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Abstract

Accurate identification and organizing of textual content is crucial for the automa-
tion of document processing in the field of form understanding. Existing datasets,
such as FUNSD and XFUND, support entity classification and relationship pre-
diction tasks but are typically limited to local and entity-level annotations. This
limitation overlooks the hierarchically structured representation of documents, con-
straining a comprehensive understanding of complex forms. To address this issue,
we present the SRFUND, a hierarchically structured multi-task form understanding
benchmark. SRFUND provides refined annotations on top of the original FUNSD
and XFUND datasets, encompassing five tasks: (1) word to text-line merging,
(2) text-line to entity merging, (3) entity category classification, (4) item table
localization, and (5) entity-based full-document hierarchical structure recov-
ery. We meticulously supplemented the original dataset with missing annotations
at various levels of granularity and added detailed annotations for multi-item table
regions within the forms. Additionally, we introduce global hierarchical struc-
ture dependencies for entity relation prediction tasks, surpassing traditional local
key-value associations. The SRFUND dataset includes eight languages including
English, Chinese, Japanese, German, French, Spanish, Italian, and Portuguese,
making it a powerful tool for understanding cross-lingual forms. Extensive experi-
mental results demonstrate that the SRFUND dataset presents new challenges and
significant opportunities in handling diverse layouts and global hierarchical struc-
tures of forms, thus providing deep insights into the field of form understanding.
The original data set and implementations of the baseline methods are available at
https://sprateam-ustc.github.io/SRFUND.

1 Introduction

In the United States, billions of individuals and businesses submit tax returns annually,2 and globally,
hundreds of billions of parcels are distributed each year,3 most of which are accompanied by invoices
and delivery notes. Although these documents vary in format, they are all considered forms, which
serve as crucial information mediums widely used in global information and merchandise exchange.
Compared to storage formats like camera-captured images or scanned documents, digitizing original
forms into structured text aids in reducing storage space and facilitates information dissemination

∗Corresponding author.
2https://www.irs.gov/pub/irs-pdf/p55b.pdf
3https://www.pitneybowes.com/content/dam/pitneybowes/us/en/shipping-index/

23-mktc-03596-2023_global_parcel_shipping_index_ebook-web.pdf
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Figure 1: Multiple granularity of annotations and supported tasks on SRFUND. Different colors
are used to indicate various element annotations, with subfigure c showing yellow, blue, pink, and
green representing four different types of entities: Header, Question, Answer, and Other, respectively.
Subfigure e displays the document’s entity-level structural relationships based on the entities in
subfigure c, where ei denotes the i -th entity in the document. The colors of different nodes indicate
different entity types, with the color-to-type correspondence matching that in subfigure c.

[18]. Consequently, there has been a growing practical demand in recent years for understanding
information within forms, including both textual content and document structures across various
layouts and languages. With the rapid development of document processing technologies, significant
progress has been made in the field of form understanding [22, 40, 45], along with the establishment
of a series of benchmark datasets [16, 17, 33, 37, 41, 44]. However, none of these existing datasets
have established the global and hierarchical structural dependencies considering all elements at
different granularity, including words, text lines, and entities within the forms.

To enhance the applicability of form understanding tasks in hierarchical structure recovery, we
introduce the SRFUND, a multilingual form structure reconstruction dataset. The SRFUND dataset
comprises 1,592 form images across eight languages, with each language contributing 199 images.
As illustrated in Figure 1, each form image is manually annotated with the locations and text contents
of each word, text line, and entity. After identifying each independent entity, we categorize these
entities into four classes including Header, Question, Answer, and Other, which is consistent with the
definitions of the FUNSD data set [17]. Moreover, all entities in the form are annotated with their
hierarchical dependencies, allowing us to reconstruct the global form structure. For the multi-item
table regions frequently found in forms, we have specifically annotated the positions of these tables,
including their table headers, and grouped each line item within these tables individually. The refined
annotations of SRFUND support the evaluation of form structure reconstruction tasks at different
granularities. We conducted benchmark tests on several tasks using representative methods from
three categories: vision-only, language-only, and multi-modal approaches. These tasks include
(1) word to text-line merging, (2) text-line to entity merging, (3) entity category classification, (4)
item table localization, and (5) entity-based full-document hierarchical structure recovery. Detailed
experimental settings and results are presented in Sec. 4.

2 Related Work

Prior research has divided document structure tasks into two main categories: physical layout analysis
and logical structure analysis [13, 30]. The former refers to the physical locations of various regions
within a document image, while the latter aims to understand their functional roles and relationships.
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In this chapter, we will first review the work related to physical and logical structure analysis.
Additionally, we will introduce common benchmarks widely used in form understanding tasks.

2.1 Document physical layout analysis

Earlier document layout analysis methods can be classified into two main categories. Algorithms
employing a bottom-up strategy start from the finest elements of the document and iteratively merge
these elements based on rules or clustering algorithms to create larger and more unified regions
[20, 31]. Conversely, top-down strategies begin from the entire document image and use histogram
analysis or whitespace refinement methods to segment it into increasingly smaller regions [12, 46].
With the advancement of deep learning technology, several approaches have been proposed to
address the document layout analysis challenges in more complex scenarios. These approaches can
generally be divided into two categories. Detection-based approaches follow the route of object
detection in computer vision, treating different elements within a document as distinct detection
targets [24, 32, 35]. Models such as Cascade-RCNN [2], YOLOX [10], and DETR [3] are used to
directly predict the positions of various elements in the document images. On the other hand, methods
based on instance segmentation employ frameworks used for instance segmentation in natural scene
images to segment areas within documents [23, 42, 43]. For example, FCN [28] or Mask R-CNN
[14] is utilized to segment text-line regions or other types of areas from complex document images.

2.2 Document logical structure analysis

Logical structure analysis of documents focuses on analyzing the types and relationships of document
elements at a logical level, which is often built upon the results of the physical layout analysis [30].

In document element classification tasks, early approaches are often based on deterministic grammar
rules [8, 21]. Such approaches typically require detailed rule specifications for a particular document
layout and struggle to generalize to different document scenarios. Deep learning methods have boosted
the performance on this task. Vision-only approaches for multi-class detection or segmentation do
not rely on extracting the text content and position of document elements but instead employ visual
models to directly locate different categories of document elements [24, 32, 43]. Additionally,
approaches based on natural language models [27] or multi-modal language models [40, 45] are
used to determine the types of document elements when the text content and positions of document
elements are provided.

In document structure analysis tasks, early solutions employ formal grammar or logical trees to
represent and arrange hierarchical relationships among elements in documents. This often requires
manually designing rules tailored to the current layout. To automatically learn relationships among
document elements from diverse layout data, some deep learning-based approaches have been
utilized for relationship prediction tasks. DocStruct [39] and StrucText [25] utilize a single learnable
asymmetric parameter matrix for predicting asymmetric relationships between any two document
elements. GraphDCM [38] introduces a Merger module containing a set of asymmetric parameter
matrices, further aggregating fine-grained elements with the same category in the document into
coarse-grained elements. In LayoutXLM [41], all possible head-tail pairs are first collected, and a
bi-affine classifier [9] is used to determine if a relationship exists between them. GeoLayoutLM [29]
proposes a relationship classification head composed of bi-linear layers and lightweight transformers,
further enhancing the performance of element relationship classification tasks.

2.3 Form understanding benchmarks

The development process of form understanding tasks is closely related to relevant benchmarks.
SROIE [16] comprises 973 scanned English receipts, each annotated with line-level texts, correspond-
ing bounding boxes, and a structured extraction target with four predefined field types. CORD [33] is
another receipt dataset collected from various sources, including shops and restaurants, containing
1,000 receipt images from Indonesia. Compared to SROIE, the CORD dataset includes annotations at
the word and entity levels with richer extraction field types. It also provides classification attributes
for key-value pairs and group information within the same item, enabling the recovery of local
relationships between different entities. EPHOIE [37] consists of 1,494 examination paper headers
collected from Chinese school exams, annotated with ten types of entities. It offers annotations for
text-line-level positions and contents, as well as classification attributes for key-value pairs. However,
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all the aforementioned datasets are provided under specific form categories, lacking diversity in
form types. The FUNSD [17] dataset contains 199 noisy scanned English documents, along with
annotations at the word and entity levels. It categorizes all entities within forms into four classes:
Header, Question, Answer, and Other, and provides local relationships between entities, supporting
entity labeling and entity linking tasks. XFUND [41] is an extension of FUNSD in multiple languages,
collecting additional forms in seven languages and providing similar annotations as FUNSD. It is
worth noting that XFUND suffers from some entity definition confusion, where different text lines
that should belong to the same entity are split and labeled as distinct entities. The SIBR dataset [44] is
a publicly available dataset designed for visual information extraction, comprising 1,000 form images,
including 600 Chinese invoices, 300 English bills of entry, and 100 bilingual receipts. It offers
text-line-level position and content information, along with two types of links to represent document
element relationships: one for linking different text lines within the same entity and another for
indicating relationships between different entities. However, these datasets lack uniform granularity
in comprehensive annotations for words, text lines, and entities. In addition, they focus on local
key-value relationships and ignore the nested relationships between elements of different hierarchies
in the document, resulting in incomplete representation of form information.

3 SRFUND benchmark

3.1 Data collection and annotation

The objective of SRFUND is to advance the development of form understanding and structured
reconstruction tasks. Among existing form datasets, FUNSD and XFUND are two prominent works
that have made outstanding contributions to the establishment of typical form understanding tasks
and the extension to multilingual data scenarios, respectively. Our dataset, SRFUND, is built upon
these two representative datasets, encompassing all document images from both datasets. SRFUND
comprises 1,592 form images across eight languages, with each language contributing 199 images.

Upon careful analysis of the existing annotations in FUNSD and XFUND, we found inconsistencies
in the granularity of annotations between the two datasets. The FUNSD dataset encapsulates com-
plete semantic information of entity elements, regardless of whether this information is distributed
across single or multiple lines, while the XFUND dataset includes cases where consecutive semantic
multi-line text is independently counted as separate entities without connectivity between these text
lines. Fortunately, both FUNSD and XFUND datasets cover word-level textual contents and posi-
tions. Leveraging the word-level annotation information from the original datasets, we meticulously
followed several procedures to ensure a rigorous construction process for the dataset: (1) Adjust
inaccurate word-level bounding boxes and supplement missing textual information. (2) Aggregate
consecutive words with continuous semantics into one text-line and annotate the corresponding
rectangular bounding box. It’s noteworthy that separate values with bullet points, keys and values in
key-value pairs are considered different text lines, even when they are visually connected to each
other. (3) For entities composed of consecutive semantic multi-line text, we annotate the polygonal
bounding box of the entity. (4) Based on the roles of entities in the current form, modify or assign
correct categories to different entities. When the IOU between the annotation box of an entity and the
existing entity box from the original datasets (i.e. FUNSD or XFUND) is greater than 0.8, the original
label of the entity is adopted as the initial label of the current entity. (5) Determine the location of
item tables and annotate the headers and each individual row item within the tables. (6) For separate
entities with linkage relationships, annotate the relationships between these entities (unidirectional or
bidirectional).

To ensure the accuracy of the annotations, all annotated results underwent at least three rounds of
cross-checking, with any disputed annotations resolved by domain experts in the field of document
processing. Given the multilingual coverage within the SRFUND dataset, a commercial translation
engine was employed during the annotation process to translate form images into the native languages
of annotators, providing semantic context for reference. The collection, annotation, and refinement
processes of the dataset collectively consumed approximately 6,000 person-hours.

3.2 Dataset analysis

Supported tasks: As illustrated in Figure 1 and Table 1, SRFUND covers annotations at different
levels, enabling the dataset to support a wider range of tasks than all existing form understanding
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Table 1: Comparison with existing form understanding datasets.

Dataset Supported Tasks Statistics

Word to
Text-line

Text-line
to Entity

Entity
Labeling

Item
Table

Structure
Recovery Language Images Avg. Form

Tree Depth

SROIE [16] ✗ ✗ ✓ ✗ - EN 1,000 -

CORD [33] ✓ ✓ ✓ ✗ Local IND 1,000 1.173

EPHOIE [37] ✗ ✗ ✓ ✗ Local ZH 1,494 1.115

SIBR [44] ✗ ✓ ✓ ✗ Local ZH, EN 1,000 1.515

FUNSD [17] ✗ ✗ ✓ ✗ Local EN 199 1.570

XFUND [41] ✗ ✗ ✓ ✗ Local ZH, JA, ES, FR,
IT, DE, PT 1,393 1.699

SRFUND (Ours) ✓ ✓ ✓ ✓ Global EN, ZH, JA, ES,
FR, IT, DE, PT 1,592 3.049

datasets. It is noteworthy that previous datasets focused solely on the structural relationships between
local document entities, whereas we meticulously annotated the logical relationships among all
entities. This makes SRFUND the first dataset supporting the task of structure recovery for each
entity at a global level. Furthermore, with the complement of item tables and their constituent
items, SRFUND is also the first dataset supporting the localization of item tables within forms. The
recovery of global structures and the localization of item tables require models to possess a strong
understanding of entities within forms, posing significant challenges to form understanding tasks.

Table 2: Statistics of different granularity categories of SRFUND. Total, Same, New refer to the total
amount of a class in SRFUND, the same amount as in the original dataset (FUNSD/XFUND), and
the amount added or modified, respectively.

Words Lines Entities Tables Table Items Links

Total 529,711 112,662 96,824 591 1,954 122,594

Same 529,372 0 81,462 0 0 47,113

New 339 112,662 15,362 591 1,954 75,481

Statistical metrics: (a) As shown in Table 1, the SRFUND dataset includes annotations in eight
different languages, making it more diverse than existing datasets and addressing form understanding
needs across various languages. In terms of document hierarchy, we constructed global entity rela-
tionships, resulting in an average tree depth of 3.049, which surpasses previous datasets significantly.
(b) As depicted in Table 2, the SRFUND dataset introduces a substantial number of annotations
across different hierarchical levels in addition to the original version. We modified 339 word-level
annotations and provided annotations for 112,662 text lines. Our dataset contains a total of 96,824
entities, out of which 15,362 are newly added or modified. Additionally, we provided detailed
annotations for item tables in documents, totaling 591 item tables and 1,954 item contents within
them. Furthermore, we added 75,481 entity links, resulting in a total of 122,594 entity links.

4 Experiments

To comprehensively assess the SRFUND dataset, we conducted benchmark tests using models across
three different modalities: language models based on pure text input, detection models based on
purely visual inputs, and document pre-trained language models that utilize multi-modal inputs. We
performed experimental analyses on five tasks, detailed as follows: (1) word to text-line merging,
(2) text-line to entity merging, (3) entity category classification, (4) item table localization, and (5)
entity-based full-document hierarchical structure recovery.

4.1 Setting

As illustrated in Figure 2, the vision-only models rely on the document image as the input, and tasks
1 to 4 can be regarded as the text-line detection task, the entity detection task, the multi-class entity
detection task and the line item table area detection task respectively. We selected three distinct
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Figure 2: Models with varied modalities used for evaluating on the SRFUND benchmark. The
left side shows the input (original document image) and predicted targets for the visual model in
tasks 1∼4, treated as detection tasks. Tasks 1, 2, and 4 involve single-category detection, while
Task 3 involves four-category detection. The right side presents the input and output of the pure
language model and multimodal pretraining model. The abbreviations T/L/E/C/Tab/Key/Item stand
for Token/Text-Line/Entity/Category/Item-Table/Header/Table-Item, with ⊓ indicating the merging
relationship from fine-grained to coarse-grained elements.

types of visual detection models for comparison: YOLOX [10], a single-stage detector based on
the YOLO architecture; Cascade-RCNN [2], a multi-stage detector based on the RCNN framework;
and DAB-DETR [26], an improved version of the DETR model with faster convergence speed and
detection accuracy. All three detection models utilize a ResNet-50 [15] backbone pre-trained on
ImageNet [7]. In the training stage, we follow the original configuration adopted in the mmdetection
[4]. During testing, we only preserve predicted boxes with a score threshold larger than 0.3 and
adopt the non-maximum suppression algorithm for further filtering. Since the task is framed as a
coarse-to-fine merging task, we use the standard F1 score as the main evaluation metric. Unlike
the common practice in object detection, where true positives are determined by thresholding the
Intersection-over-Union, we use a different criterion tailored to evaluate the usefulness of detections
for text read-out. Inspired by the CLEval metric [1] used in text detection, we measure whether the
predicted area contains nothing but the related word-level box centers as visualized in Figure 3.

The text-only models rely on the word texts as the input, and the multi-modal models rely on the
texts, two-dimensional coordinates, and form images as the input. Given the multilingual nature of
the SRFUND dataset, we employed several multilingual language models and document pre-trained
language models that support multilingual inputs. The language models include InfoXLM [5] and

(a) Correct detection examples (b) Incorrect detection examples

Figure 3: Visualization of correct (the green boxes) and incorrect (the red boxes) bounding box
predictions to capture the Header entity (texts with yellow background). Bounding box must include
exactly the word-level centers that lie within the ground truth annotation. Note: in Figure 3a, only
one of the predictions would be considered correct if all three boxes were predicted.
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XLM-Roberta [6], while the document pre-trained language models include LayoutXLM [41], LiLT
[36], and GraphDoc [45], while the latter two models incorporate InfoXLM-base as the language
model. As illustrated in Figure 2, for tasks 1, 2, and 4, we use a symmetric attention relation matrix
as the learning target, where each aggregation target may contain multiple fine-grained element sets.
Each aggregation target is considered an independent prediction sample, and a prediction is deemed
correct only if all elements within the target set are completely aggregated together. For task 5, we
utilize an asymmetric attention relation matrix to learn the relationships between different entities ,
while a pair prediction is only considered correct if the directional relationship between two entities is
accurately predicted. We employ the F1 score as the final evaluation metric for all tasks, and Merger
[38] is adopted as the default relation classification head in the following sections.

All models were run on servers equipped with eight 48 GB A40 graphics cards with a batch size
of 8. To ensure that different models achieved their optimal performance, we followed the training
strategies for vision-only models as the original version in mmdetection [4], with specific settings
for learning rate, optimizer, and the number of epoches detailed in the appendix. The text-only and
multi-modal models uniformly utilized the Adam [19] optimizer with (β1, β2) = (0.9, 0.999) and
underwent 200 training epoches, with an initial learning rate set at 5e-5. The training began with a
linear warm-up during the first 10% epochs, followed by a continuation under a linear decay strategy.

4.2 Results and analysis

4.2.1 Word to text-line merging

Table 3: Results of the word to text-line merging task, using F1-score as the metric.
Type Method English Chinese Japanese German French Spanish Italian Portuguese Avg.

Vision-only
YOLOX [10] 0.8222 0.8053 0.6959 0.8587 0.7310 0.8301 0.7470 0.7900 0.7850

Cascade-RCNN [2] 0.8520 0.8842 0.7569 0.8683 0.8191 0.8404 0.7590 0.7710 0.8189

DAB-DETR [26] 0.8437 0.8500 0.7394 0.8795 0.8082 0.8468 0.7926 0.7954 0.8194

Text-only XLM-RoBerta [6] 0.6290 0.6272 0.6093 0.6982 0.6921 0.6470 0.6285 0.6780 0.6509

InfoXLM [5] 0.6426 0.6482 0.6298 0.7011 0.6974 0.6551 0.6253 0.6921 0.6611

Multi-modal
LayoutXLM [40] 0.9081 0.9360 0.9118 0.9255 0.9282 0.9372 0.9157 0.9387 0.9260
LiLT [36] 0.8887 0.9387 0.8803 0.9193 0.9223 0.9202 0.8962 0.9054 0.9094

GraphDoc [45] 0.8755 0.9100 0.8005 0.9167 0.8954 0.8993 0.8471 0.8708 0.8758

Aggregating words into text lines presents significant challenges for single-modal approaches.
As demonstrated in Table 3, text-only models faced difficulties due to the absence of two-dimensional
spatial coordinates and visual cues. This lack of information impedes their ability to accurately
identify breakpoints in semantically continuous texts that span multiple lines. Conversely, vision-only
models depend exclusively on the visual boundary features of text lines to assess word aggregation.
This approach often fails to correctly segment words that are visually close yet semantically distinct,
such as Question and Answer appearing on the same line. Additionally, the intricate form layouts
of languages like Japanese and Italian pose further challenges in precise text-line segmentation.
In contrast, document pre-trained language models that integrate multiple modalities significantly
improve performance by leveraging a broader range of data, thereby overcoming the limitations of
single-modal systems.

4.2.2 Text-line to entity merging

The task of merging text lines into entities relies more on semantic information. Compared
to task 1, we can observe from Table 4 that the performance of text-only models surpasses that of
vision-only models. This indicates that pure vision models have a weaker capability in understanding
multi-line entities, while linguistic information significantly aids in capturing the semantic continuity
between different text lines.

The pre-training process greatly impacts the effectiveness of document pre-trained language
models. The GraphDoc model, which leverages sentence-level semantic information and is only
pre-trained on English documents, performs well in the task of merging text lines in English forms.
In contrast, LayoutXLM is pre-trained using documents in all languages included in the SRFUND
dataset, which allows it to demonstrate superior performance on forms in other languages.
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Table 4: Results of the text-line to entity merging task, using F1-score as the metric.
Type Method English Chinese Japanese German French Spanish Italian Portuguese Avg.

Vision-only
YOLOX [10] 0.7415 0.7243 0.5891 0.7309 0.6504 0.7449 0.6238 0.6594 0.6830

Cascade-RCNN [2] 0.7918 0.8336 0.6873 0.7997 0.8060 0.8138 0.7153 0.7560 0.7754

DAB-DETR [26] 0.7681 0.7794 0.6332 0.7893 0.7344 0.7663 0.7075 0.7346 0.7391

Text-only XLM-RoBerta [6] 0.8767 0.9354 0.8974 0.8850 0.9014 0.9044 0.8836 0.9226 0.9029

InfoXLM [5] 0.8773 0.9411 0.8921 0.8729 0.9010 0.9026 0.8847 0.9188 0.9012

Multi-modal
LayoutXLM [40] 0.9151 0.9681 0.9387 0.9157 0.9408 0.9463 0.9280 0.9594 0.9412
LiLT [36] 0.9047 0.9542 0.9117 0.9140 0.9368 0.9351 0.9134 0.9430 0.9283

GraphDoc [45] 0.9229 0.9343 0.8770 0.9113 0.9260 0.9326 0.9060 0.9314 0.9181

4.2.3 Entity category classification

Table 5: Results of the entity category classification task, using F1-score as the metric.
Type Method English Chinese Japanese German French Spanish Italian Portuguese Avg.

Vision-only
YOLOX [10] 0.5284 0.6040 0.4619 0.4976 0.4743 0.5385 0.4466 0.4244 0.4969

Cascade-RCNN [2] 0.6739 0.7482 0.6124 0.7123 0.7749 0.7318 0.6662 0.6707 0.6988

DAB-DETR [26] 0.6531 0.6631 0.5286 0.6735 0.6863 0.6574 0.6067 0.6152 0.6355

Text-only XLM-RoBerta [6] 0.8558 0.9666 0.8847 0.8912 0.9067 0.9161 0.8955 0.8884 0.9028

InfoXLM [5] 0.8589 0.9570 0.8782 0.8953 0.9107 0.9221 0.8995 0.8840 0.9025

Multi-modal
LayoutXLM [40] 0.9045 0.9718 0.8957 0.9216 0.9299 0.9320 0.9269 0.9086 0.9248
LiLT [36] 0.8678 0.9631 0.8876 0.9006 0.9217 0.9270 0.9135 0.8967 0.9118

GraphDoc [45] 0.8930 0.9619 0.8620 0.9261 0.9129 0.9250 0.9169 0.8897 0.9113

Visual modalities can also address the task of entity classification by learning layout information.
Apart from Header entities, which typically exhibit characteristics such as boldface and larger font
sizes, the variations in font styles among other entity categories are minimal. However, as shown
in Table 5, detection models are also capable of effectively handling the detection tasks for various
entity categories. This indicates that the visual modality can acquire layout information, such as
Question typically being located to the left of Answer, and entities with multi-line texts usually being
categorized as Answer or Other.

4.2.4 Item table localization

Table 6: Results of the item table localization task, using F1-score as the metric.
Type Method English Chinese Japanese German French Spanish Italian Portuguese Avg.

Vision-only
YOLOX [10] 0.1100 0.1721 0.0100 0.0467 0.1000 0.0710 0.0600 0.0911 0.0826

Cascade-RCNN [2] 0.0839 0.2081 0.0433 0.0800 0.1327 0.1427 0.0817 0.1486 0.1151

DAB-DETR [26] 0.1399 0.2670 0.0000 0.0667 0.1333 0.0903 0.0767 0.1100 0.1105

Text-only XLM-RoBerta [6] 0.0526 0.2090 0.0800 0.5714 0.2222 0.0000 0.1333 0.0526 0.1514

InfoXLM [5] 0.0513 0.1846 0.0000 0.4545 0.2143 0.0000 0.0000 0.0000 0.1124

Multi-modal
LayoutXLM [40] 0.7273 0.3333 0.1053 0.4348 0.1053 0.0588 0.3158 0.1250 0.3022
LiLT [36] 0.2273 0.1867 0.0000 0.5263 0.0769 0.0000 0.0000 0.0417 0.1306

GraphDoc [45] 0.0000 0.0556 0.0000 0.3333 0.3333 0.0606 0.0000 0.1224 0.0945

The item table localization task presents significant challenges. Since this task requires that all
entities within the item table be included, any missing entity predictions result in the outcome being
deemed incomplete. This requirement makes it difficult for models of any modality to accurately
locate item tables within documents, as shown in Table 6.

There is significant variability in performance across forms in different languages. Item table lo-
calization in forms of different languages requires optimization through models of various modalities.
For some languages, the localization of item tables relies more heavily on the capabilities of vision
models, such as in Spanish and Portuguese forms.
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4.2.5 Hierarchical structure recovery

Table 7: Results of the hierarchical structure recovery task, using F1-score as the metric.
Type Method English Chinese Japanese German French Spanish Italian Portuguese Avg.

Text-only XLM-RoBerta [6] 0.5270 0.6514 0.5388 0.6637 0.6054 0.6121 0.5839 0.5081 0.5830

InfoXLM [5] 0.5305 0.6436 0.5227 0.6695 0.6071 0.5941 0.5736 0.4872 0.5732

Multi-modal
LayoutXLM [40] 0.7135 0.7601 0.6626 0.7734 0.7415 0.7009 0.6710 0.6310 0.7013

LiLT [36] 0.7050 0.7578 0.6538 0.7499 0.7153 0.6940 0.6702 0.5747 0.6821

GraphDoc [45] 0.7938 0.7881 0.6714 0.7976 0.7754 0.7416 0.6969 0.6648 0.7349

The granularity of semantic information must align with the task requirements. Among the
three document pre-trained language models, only the GraphDoc model maintains sentence-level or
entity-level linguistic input during both the pre-training stage and the training/testing phases of the
current task. This alignment enables the GraphDoc model to achieve the best performance in the task
of entity-based document structure recovery.

4.2.6 Multimodal Large Language Models (MLLMs) evaluation

Table 8: Results of the two leading performance Multimodal Large Language Models (MLLMs) on
SRFUND, using F1-score as the metric.

Model Tasks English Chinese Japanese German French Spanish Italian Portuguese Avg.

GPT4o Word to text-line merging 0.4607 0.57 0.3941 0.5676 0.4248 0.5614 0.4098 0.4944 0.4866
GPT4o Text-line to entity merging 0.2705 0.2035 0.426 0.2415 0.313 0.4644 0.196 0.2397 0.2936
GPT4o Entity category classification 0.5608 0.3352 0.5298 0.4879 0.4735 0.4478 0.4559 0.4625 0.469
GPT4o Item table localization 0.0667 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.047
GPT4o Hierarchical structure recovery 0.1312 0.122 0.1098 0.1713 0.1205 0.0851 0.0864 0.0562 0.1103

GPT4o-mini Word to text-line merging 0.1866 0.0779 0.0644 0.2509 0.118 0.164 0.1778 0.2488 0.1611
GPT4o-mini Text-line to entity merging 0.666 0.768 0.8241 0.7999 0.7572 0.8487 0.7971 0.7828 0.7805
GPT4o-mini Entity category classification 0.4643 0.2364 0.196 0.3498 0.3491 0.3172 0.2201 0.2398 0.2966
GPT4o-mini Item table localization 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GPT4o-mini Hierarchical structure recovery 0.371 0.1905 0.183 0.162 0.1865 0.1724 0.1376 0.1892 0.1985

MLLMs like GPT-4o and GPT-4o-mini performed reasonably well on document tasks but
were outperformed by smaller, domain-specific models. We conducted experiments using GPT-4o
and GPT-4o-mini, two leading general-domain multimodal models provided by OpenAI via API as
gpt-4o-2024-08-06 and gpt-4o-mini 4. Document images served as the input, following a prompt
structure comprising a role definition, task description, and the positions and textual content of words,
text lines, or entities. The results are presented in Table 8. The findings demonstrate that, even in
zero-shot scenarios, these MLLMs achieved reasonable performance, though they were surpassed by
smaller, domain-specific models. Notably, GPT-4o outperformed GPT-4o-mini in most tasks, except
in the Text-line to entity merging task, where GPT-4o-mini showed superior performance. More
details could be found in the Appendix section.

4.2.7 Out-of-domain (OOD) evaluation

Table 9: Cross-validation results between models trained on other datasets and SRFUND, evaluated
using Precision/Recall/F1-score. A → B denotes training on dataset A and reporting results on the
test set of dataset B. The results on SRFUND are averaged across all languages.

Tasks Word to text-line merging Text-line to entity merging Hierarchical structure recovery

CORD → SRFUND 0.2078 / 0.2192 / 0.2133 0.0771 / 0.2107 / 0.1128 0.1565 / 0.0476 / 0.0730
SIBR → SRFUND - / - / - 0.0813 / 0.2859 / 0.1266 0.4322 / 0.1279 / 0.1974

SRFUND → CORD 0.8660 / 0.7821 / 0.8219 0.9474 / 0.9309 / 0.9390 0.1342 / 0.8169 / 0.2305
SRFUND → SIBR - / - / - 0.8780 / 0.7925 / 0.8331 0.2984 / 0.6453 / 0.4081

Models fine-tuned on SRFUND demonstrate superior out-of-domain (OOD) performance. To
assess the out-of-domain generalization capabilities of models fine-tuned on SRFUND, we conducted

4Experiments taking place on August 16, 2024
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cross-validation experiments on Tasks 1, 2, and 5 using the CORD [33] and SIBR [44] datasets.
Unfortunately, due to the differences in entity categories and the absence of item table information in
these external datasets, cross-validation was not feasible for Tasks 3 and 4. We used the LayoutXLM
model for these experiments, maintaining the same training configurations as described in the original
paper. The results are presented in Table 9. The results indicate that models trained on SRFUND
exhibit superior out-of-domain generalization compared to those trained on other datasets. This
improvement is likely due to SRFUND’s finer-grained annotations and its diverse distribution of form
types and layouts, which may better capture the variability present in real-world documents.

4.2.8 Overall analysis

The results from the aforementioned five tasks demonstrate that uni-modal models exhibit relatively
poor performance, while document pre-trained models that incorporate multiple input modalities
perform significantly better. Concurrently, no single model has consistently outperformed others
across all tasks and languages, indicating that in practical applications, we cannot simply rely on a
single model or approach to handle all types of form structuring tasks. Instead, we need to select
appropriate models and strategies based on the specific requirements of the task and the characteristics
of the language involved. This finding underscores the importance of adopting a nuanced and tailored
approach when tackling form structuring challenges, rather than employing a one-size-fits-all solution.

5 Limitations

SRFUND is built upon the FUNSD and XFUND datasets, primarily comprising several types of
forms such as application forms, registration forms, and dealing slips, all stored as grayscale images.
Although these forms exhibit relatively rich layouts and designs, they lack diverse background images
and colors. Furthermore, due to the limited size of the original datasets and the need for meticulous
manual intervention during the creation of annotated data to ensure annotation quality, the current
dataset remains relatively small. These limitations can be partly addressed by using pre-trained
models on datasets like DocLayNet [34] (a layout analysis dataset containing 80.9K document
images, mainly in English) and ADOPD [11] (a multi-task dataset containing 120K document images,
focusing mainly on English and East Asian languages such as Chinese, Japanese, and Korean) for
initial annotations, followed by repeating the current annotation process. However, establishing a
scalable data annotation process for multilingual documents remains a challenge and is a focus of
future work.

6 Conclusion

In summary, this paper presents two main contributions. Firstly, we propose a multilingual, multitask
document hierarchical structuring benchmark named SRFUND, encompassing 1,592 forms from
eight languages. To the best of our knowledge, this is the first benchmark in form understanding that
integrates multi-level structure reconstruction, spanning from words to the global structure of forms.
Secondly, we conducted baseline experiments on five tasks using various representative approaches
from different modalities, demonstrating that the SRFUND benchmark introduces new challenges
to the field of form understanding. We believe that the SRFUND benchmark holds significant
potential for future academic research, contributing continuously to the in-depth study of global form
structures.
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A Datasheets for SRFUND

A.1 Motivation

For what purpose was the dataset created?

The purpose of creating SRFUND dataset is to advance the development of form understanding and
structured reconstruction tasks by covering forms of various layouts and languages. Although some
benchmarks datasets [16, 17, 33, 37, 41, 44] have been established, none of them have established
the global and hierarchical structural dependencies that consider all elements at different granularity,
including words, text lines, and entities within the forms. To enhance the applicability of form
understanding tasks in hierarchical structure recovery, we introduce the SRFUND, a multilingual
document structure reconstruction dataset. To the best of our knowledge, this is the first benchmark
in form understanding that integrates multi-level structure reconstruction, spanning from words to the
global structure of forms, and we believe that the SRFUND dataset will significantly promote the
development of form understanding and structured reconstruction.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

The SRFUND dataset was created by the NERC-SLIP of University of Science and Technology of
China.

Who funded the creation of the dataset?

The iFLYTEK Research.

A.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)?

The SRFUND dataset comprises 1,592 form images, which across eight languages with each language
contributing 199 images, accompanied by their respective annotation files. These images represent
scanned or photographed forms, and images in English are stored in the Portable Network Graphics
(PNG ) format, while images in other languages are stored in the Joint Photographic Experts Group
(JPEG) format. The annotations are stored in JSON format, capturing the locations and text content
of every word, text-line, and entity, including their hierarchical dependencies. Furthermore, the
entities are categorized into four classifications including Header, Question, Answer, and Other. The
multi-item table regions which are frequently found in forms are also specifically annotated.

How many instances are there in total (of each type, if appropriate)?

The SRFUND dataset comprises a collection of 1,592 images, with 96,824 entities, 112,662 text
lines, 529,711 words, and 122,594 linkings.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set?

The SRFUND dataset contains all possible instances.

What data does each instance consist of?

Each instance in the SRFUND consists of an image along with corresponding annotations. These
annotations include bounding boxes and text content of every word, text-line, entity, and item table,
including their hierarchical dependencies. Moreover, every entity is assigned a categorical label,
namely Header, Question, Answer, or Other.

Is there a label or target associated with each instance?

Yes. The label contains bounding boxes and text content of every word, text-line, entity, and item
table, including their hierarchical dependencies, as well as a categorical label for every entity.

Is any information missing from individual instances?

No. There is no missing information from individual instances in the SRFUND dataset.
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Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)?

Yes. Images belonging to the same language are contained in the same folder.

Are there recommended data splits (e.g., training, development/validation, testing)?

The SRFUND dataset is divided into training and validation sets in a ratio of approximately 3:1.

Are there any errors, sources of noise, or redundancies in the dataset?

Despite the SRFUND dataset undergoing rigorous multiple checks and expert verification, there may
still be instances of minor errors, such as in sections of handwritten text. Should any annotation
mistakes be identified, or if users report such errors, we will promptly address these in the maintenance
process to ensure the accuracy of the data.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?

The SRFUND dataset is self-contained.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset?

No. The SRFUND dataset provides refined annotations on top of the original FUNSD and XFUND
datasets. The XFUND dataset collected the documents publicly available on the internet and removed
the content within the documents while only keeping the templates to manually fill in synthetic
information. The FUNSD dataset was annotated with a subset of the Truth Tobacco Industry
Document (TTID), an archive collection of scientific research, marketing, and advertising documents
of the largest US tobacco firms, which aims to advance information retrieval research.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers; criminal history)?

No.

A.3 Collection Process

How was the data associated with each instance acquired?

The SRFUND dataset provides refined annotations on top of the original FUNSD and XFUND
datasets. The XFUND dataset collected the documents publicly available on the internet and removed
the content within the documents while only keeping the templates to manually fill in synthetic
information. The FUNSD dataset was annotated with a subset of the Truth Tobacco Industry
Document (TTID). For more information about data collection, please refer to the FUNSD and
XFUND datasets. The annotation process is described in Sec. 3.1 of the main paper.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)?

The SRFUND dataset provides refined annotations on top of the original FUNSD and XFUND
datasets. We did not collect any data ourselves, but used X-anylabeling for finer annotations.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

N/A.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)?

Ten crowdworkers and four graduate students participated in the data collection process. The
crowdworkers were responsible for providing initial annotations and cross-checking them. For
each form annotated or checked, crowdworkers received a compensation of $1 or $0.2, respectively.
The graduate students were tasked with resolving conflicts in the annotations provided by the
crowdworkers. They performed these corrections based on a detailed pre-established annotation
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guideline and their specialized knowledge in the field of form understanding. The graduate students
were compensated through research grants.

Over what timeframe was the data collected?

For more information about data collection, please refer to the FUNSD and XFUND datasets.
The annotation process is described in Sec. 3.1 of the main paper. The collection, annotation,
and refinement processes of the dataset collectively consumed approximately 6,000 person-hours,
spanning approximately 5 months.

Were any ethical review processes conducted (e.g., by an institutional review board)?

No.

Does the dataset relate to people?

Yes.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?

We collected the data from other sources, including the FUNSD and XFUND datasets.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses?

N/A.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted?

N/A.

A.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)?

There was no preprocessing/cleaning of the data done. The annotation process is described in Sec.
3.1 of the main paper.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)?

No, but all of the source data products are freely available online.

Is the software that was used to preprocess/clean/label the data available?

We used X-anylabeling which was available at https://github.com/CVHub520/X-AnyLabeling for
finer annotations.

A.5 Uses

Has the dataset been used for any tasks already?

No.

Is there a repository that links to any or all papers or systems that use the dataset?

The current paper and the code used for experiments are available at https://sprateam-ustc.
github.io/SRFUND.

What (other) tasks could the dataset be used for?

The SRFUND dataset can also be utilized for tasks such as hierarchical text recognition and the
generation of document-based question answering data, relying on global structural analysis.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses?
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No.

Are there tasks for which the dataset should not be used?

No.

A.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?

Yes. The SRFUND dataset is available at https://sprateam-ustc.github.io/SRFUND.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?

The SRFUND dataset is available through the project website at https://sprateam-ustc.github.
io/SRFUND.

When will the dataset be distributed?

The dataset is already available.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?

The dataset will be distributed under the Attribution-NonCommercial-ShareAlike 4.0 International
(CC BY-NC-SA 4.0) license.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances?

No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?

No.

A.7 Maintenance

Who will be supporting/hosting/maintaining the dataset?

The dataset will be maintained by the NERC-SLIP of University of Science and Technology of China.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

Contact can be made via email at jfma@mail.ustc.edu.cn

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?

If substantial errors are raised by dataset users, we will update the dataset accordingly. The updated
version of the dataset will be made available through the dataset release link.

Will older versions of the dataset continue to be supported/hosted/maintained?

Yes, with each update, the older versions will remain accessible through their original links.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so?

The dataset will be distributed under the Attribution-NonCommercial-ShareAlike 4.0 International
(CC BY-NC-SA 4.0) license. This means that researchers are free to extend, augment, build upon,
and contribute to the dataset for non-commercial purposes. However, any distribution must be under
the same license, and any modifications must be documented.

17

112427 https://doi.org/10.52202/079017-3571

https://sprateam-ustc.github.io/SRFUND
https://sprateam-ustc.github.io/SRFUND
https://sprateam-ustc.github.io/SRFUND


B Further data analysis

B.1 Annotation distribution
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Figure 4: The number of annotations of different granularity in each language in the SRFUND
dataset.

In the SRFUND dataset, which encompasses multi-lingual and multi-granularity forms with hierar-
chical structure annotations, significant variations in annotation types across languages reveal insights
into the dataset’s composition and potential biases. As depicted in Figure 4, the dataset exhibits
a predominance in word-level annotations for forms in Chinese and Japanese, pointing towards
extensive textual contents. Italian and Portuguese forms exhibit the highest counts in lines, which
could reflect longer or more dispersed document formats. In terms of entities, forms in Portuguese
lead, suggesting a denser distribution of entities, which is essential for tasks requiring detailed entity
recognition. The Portuguese language also stands out in table items and links between entities,
indicating a high degree of structured and relational data integration within forms.

These patterns suggest that the forms in Italian and Portuguese might be rich in structured formats like
tables and entity relationships, which are crucial for complex structure analysis tasks. The differences
in annotation distribution across languages highlight the diversity in document content, structure,
and utility, underscoring the importance of tailored approaches in language-specific data science and
natural language processing applications. This comprehensive annotation overview not only aids
in understanding the dataset’s complexity but also enhances the strategic planning of multilingual
structure analysis systems.

B.2 Item table diversity

Figure 5 illustrates the diversity and complexity of item tables in the SRFUND dataset, which contains
591 item tables and 1,954 item group entries across various language forms. The subfigures exemplify
the variations in structural and linguistic features characteristic of the dataset: Subfigure 5a depicts
an item table from an English-language form, embedded directly within the text content without
surrounding borders, highlighting the integration of tabular data within texts. Subfigure 5b shows an
item table from a Spanish-language form, part of a larger bordered table that includes nested item
table headings, demonstrating the existence of nested structures within tabular layouts. Subfigure
5c presents a Portuguese-language form example, featuring four item tables with identical column
headings. These tables incorporate multiple selectable checkbox options within certain cells and
are arranged in a vertically elongated format. Subfigure 5d from a Chinese-language form features
distinct row headings with an item table at the bottom that includes cross-row items, illustrating
variations in row-level organization and the challenges of spanning entries. This diversity poses
significant challenges for the localization of item tables and the extraction of relationships between
different entities within these tables, critical for the automated processing and analysis of form-based
data in multilingual contexts.
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(a) (b) (c) (d)

Figure 5: Varied item table annotations that are derived from diverse linguistic sources in the SRFUND
dataset. Subfigures (a), (b), (c), and (d) originate from forms in English, Spanish, Portuguese, and
Chinese, respectively.

C Hyperparameters

We followed the training strategies for vision-only models as the original version in mmdetection [4].
Detailed configurations are listed in the Table 10.

Table 10: Hyperparameters used in vision-only approaches.
Strategies YOLOX [10] Cascade-RCNN [2] DAB-DETR [26]

Initial learning rate 1e− 2 2e− 2 1e− 4

Optimizer SGD SGD AdamW

Optimizer config momentum= 0.9,
weight_decay= 5e− 4

momentum= 0.9,
weight_decay= 1e− 4

weight_decay= 1e− 4

Training epoch 200 48 100

D Extensive experiments

D.1 Relation heads comparison

We conducted experiments on four tasks that involve relationship classification across different levels
of granularity. Throughout the experiments, we utilized LayoutXLM-base [41] as the base model,
with the results presented in Table 11. It was observed that in some foundational tasks, different
structures of relation heads exhibited similarly close performance. This might be due to Tasks 1 and
2 relying more heavily on the base model’s capability to understand document layouts, where even
relatively simple head designs could achieve satisfactory results. In Task 4, the simplest Merger
classifier outperformed the other two heads due to the limited training data available for table data.
Additionally, it was noted that different models displayed inconsistent performances across various
languages in Task 4. This inconsistency might indicate significant divergences in content and layout
among table data across languages, as also observed in Figure 4. In Task 5, the relation head in
GeoLayoutLM demonstrated a clear advantage, exhibiting consistent superiority across different
languages, due to its design of a multi-layer classification network ranging from coarse to fine at
entity levels.

D.2 Cross language validation

We used LayoutXLM as the base model and Merger as the classification head for cross-lingual
validation on the hierarchical structure recovery task. For the SRFUND dataset, which includes forms
in eight different languages, we trained models separately on each language and tested them across
all language forms. As shown in Table 12, the inter-entity relationships trained in each language
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Table 11: Comparison between different relation heads, using F1-score as the metric. Task 1 refers
to word to text-line merging, Task 2 refers to text-line to entity merging, Task 4 refers to item table
localization, Task 5 refers to hierarchical structure recovery. The best average results for each task are
shown in bold, and the best results for each language are shown in underline.

Task Relation Head English Chinese Japanese German French Spanish Italian Portuguese Avg.

Task 1
Merger [38] 0.9081 0.9360 0.9118 0.9255 0.9282 0.9372 0.9157 0.9387 0.9260

Biaffine [9] 0.9167 0.9493 0.9124 0.9299 0.9309 0.9417 0.9234 0.9500 0.9329

GeoLayout [29] 0.9175 0.9560 0.9161 0.9365 0.9395 0.9393 0.9240 0.9479 0.9355

Task 2
Merger [38] 0.9151 0.9681 0.9387 0.9157 0.9408 0.9463 0.9280 0.9594 0.9412

Biaffine [9] 0.9286 0.9737 0.9361 0.9277 0.9487 0.9581 0.9334 0.9649 0.9482
GeoLayout [29] 0.9277 0.9753 0.9405 0.9227 0.9433 0.9540 0.9376 0.9619 0.9473

Task 4
Merger [38] 0.7273 0.3333 0.1053 0.4348 0.1053 0.0588 0.3158 0.1250 0.3022
Biaffine [9] 0.3913 0.3200 0.0952 0.6000 0.3478 0.0571 0.2000 0.0392 0.2474

GeoLayout [29] 0.5000 0.3143 0.1053 0.6250 0.0000 0.1935 0.2000 0.1702 0.2707

Task 5
Merger [38] 0.7135 0.7601 0.6626 0.7734 0.7415 0.7009 0.6710 0.6310 0.7013

Biaffine [9] 0.7172 0.7737 0.6382 0.7586 0.7452 0.7205 0.6811 0.6097 0.6985

GeoLayout [29] 0.7623 0.8171 0.6860 0.7999 0.7799 0.7442 0.7086 0.6415 0.7356

exhibited cross-lingual transferability, typically performing best in their original training languages.
Additionally, a certain similarity was observed between forms of languages belonging to the Indo-
European family; for instance, models trained on Spanish and Portuguese forms performed very well
on German forms, even surpassing those trained directly on German forms. Furthermore, there was a
significant variance in average performance across all languages depending on the training language,
suggesting varying degrees of layout complexity and entity relationship complexity among different
language forms in the SRFUND dataset. Portuguese forms, due to their complex structure and the
highest number of entities and entity relationships as illustrated in Figure 4, achieved results only
second to those models trained on the same language data, likely benefiting from their extensive
entity count and relational complexity.

D.3 Details for MLLMs evaluation

Our visualized results (see Fig.6) reveal that GPT-4o tends to aggregate fine-grained elements into
broader structures, whereas GPT-4o-mini more frequently outputs the input bounding boxes directly.
For example, in the Word to text-line merging task, GPT-4o successfully merges words within the
same line. However, in the Text-line to entity merging task, GPT-4o encounters difficulties with entity
recognition, whereas GPT-4o-mini performs better by directly outputting the text line boxes specified
in the prompt.

Table 12: Cross language validation experiment on Task 5, i.e. hierarchical structure recovery. We
trained on forms in each language and tested across all languages, with the best-performing language
results highlighted in bold.

Train
Test English Chinese Japanese German French Spanish Italian Portuguese Avg.

English 0.5168 0.3846 0.3249 0.4020 0.3714 0.3555 0.3171 0.3075 0.3634

Chinese 0.3352 0.6105 0.4498 0.4742 0.4664 0.4473 0.3899 0.3826 0.4524

Japanese 0.3318 0.4914 0.5003 0.4130 0.4108 0.3624 0.3510 0.3094 0.3999

German 0.3488 0.3778 0.2835 0.5598 0.4624 0.4227 0.3779 0.3358 0.3926

French 0.3892 0.4127 0.3225 0.5210 0.5730 0.4696 0.4633 0.3703 0.4330

Spanish 0.3859 0.4662 0.3681 0.5485 0.5431 0.5408 0.4637 0.4385 0.4677

Italian 0.3804 0.4241 0.3585 0.4999 0.5215 0.4759 0.5560 0.4272 0.4548

Portuguese 0.4137 0.4922 0.4006 0.5603 0.5495 0.5215 0.4807 0.4932 0.4879
All (Ref.) 0.7135 0.7601 0.6626 0.7734 0.7415 0.7009 0.6710 0.6310 0.7013
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(a) Task 1 GT (b) Task 2 GT (c) Task 3 GT (d) Task 4 GT

(e) GPT4o-mini Task 1 (f) GPT4o-mini Task 2 (g) GPT4o-mini Task 3 (h) GPT4o-mini Task 4

(i) GPT4o Task 1 (j) GPT4o Task 2 (k) GPT4o Task 3 (l) GPT4o Task 4

Figure 6: The visualization of the performance of MLLMs on the test set. The first row of images (a
to d) displays the text lines/entities (without categories/with categories) boxes/row item table boxes
of the image text. The second row of images (e to h) shows the predictive results of GPT4o-mini on
tasks 1 to 4, and the third row of images (i to l) shows the predictive results of GPT4o. For task 3, the
boxes in yellow, blue, pink, and green represent four different types of entities: Header, Question,
Answer, and Other, respectively. Please zoom in for a better view.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] As a URL,
please see the dataset website: https://sprateam-ustc.github.io/SRFUND/

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In Sec. 4

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In Sec. 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] We provide detailed annotation guidelines to ensure dataset quality.
These guidelines, including specific instructions and examples, have been updated
on the dataset website and can be accessed via this link: https://sprateam-ustc.
github.io/SRFUND/download/.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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