.76+0.28  4.86+0.60

111350

https://doi.org/10.52202/079017-3535



Table 9: Classification results for HAM10000, MIMIC-CXR, and PAPILA datasets, sex as the
sensitive attribute. All experiments are repeated three times and mean =+ std are reported (%).

Dataset  Usage Model AUC ACC BCE ECE AAUC AECE DP EOD AUCye AUCkemaie ECEpe ECEgemae
BLIP 86.2540.01 81.104+0.11 48.81+0.04  24.264+0.04 0.114+0.06 1.5840.05 11.7140.35 7754087  85.774+0.04  85.85+0.08 23.474+0.02 25.05+0.06
BLIP2 90.14+£0.04  86.78+0.53 43.54+0.04  20.72+0.05 2.344+0.06  0.660.06 9.7440.61 12.05+0.19  90.79+0.04  88.44:0.07 21.04+0.05 20.39+0.07
BiomedCLIP 85.70+0.08  80.99+0.75 49.13£0.11  21.21+0.14 2.83£0.08  0.78+0.10 8.18+0.83 7.92£1.34  86.52+0.14  83.69+0.10 20.81+0.14  21.60+0.16
2 C2L 78.7240.02  71.42+191 62.84+0.30  33.12+0.21 3.06+0.12  6.01+0.04 8.73+0.57 8.5940.75  79.43+0.06  76.37+0.06 30.114+0.19 36.124+0.23
E CLIP 84.854+0.06  82.64:£1.16 51.81+£0.07  26.05+0.04 0.23+0.05  1.80£0.01 9.64+1.80 6.95+1.63  84.1440.08  84.37+0.08 25.15+£0.03  26.95+0.04
5 DINOv2 85.8840.11 84.02+0.55 46.19+0.05  20.65+0.06 3.48+0.15  0.224+0.02 9.4540.11 14.50+1.40  87.03+£0.06  83.54+0.19 20.76+0.05 20.54+0.06
2 MedCLIP 81094022  77.45+1.21 56.21+0.09 28.60+0.10 6.444+0.27  3.0140.20 9.814+1.93 13.06+3.18  83.1140.29  76.66+0.09 27.0940.15 30.10+0.10
a MedLVM 87.26+0.06  85.57+0.38 47.50+0.10  22.95+0.07 2.804+0.07  0.11£0.04  1328+0.17  18.11£0.54  87.99+£0.06  85.19+0.13 22.89+0.07 23.01+0.07
MedMAE 85.3440.03  82.88+0.32 50.20+£0.01  24.97+0.00 4.7840.03  2.91+0.03 9.1640.07 14231045  86.77+£0.02  81.99+£0.04 23.51+0.01 26.42+0.02
=3 MoCo-CXR 82.92+1.10  79.27+1.43 55.62+0.85  28.64+0.37 597+1.78 1.15+£0.65 12.4241.15 16.73+2.81 84.874+0.64  78.90+2.14 28.07+0.28 29.22+0.58
§ PubMedCLIP  85.89+0.09  79.90+0.16 51.26+0.08  26.13+0.03 1934001 225+0.05  11.9840.34 7.24+0.27  84.6240.10  86.55+0.09 25.00+£0.02 27.25+0.05
s BLIP 42.8510.00 17.56+0.00 70.89+0.00 33.43+0.00 4.59+0.00 T3.28%0.00 3.8840.00 96.85£0.00  46.79+0.00 4220+0.00 26.78+0.00 40.06+0.00
= K BLIP2 44.36+0.01 14.47+0.00 59.90+0.00  25.68+0.00 0.73+£0.00  9.76:£0.00 0.11+£0.00  99.70+0.00  45.4240.01 44.6940.00 21.01+0.00  30.77+0.00
= o BiomedCLIP  67.26+549  64.84+7.75 112.30£31.30 45.56:£8.66 1.19+£0.25  5.89+1.59 3614327  96.90£1.49  66.714£534  67.90£542 42.61+7.87 48.49+9.44
=} CLIP 72.0540.00  74.16+0.00 73.86+0.00 37.55+0.00 5.1940.00  5.03+0.00 6.16+0.00  91.98+0.00  73.5840.00  68.39+0.00 35.03+0.00 40.06+0.00
o MedCLIP 54.11£11.53  32.91+29.79 69.05+£4.07 3516324 8294372 7.87+0.86 1.814+1.91 97.92+2.10  56.11£13.81 51.34£9.71  31.234£3.56  39.10+£2.91
PubMedCLIP  62.38+0.00  63.780.00 99.15+0.00  50.08+0.00 8.2940.00  2.05£0.00 16.58+£0.00  79.98:0.00  64.06+£0.00  55.77+0.00 49.064+0.00 51.11£0.00
- BLIP 87.44+0.01 82.35+0.11 28.60+0.01 1.64+0.06 2.12+0.02 0.39+0.08 10.53+0.23 89.39+0.43  87.88+0.01 85.76+0.01 280+0.18 2.40+0.10
_%‘ BLIP2 86.97+1.26  81.00£1.05 29.05+1.23  2.10+0.39 2.55+0.77  0.70+£0.48 8.15£1.09  91.93+0.28  87.65+1.54  85.09+0.78  3.48+0.44  2.78+0.18
< BiomedCLIP 87.124+0.03  84.63+3.38 28.89+0.02 1.92+0.09 0.79+0.16 1.32+0.67 6.98+1.37  94.58+0.98  87.16:£0.11 86.37+0.06  3.804+0.62  2.47+0.10
& CLIP 87.944+0.00  84.17+0.11 28.19+0.00 1.5840.04 2.8440.01 0.43+0.09 7394006  91.13+0.04  88.83+0.00  86.00+0.01 3.4140.05  2.98+0.05
d MedCLIP 84.804+0.06  83.80:+£0.75 30.77+0.08  1.84+0.32 0.674020  0.86£0.20  10.70£1.53  89.25£3.01 84.1240.27  84.49+£044 3474023  2.61+0.28
PubMedCLIP  86.93-+£0.01 83.254+0.11 29.59+0.01 2.79+0.09 2.0340.03 1.2740.06 11.304+0.17  89.60+0.71 87.3740.02  85.34+0.01 4.1440.11 2.8740.05
BLIP 76.14£0.00  68.45+0.01 59.08+0.00  10.34+0.00 0.994+0.00  4.67+0.00 4.1640.01 1.97+0.01 75.60+£0.00  76.59+0.00 12.85+0.00  8.18+0.00
1P2 80.79+0.00  73.45+0.00 54.21£0.00  9.30+0.00 1.8440.00 1.47£0.00 8.23+0.01 5.54+0.01 79.69+0.00  81.53£0.00 10.04+£0.00  8.57+0.00
BiomedCLIP 81.2540.00  73.58+0.45 53.1840.00  8.53+0.00 1.5840.00  3.91+0.00 3.2540.12 1.174£0.14  80.394+0.00  81.97+0.00 10.494+0.00  6.5840.00
2 c2L 80.2040.00  72.12:£0.00 66.91£0.00  22.24:0.00 1.53+0.00  2.22:£0.00 5.06+:0.00 2.61£0.00  79.30£0.00  80.83£0.00 23.49+0.00 21.27+0.00
E CLIP 74.83+0.00  66.41+0.01 61.69+0.00 11.95+0.00 2.48+0.00  2.90+0.01 4.2740.01 2.5240.00  73.39+0.00  75.87+0.00 13.494+0.00 10.60+0.01
= DINOv2 81.004+0.00  72.68+0.00 53.90+£0.00  9.13+0.00 1.4840.00 1.44+40.00 8.10+0.01 5.3240.01 80.10+0.00  81.58+0.00  9.854+0.00  8.414+0.00
El MedCLIP 89.38+0.00  82.23+0.01 41.98+0.01  7.61£0.01 027+0.00  0.22+0.00 7.57£0.01 3.640.01 89.1740.00  89.44+0.00  7.72+0.01  7.50+0.01
a MedLVM 80.68+0.00  72.06+0.03 54.33+£0.00  9.37+0.01 1.60£0.00  2.39+0.00 7.0640.02 4.41+£002  79.72+0.00  81.32+0.00 10.57+0.00  8.17+0.01
MedMAE 80.734+0.00  72.88:£0.09 54.65+£0.00  9.97+0.00 1.83+0.00 1.41+£0.01 6.91+0.02 4.35+0.01 79.66+£0.00  81.50+0.00 10.694+0.01 9.2840.01
5 MoCo-CXR 79.50+0.37  72.07+0.57 56.87+0.33  10.92+0.33 1.45£0.10  2.94+0.18 2.50+1.74 1.39+£047 78774037  80.22£0.43 1294041 10.00+0.37
<9 PubMedCLIP  77.46+0.00  70.43+0.00 58.64+0.00  10.754+0.00 1.6740.00  3.03+0.00 5.6840.00 3.33£0.00  76.474+0.00  78.14+0.00 12.4940.00  9.454+0.00
1<) 52.54+0.00  39.07+0.00 73.32+0.00 18.43£0.00 0.63£0.00  4.09+0.00 1.55£0.00  98.62+0.00 52.15£0.00 20.47£0.00 16.38+0.00
= 9 BLIP2 58.68+0.00  40.84+0.00 65.72+0.00  3.8430.00 541£0.00  1.25+0.00 3.48+0.00  96.69+0.00 60.73+0.00  5.734+0.00  4.4840.00
= o BiomedCLIP  64.9742.11  49.02+2.59 137.02+13.53  32.02:+2.62 0.70+£0.65  0.60+0.43 7.38+1.46  93.70+126  64. E 65.06+2.38 32.3342.82 31.744245
a CLIP 54.08£0.00  37.87+0.00 97.19+£0.00  36.55+0.00 0.71+0.00  5.23£0.00 0.00£0.00  99.95+0.00  53.474+0.00  54.18£0.00 39.16:£0.00  33.93:£0.00
© MedCLIP 50.03+£7.72 38.97+2.09 T1.73+£3.74  15.70+5.27 0.6340.41 6.29+0.11 2024349 98.07£333  50.36+7.96  50.74+8.58 19.04:+4.93 12.74+4.99
PubMedCLIP  64.1840.00  51.44+0.00 67.26+0.00  12.474+0.00 0.064+0.00  5.1240.00 3.5040.00  97.79+0.00  63.9740.00  64.04+0.00 15.03+£0.00  9.91+0.00

Ex T.68 = = EX Ex =0.1 =X = g = g Ex
BLIP2 80.89+0.07  72.99+0.12 51.59+0.07  2.64+0.05 1.360.02  0.07£0.05 8.53+0.01 94.27+0.01 80.04+0.05  81.40£0.08  2.68+0.16  2.67+0.06
BiomedCLIP 81.5940.00  74.20+0.16 50.80+£0.00 1.86+0.01 1.1740.00  0.1740.06 4.2040.03  98.53+0.02  80.93+0.00  82.10+0.00  2.72+0.04  2.54+0.02
80.624+0.00  73.06+0.01 51.80+£0.00  2.11+0.02 1.64+0.00  0.27+0.19 6.494+0.02  96.09+0.03  79.644+0.00  81.28+0.00  2.42:+0.13  2.15+0.06
MedCLIP 80.214+0.08  72.35+0.65 52.15+0.08 1.97+0.06 1.574£0.09  0.06+0.03 7.9040.31 94.74+0.34  79.24+0.12  80.82+£0.05  2.12+0.05  2.18+0.06
PubMedCLIP ~ 81.5140.00  73.63+0.43 50.77+0.00 1.66+0.01 1.5540.00  0.33+0.10 6.1540.01 96.59+0.01 80.594+0.00  82.14+0.00  2.2440.08 1.9240.02
BLIP 82.19+1.14  72.62+4.69 59.03+£0.48  30.20+0.36 5.6842.11 2.19£2.05 10.71£10.71 14.03+8.79  78.70£1.57  84.38£1.04 31.55+£2.50 29.96+0.36
BLIP2 87.9842.95  88.69+2.23 58.01+2.32 33.4342.22 12374502 3.25+3.36 11904546 18.79+1827  93.6240.50  81.25+5.51 36.0242.40 34.5343.24
BiomedCLIP  69.11:£7.87  69.64+9.56 54.07+£2.84 25.81+1.56 17.04£9.16 1.49£1.55 4.76+2.06 11195434 64.06+0.50 76.39+16.74 27.3741.30 28.86+1.64
2 67224322 68.45+8.91 69.15+1.73  34.09+1.21 15.44+13.07  5.68+2.02 7.14+7.14 19.23+7.55  65.22+46.96 68.23+15.89 34.68+£3.40 38.10+1.95
E CLIP 82.7849.66  82.74+2.23 65.48+0.93  34.194+1.84 4404154 3954375 142941288 25.07+17.66 84.06+11.04 81424647 38.63+£1.68 34.69+1.41
= DINOv2 83.06+4.88  80.36:6.36 51.29+2.39 25.98+1.48 7.25+576  2.69+£2.42 4.76+2.06 15.48£13.00  80.00£3.98  86.81£7.39 28.64:+2.09 26.71+1.15
2 MedCLIP 78.68+1.54  79.76+4.69 62944040 32.61+1.25 8.504+8.35  6.39£1.10 8334546 20.04+1270  72.7542.19  81.25+6.51 31.674+1.06 38.06+0.24
a3 MedLVM 81.3240.41 79.174+3.04 58.29+0.95 30.53+0.90 6.1943.65  4.64+2.04 2.3842.06 7.904228 82904329  78.12+2.76 30.534+3.47 33.07+3.16
MedMAE 63.28+8.36  54.17+12.14 67.32+0.33  32.67+0.18 24234772 2.61+2.06 9.52+4.12 17.65+3.77  74.93+5.08 50.69+12.55 33.21+1.80 35.67£1.59
MoCo-CXR  54.654+20.94 53.57+29.59 69.03+1.08 35.80+0.77 29.04426.66  3.25+2.83 3.57+0.00 15.30+4.85 41.45423.66 70.49+23.73 37.07+1.87 40.32+0.80
5 PubMedCLIP  73.0545.50  75.00+9.56 65.18+0.30  33.7742.54  20.66+4.96  2.53+1.44 5.95+5.46 11224692 64.064+5.51 84.72+ 33.564+3.00 3547+1.78
= BLIP 35.46£0.00  26.79£0.00 T99T£0.00 75.03£0.00 30.69£0.00  2.37=0.00 0.00£0.00  85.05%0.00  2348F0.00  54.T7=0! 75.20£0.00  77.57£0.00
£ @ BLIP2 69.114£0.14  64.2940.00  310.17+£0.01 81.43+0.00  26.81+£0.60  3.60+0.00 3.57+£0.00  74.93+£0.00  54.78+0.00  81.60+0.60 79.64+0.00 83.23+0.00
E BiomedCLIP  78.3342.07  76.79+4.72 43.57+£6.74  13.48+6.13 1533+£2.70  8.99+3.50 14294357  73.88+6.66  72.174+2.30  87.50+1.04 16.01+£2.37 21.68+7.29
3 CLIP 78.25+0.00  85.71+0.00 43.52+0.00  16.58+0.00 9.86+0.00 1.15£0.00 3.5740.00  95.33+0.00  81.74+0.00  71.88+0.00 21.26:0.00 20.10+0.00
o MedCLIP 50.514+16.80  60.12+36.70 65.58+2.84 32.18+1.65 23.78+14.78  4.32+1.43 7.1443.57  84.61+3.27 37.68+10.73 61.46+23.87 30.50+£1.81 34.82+0.81
PubMedCLIP  43.26+0.00  33.93:£0.00 101.25+0.00  51.10£0.00  36.74+0.00 1.17£0.00 7.14£0.00  78.03£0.00  61.74+0.00  25.00£0.00 51.80£0.00 52.97+0.00
o BLIP 84.6310.63  80.95£1.03 33.74:0.66 10521093  24.99+1.33 1.77£0.29 TI19£206 7416%5.72 71.88£133 96.88£0.00 19.77£023 18.00£0.35
£ BLIP2 90.6240.59  89.88+1.03 37.73+£0.33  17.08+1.65 9.424231 8.29+1.76 16.6742.06  79.2041.26  92.7541.00  83.33+3.12 23.1740.85 14.8942.61
< BiomedCLIP 83.85+1.66  86.90+1.03 3291114 7.65+3.75 8.72+1.38  3.40£1.27 10.7146.19  73.00£8.07  79.13+1.51 87.85+2.62  9.01£2.01 12.40+3.27
& CLIP 82514047  82.74+1.03 38.51+0.52  11.69+1.25  20.29+0.60  3.33+4.31 19.0542.06  75.19+1.20  88.70+0.00  68.40+0.60 20.15+0.91 17.95+4.44
f} MedCLIP 88.4942.12  86.90+2.73 39.30+0.34  17.614+2.56 13.6941.28  0.65+0.47 5954743 81.39+13.74 81454133  95.1442.17 19.314£248 19.09+3.07
PubMedCLIP  84.00+0.36  75.60+1.03 36.13+0.19  14.30£1.55 11.78£1.00  2.46£1.00 4.76+2.06  79.09£0.63  78.84£1.00  90.62£0.00 17.35£3.34 17.14+0.23
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Table 10: Segmentation results on the FairSeg dataset with 2D FMs.

Dataset Model Prompt DSC,,, DSC.in DSChax DSCa  DSCstp  DSCgs

center 45.01 44.83 45.27 0.45 0.22 36.82
rand 45.22 44.74 45.87 1.12 0.56 28.94

SAM rands 5502 5442 5585 143 071 3213

bbox 6335 6326 6342 0.6 008 5852

center 3459 3397 3547 150 075  19.74

. rand 3241 31.84 3322 138 069 1921
MobileSAM 4 4586 4547 4641 094 047 3120
bbox  65.64 6534 6586 052 026 5220

center 4347 4340 4355 0.5 007 4053

Tmsay  Tnd 4806 4800 4813 043 007 4502

y rands 5957 5944 5977 033 016 5124

FairSe bbox 6747 6714 6770 056 028  52.60
g center 248 241 258 017 0085  2.29
rand 172 171 174 003 002 169

MedSAM L hds 1788 1784 1792 008 004 1723
bbox 4467  43.80 4528 148 074 2567

center 3212 3149 3256 107 054 2092

rand 3420 3365 3475 110 055 2212

SAM-Med2D s 5069 5921 60.03 082 041 4233
bbox  49.09  48.66 4938 072 036  36.09

center 1635 1602 1659 057 029 12,70

FLSAM rand 1351 1316 1376 060 030 1039

rands 31.42 31.01 31.71 0.70 0.35 23.27
bbox 49.34 48.77 49.76 0.99 0.50 32.95

Table 11: Segmentation results on the HAM10000 dataset with 2D FMs.

Dataset Model Prompt DSC,,, DSC,;, DSCya.x DSCa DSCstp DSCgs

center 59.01 57.34 61.01 3.67 1.83 20.81
rand 51.31 50.87 51.85 0.98 0.49 34.44

SAM rands 6339 6218 6484 266 133 2721
bbox 5109 5044 5188 144 072 2970
center 4873 4807 4941 124 062  30.08

. rand 4551 4534 4564 030 015 3957

MobileSAM 1 h4s 5049 5038 5062 024 012  45.08
bbox 7513 7169 7925  7.56 378 1572
center 5883 3619 6199 580 290  15.08

Tnygsav  Fnd 338 SLI6 S60+ 488 244 IS5
rands 6371 6147 6639 492 246 1841
bbox 8346 8221 8496 275 138 3514

HAM10000 center 029 029 030 00l 001 029
rand 097 095 099 004 002 0095

MedSAM L ds 1463 1452 1477 025 012 13.00
bbox 7478 7443 7522 079 039 5361
center 8665 8539 8816 277 138 3633
rand  87.12 8580  88.60 289 145 3503

SAM-Med2D s 8948 88.66 9046  1.80 090  47.09
bbox 9092 9030 9167 137 069 5396
center 1154 1032 1299 267 133 494

FLSAM rand 622 538 723 185 093 323

rands 19.01 17.04 21.37 4.33 2.17 6.01
bbox 69.95 67.10 73.38 6.28 3.14 16.90
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Table 12: Segmentation results on the TUSC dataset with 2D FMs.

Dataset Model Prompt

DSCaye

DSCmin

DSCIII&X

DSCa

DSCSTD

DSCks

center
rand
rands
bbox

SAM

27.13
26.96
32.23
87.06

26.85
26.52
32.13
86.41

28.60
29.28
32.77
87.19

1.75
2.76
0.64
0.78

0.88
1.38
0.32
0.39

14.47
11.33
24.42
62.63

center
rand
rands
bbox

MobileSAM

24.70
24.81
27.53
82.84

24.00
24.03
26.81
81.12

28.36
28.93
31.26
83.16

4.36
4.90
4.45
2.04

2.18
2.45
2.23
1.02

.77
7.19
8.54
41.01

center
rand

TinySAM

rands

bbox

TUSC

27.18
25.50
30.69
88.33

26.93
24.96
30.61
87.81

28.51
28.30
31.15
88.43

1.58
3.34
0.54
0.62

0.79
1.67
0.27
0.31

15.18
9.55
24.17
67.43

center
rand
rands
bbox

MedSAM

0.92

1.14

17.75
69.07

0.88
0.56
16.79
68.88

0.93

1.25
17.93
70.07

0.05
0.69
1.14
1.19

0.03
0.34
0.57
0.59

0.90
0.85
11.31
43.30

center
rand
rands
bbox

SAM-Med2D

18.35
14.93
54.07
57.38

15.35
12.81
51.05
53.20

18.92
15.34
54.65
58.18

3.57
2.53
3.60
4.98

1.79
1.26
1.80
249

6.59
6.59
19.31
16.44

center
rand
rands
bbox

FT-SAM

2.26

1.71

9.94
4491

2.17

1.70

9.74
42.00

2.75

1.76
10.98
45.46

0.58
0.06
1.24
3.46

0.29
0.03
0.62
1.73

1.75

1.66

6.14
16.45

Table 13: Segmentation results on the Montgomery dataset with 2D FMs.

Dataset Model

Prompt

DSCavg

DSCmin

DSCrnax

DSCa

DSCstp  DSCgs

SAM

center
rand
rands
bbox

71.80
66.33
88.46
92.75

65.75
59.15
86.62
92.43

78.55
74.33
90.55
93.11

12.80
15.19
3.92
0.68

6.40
7.59
1.96
0.34

9.70
7.72
29.86
69.22

MobileSAM

center
rand
rands
bbox

56.87
51.26
62.46
88.75

55.52
49.48
61.62
88.58

57.98
52.73
62.95
88.84

2.45
3.24
1.34
0.26

1.23
1.62
0.67
0.13

25.56
19.54
37.40
78.54

TinySAM

Montgomery

center
rand
rands
bbox

78.62
69.00
79.82
90.17

77.86
65.67
78.71
90.08

79.33
71.53
80.60
90.19

1.47
5.86
1.89
0.11

0.73
2.93
0.95
0.05

45.38
17.56
41.04
85.47

MedSAM

center
rand
rands
bbox

1.18
2.65
27.86
79.56

1.09
1.96
27.00
77.85

1.26
3.11
28.43
81.44

0.17
1.15
1.43
3.59

0.09
0.58
0.71
1.80

1.08

1.68
16.24
28.44

SAM-Med2D

center
rand
rands
bbox

88.34
82.50
91.15
91.73

87.06
78.52
90.83
91.06

89.86
87.44
91.55
92.51

2.80
8.92
0.72
1.45

1.40
4.46
0.36
0.73

36.77
15.10
67.02
53.10

FI-SAM

center
rand
rands
bbox

6.17
4.66
24.56
75.46

5.74
4.58
18.16
74.23

6.61
4.79
30.16
76.62

0.87
0.20
12.00
2.39

0.43
0.10
6.00
1.20

4.30
4.24
3.51
34.34
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Table 14: Segmentation results on the CANDI dataset with 2D FMs.

Dataset Model Prompt DSC,,, DSC.in DSChax DSCa  DSCstp  DSCgs

center 19.56 19.29 19.91 0.62 0.36 19.50
rand 27.50 27.25 27.84 0.59 0.48 27.32

SAM rands 2036 2884 3003 119 076  29.05
bbox 5535 5496 5585  0.89 045 5511

center 1333 1314 1347 033 017 1330

. rand 1387 1361 1407 047 023 1385
MobileSAM 4 1832 1829 1835 006 021 1829
bbox 5253 5222 5292 070 035 5236

center  22.03 2155 2265 LI0 055  21.93

Tmysav  fnd 2897 282 2942 080 040 2884
rands  24.84 2446 2534 087 052 2472

bbox  52.69 5245 5299 054 027 5255

CANDI center 040 036 043 008 004 040
rand 1619 1615 1623 008 006  16.16

MedSAM L hds 1479 1454 1510 056 031 1472
bbox 4029 4001 4065 064 056  40.09

center —9.23 8.82 976 003 047 9.8

rand 1468 1423 1527 104 052 1456

SAM-Med2D o ds 3259 3202 3321 110 055 3241
bbox 2823 2777 2884 107 054 2808

center — 3.61 351 373022 028 3.60

FLSAM rand 847 8.39 858 019 034 843

rands 21.89 21.63 22.21 0.58 0.56 21.76
bbox 22.10 21.76 22.54 0.78 0.44 21.99

Table 15: Segmentation results on the IRCADDb dataset with 2D FMs.

Dataset Model Prompt DSC,,, DSC,;, DSC,.x DSCa DSCstp DSCgs

center 26.43 23.59 28.13 4.54 6.14 24.73
rand 37.66 32.56 41.09 8.52 8.85 34.44

SAM rands 4310 39.60 4527 567 951 3927
bbox 5751 5414 6145 731 754 5346

center 1824 1661 1932 271 327 1737

. rand 2412 2340 2383 042 555 2258
MobileSAM — hgs 2080 2821 2060 139 712 2738
bbox 5514 5145 5845 701 654  51.84

center  28.60 2642 2900 268 614 2633

Tsay | Tnd 4095 3607 4384 777 969 3723
y rands 4437 4287 4449 162 780 4094
bbox 5726 5347 6099 752 752 5331

IRCADD center — 1.23 0.62 138 076 078 12
rand 112 085 128 044 033 112

MedSAM | hds 1266 1103 1288 186 318 1211
bbox 4343 4233 4478 245 507 4116

center 2774 2524 2807 283 491 2620

rand 3605 3323 3771 448 348 3459

SAM-Med2D L qs 4637 4569 4694 125 348 44.90
bbox 3839  37.00 4044 344 531 3625

center 1322 1046 1434 387 412 1249

FLSAM rand 1668 1265 1916 651 448 1563

rands 28.76 26.12 30.32 4.19 3.28 27.60
bbox 38.33 36.95 39.08 2.13 3.20 37.34
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Table 16: Segmentation results on the KiTS dataset with 2D FMs.

Dataset Model Prompt DSC,,, DSC.in DSChax DSCa  DSCstp  DSCgs

center 22.44 21.91 22.47 0.56 1.05 22.24
rand 34.02 31.62 35.06 3.44 1.72 33.42

SAM rands 4126 3886 4236 351 175 4047
bbox 7511 7512 7519 007  0.63 7464

center 8.12 7.92 8.45 0.52 0.38 8.09

. rand 1122 1113 1122 009 036  11.18
MobileSAM 4 1289 1255 1344 089 058  12.80
bbox 6867 6815 6973 158 079  68.19

center  19.00 1820 19.09 080 117  18.80

Fwsay  Tnd 2753 2554 2834 281 14l 2117
y rands 3182 3162 3186 024 106 3150
KITS bbox 7219 7181 7299 117 059 7178
center 0,57 054 059 005 010 057

rand 117 113 122 009 012 116

MedSAM L hds 1780 1743 1849 106 071  17.66
bbox 4677 4631 4697 066 095 4630

center 3122 3057 3145 088 088 3093

rand  40.83 3802 4209 407 204 4005

SAM-Med2D o 4s 4900 4848 5039 191 108 4952
bbox 4720 4543 4787 244 122 4678

center 1561 1527 1622 095 047 1554

FLSAM rand  18.60 1824 1873 049 027  18.56

rands 39.80 39.11 39.96 0.86 0.92 39.51
bbox 45.59 44.93 45.70 0.77 1.25 45.07

Table 17: Segmentation results on the SPIDER dataset with 2D FMs.

Dataset Model Prompt DSC,,, DSC,;, DSCyhax DSCa DSCstp DSCgs

center 24.54 23.00 25.71 2.70 1.46 24.13
rand 24.62 23.03 25.82 2.79 1.40 24.22

SAM rands 3445 3403 3521 LIS 082  34.16
bbox 6349 6880 6990 110 063  68.06

center 1413 1432 1465 034 049 1402

. rand 1303 1301 1354 053 060 1291
MobileSAM 4 2056 1923 2034 101 062 2040
bbox 6546 6507 6579 072 057 6508

center 1687 1640 1682 042 065 1675

ngsam  Tnd 1680 1603 1666 063 069 1667
rands 2740 2582 2689 107 098  27.16

bbox 6720 6711 6769 058 046  66.90

SFIDER center — 0.94 082 097 015 017 094
rand 106 087 10l 014 015 105

MedSAM o ds 2345 2295 2417 121 080 2326
bbox 5009 5022 5148 126 103 4958

center 2484 2129 2402 273 139 2446

rand 2405 2073 2349 276 141 2370

SAM-Med2D . ac 3951 3786 4043 256 132 39.04
bbox  31.03 3287 3381 094 089 3077

center 1136 8.45 1006 161 084  11.25

FLSAM rand 1093 7.98 960 162 081 1082

rands 20.31 15.64 18.48 2.84 1.42 20.01
bbox 36.70 32.52 35.32 2.80 1.71 35.99
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Table 18: Segmentation results on 3D datasets with 3D FMs.

Dataset Model Prompt DSC,,, DSC,i, DSC,.x DSCa DSCstp DSCgs

Ipoint 16.21 15.47 17.13 1.66 0.83 8.87
Spoints 29.93 29.43 30.55 1.12 0.56 19.21
Ipoint 21.19 20.66 21.85 1.19 0.60 13.29
Spoints 25.33 25.20 25.48 0.29 0.14 22.15
point 17.92 17.85 17.97 0.12 0.06 16.89
bbox 25.92 25.89 25.95 0.06 0.03 25.18

FastSAM-3D

CANDI SAM-Med3D

SegVol

Ipoint 18.49 17.05 20.80 3.76 1.88 6.42
Spoints 36.49 36.14 36.69 0.55 0.27 28.65
Ipoint 23.94 22.72 2491 2.19 1.10 11.42
Spoints 30.05 27.79 32.78 5.00 2.50 8.59
point 45.87 38.70 53.04 14.35 7.17 5.61

bbox 47.00 41.66 52.35 10.69 5.35 741

FastSAM-3D

IRCADb SAM-Med3D

SegVol

1point 28.79 27.93 29.11 1.18 0.59 18.09
Spoints  45.81 44.64 46.28 1.64 0.82 25.19
1point 22.95 22.85 22.96 0.12 0.06 21.69
Spoints 29.88 29.24 30.13 0.89 0.45 20.66
point 43.06 37.99 46.05 8.06 4.03 8.56
bbox 42.15 37.57 44.85 7.28 3.64 9.09

FastSAM-3D

KiTS SAM-Med3D

SegVol

Ipoint 27.53 27.48 27.63 0.15 0.07 25.61
Spoints 38.26 37.94 38.78 0.84 0.42 26.94
Ipoint 15.37 14.41 16.93 2.52 1.26 6.80
point 33.10 31.57 35.57 4.00 2.00 11.03
point 33.10 31.57 35.57 4.00 2.00 11.03
bbox 35.15 33.38 38.01 4.63 2.31 10.60

FastSAM-3D

SPIDER SAM-Med3D

SegVol
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F Codebase

Model Usage Wrapper
(general-purpose, medical- —> (linear probe, CLIP, promptable
specific, VMs, VLMs, etc.) segmentation, etc.)
FairMedFM.models FairMedFM.wrappers
Dataloader Trainer Evaluation
(diverse modalities, dimensions, (ERM, resampling, GroupDRO, [—] (comprehensive metrics,
sensitive attributes) | LAFTR, InD, etc.) visualization, statistics test, etc.)
FairMedFM.datasets FairMedFM.trainers FairMedFM.utils.metrics

Figure 19: The structure of the open-source FairMedFM codebase.

As depicted in Fig. 19, the FairMedFM codebase captures comprehensive modules for benchmarking
the fairness of foundation models in medical image analysis. We build the codebase using PyTorch.
For more details, please refer to our open-sourced repository: https://github.com/FairMedFM/
FairMedFM.

1. Dataloader provides a consistent interface for loading and processing imaging data across
various modalities and dimensions, supporting both classification and segmentation tasks.

2. Model is a one-stop library that includes implementations of the most popular pre-trained
foundation models for medical image analysis.

3. Usage Wrapper encapsulates foundation models for various use cases and tasks, including
linear probe, zero-shot inference, PEFT, promptable segmentation, etc.

4. Trainer offers a unified workflow for fine-tuning and testing wrapped models, and includes
state-of-the-art unfairness mitigation algorithms.

5. Evaluation includes a set of metrics and tools to visualize and analyze fairness across
different tasks.

We note that all the modules are designed to be easily replicated and extended. The following example
demonstrates how to implement the wrapper for CLIP-Adapt with simple modifications.

class CLIPWrapper (BaseWrapper):
def __init__(self, model, base_text_features):
super () . __init__ (model)
# zero-shot class prototypes
self .base_text_features = base_text_features
# class prototypes are trainable in CLIP-Adapt

self .prototypes = nn.Parameter (base_text_features.clone())

for param in self.model.parameters():
param.requires_grad = False

def forward(self, x):
return self.model.forward_clip(x, self.prototypes)
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