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Abstract

Invisible watermarking is essential for safeguarding digital content, enabling copy-
right protection and content authentication. However, existing watermarking meth-
ods fall short in robustness against regeneration attacks. In this paper, we propose
a novel method called FreqMark that involves unconstrained optimization of the
image latent frequency space obtained after VAE encoding. Specifically, FreqMark
embeds the watermark by optimizing the latent frequency space of the images and
then extracts the watermark through a pre-trained image encoder. This optimiza-
tion allows a flexible trade-off between image quality with watermark robustness
and effectively resists regeneration attacks. Experimental results demonstrate that
FreqMark offers significant advantages in image quality and robustness, permits
flexible selection of the encoding bit number, and achieves a bit accuracy exceeding
90% when encoding a 48-bit hidden message under various attack scenarios.

1 Introduction

As the development of generative models [42, 32], distinguishing between AI-generated and real
images becomes increasingly challenging, which brings new risks such as deepfakes and copyright
infringement [5, 31]. By adding invisible watermarks within images, the concealed message can be
tracked and used for purposes such as copyright verification, identity authentication, copy control,
etc., thereby safeguarding against the misuse of image content.

Traditional methods [12, 15, 14, 36, 15] conceal hidden messages in the frequency space of images,
providing resistance to Gaussian noise attacks but susceptibility to brightness, contrast, and regenera-
tion attacks. The rapid development of deep learning has also promoted the iteration of watermarking
techniques with enhanced robustness to numerous attacks. A common approach is to train a water-
mark embedding network through supervised learning to introduce imperceptible perturbations to
images, and then to retrieve the hidden messages through a decoding network [46, 10, 55, 3]. An
alternative method sets the optimization objective as the image itself, utilizing pre-trained neural
networks to calculate the perturbations to be added, thereby bypassing the higher cost of training
networks and providing a more flexible approach [29, 20]. However, with the continued advancement
of generative models, leveraging their generalization capabilities to denoise watermarked images
through regeneration attacks has proven to be an effective method for watermark removal [58, 43].
A logical step is to encode the watermark in the image latent space, allowing the watermark to
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Figure 1: The robustness of different watermark encoding positions. Left: Encoding in image
frequency space resists Gaussian noise but is vulnerable to regeneration attacks. Middle: Encoding
in image latent space enhances resistance to regeneration attacks but introduces vulnerabilities to
Gaussian noise. Right: FreqMark encodes latent frequency space in the image, achieving a strong
defense against regeneration and traditional attacks.

be incorporated into the latent semantics of images. This approach improves robustness against
regeneration attacks but increases susceptibility to Gaussian noise.

In this paper, we propose FreqMark, a novel self-supervised watermarking approach that amalgamates
the benefits of frequency domain space and latent space, endowing it with a dual-domain advantage.
Specifically, it utilizes fixed pre-trained Variational Autoencoder (VAE) [28] to embed watermark
messages into images by making subtle adjustments in the latent frequency space. These messages
are then decoded using a fixed pre-trained image encoder. Figure 1 illustrates the primary motivation
behind our method. Introducing perturbations to watermark images in the latent and frequency
domains offers distinct advantages. By optimizing the latent frequency domain of the image, we
combine both approaches to effectively leverage their strengths, achieving a synergistic effect where
the whole is greater than the sum of its parts.

We evaluate the performance of FreqMark on the DiffusionDB [49] and ImageNet [16] datasets,
experimental results demonstrated that FreqMark achieves strong robustness while maintaining image
quality, configurable payload capacity, and flexibility. With a 48-bit encoding setting, the bit accuracy
can exceed 90% under various attacks. This performance indicates significant advantages over
baseline methods, particularly excelling during regeneration attacks [7, 13, 58].

Contributions: (1) We propose a novel invisible image watermarking method named FreqMark,
which encodes hidden messages within the latent frequency space of images. FreqMark achieves
watermark embedding through indirect optimization centered on the image itself without requiring
network training. (2) FreqMark is highly flexible, allowing for a free trade-off between the bits number
of the encoded message, image quality and watermark robustness to meet diverse requirements. (3)
FreqMark demonstrates significant robustness advantages, particularly during regeneration attacks
compared to baseline methods. Experimental results validate the superiority of our proposed method.

2 Related Work

Generative Models For a long time, Generative Adversarial Networks (GANs) [27, 1, 26, 22, 41,
33] have dominated image generation. Recently, diffusion models have emerged as a solid alternative
to GANs for image generation [25, 17, 34, 35]. These models show significant improvements and
applications across various domains. DDIM sampling [45] and latent diffusion [42] further accelerate
the generation progress, while ControlNet [56] provides a powerful, controllable generation method.
As high-quality image generation becomes more accessible, digital watermarking gains importance
for protecting intellectual property rights and ensuring content authenticity.

Image Watermarking The research history of image watermarking techniques is extensive. Early
methods employ hand-crafted methods to hide messages within the spatial or frequency domain of
images. Frequency-domain-based techniques typically exhibit better robustness and have been widely
applied even before the rise of deep learning [12, 15, 14, 36, 15, 4]. The widely used open-source
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model, Stable Diffusion [42], employs DwtDctSvd [14] as its default watermarking method. However,
this method has been demonstrated to be relatively vulnerable to various attacks [58].

With the development of deep learning, methods utilizing encoder-decoder architectures have gained
prominence. HiDDeN [60] and RivaGAN [55] train encoders to embed watermark messages into
images and decoders to extract them, thereby enhancing robustness against noise while preserving
image quality. RedMark [3] and StegaStamp [46] improve robustness by integrating a series of
differentiable perturbations. RoSteALS [10] enhances the robustness of the watermark by fine-tuning
the secret encoder and secret decoder in the latent space. In recent years, several innovative methods
have been introduced. WatermarkDM [59] trains a diffusion model on watermarked images to create
detectable watermarked images. Stable Signature [19] fine-tunes the decoder of a latent diffusion
model to embed specific hidden messages. Tree-Ring [50] adopts a unique approach by encoding a
particular pattern shape in the initial noise frequency space during the diffusion process and utilizes
DDIM inversion [45] to detect watermarks. Differently, FNNS [29] and SSL [20] achieve message
encoding by optimizing the image itself. However, the aforementioned methods struggle to strike
a perfect balance between flexibility and robustness. In contrast, FreqMark offers higher degrees
of freedom, allowing for a better trade-off among task requirements, and demonstrates robustness
against regeneration attacks.

3 Background

FreqMark operates on the following scenario: A user embeds a k-bit watermark message me into
an image I to get the watermarked image Iw for which they hold the copyright. Upon discovering
unauthorized usage of the image Iw, the user decodes the infringed image to obtain the message md,
which serves as evidence to prove their ownership of the image’s copyright.

Assuming that each bit of the decoded message from clean images is independent and has an equal
probability of being -1 or 1, this method allows us to mathematically calculate the False Positive Rate
(FPR) of decoding.

Let the encoded message be me ∈ {−1, 1}k and the decoded message be md ∈ {−1, 1}k. The func-
tion M(me,md) measures the number of matching bits between me and md. Given the assumption
regarding the image encoder output mentioned earlier, each bit of the decoded message from clean
images is independent and follows Bernoulli random variables with a probability of 0.5 [19]. By set a
decoding threshold τ ∈ {0, . . . , k}, once M(me,md) ≥ τ , we consider that the image has encoded
the message me. Consequently, M(me,md) follows a binomial distribution B(k, 0.5). The final
message will be transformed to {0, 1}k by applying function f(x) = (x+ 1)/2 for easier processing
of the binary format.

We could test the hypothesis H1: the image x has hidden watermark, and against the null hypothesis
H0: the image x has no hidden watermark. From this, we can obtain a closed-form solution for the
FPR under the threshold ϵ(τ) using the regularized incomplete beta function Ix(a; b):

ϵ(τ) = P (M(me,md) > τ |H0) =
1

2k

k∑
i=τ+1

Ci
k = I1/2(τ + 1, k − τ). (1)

Based on the above formula, FPR ≈ 1.65× 10−6 when k = 48, τ = 39; FPR ≈ 5.04× 10−8 when
k = 48, τ = 41. The results of watermark detection True Positive Rate (TPR) under various FPR
settings are shown in Figure 8 of Appendix A.3.

4 Method

4.1 Overview

Figure 2 presents an overview of FreqMark. FreqMark employs a strategic methodology to embed
invisible watermarks in images by adding perturbations in the latent frequency space. Specifically,
we utilize a Variational Autoencoder (VAE) [28] to encode images into representations and then
transform these image latents into the frequency domain. Only the perturbation within the latent
frequency space of images is trained during watermark encoding and all the networks are fixed. A
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Figure 2: Overview of FreqMark. Encoding: FreqMark employs a pre-trained VAE model to
encode watermarks within the latent frequency space of the image. ϵ1 and ϵ2 are Gaussian noise
perturbations added during training. All networks are fixed and only perturbation δm is trained.
Decoding: FreqMark utilizes a pre-trained image encoder to extract features from the image and
extracts the watermark by comparing this feature against predefined directions.

pre-trained image encoder is used for watermark extraction, the features of the watermarked image
obtained from the encoder are compared with predefined directional vectors to reveal the hidden
message.

In the optimization process, the image quality is maintained with minimal degradation by utilizing
PSNR and LPIPS loss [57], while the watermark message is constrained by using hinge loss. In
addition, noises and augmentation are introduced for enhanced robustness. Figure 3 shows some
watermark image examples from FreqMark.

4.2 Message Embed in Latent Frequency Space

Some current methods embed hidden messages by directly optimizing image pixels [20, 29], which
leads to poor robustness against regeneration attacks [58]. FreqMark involves strategically adding
perturbations in the frequency domain of the image latent representation to embed an invisible
watermark. These perturbations in the frequency domain are more concealed than those in the pixel
space, making them harder to eliminate and thus offering superior robustness against regeneration
attacks while minimizing the impact on image quality.

First, we use a pre-trained VAE encoder E to encode the image into a latent image and then transform
the latent image into the frequency domain using Fast Fourier Transform (FFT), represented as:

FZ = FFT (E(I)), (2)

where I is the input image, E(I) is the latent representation encoded by the VAE encoder E, and FZ

is the frequency domain latent representation of the image.

Next, we embed the hidden message into the frequency domain latent representation FZ by adding a
slight perturbation, then decode the frequency domain latent representation back into the image using
inverse Fast Fourier Transform (iFFT) FFT−1 and the VAE decoder D, as follows:

Iw = D(FFT−1(FZ + δm)), (3)

where Iw is the watermarked image, δm is the perturbation added in the frequency domain of the
latent image for embedding the watermark.

4
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4.3 Decoding by Pre-trained Image Encoder

During the decoding process, similar to SSL[20], we predefine a set of K N-dimensional vectors
V N
K = {v1, v2, ..., vK | K ≤ N} within the feature space of the pre-trained image encoder Eimg.

For images with embedded watermarks Iw, the feature vector zIw = Eimg(Iw) is obtained after
passing through Eimg . By calculating the signs of the dot product between the direction vectors V N

K
and zIw , we can extract the hidden message md:

mk
d = sign(zIw · vk) = sign(Eimg(Iw) · vk), vk ∈ V N

K , (4)

where mk
d represents the k-th bit of md and vk denotes the k-th direction vector of V N

K , sign(x) = 1
when x >= 0; sign(x) = −1 when x < 0.

One significant advantage of this decoding method is its flexibility in setting the number of watermark
bits. The number of direction vectors determines the encoding bits. Using the technique mentioned
above of optimizing images within the frequency domain, we can ensure the robustness of the hidden
messages while significantly minimizing the quality impact on the image.

4.4 Training Objective

Our goal is to embed an invisible watermark by optimizing the frequency map of the image latent FZ ,
where the perturbation δm serves as the trainable parameter, with all pre-trained networks remaining
fixed. The optimization via perturbations ensures both watermark robustness and the preservation of
image quality, offering flexibility in encoding bits and embedding strength.

Image Quality We utilize PSNR loss to reduce discrepancies between the watermarked image and
the original image and also incorporate LPIPS loss [57] to make alterations less perceptible.

Lp = −PSNR(Iw, I), (5)

Li = LPIPS(Iw, I). (6)

Watermark Message The optimization goal is to modify the image features zIw processed by the
pre-trained image encoder Eimg , aligning them on the K direction vectors V N

K to correspond with the
encoded message. We define message loss as the hinge loss with margin µ ≥ 0 on the projections:

Lm(Iw) =
1

K

K∑
k=1

max(0, (µ− (zIw · vk) ·mk)), vk ∈ V N
K , mk ∈ {−1, 1}. (7)

4.5 Robustness Enhancement Strategy

During the training process, we employ an augmentation strategy by adding Gaussian noise with a
mean of 0 and standard deviations of s1 and s2 to the latent space and pixel space, represented as ϵ1
and ϵ2, respectively. The result is the acquisition of the perturbed images Ip1 and Ip2:

Ip1 = D(FFT−1(FZ + δm) + ϵ1), (8)

Ip2 = D(FFT−1(FZ + δm)) + ϵ2. (9)

The final loss is defined as:

L = Lm(Iw) + Lm(Ip1) + Lm(Ip2) + λpLp(Iw, I) + λiLi(Iw, I), (10)

where λp and λi are the respective weights for each loss function.

By incorporating corresponding attacks during training, we optimize the solution space for hidden
message embedding, enabling the image to withstand a broader range of attacks. Experimental results
reveal that this straightforward approach can effectively enhance the model’s robustness against
regeneration attacks.
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Figure 3: Examples of watermarked images. The first three columns are from ImageNet [16], and
the others are generated by the prompts from DiffusionDB [49]. These watermarked images have
48-bit messages and are robust to various attacks. Top: origin image. Middle: watermarked image.
Bottom: pixel difference (amplified by a factor of 10 to enhance the visual effect).

5 Experiments

In this section, we evaluate our method based on the image quality and robustness metrics under
various attacks, comparing it with the baseline methods. Additionally, ablation studies and analyses
are carried out to explore the process deeply. In our experiments, KL auto-encoder [28] from Stable
Diffusion [42] is used as the pre-trained VAE, and DINO v2 small [37] is used as the pre-trained
image encoder. More implementation details are in the Appendix A.1.

5.1 Experimental Setup

Datasets A test dataset is compiled, consisting of 500 images randomly selected from the ImageNet
validation set [16], in conjunction with 500 images generated using Stable Diffusion [42] based
on prompts from the DiffusionDB [49] dataset. This diverse data collection enables a thorough
assessment of the performance across various scenarios and perspectives.

Comparison Methods Three methodologies are selected for comparison. DwtDctSvd [14] is a
classic frequency-domain-based approach and the default watermarking method in Stable Diffusion
[42]. Stable Signature [19] embeds specific hidden messages by fine-tuning the VAE decoder of
Stable Diffusion, enabling the watermarking process to be integrated with the generation process. SSL
[20] is the latest method that employs image pixel optimization to embed watermarks. We employ
their default configurations, wherein the PSNR threshold of SSL is set to 31 dB for a convenient
comparison of bit accuracy.

Evaluation Metrics Following previous work [19, 20, 58], PSNR and SSIM [48] are used as the
image quality benchmark. To evaluate robustness, we utilize bit accuracy as a metric to measure the
degradation of hidden messages under diverse attacks. Various attack methods have been implemented,
including a brightness change of 0.5, a contrast change of 0.5, 50% JPEG compression, Gaussian blur
with a kernel size of 5, and Gaussian noise with σ = 0.05. Moreover, the experiments incorporate two
types of VAE regeneration attacks [7, 13] from the CompressAI library [9] with a compression factor
of 3, and a diffusion regeneration attack is carried out with 60 denoising steps [58].

5.2 Benchmarking Watermark Accuracy and Image Quality

Table 1 displays the image quality and bit accuracy following watermark embedding on ImageNet
[16] and DiffusionDB [49] datasets. The classic method DwtDctSvd [14] shows robustness against
Gaussian attacks but poor performance against others, while the others show better robustness against
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Table 1: Performance of different watermarking methods on ImageNet and DiffusionDB.

Method PSNR SSIM
Bit Accuracy

None Brightness Contrast JPEG Gau. blur Gau. noise VAE-B VAE-C Diffusion Avg

ImageNet
DwtDctSvd[14] 39.67 0.978 0.993 0.636 0.489 0.848 0.992 0.993 0.550 0.562 0.592 0.739

±std 1.939 0.011 0.049 0.307 0.222 0.147 0.058 0.051 0.063 0.078 0.106 N/A
SSL Watermark[20] 31.04 0.862 1.000 1.000 1.000 0.972 1.000 0.937 0.793 0.777 0.743 0.914

±std 0.110 0.029 0.000 0.000 0.000 0.034 0.000 0.028 0.073 0.096 0.077 N/A
Stable Signature[19] 28.74 0.838 0.978 0.971 0.937 0.832 0.859 0.892 0.630 0.645 0.534 0.809

±std 3.246 0.080 0.054 0.061 0.092 0.106 0.121 0.117 0.086 0.105 0.064 N/A
FreqMark(Ours) 31.27 0.857 1.000 0.995 1.000 0.991 1.000 0.939 0.938 0.924 0.969 0.973

±std 3.359 0.038 0.000 0.028 0.000 0.024 0.000 0.088 0.083 0.081 0.052 N/A

DiffusionDB
DwtDctSvd[14] 39.49 0.978 1.000 0.607 0.457 0.887 1.000 1.000 0.563 0.556 0.569 0.738

±std 1.182 0.006 0.000 0.308 0.194 0.109 0.000 0.000 0.053 0.059 0.085 N/A
SSL Watermark[20] 31.01 0.827 1.000 1.000 1.000 0.956 1.000 0.954 0.742 0.744 0.729 0.903

±std 0.064 0.027 0.000 0.000 0.000 0.048 0.000 0.037 0.109 0.102 0.081 N/A
Stable Signature[19] 28.31 0.844 0.996 0.996 0.990 0.896 0.858 0.967 0.668 0.733 0.527 0.848

±std 1.608 0.033 0.013 0.012 0.014 0.042 0.086 0.028 0.063 0.049 0.040 N/A
FreqMark(Ours) 31.20 0.854 1.000 1.000 1.000 1.000 1.000 0.934 0.925 0.897 0.945 0.967

±std 1.538 0.029 0.000 0.000 0.000 0.000 0.000 0.061 0.066 0.059 0.047 N/A

Table 2: Comparison of image quality between
VAE and FreqMark.

Dataset PSNR SSIM

VAE
ImageNet [16] 31.37 ± 4.59 0.868 ± 0.085
DiffusionDB [49] 31.22 ± 1.96 0.879 ± 0.032

FreqMark
ImageNet [16] 31.27 ± 3.36 0.857 ± 0.038
DiffusionDB [49] 31.20 ± 1.54 0.854 ± 0.029

Figure 4: The correlation matrix of each bit of
the decoded message from the vanilla images
and the random message.

brightness, contrast, and JPEG attacks but still poor in regeneration attacks. FreqMark demonstrates
exceptional robustness against regeneration attacks with acceptable image quality.

We also calculate the PSNR and SSIM of the images from two datasets after VAE reconstruction.
The data in Table 2 demonstrates that the impact of FreqMark on image quality is limited. Moreover,
the standard deviation of image quality after FreqMark processing is also reduced to some extent.

In order to verify the hypothesis proposed in Section 3, we randomly select 2,000 clean images to
perform message decoding in 128-bit and calculate the correlation coefficients between each bit,
comparing them to random messages. Figure 4 shows that different bits with near-zero correlation
coefficients can be considered as independent random variables.

Notably, FreqMark allows users to adjust image quality and encoding bits, showing remarkable
robustness while maintaining acceptable image quality, particularly against VAE and diffusion
regeneration attacks [9, 7, 13, 58]. We will further evaluate the robustness of FreqMark on the
DiffusionDB dataset [49] in Section 5.4. The ablation studies in Section 5.5 will explore the impact
of parameter adjustments on robustness.

5.3 Why the Frequency Domain of Image Latent Space

To further illustrate the advantages of optimizing in the frequency domain of the image latent space,
We conducted experiments using the same settings to optimize the pixel, the image latent space, and
the frequency domain of image pixels in the DiffusionDB dataset [49]. Simultaneously, enhancements
in pixel and latent domains are retained (if the method involves the latent space). A consistent average
image quality range is maintained for comparison purposes.

As illustrated in Figure 5 and Table 3, optimizing the frequency domain of image pixels provides the
watermarked image with robustness against all attacks except the regeneration attack. In contrast,
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Origin Pixel Pixel Frequency Latent Latent Frequency

Figure 5: Watermarked images under different optimization locations. We compared four distinct
optimization objectives for watermark embedding, including the image pixel domain, the frequency
domain of the image pixel, the image latent space, and the frequency domain of the image latent
space (ours). The difference after watermarking addition is amplified by a factor of 10.

Table 3: Performance of different optimization locations.

Location PSNR SSIM
Bit Accuracy

None Brightness Contrast JPEG Gau. blur Gau. noise VAE-B VAE-C Diffusion Avg

Pixel 31.36 0.771 0.950 0.935 0.937 0.848 0.885 0.925 0.642 0.654 0.542 0.813
Pixel Frequency 31.31 0.809 1.000 1.000 1.000 0.950 0.937 1.000 0.797 0.775 0.596 0.895
Latent 31.35 0.886 0.994 0.993 0.981 0.906 0.979 0.804 0.796 0.833 0.675 0.885
Latent Frequency 31.20 0.854 1.000 1.000 1.000 1.000 1.000 0.934 0.925 0.897 0.945 0.967

images obtained by optimizing the image latent space appear more natural and smooth, with a strong
correlation to the semantic information of the image. This approach demonstrates robust potential
against diffusion attacks, indicating that both optimization methods have unique features. Combining
the advantages of both approaches, FreqMark optimizes the frequency space of the image latent. The
watermark is closely related to local patterns while retaining the characteristics of frequency domain
optimization. Combining these two aspects produces a synergistic effect, making FreqMark robust
against regeneration attacks.

5.4 Further Robustness Results

Diffusion Attack Steps We evaluate the impact of diffusion attacks of varying intensities on bit
accuracy and also calculate the PSNR between the attacked image and the original watermarked
image. Table 4 indicates that FreqMark maintains commendable robustness even under higher
intensity attacks.

Table 4: Performance under Different Diffusion Steps.
Diffusion Steps 60 80 100 120 140 160 180 200

Bit Acc 0.945 0.863 0.831 0.754 0.712 0.692 0.660 0.637
PSNR 27.67 26.95 26.19 25.46 24.92 24.47 23.99 23.57

Vae Attack Strength We employ the same VAE used in the watermarking process of FreqMark to
conduct perturbation attacks. Table 5 demonstrates that FreqMark exhibits exceptional robustness
under such attacks. This is because the perturbation on the latent FFT changes the overall distribution
of the image latent, making the watermark message affect the entire image globally. Therefore, it
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Table 5: Performance under VAE Attack in Latent FFT Domain and Gaussian Noise Disruption in
Pixel FFT Domain.

VAE Attack (Latent FFT) Gaussian Noise Attack (Pixel FFT)

PSNR 31.43 30.31 28.98 27.39 25.82 31.09 29.68 28.04 26.46 25.04
Bit Acc 1.000 1.000 0.998 0.990 0.975 1.000 1.000 1.000 1.000 1.000

is difficult for perturbations on the latent of image to damage the watermark message. A similar
phenomenon is observed in the pixel FFT when facing the Gaussian Noise attack.

Adversarial Attack Following the settings in [5], we apply adversarial attacks targeting the latent
representations of the watermarked images.

maxIadv
|E(Iadv)− E(I)∥2, s.t.∥Iadv − I∥∞ ≤ ϵ (11)

Table 6: Performance under Different Adversarial Attack Strength.
Attack Strength (eps) Bit Acc TPR@0.1%FPR

2/255 1.000 1.000
4/255 0.987 1.000
6/255 0.944 0.986
8/255 0.893 0.972

Table 6 demonstrates that FreqMark exhibits strong robustness when facing adversarial attacks
targeting latent representations. We believe that this can be attributed to the limited impact of attacks
targeting latent representations on the latent FFT domain.

5.5 Ablation Studies

Image Quality As watermarking always requires modifications to the image pixels, a trade-off
between image quality and embedded message robustness is inevitable. FreqMark allows users to find
a satisfactory balance. We control watermarked image quality within a specific range by adjusting
the weight of the PSNR loss function. As shown in Figure 6a, FreqMark can achieve a PSNR that
is nearly 2dB higher compared to the reconstruction obtained using VAE with robustness against
varying attacks, maintaining strong performance with over 80% accuracy.

Encoding Bits The number of bits in the encoding message significantly impacts robustness, with
more bits embedded at a given image quality potentially reducing robustness. FreqMark allows users
to adjust the watermark bit number based on their needs. Figure 6b shows bit accuracy for encoding
bit numbers. We test robustness from 32 to 128 bits of watermark message in 16-bit increments,
setting the PSNR of the watermarked image to about 31 dB. FreqMark also demonstrates strong
robustness, with the lowest bit accuracy remaining above 0.75 even under regeneration attacks on
images watermarked with 128-bit messages.

Noising Scale We also study the impact of latent noise ϵ1 and pixel noise ϵ2 on robustness.
Incorporating noise attacks during training can effectively improve robustness in Gaussian noise and
regeneration attacks, but excessive noise may disrupt training and reduce performance. We analyze
how noises in latent and pixel space affect robustness by fixing either ϵ1 or ϵ2 and changing the
other standard deviation. As shown in Figure 6c and Figure 6d, the results confirm that introducing
both types of noise positively influences robustness, and adding an appropriate amount of noise can
significantly enhance resistance against regeneration attacks. We finally set ϵ1 to 0.25 and ϵ2 to 0.06
based on the experimental results. The complete experimental data can be found in Table 11 of the
Appendix A.3.

Spacial Perturbations The bit accuracy of FreqMark significantly declines under specific spatial
transformation attacks, such as rotation and cropping. By incorporating relevant augmentations like
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(a) Image Quality (b) Encoding Bits

(c) Latent Noise Std (d) Pixel Noise Std

Figure 6: Impact of different parameter settings on the robustness of the watermark. (a) Bit accuracy
under different watermarked image quality (48 bits). (b) Bit accuracy under different encoding bits
(31dB). (c) Bit accuracy under different latent noise ϵ1 (ϵ2 = 0.06). (d) Bit accuracy under different
latent noise ϵ2 (ϵ1 = 0.25).

Table 7: Performance on Spatial Perturbations.

Spatial Augmentations Bit Acc

Resize 0.3 Rotate 90 Crop 0.7

✗ 0.961 0.621 0.721
✓ 0.968 0.927 0.921

random rotation and random cropping during training, we effectively bolster the robustness against
these transformations, as evidenced in Table 7.

6 Conclusion

In this paper, we introduce a technique for embedding hidden messages in images by optimizing
the frequency domain in the latent space, named FreqMark, providing remarkable robustness due to
deeper perturbations. FreqMark allows user-defined encoding bits and watermark strength, striking
an optimal balance between image quality and robustness.

Limitations and Broader Impacts FreqMark exhibits notable flexibility and robustness, yet there is
room for optimization, particularly in the degree of naturalness in the fusion of watermarks and images.
Future research can focus on improving image quality and human perceptibility constrained by the
limitations of VAE, as a superior VAE would likely boost processing time and overall effectiveness.
FreqMark presents an innovative image watermarking approach for image provenance, copyright
protection, etc. However, like other image watermarking methods, it also necessitates the prevention
of unauthorized misuse such as copyright abuse [5].
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A Appendix

A.1 Implement details

Hyperparameters The KL auto-encoder from Stable Diffusion 2-1 [42] is utilized. Due to the
significant reconstruction loss associated with low-resolution images, the images are upscaled to
512×512 for processing. In the watermark addition stage, the Adam optimizer is used with a learning
rate of 2.0 and training for 400 steps. We set the PSNR loss weight λp to 0.05 and the LPIPS loss
weight λi to 0.25. To encode the watermark, the first 128 dimensions of the output feature generated
by the Dino v2 small image encoder [37] are utilized. In the experiments, we set the directional
vectors as a set of 48 vectors, where the i-th vector has a value of 1 in its i-th dimension and 0 for the
remaining dimensions. In addition, during the training phase, two types of spatial transformations
and pixel noise are selected with equal probability. For rotation augmentation, the rotation angle is
randomly chosen in 90-degree increments. The crop augmentation is set with a crop scale range of
[0.2, 1.0] and a crop ratio range of [3/4, 4/3].

Compute Resources All experiments could be conducted on a single A-100 GPU with 40GB
memory. Processing two images (512× 512) in parallel takes about 5 to 6 minutes (400 steps, fp32).
Increasing the batch size will improve overall efficiency. Figure 7 illustrates the relationship between
the number of training steps and performance. Experimental results indicate that FreqMark still
exhibits satisfactory performance with fewer training steps.

License The assets and models used in this paper are all publicly available, including Stable
Diffusion 2-1 (Open Rail++-M License) [42], DINO v2 (Apache-2.0 License) [37], DiffusionDB
(CC0 1.0 License) [49], and ImageNet (Custom License, as viewed on https://www.image-net.
org/download) [16].

A.2 Additional Comparison Results

We additionally compare the performance of our method with two watermarking approaches different
from FreqMark: StegaStamp [46], a classical encoder-decoder-based watermarking method, and
TreeRing [50], a watermarking technique that combines watermark embedding with image generation
without requiring any training. Specifically, we evaluate the results under similar image quality
conditions (PSNR of 28) and the same encoded bit number (100 bits) for StegaStamp. Due to
TreeRing is a 1-bit encoding method, the true positive rate at a 1% false positive rate (TPR@1%FPR)
is specifically compared against TreeRing [50].

Table 8: Additional Comparison of StegaStamp [46] and Tree-Ring [50].
Bit Acc None Bright Contrast JPEG G.Blur G.Noise VAE-B VAE-C Diffusion Avg

StegaStamp[46] 0.999 0.999 0.998 0.994 0.997 0.991 0.981 0.984 0.857 0.978
FreqMark(100 bits) 1.000 1.000 0.999 0.999 0.998 0.989 0.976 0.934 0.933 0.981

TPR@1%FPR None Bright Contrast JPEG G.Blur G.Noise VAE-B VAE-C Diffusion Avg

Tree-Ring[50] 1.000 1.000 1.000 0.996 0.999 0.918 0.991 0.995 0.998 0.989
FreqMark(48 bits) 1.000 1.000 1.000 1.000 1.000 0.986 0.989 0.975 1.000 0.994

Compared to StegaStamp [46], FreqMark offers strong robustness against diffusion attacks and
greater flexibility due to its network independence. Users can adjust image quality, encoding bits,
and customize the decoding vectors to enhance the watermark security. As opposed to Tree-Ring
[50], FreqMark is capable of encoding significantly more information (48 bits vs. 1 bit) at a similar
TPR@1%FPR.

A.3 Additional Experimental Results

Training Steps Figure 7 shows that FreqMark achieves considerable robustness even with fewer
training steps, and there is no significant change in image quality throughout the process. Users can
adjust the number of training steps according to their requirements as a trade-off.
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Robustness Quality

Figure 7: The relationship between the training steps, watermark robustness, and image quality.

DiffusionDB [49] ImageNet [16]

Figure 8: The TPR/FPR curve under various attacks in two datasets.

True Positive Rate vs. False Positive Rate We utilize 5,000 watermarked images to plot the FPR-
TPR curve. Figure 8 shows that FreqMark exhibits remarkably high watermark detection accuracy
in the range of FPR=10−6 to 10−7. It is observed that the results for the DiffusionDB dataset [49]
exhibit a significantly lower TPR at extremely low FPR compared to the ImageNet dataset [16]. This
could be attributed to the higher standard deviation of bit accuracy in the ImageNet dataset [16],
which consequently leads to a superior TPR under extreme conditions.

Additional Quality Metrics We include CLIP-FID [39] and L2 as supplementary image quality
metrics to further evaluate FreqMark’s image quality on the DiffusionDB dataset [49]. Table 9 demon-
strates that FreqMark exhibits outstanding robustness performance while maintaining acceptable
image quality.

Table 9: Additional Image Quality Comparison.
DwtDct [4] SSL [20] Stable Signature [19] StegaStamp [46] FreqMark

CLIP-FID [39] 2.36 6.88 1.70 5.50 3.84
L2 7.71 52.06 63.74 85.24 52.95

TPR/FPR Results on Diffusion Attacks We present the average TPR/FPR results across varying
diffusion steps on the two datasets. Table 10 indicates that FreqMark maintains excellent performance
in TPR@0.1% FPR, particularly at higher diffusion steps.
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Table 10: The TPR results for different Diffusion Steps and FPR values.
Diffusion Steps / FPR 1.5e-2 1e-3 3e-5 3e-7 7e-10 1e-13

60 1.000 1.000 0.996 0.990 0.927 0.636
80 1.000 1.000 0.946 0.778 0.360 0.019

100 0.995 0.941 0.742 0.486 0.153 0.008
120 0.936 0.804 0.465 0.147 0.024 0.000
140 0.853 0.569 0.240 0.048 0.000 0.000
160 0.667 0.328 0.120 0.027 0.000 0.000
180 0.486 0.193 0.052 0.000 0.000 0.000
200 0.294 0.094 0.010 0.000 0.000 0.000

Table 11: Average Bit Accuracy on Gaussian noise and regeneration attacks for different combinations
of Latent Noise and Pixel Noise.

Latent Noise Std Pixel Noise Std

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.00 0.706 0.749 0.797 0.803 0.751 0.758 0.715 0.706 0.678 0.694 0.701
0.05 0.718 0.759 0.800 0.804 0.804 0.767 0.781 0.723 0.730 0.744 0.704
0.10 0.768 0.793 0.870 0.865 0.858 0.820 0.816 0.817 0.794 0.801 0.780
0.15 0.841 0.850 0.897 0.908 0.891 0.907 0.889 0.890 0.877 0.861 0.832
0.20 0.850 0.878 0.934 0.910 0.910 0.878 0.867 0.868 0.869 0.870 0.840
0.25 0.889 0.915 0.924 0.926 0.896 0.885 0.885 0.852 0.866 0.860 0.820
0.30 0.820 0.853 0.886 0.912 0.894 0.885 0.857 0.847 0.840 0.863 0.830
0.35 0.791 0.838 0.867 0.866 0.865 0.872 0.805 0.811 0.785 0.804 0.814
0.40 0.762 0.802 0.865 0.868 0.814 0.835 0.802 0.807 0.768 0.763 0.754
0.45 0.725 0.777 0.846 0.822 0.824 0.767 0.764 0.782 0.767 0.742 0.738
0.50 0.719 0.763 0.814 0.838 0.809 0.787 0.763 0.731 0.727 0.733 0.707

Noising Scale Table 11 displays the average bit accuracy under Gaussian noise and three regener-
ation attacks for different combinations of Latent Noise and Pixel Noise. The results substantiate
that judiciously introducing moderate noise in both the latent and pixel dimensions can effectively
enhance the robustness of our method.

A.4 Additional Qualitative Results

Origin 32 bits 48 bits 96 bits 128 bits

Figure 9: Examples of watermarked images with various encoding bits. FreqMark maintains image
quality(approximately 31 dB in terms of PSNR) without degradation as the number of encoding bits
increases while the bit accuracy against regeneration and Gaussian noise attacks may be reduced.
Encoding 48 bits is the default setting.
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Origin psnr 28 psnr 30 psnr 31 psnr 32 psnr 33

Figure 10: Examples of watermarked images with various quality. FreqMark allows users to balance
robustness and image quality based on their requirements. Due to the inherent robustness advantage
of FreqMark, it still remains competitive at higher image quality settings.

Origin Watermarked Difference(×10)

Figure 11: Two examples of poor image quality are presented: in the first image, a visible Moire-like
pattern is introduced, while in the second image, subtle alterations to the semantic information
in the background region are observed. This situation typically arises from the significant quality
loss caused by the VAE during the image reconstruction process. Although this phenomenon is
not frequent, future VAE models with improved performance are anticipated to mitigate this issue
effectively. Moreover, this is a direction for further exploration and enhancement in future research.
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Original Watermarked Difference(×10) Original Watermarked Difference(×10)

Figure 12: Additional qualitative results with a 48-bit hidden message. The images on the left are the
results from ImageNet [16], while those on the right are from DiffusionDB [49].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We reflect the paper’s contributions and scope in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have disclosed all the information needed to reproduce the main experi-
mental results in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open Access to Data and Code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

112257 https://doi.org/10.52202/079017-3564



Answer: [No]
Justification: We will declutter and release the code in the future. We have provided sufficient
details for the replication of the paper in Appendix A.1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified all the training and test details in section 5 and Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have included the mean and standard deviation of quality metrics (PSNR,
SSIM) and robustness metrics (Bit Acc) across all test images in Section 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have shown the computer resources information in Appendix A.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper complies with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impacts of our work in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

112259 https://doi.org/10.52202/079017-3564

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We have not released any new models or datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for Existing Assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets utilized in the paper are publicly available, with detailed license
information provided in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

112261 https://doi.org/10.52202/079017-3564




