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Abstract

Compiler backends are tasked with generating executable machine code for pro-
cessors. With the proliferation of diverse processors, it is imperative for program-
mers to tailor specific compiler backends to accommodate each one. Meanwhile,
compiler backend development is a laborious and time-consuming task, lacking ef-
fective automation methods. Although language models have demonstrated strong
abilities in code related tasks, the lack of appropriate datasets for compiler backend
development limits the application of language models in this field.

In this paper, we introduce ComBack, the first public dataset designed for im-
proving compiler backend development capabilities of language models. Com-
Back includes 178 backends for mainstream compilers and three tasks includ-
ing statement-level completion, next-statement suggestion and code generation,
representing common development scenarios. We conducted experiments by
fine-tuning six pre-trained language models with ComBack, demonstrating its
effectiveness in enhancing model accuracy across the three tasks. We further
evaluated the top-performing model (CodeT5+) across the three tasks for new
targets, comparing its accuracy with conventional methods (Fork-Flow), ChatGPT-
3.5-Turbo, and Code-LLaMA-34B-Instruct. Remarkably, fine-tuned CodeT5+
with only 220M parameters on ComBack outperformed Fork-Flow methods
significantly and surpassed ChatGPT and Code-LLaMA, suggesting potential
efficiency improvements in compiler development. ComBack is avaliable at
https://huggingface.co/datasets/docz1105/ComBack.

1 Introduction

A compiler is a fundamental computer software which translates source code from high-level pro-
gramming language into low-level machine code, e.g., assembly code, for target machines (referred
to as "target" for simplicity).

As shown in mainstream compilers like GCC [18]] and LLVM [30] are divided into three parts:
frontend, middle-end and backend. Specifically, the frontend related to programming languages, while
the middle-end comprises of target-independent optimizations, and backend converts intermediate
representation produced by the middle-end into machine code for various targets. The flourishing
development of new processors nowadays demands continuous development for backends.

Compiler backend development necessitates a profound understanding of the target characteristics and
the compiler infrastructure [19]]. Thus, it entails prolonged development cycles and substantial manual
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Figure 1: Compiler backend structure.
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Figure 2: Heavy manual efforts in backends develop-
ment for 25 targets in LLVM 17.0.1.

efforts. Data depicted in [Fig. 2] underscores the magnitude of manual efforts and the distribution of
functions across the development of compiler backends for 25 targets in LLVM 17.0.1 (latest released
version). For instance, AMDGPU comprises 219 C++/C files, totaling 118.5 KLoC (Line of Code),
while X86 comprises 124 files with 110.3 KLoC. On average, a LLVM backend in LLVM 17.0.1
consists of 68.9 files, encompassing 28.8 KLoC, indicating considerable manual efforts.

The emergence of Al has spurred considerable interest in leveraging its techniques for code-related
tasks, such as code completion and generation [34} 114} 22 |50l 49, 21} 23\ |45) 156]]. Models like
Code-LLaMA [45] have shown promise in significantly reducing the burden on programmers by
being pre-trained on extensive code datasets. However, their efficacy in tasks concerning compiler
backends, as evidenced by experimental findings in remains limited, indicating ample room
for enhancement. Moreover, the compiler community currently lacks a publicly available large-scale
backend dataset, which could enhance the efficiency of backend development across diverse targets.

In this paper, we present ComBack, which is the first public dataset leading to a promising future for
the application of language models for backend development. ComBack comprises 178 backends
for mainstream compilers (77 from GCC and 101 from LLVM), sourced from open-source GitHub
repositories. We also design three tasks to evaluate the performance of language models based on
ComBack for three prevalent scenarios encountered in backend development, including 1) Statement-
Level Completion, 2) Next-Statement Suggestion, 3) Code Generation.

In the experiment, we selected 6 representative open-source language models [50, 23} 14|49} 22 [7]
and fine-tuned them with ComBack. The results indicate that ComBack effectively improves the
accuracy of 6 language models across 3 tasks. Furthermore, we conducted research on executing
three code tasks for three new targets within GCC and LLVM. Additionally, experimental findings
show that fine-tuning a model with just 220M parameters based on ComBack significantly boosts pro-
grammers’ efficiency compared to Fork-Flow, ChatGPT and Code-LLaMA, demonstrating the value
of ComBack in enhancing the language model’s performance with compiler backend development.

2 Background: Conventional Backend Development Process

To develop a compiler backend for a new target, programmers are required to provide specific
implementations for a series of compiler infrastructure provided function interfaces based on target-
dependent information and characteristics, including instruction sets, registers, byte order, and similar
attributes. Specifically, functions within a backend can be divided into two categories:

Inherited Functions. This category includes compiler infrastructure function interfaces that carry
out specific tasks in the backend process. Programmers must inherit these interfaces and provide
implementations tailored to each target. For instance, the "getReloctype" function in LLVM maps
relocation variants and immediate values in instruction sets. Differences in this function across targets
mainly involve target-specific relocation variants and immediate values. It’s important to note that
programmers need not to implement all provided interfaces but only a subset relevant to the target,
resulting in variations in the implemented inherited functions across different targets.
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Figure 3: Conventional backend development process and assisted process with ComBack.

Customized Functions. This category includes specialized functions designed specifically for certain
targets. For example, the "islmm24bit" function in ARM target checks if the encoding length of an
immediate value is 24 bits, unique to ARM and not found in other targets.

shows the proportion of two types of functions in LLVM 17.0.1. In BPF, 82.3% of functions,
and in X86, 66.3%, are inherited from LLVM interfaces. On average across all 25 targets, inherited
functions account for 57.6%. This prevalence highlights the significant presence of inherited functions
across various targets, indicating a notable commonality among them.

depicts the conventional backend development process (Fork-Flow) [43| 32], where program-
mers must acquire knowledge of the unique characteristics of a new target, such as instruction formats
and target-specific flags. They then fork an existing backend that shares similarities (e.g., both being
CPU or GPU) and make modifications based on this knowledge to create a tailored backend for the
new target. Despite its steep learning curve, similarities among backends of the same type result in
redundant development efforts, causing inefficiencies in manual work.

To mitigate this challenge, we propose ComBack, which can be utilized to fine-tune models and
facilitate fine-tuned models to assist programmers with backend development, as shown in [Fig. 3|
thereby reducing redundant efforts and enhancing efficiency.

3 ComBack: A Dataset for Compiler Backend Development

3.1 Overview of ComBack

To the best of our knowledge, ComBack is the first public dataset for compiler backend development.
Notably, it comprises three features as outlined below:

(1) Large-Scale. ComBack is sourced from 317 GitHub repositories and the official websites of
GCC [20] and LLVM [333]], covering versions 3.0 to 13.0 for GCC and 2.0.1 to 17.0.1 for LLVM.
It includes 43,299 functions and 883.7 KLoC (Kilo lines of code) for GCC, and 138,940 functions
and 4,847.5 KLoC for LLVM, shown in Table Its large scale enhances model performance on
common backends and facilitates generalization to less common ones.

(2) Multi-Target. Mainstream compiler infrastructure now supports multiple backends for diverse
targets, requiring ComBack to be inclusive of such diversity. As indicated in Table[I] there
are a total of 77 targets for GCC backends and 101 for LLVM backends in ComBack. These
targets cover various types including CPUs, MPUs (Micro-Processors), GPUs, etc. Among them,
CPUs and MPUs are more abundant due to their wide applicability across various scenarios. In
contrast, other types of processors such as GPUs and DSPs are fewer as they are usually designed
for specific tasks, such as GPUs for deep learning workloads and parallel data computation.
Leveraging commonalities among these targets, as discussed in[Sec. 1] enables models to learn
cross-target patterns, facilitating advanced research among various backends. For detailed target
information, refer to Appendix
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Table 1: Data statistics about targets and code in ComBack.

(a) GCC (b) LLVM

Type Target Function KLoC Type Target Function KLoC

CPU 30 35,147 6472 CPU 43 84,914  3,4504
MPU 33 6,010 183.9 MPU 30 11,311 173.0

GPU 2 457 11.2 GPU 5 22,591 768.3
VLIW 5 959 254 VLIW 4 2,048 24.3

DSP 3 399 9.6 DSP 7 9,646 263.2
Virtual 4 327 6.5 Virtual 12 8,430 168.3

Sum 77 43,299  883.7 Sum 101 138,940 4,847.5

(3) Versatility. To tackle real-world challenges in compiler backend development, like code comple-
tion, ComBack focuses on enhancing model versatility. It covers three tasks: 1) Statement-Level
Completion; 2) Next-Statement Suggestion; 3) Code Generation, aiding programmers in back-
end modification and customization. By analyzing diverse target backends, models can better
assist with code completion and generation for both existing and new backends. This adaptable
approach reduces programming workload, enabling ComBack to handle various scenarios.

3.2 Data Collection and Pre-processing

The collection and pre-processing of data in ComBack adhere to the following steps:

1. Code Collection. We crawled GitHub using "GCC/LLVM+Backend" as keywords, filtering
out incomplete repositories. This yielded 21 GCC repositories and 296 LLVM repositories.
We also collected source code versions 3.0 to 13.0 from the official GCC website [20]],
and versions 2.0.1 to 17.0.1 from the official LLVM website [33]. The backend code from
multiple repositories was aggregated and reorganized by targets to create the raw code data.

2. Function Description Collection. We collected function descriptions from two sources.
Firstly, we extracted descriptions directly from comments within the source code associated
with each function. Additionally, for LLVM, we obtained function descriptions from its
official Doxygen website [31] using crawling techniques to analyze them further.

3. Code Extraction. We started by removing duplicate files and comments from the source
code for each target to minimize their influence on fine-tuning. Then, we used the tree-sitter
tool [47] to extract functions from the code after comment removal. Each line ending with

;0 ", or "} was partitioned into a single statement, allowing us to obtain all functions
within the backend source code along with their internal statements.

4. Target-Specific Value Extraction. Backend code, unlike basic C/C++ programs, promi-
nently includes target-specific values comprising information and characteristics of the
instruction set architecture (ISA) of the corresponding target. a)—(c) illustrates three
typical target-specific values: instruction encodings (Fig. 4|(c)), size (Fig. 4(c)), immediate
values (Fig. 4(b)), and target-specific flags (Fig. 4(a)).

Observations indicate that target-specific values can be categorized into 3 types: (1) nu-
merical values (Fig. 4(b) and (c)); (2) strings in double quotation marks (Fig. 4(c)); (3)
enumeration variable values with the target’s name prefix (Fig. 4(a)). However, some
enumeration values may start with the target name abbreviation, like "PPC" for "PowerPC".

We use a script to automatically filter out target-specific values based on these patterns, in-
cluding enumeration values starting with abbreviations, like "PPC". Following the approach
used in CodeXGlue [34]], we replace target-specific values in the code with intermediate rep-
resentations: "<ISA_LIT>" for enumeration variables, "<NUM_LIT>" for numerical values,
and "<STR_LIT>" for strings. Moreover, we store each target-specific value corresponding
to these intermediate representations. All target abbreviations are listed in Appendix
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case RISCVII::MO_LO:
Kind = RISCVMCExpr::VK_RISCV_LO; return isImm(16, 31); OS.write("\0\0O\x40\x03", 4);

case CSKYII::MO_GOT32:
Kind = CSKYMCExpr::VK_CSKY_GOT; return isimm(-38, 7); OS.write("\x20", 1);

(a) Target-Specific Flag and VariantKind (b) Immediate Value  (c) Instruction Encoding and Size

Figure 4: Examples of target-specific values in GCC and LLVM.

Inputs: ... adjustReg(DL, SPReg, FPReg, —StackSize+RVFI—>getVarArgsSaveSize(),
Ground Truth: Machinelnstr::FrameDestroy);

(a) Statement-Level Completion

Inputs: ... maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask;
Ground Truth: MFI —> setMaxCallFrameSize(maxCallFrameSize);

(b) Next-Statement Suggestion

Inputs:

getPointerRegClass: Returns a TargetRegisterClass used for pointer values.

Target—Specific Value: Sparc, SP::164RegsRegClass, SP::IntRegsRegClass.

Ground Truth:

TargetRegisterClass :SparcRegisterInfo::getPointerRegClass(MachineFunction &MF ,unsigned Kind) {
return Subtarget.is64Bit() ? &SP::164RegsRegClass : &SP::IntRegsRegClass;

}

(c) Code Generation

Figure 5: Examples of three tasks in ComBack.

3.3 Tasks in ComBack

For two common scenarios in compiler backend development, we’ve outlined three tasks, depicted
in[Fig. 5] For on-the-fly programming, we’ve devised Statement-Level Completion (Fig. 5(a)) and
Next-Statement Suggestion (Fig. 5(b)) [37], aiming to speed up the programming process. For
situations where programmers provide function descriptions in natural language, we’ve introduced
Code Generation (Fig. 5{c)), facilitating direct code generation for a given function. Data processing
steps for each task are detailed in subsequent subsections.

Language models fine-tuned with ComBack aid programmers in backend development by complet-
ing current statements (Statement-Level Completion), predicting next statements (Next-Statement
Suggestion) based on the contextual information. Additionally, it can generate functions based
on provided natural language descriptions and target-specific values (Code Generation), reducing
repetitive tasks and enhancing efficiency.

3.3.1 Statement-Level Completion

Following the data extraction method used in the code completion dataset of CodexGlue [34], we
initially aimed to extract five consecutive statement sequences randomly from each function in
every backend. We retained samples where the proportion of tokens in the sequence relative to the
entire function exceeded 30%, aiming to capture more contextual semantics. Assuming each sample
contains n statements, we used the first n — 1 statements along with 50%-90% of tokens from the
ngp, Statement as input. The remaining 10%-50% of tokens from the ny;, statement served as ground
truth, with this ratio chosen randomly. We treated tokens like ";", ":", "{", "}" in C/C++ as statement
terminators, as described in We maintained the intermediate representations from

in the task’s input and ground truth because target-specific values are sourced from ISA of the target,
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making accurate prediction based solely on the code context challenging. Finally, we filtered out data
with input lengths exceeding 512 tokens or output lengths exceeding 128 tokens, resulting in a total
of 161,124 samples for Statement-Level Completion.

3.3.2 Next-Statement Suggestion

Data processing for Next-Statement Suggestion mirrors that of Statement-Level Completion. We
randomly extract five consecutive statement sequences from each function in every backend, retaining
samples with over 30% of the function’s tokens. The main distinction is that, for a Next-Statement
Suggestion sample with n statements, the preceding n — 1 statements serve as input, while the
nyp, statement serves as the ground truth, as shown in b). We also retained the intermediate
representation in code and filtered out samples with input lengths exceeding 512 tokens or ground
truth lengths surpassing 128 tokens. Finally, we obtained the dataset comprising 216,315 samples for
Next-Statement Suggestion.

3.3.3 Code Generation

For Code Generation, we only kept functions with natural language descriptions (68.08% functions
in LLVM and 48.12% functions in GCC), discarding those lacking such descriptions. Each function’s
description, along with its internal target-specific values, was used as input (typically requiring
extraction from ISA manuals), while the entire function (replacing each intermediate representation
with corresponding target-specific value) served as the ground truth, as seen in[Fig. 5c). During
filtering, samples with input exceeding 256 tokens or ground truth surpassing 512 tokens were
removed, retaining 45,296 samples.

4 Experiment

This section addresses the following research questions:

* RQ.1: Can ComBack effectively enhance backend development capabilities of various
language models?

* RQ.2: Can ComBack facilitate fine-tuning a model to enhance backend development
efficiency for new targets of existing types and new types? (Sec. 4.3)

* RQ.3: Can ComBack support iterative expansion to improve backend development efficiency

for customized targets?

4.1 Experimental Setup

Fundamental Models. We selected six open-source language models pre-trained or fine-tuned on
C or C++ language: 1) CodeBert (Fine-Tuned with C) [14, [16], 2) GraphCodeBert (Fine-Tuned
with C) [23)[15], 3) UniXcoder-base-nine [22], 4) CodeT5-base [50], 5) CodeT5+-220M [49] and
6) NatGen [7]. We chose them for two reasons: 1) these models are representative open-source
programming language models, suitable for various tasks in ComBack; 2) their relatively small model
size helps reduce computational resources needed for training and deployment. All fine-tuned models
and code are available at https://huggingface.co/docz1105/ComBack_Models,

Baselines. For experiment in[Sec. 4.3] we include Fork-Flow method as the baseline of conventional
development efficiency. Additionally, we choose ChatGPT-3.5-Turbo and Code-LLaMA-34B-Instruct
as baselines for mainstream large language models (LLMs). ChatGPT is the most widely used LLM
globally, while Code-LLaMA, an open-source LLLM designed specifically for code-related tasks,
achieves state-of-the-art performance on many code related benchmarks.

Evaluation Metrics. To evaluate the inference capability of models fine-tuned with ComBack, we
use exact match accuracy (EM) and Levenshtein Edit Distance Similarity (ED) [22}134] for Statement-
Level Completion and Next-Statement Suggestion. For Code Generation, we use Levenshtein Edit
Distance Similarity and BLEU-4 [38]] as evaluation metrics.Exact Match was used for the two
code completion tasks because it directly measures the correctness of the generated code, meeting
developers’ needs in real-time programming. For Code Generation, we chose BLEU-4 to assess
structural similarity between the generated code and the ground truth, the higher the BLEU-4 score,
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Table 2: Comparison of accuracy across three tasks of six models fine-tuned by ComBack.

Stmt. Comp. Next. Sugg. Code. Gen. Stmt. Comp. Next. Sugg. Code. Gen.

Model EM (%) ED EM (%) ED BLEU-4 ED [EM (%) ED EM (%) ED BLEU-4 ED
Without Fine-Tuning Fine-Tuned
CodeBert 0.00 097 0.00 131 000 044 | 53.84 7744 52.67 70.82 23.54 54.63
GraphCodeBert  0.00 035 0.00 0.54 000 241 | 43.00 71.89 47.10 6131 20.73 48.83
UniXcoder 0.07 2756 1593 29.11 0.00 31.81| 67.84 85.06 5851 7531 56.24 7345
CodeT5 0.65 2145 7.23 2350 000 13.57| 6647 8434 5852 76.03 70.87 8045
NatGen 0.00 1352 0.02 1595 0.01 28.76| 67.47 84.83 6030 76.84 71.73 81.39
CodeT5+ 002 724 012 987 0.00 1233| 6693 8445 59.57 7641 7529 82.92

the greater the similarity. We also used edit distance for all tasks to measure the modifications needed
to align the generated code with the ground truth, where a higher score indicates fewer required edits
and closer alignment to the ground truth.

Training Settings. All models are trained and evaluated on a server with a 64-core Intel Xeon Gold
CPU and 8 NVIDIA Tesla V100 GPUs, each with 16GB of memory. We set the fine-tuning objective
as: sequence-to-sequence prediction for three tasks. To ensure fairness, all hyperparameters are
identical for the six models, detailed in Appendix[C|

4.2 Accuracy Improvement across Various Models

To evaluate accuracy improvement of different models across three tasks, we randomly split the
backend data from all targets into train/validation/test sets in an 80%:10%:10% ratio, with details on
the quantity of data and tokens in each set provided in Appendix D} Subsequently, we fine-tuned and
tested six models with the dataset. Table [2 shows the accuracy improvement of six models across
three tasks after fine-tuning with ComBack. The models exhibited improvements of 41.64 - 77.21 of
ED across three tasks, 42.58%-67.77% in absolute terms of EM for Statement-Level Completion and
Next-Statement Suggestion, and 20.73-75.29 of BLEU-4 for Code Generation.

Answer to RQ.1: ComBack can effectively improve backend development capabilities of various
language models.

4.3 Efficiency Enhancement for New Targets

In[Sec. 4.3.T]and [Sec. 4.3.2] we simulate code completion and generation scenarios for new targets
of existing types and new types. We select CodeT5+ for experiments in following sections, as it
achieves the highest accuracy on average across three tasks (Sec. 4.7).

4.3.1 Targets of Existing Types

We simulate code completion and generation scenarios for new targets of existing types. Therefore,
we select RISC-V (CPU), ARC (MPU), and NVPTX (GPU) in GCC and LLVM as test sets. Other CPU,
MPU, and GPU targets are split into train and validation sets at an 85%:15% ratio. RI5CY in LLVM
is excluded since it’s a customized target based on RISC-V and shares most code with it. Further
dataset details are provided in Appendix D}

Next, we fine-tuned CodeT5+ with the dataset including CPU, MPU and GPU. We further compared
the accuracy of fine-tuned CodeT5+, mainstream LLMs, and conventional backend development
methods (Fork-Flow) for backend development of three targets.

Mainstream LLMs. We evaluated the performance of ChatGPT-3.5-Turbo and Code-LLaMA-34B-
Instruct across three tasks for RISC-V, ARC, and NVPTX, as shown in Table|3| Inputs for both LLMs
closely matched those in ComBack, with the addition of a unified prompt, detailed in Appendix [F|

CodeT5+ consistently outperforms two LL.Ms across three tasks. Specifically, in Statement-Level
Completion, CodeT5+ surpasses 37.10%-40.82% for EM compared with ChatGPT and 49.72%-
54.57% compared with Code-LLaMA in absolute terms on three targets in GCC and LLVM. The
significant improvement in accuracy indicates that fine-tuning small LLMs with ComBack exceeded
large LLMs significantly. Therefore, ComBack holds significant importance in enhancing the
performance of language models in backend development scenarios.
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Table 3: Accuracy of code generated by ChatGPT, Code-LLaMA and CodeT5+ fine-tuned by
ComBack for targets of existing types.

Stmt. Comp. Next. Sugg. Code. Gen.
Model RISC-V ARC NVPTX RISC-V ARC NVPTX RISC-V ARC NVPTX
EM (%) ED [EM (%) ED [EM (%) ED |EM (%) ED [EM (%) ED [EM (%) ED [BLEU-4 ED [BLEU-4 ED |BLEU-4 ED
GCC

ChatGPT 10.34 38.41] 1535 42.94| 12.01 41.47| 6.44 1290 9.75 20.79| 7.97 1779 137 24.12| 1.67 2826| 1.57 2697
Code-LLaMA  0.41 19.07 ‘ 0.85 16.77| 0.56 18.22| 1.58 13.54| 2.66 17.95| 247 16.59| 1.67 27.89| 1.71 30.49| 157 27.65
CodeT5+ 51.16 7532 5245 74.57| 50.56 75.52| 49.11 67.84| 38.26 59.21| 38.33 56.31 32.56 58.67| 19.94 50.27| 2547 52.60
LLVM
ChatGPT 12.08 41.39] 16.77 42.02| 14.73 43.72| 9.80 21.86| 10.81 20.66| 11.39 22.82 1.23 25.12| 1.30 27.19| 143 2545
Code-LLaMA 045 17.61| 0.61 17.21| 0.99 17.23| 175 15.04] 042 11.27| 242 1625 143 27.24| 1.61 3212 159 28.08
CodeT5+ 62.68 82.02 71.34 85.98| 64.45 81.53| 48.71 68.95| 58.68 74.57| 47.81 65.51 50.34 72.98| 5538 74.41| 44.33 66.36

20 Y EJFF-Avg FF-Max [ CodeT5+ 20 Y [ FF-Avg FF-Max [ CodeT5+ 80 Y [ FF-Avg FF-Max [ CodeT5+ 20 Y [ FF-Avg FF-Max [0 CodeT5+
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Targets in GCC Targets in GCC Targets in LLVM Targets in LLVM
(a) GCC (b) LLVM

Figure 6: Comparison of fine-tuned CodeT5+ and Fork-Flow for Code Generation, where "FF" is the
abbreviation of Fork-Flow.

Fork-Flow. Due to the similarity between the Fork-Flow process, which involves modifying complete
functions, and scenarios in Code Generation where developers modify functions automatically
generated by the model, we only compare Fork-Flow with fine-tuned CodeT5+ on Code Generation.

To simulate the process of Fork-Flow, we used scripts to calculate the ED and BLEU-4 between
functions with identical names on new targets (RISC-V, ARC, NVPTX) and their corresponding imple-
mentations on other targets. We aggregate their average and maximum values across these targets
(excluding RISC-V, ARC, NVPTX) and compare them with values of functions generated by fine-tuned
CodeT5+, as depicted in It is evident that the accuracy of fine-tuned CodeT5+ exceeds
both the average and maximum values of Fork-Flow, demonstrating that the CodeT5+ fine-tuned by
ComBack can achieve higher efficiency compared to conventional development method. Details of
Fork-Flow can be viewed in Appendix

4.3.2 Targets of New Types

We further explore whether ComBack can facilitate code completion and generation for targets of
new types. We fine-tune CodeT5+ with CPU data only, excluding MPU and GPU data from train and
validation sets in[Sec. 4.3.1] Next, we exclude CPU data and only retain MPU and GPU data in the
test set, detailed in Appendix[D] After fine-tuning CodeT5+ with the dataset only containing CPU, we
explore whether it can generate functions for new types of targets (MPU and GPU) in the test dataset.

Results in Table d]indicate that CodeT5+ fine-tuned on existing types of targets (CPU) can indeed
facilitate code completion and generation for new types of targets (MPU and GPU), as backends of
different types of targets under the same compiler infrastructure (GCC or LLVM) adhering to unified
programming standards (such as same function interfaces and classes).

However, there tends to be a decrease in accuracy on most targets, as depicted in Table ] Further
analysis in Appendix [H|reveals that there are differences in functions required in the backend of
different types of targets. Therefore, the fine-tuned model struggles to effectively complete and
generate code corresponding to some functions for new types of targets.

Answer to RQ.2: The model fine-tuned by ComBack can enhance backend development
efficiency for new targets of both existing and new types.

4.4 TIterative Expansion Ability

In this section, we explore ComBack’s iterative expansion ability. As application scenarios diversify,
the field of processor design witnesses a proliferation of customized targets. These targets, often
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Table 4: Accuracy across three tasks of targets of new types (MPU and GPU).

Stmt. Comp. Next. Sugg. Code. Gen.
Dataset ARC (MPU) NVPTX (GPU) ARC(MPU) NVPTX (GPU) ARC (MPU) NVPTX (GPU)
EM (%) ED [EM (%) ED [EM (%) ED [EM (%) ED [BLEU-4 ED [BLEU-4 ED
GCC

-w/o GPU and MPU  50.53 74.09| 46.37 72.45| 37.22 5821 | 3833 56.83| 19.29 49.12| 2246 5033
-w GPU and MPU 5245 7457| 50.56 75.52| 3826 59.21| 3833 5631| 1994 50.27| 2547 52.60
Diff -1.92 048 | -419 -3.07 -1.04 -1.00| 000 +052| -0.65 -1.15| -3.01 -3.37
LLVM
-w/o GPU and MPU  69.82 85.59| 60.04 79.85| 5826 73.75| 4628 63.92| 49.62 70.26| 4294 6543
-w GPU and MPU 7134 8598 | 6445 81.53| 58.68 74.57| 47.81 655 | 5538 74.41| 4433 66.36
Diff -1.52 039 441 -168 -042 -082| -1.53 -1.58| -5.76 -415| -1.39 -0.93

Table 5: Improvement of accuracy across three tasks for RISCY after iterative expansion.

Stmt-Level. Comp.  Next-Stmt. Sugg. Code. Gen.
EM (%) ED EM (%) ED BLEU-4 ED
-w RISC-V 74.06 87.91 67.25 81.28 79.46 89.92
-w/o RISC-V 66.16 83.79 57.29 74.73 54.41 75.41
Diff +7.90 +4.12 +9.96 +6.55 | +25.05 +14.51

Dataset

built upon existing targets, integrate customized instructions to swiftly cater to specific application
scenarios. Consequently, their backends merely require extensions from the existing backend.
We chose RI5CY in LLVM to test if ComBack can be iteratively expanded to improve backend
development efficiency for customized targets.

As a target based on RISC-V, RI5CY shares most backend code with RISC-V but includes customized
instruction handling. Initially, we fine-tuned CodeT5+ with train and validation set in
(excluding RISC-V), then we add RISC-V into train and validation set and fine-tuned CodeT5+ with
new data (detailed in Appendix [D) and restart fine-tuning from scratch. Results in Table [5] show
a notable accuracy improvement across three tasks after integrating RISC-V data, demonstrating
ComBack’s iterative expansion ability.

Answer to RQ.3: ComBack effectively enables backend development for customized targets by
iterative data expansion.

5 Related Work

Backend Development. Compiler backend development heavily relies on manual efforts. Some
researchers have proposed Processor Design Languages (PDL) to describe ISA and hardware infor-
mation for processors [40} 6, [13} 14} [12} 24, |35 15]]. While these methods mitigate manual efforts to
some degree, programmers still need to invest significant effort in learning PDL rules and writing
files.

Dataset for Compiler. Datasets like CodeXGlue [34] and CodeSearchNet [25]] have enhanced lan-
guage models in programming. As Al extends into compilers, datasets like Compile [21]], TenSet [56]],
and ANGHABENCH [11] focus on compiler optimization. However, there remains a dearth of
datasets tailored for compiler backends within the community. ComBack is the first dataset designed
to substantially augment the capabilities of language models in backend code generation.

Al for Compilation. Al has driven the widespread adoption of machine-learning-based compilation
techniques. These methods have found application in tasks such as developing cost and performance
models [54, 144} [55] 142, 36], determining transformation order [48] [17, 39, 29| |8], and optimizing
parallel programs [28], 27} 152} 1511 26]. Ongoing projects using transformer models for decompila-
tion[1} 2} 146/ 53] and code optimization [[10] highlight the significant potential of Al for compilers.
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6 Discussion

Limitation. One limitation of ComBack is the absence of function descriptions for highly-customized
functions in backends for specific targets. We plan to address this in future iterations of the dataset.

Potential Societal Impact. ComBack does not contain any personally identifiable information or
offensive content, thereby mitigating any potential negative societal impact.

Conclusion. In this paper, we introduce ComBack, the first public dataset for compiler backend
development. ComBack includes 178 backends for mainstream compilers and features three tasks,
including statement-level completion, next-statement suggestion and code generation. It enables
efficient backend code completion and generation after fine-tuning language models with ComBack.
Our evaluation, conducted on six representative language models, shows that ComBack boosts
language models’ performance across all three tasks. Notably, CodeT5+ with only 220M parameters
significantly outperforms the efficiency of conventional backend development methods and even
surpasses ChatGPT-3.5-Turbo and Code-LLaMA-34B-Instruct across three tasks, suggesting potential
improvements in compiler development speed and efficiency.
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A Appendix: Target List in ComBack.

In Table[6] we provide all targets in ComBack.

Table 6: Target list in ComBack.

Compiler ISA Target
aarch64, arm, clipper, crx, csky, d30v, 1370, 1386, 1860, 1960, 1264, 12000, loongarch, mep
CPU mips, mmix, moxie, mt, nds32, orlk, pa, powerpcspe, pru, riscv, rs6000, rx, sh, sparc

stormy 16, vax, bfin, c4x, fr30, gcn, nvptx

Gee T750a, a29K, alpha, arc, avr, cr16, cris, eco32, epiphany, (32, h8300, Tm32, m32c, m32r

MPU m68hc11, m68k, m88k, mcore, microblaze, mn10200, mn10300, msp430, nios2, ns32k
pdp10, pdp11, r178, romp, $390, spu, v850, xtensa, z8k

Virtual  bpf, mapip, visium, vms

VLIW  c6x, convex, frv, tilegx, tilepro

AArch64, ARM, ARM64, AZPR, CAHP, CJG, Comet2, Cpu0, CSKY, Dcpul6, Digital
DLX, F2003f, FISC, FPGA, 1A64, Kudeyar, Lanai, LC2200, LC3, LC3b, LEG
LoongArch, Mandarin, MINA32, Mips, MMIX, OpenRISC, OR1K, PowerPC, RISCY
RISCYV, SHUXI, SIC, Sparc, StackPU2, SystemZ, TeeRISC, TOY, UPT, VE, X86, XNCM

CPU

LLVM DSP Blackfin, Hexagon, MDSP, SNES, Teak, Videocore, VideoCore4

GPU AMDGPU, NVPTX, Nyuzi, PTX, R600

AAP, AGC, Alpha, ARC, ARCompact, AVR, CellSPU, ECLair, Epiphany, GBZ80, J2
MPU LM32, M680x0, M68k, M88k, MBlaze, MCS51, MOS, MSP430, Nios2, P2, PIC16
TLA45, TLCS900, TriCore, WDC65816, XCore, Xtensa, Z80, Z80old

. BPF, DirectX, HSAIL, JVM, mproc, NPEngine, RV16K, SPIRV, TGSI, TPC, TVM
Virtual
WebAssembly

VLIW  Patmos, rvex, Tile64, TMS320C64X

B Appendix: Target abbreviation occurred during pre-processing.

Table 7: Targets Abbreviation in ComBack.

Target Abbreviation Target Abbreviation Target Abbreviation

AMDGPU SI ARCompact ARC Mandarin MD
Blackfin BF CellSPU SPU PowerPC PPC
DirectX DXIL GBZ80 GB R600 SI
RISCY RISCV Sparc SP Tile64 T64

Videocore vC WDC65816 WDC

In Table[/| we provide all abbreviations for targets in ComBack. Recording these abbreviations can
assist us in accurately extracting target-specific values.

C Appendix: Hyperparameters and Input/Output Sequence Length Settings.

In Table 8] we provide all hyperparameter settings. For CodeBert and GraphCodeBert, the input
sequence length is set to 384, with output lengths of 128 for Statement-Level Completion and Next-
Statement Suggestion, and 256 for both input and output for Code Generation, given the maximum
token length of 512 for both models. For the other four models, the input sequence length is set to
512, with output lengths of 128 for Statement-Level Completion and Next-Statement Suggestion, and
256 for input and 512 for output for Code Generation.

Table 8: Hyperparameter settings.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
Training Batch Size 32 Beam Size 4 Learning Rate Se-5
Evaluation Batch Size 16 Max Optimization Steps 3
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D Appendix: Data Statistics about the Number and Token of Three Tasks.

In Table[9] we provide all detailed data of train, validation and test set of experiments in to
Sec. 44

Table 9: Data statistics about the number and token of three tasks.

(a) Data statistics about the number and token of three tasks for

Task Train
Stmt. Comp. 128,899(11.36M Token)
Next. Sugg.  173,052(15.69M Token)

validation

Test
16,112(1.43M Token)

16,113(1.43M Token)

21,631(1.99M Token) 21,632(1.98M Token)
Code. Gen. 36,236(5.10M Token) 4,530(0.64M Token) 4,530(0.64M Token)
(b) Data statistics about the number and token of three tasks for
Task Train validation Test

Stmt. Comp. 114,016(10.20M Token) 20,121(1.81M Token) 6,645(0.58M Token)

Next. Sugg.  152,114(14.10M Token) 26,844(2.49M Token) 9,313(0.83M Token)

Code. Gen. 30,633(4.44M Token) 5,406(0.79M Token)  2,819(0.37M Token)

(c) Data statistics about the number and token of three tasks for
Task Train validation Test

Stmt. Comp. 87,018(7.78M Token) 15,357(1.37M Token) 2,764(0.26M Token)
Next. Sugg.  113,684(10.65M Token) 20,063(1.87M Token) 4,029(0.38M Token)
Code. Gen. 21,184(3.14M Token) 3,739(0.55M Token)  1,372(0.18M Token)

(d) Data statistics about the number and token of three tasks for (Excluding RISC-V in train and
validation set).

Task Train validation Test
Stmt. Comp. 87,018(7.78M Token) 15,357(1.37M Token)  721(0.04M Token)
Next. Sugg.  113,684(10.65M Token) 20,063(1.87M Token) 1,035(0.06M Token)
Code. Gen. 21,184(3.14M Token) 3,739(0.55M Token) 219(0.02M Token)
(e) Data statistics about the number and token of three tasks for (Including RISC-V in train and validation
set).
Task Train validation Test
Stmt. Comp. 90,316(8.06M Token) 15,940(1.42M Token)  721(0.04M Token)
Next. Sugg.  118,175(11.04M Token) 20,856(1.94M Token) 1,035(0.06M Token)
Code. Gen. 22,413(3.30M Token) 3,957(0.58M Token) 219(0.02M Token)
112324
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E Appendix : Fork-Flow Detailed Experimental Data.

In Table[I0} we provide all detailed data in Fork-Flow experiment.

Table 10: Fork-Flow experimental data.

Compiler  Type Target BLEU4 ED EM Target BLEU4 ED EM
GCC MPU z8k 0.32 1.33 0 m68k 1.27 2.84 0
GCC MPU a29k 0 0 0 m88k 0 0 0
GCC MPU avr 4.27 8.85 0.24  microblaze 1.39 3.53 0
GCC MPU Im32 1.89 368 0.24  mnl0200 0 0 0
GCC MPU mcore 1.4 3.61 0 mn10300 2.73 5.47 0
GCC MPU msp430 0.94 1.89 0 nios2 3.35 7.07 048
GCC MPU v850 2.32 4.58 0 ns32k 0 0 0
GCC MPU xtensa 2.93 6.01 0.24 cris 243 6.27 0
GCC MPU crl6 1.49 3.86 0 pdpll 1.39 3.75 0
GCC MPU rl78 0.9 1.69 0 pdpl0 0.02 0.25 0
GCC MPU m32¢c 1.35 4.07 0.24 1750a 0 0 0
GCC MPU ft32 2.23 4.14 0 $390 3.53 8.05 0
GCC MPU h8300 2.48 5.25 0 romp 0 0 0
GCC MPU alpha 3.69 7.5 024 spu 1.98 3.78 0
GCC MPU epiphany 4.94 7.84 0.24 eco32 1.36 2.74 0
GCC MPU m32r 4.31 7.85 095
GCC CPU aarch64 12.54  18.21 3.51 sparc 3.68 7.81 0.39
GCC CPU arm 4.28 797 0.39 mep 0.96 227 0.19
GCC CPU csky 3.77 7.76  0.19 vax 0.78 2.13 0
GCC CPU d30v 0.19 0.49 0 clipper 0 0 0
GCC CPU i370 0 0 0 iq2000 1.91 4.03 0.39
GCC CPU 1386 0.26 0.68 0 crx 0.43 1.82 0
GCC CPU 1860 0 0 0 moxie 1.05 277 0.19
GCC CPU 1960 0 0 0 mt 1.01 2.81 0
GCC CPU ia64 2.16 5.71 0 nds32 1.88 424 0.19
GCC CPU loongarch 28.77 348 8.38 pru 2.15 528 0.19
GCC CPU mips 2224 2999 351 rs6000 341 725 0.19
GCC CPU mmix 1.75 427 0.19 X 1.01 2.4 0
GCC CPU orlk 2.06 469 0.19 sh 2.49 5.71 0
GCC CPU pa 2.09 4.47 0 stormy16 0 0 0
GCC CPU  powerpcspe 0.07 0.36 0

LLVM GPU  AMDGPU 18.81 39.04 0.58 PTX 1239 21.79 0.97
LLVM GPU Nyuzi 1274 21.35 1.94 R600 16.31 3272 0.39
LLVM  MPU AVR 28.42 4524 233 CellSPU 11.29 2576 0
LLVM  MPU LM32 12.55 18.37 3.1 ECLair 3.94 5.4 1.55
LLVM  MPU MCS51 28.1 4336 2.33 Epiphany 0.78 0.78 0.78
LLVM  MPU MSP430 29.04  46.19 233 GBZ80 27.87 45.74 0.78
LLVM  MPU P2 28.72  42.04 4.65 M680x0 24.2 39.33  4.65
LLVM  MPU PIC16 1221 2622 0 M68k 2549 4228 543
LLVM  MPU TriCore 18.83 2593 6.2 M88k 23.26 412 543
LLVM  MPU XCore 41.8 60.62 5.43 MBlaze 15.84  29.81 0
LLVM  MPU Xtensa 22.1 41.71 6.98 Nios2 12.89  20.59 2.33
LLVM  MPU AGC 13.11  22.84 3.88 730 24.64 4371 233
LLVM  MPU TL45 24.63 3895 543 Z800ld 21.75 3827 3.1
LLVM  MPU  TLCS900 20.59 32.4 0 MOS 2277 4236 3.1
LLVM  MPU J2 17.75 3571 2.33 AAP 3041 4491 4.65
LLVM  MPU Alpha 12.81  25.61 0 WDC65816 13.2 22.6 0
LLVM  MPU ARCompact 10.4 21.48 0

LLVM CPU AArch64 2732 4647 1.5 ORI1K 15.18 2621 043
LLVM CPU ARM 2393 4238 2.14  PowerPC 2142 3999 0.75
LLVM CPU ARM64 1533  27.04 0.75 SHUXI 11.21 19.73 1.71
LLVM CPU AZPR 2.92 572 0.21 Sparc 18.19 3298 1.61
LLVM CPU CAHP 23.54 33.61 5.03 StackPU2 2.08 2.6  0.11
LLVM CPU CIG 11.08 19.17 1.61 SystemZ 21.85 3897 1.39
LLVM CPU Cpu0 16.92 2997 1.28 TOY 9.45 20.55 0.32
LLVM CPU CSKY 2586  38.25 3.53 UPT 5.65 12.1 0.64
LLVM CPU DLX 12.13 2455 1.39 X86 18.88  35.77 1.39
LLVM CPU 1A64 4.16 9.52 0 XNCM 7.04 14.61 0.21
LLVM CPU Kudeyar 8.89 16.03 0.32 Comet2 3.87 721  0.96
LLVM CPU Lanai 16.7 30.37 1.28 Dcpul6 9.56 18.43 0
LLVM CPU LC2200 15.08 243 171 F2003f 9.24 16.72  0.54
LLVM CPU LC3 8.49 17.79  0.86 SIC 11.87 2242 1.18
LLVM CPU LC3b 3.14 6.47 0.32 TeeRISC 8.39 15.64 0.32
LLVM CPU  LoongArch 13.6 21.83 2.57 Digital 0.87 1.1 0.21
LLVM CPU Mandarin 9.24 16.75 0.54 FISC 12.9 25.27 0.96
LLVM CPU MINA32 9.96 19.04 1.07 FPGA 1.07 201 0.21
LLVM CPU Mips 2296 4035 2.25 LEG 8.94 18.63  0.86
LLVM CPU MMIX 1642  25.04 3.5 VE 20.54 3491 257
LLVM CPU  OpenRISC 4.58 9.06 0.21
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F Appendix: Prompt Example of Input for ChatGPT and Code-LLaMA.

We provide prompt examples of Input for ChatGPT and Code-LLaMA in [Fig. 7]

//Prompt: Complete the last statement of this code snippet:

adjustReg(MBB,LastFrameDestroy, DL, SPReg, FPReg, —StackSize+RVFI—>getVarArgsSaveSize()

(a) Statement-Level Completion

//Prompt: Predict the next statement of this code snippet:

maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask;

(b) Next-Statement Suggestion

//Prompt: Create a function named "getPointerRegClass" for "Sparc" backend of LLVM Compiler.
//The description of this function is "Returns a TargetRegisterClass used for pointer values".
/It contains "Sparc", "SP::164RegsRegClass", "SP::IntRegsRegClass" as target specific values.

(c) Code Generation

Figure 7: Prompt examples of tasks in ComBack.

G Appendix : License of Assets.

In Table we provide all license of assets in experiment.

Table 11: License of assets.

Assets CodeBase License
CodeBER [14]] CodeSearchNet [25]] MIT License
GraphCodeBERT [23]] CodeSearchNet [25]] MIT License
UnixCoder [22] CodeSearchNet [25]], C4 [41] MIT License
CodeT5 [50] CodeSearchNet [25], BigQueryl [3]  Apache-2.0
NatGen [7] CodeSearchNet [25], BigQueryl [3] MIT License
CodeT5+ [49]] GitHub-Code Dataset [9]] bsd-3-clause
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H Appendix: Heatmap Analysis.
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Figure 8: Heatmap analysis of top 300 functions implemented by most targets

We analyzed the top 300 functions implemented by most targets in both GCC and LLVM backends,
creating[Fig. 8|based on target types. CPUs and MPUs showed high similarity, while CPUs and GPUs
exhibited significant differences, making it challenging to generate accurate GPU code solely from
CPU data. Additionally, VLIW and Virtual targets differed from mainstream CPUs due to variations
in instruction sets, highlighting the need to use backend code from similar targets for training, as

discussed in[Sec. 4.3.1]

https://doi.org/10.52202/079017-3567 112327



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See[Sec. 6]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See[Sec. €]
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(b) Did you include complete proofs of all theoretical results? [N/A |

3. If you ran experiments (e.g. for benchmarks)...
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imental results (either in the supplemental material or as a URL)?[Yes] See Supple-
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were chosen)? [Yes] See [Sec. 4.1]
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ments multiple times)?
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of GPUgs, internal cluster, or cloud provider)? [Yes] See
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(b) Did you mention the license of the assets? [Yes] See Appendix@

(c) Did you include any new assets either in the supplemental material or as a
URL?[Yes] See https://huggingface.co/datasets/docz1105/ComBack| and
https://huggingface.co/docz1105/ComBack_Models

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See[Sec. 6]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A ]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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