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Abstract

We consider the problem of segmenting objects in videos based on their motion and
no other forms of supervision. Prior work has often approached this problem by
using the principle of common fate, namely the fact that the motion of points that
belong to the same object is strongly correlated. However, most authors have only
considered instantaneous motion from optical flow. In this work, we present a way
to train a segmentation network using long-term point trajectories as a supervisory
signal to complement optical flow. The key difficulty is that long-term motion,
unlike instantaneous motion, is difficult to model – any parametric approximation is
unlikely to capture complex motion patterns over long periods of time. We instead
draw inspiration from subspace clustering approaches, proposing a loss function
that seeks to group the trajectories into low-rank matrices where the motion of
object points can be approximately explained as a linear combination of other point
tracks. Our method outperforms the prior art on motion-based segmentation, which
shows the utility of long-term motion and the effectiveness of our formulation.

1 Introduction

Segmentation, the task of delineating and isolating distinct objects, is a fundamental problem in
computer vision. Much of the current approaches are supervised, relying on expensive manual
annotations. Attempts to approach this task without supervision have largely relied on manual
heuristics or exploited the rich semantics of self-supervised feature extractors. Video data, however,
offers an additional option as it contains motion, which can be exploited for an additional inductive
bias. Such approaches are rooted in the principle of common fate from Gestalt psychology [66],
which posits that elements that move together are more likely to belong together.

Motion information is usually captured by optical flow. Flow is attractive as it arises from low-
level visual properties and can provide a signal before scenes are parsed and objects are discovered.
Furthermore, optical flow estimators, such as RAFT [60] or FlowFormer [24], can be trained purely
on synthetic artificial data, transferring to real-world scenes with remarkable accuracy and without
manual annotation. This has led many to consider optical flow as a critical modality to discover and
learn objects from video data by learning to attribute and explain the motions of objects.

Optical flow, however, only describes the instantaneous motion of the scene, which can create
blindspots: not all objects are necessarily in motion at all times. Similarly, groups of objects might
coincidentally move together. Recent advances in point tracking [14, 15, 22, 28] offer an alternative
form of motion information. Point trackers “lock on” to a set of query points and describe their
position and visibility over the course of the whole video. This provides long-term motion information.
Like optical flow estimators, point trackers are trained on synthetic data. However, unlike optical
flow, point trajectories describe only a sparse set of points.
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In this paper, we ask whether the long-term motion information obtained in point trajectories is
beneficial. To that end, we explore how to supervise image segmentation networks using motion
information with point trajectories. At a glance, this presents several problems. Firstly, point
trajectories are time-varying 2D point clouds, and combining them with image-based networks is not
straightforward. Furthermore, the evolution of long-term object motion is too complex, even in the
simplest cases. Our main insight is that the motion of points belonging to the same object should
be well correlated. We thus propose a loss function that encodes this intuition by seeking to explain
groups of points as combinations of other points in the group. With our method, a segmentation
network predicts objects in the scene, inducing a grouping of trajectories that are currently visible.
The loss function then assesses how well such a grouping explains the long-term motion. While
point trajectories describe motion over a longer time, they are limited by the number of points
tracked, which is often much less than the number of pixels. We thus propose to train using both
trajectory-based loss and optical flow-based loss and show that spatially sparse but longer-time motion
information synergises with spatially dense optical flow.

Discovering objects using point trajectories has a long history in computer vision. Our approach
is inspired by ideas of subspace clustering, which assume that data comes from distinct subspaces
and seek to reconstruct membership information of data points. This has previously been applied
to the problem of motion segmentation [17, 38]. These approaches, however, are sensitive to noise
and either rely on specialised optimisation procedures to recover a graph of trajectory relationships
[32, 48] or use manual instead [32, 48]. Normalised cuts or spectral clustering are then used to group
the trajectories. However, the need for an affinity matrix limits the number of trajectories that can be
used due to quadratic memory requirements. Furthermore, “densification” is still required to extend
trajectory clusters to the whole image. By construction, these approaches can process only a single
sequence at a time. Our proposal instead trains an image segmentation network directly end-to-end
using a dataset of videos while supporting a large number of trajectories.

In summary, our work makes the following contributions. (1) We propose a loss function that enables
training any image segmentation architecture using point trajectories as a source of supervision. (2)
We investigate our proposed loss in a principled way in a simulated setting, showing the feasibility of
our approach. (3) We apply such a loss in a per-sequence optimisation, outperforming other subspace
clustering baselines. (4) We use our loss to train a single network on a dataset of videos for the task
of video object segmentation, demonstrating strong results. (5) We show how our proposed loss
formulation obtains better performance than alternatives.

2 Related work

Unsupervised video object segmentation. Video object segmentation (VOS) aims to label pixels
of objects in a video. Current VOS benchmarks [35, 51, 53] usually define the problem as binary
foreground-background separation or salient object segmentation. The task is usually approached in
two ways: semi-supervised and unsupervised VOS. Semi-supervised methods require initial frame
annotations and aim to propagate them to the rest of the video [7]. Unsupervised VOS aims to
discover object(s) of interest without the initial targets [18, 25, 36, 42, 52, 61]. This however does
not differentiate methods based on data used to train them. Most of the traditional research in semi-
or unsupervised VOS relies on annotations during training. Our approach, in contrast, does not
rely on any manual annotations to learn. Some authors explore related unsupervised video instance
segmentation [65] task without any annotations, object-centric learning appraoches [2, 58, 73], some
of which make use of flow [29] and depth [57].

Motion segmentation. A closely related task to video object segmentation is motion segmentation,
which aims to extract the main moving objects in a video. The practical difference between these
two tasks is more difficult to delineate as the same benchmark datasets are often used. Early
works modeled the scenes as layers [8, 27], which later works accomplish using a slot-attention
mechanism [13, 34, 69]. Flow mixture models accounted for multiple motion patterns [26, 62],
and corrections were introduced for rotating cameras [3, 4]. Later works [10, 46, 47] considered
parametric flow models fit to explain the scene. AMD [40] employs a single model with separate
appearance and motion ‘pathways’. Other works train flow-only models by generating synthetic data,
which generalise well to real videos [33, 67]. An alternative line of work adopts a more generative
approach, training an inpainter networks to predict optical flow [70, 71]. Several authors [37, 59]
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adopt a multi-stage self-labelling [65] approach for motion segmentation: initial masks are estimated
using an optical flow-based approach, followed by DINO-based refinement and CRF post-processing
to generate pseudo-labels and train a final segmentation network.

Trajectory-based motion segmentation. Trajectory-based motion segmentation has also been
explored. Older works consider data of multiple trajectories and employ non-negative matrix factoriza-
tion and related decomposition methods [9, 11, 17, 19, 55, 68]. This line of work primarily operates
by defining affinity between pairwise trajectories in a single video setting. In [6, 30, 31, 49, 50],
heuristic graphs are constructed between trajectories, considering increasingly complex motion
models, and employing specialised solvers to solve the optimisation problem. However, due to the
specialised optimisation procedures and tight coupling with trajectory estimation methods, this line of
work has received less attention than deep methods that exploit optical flow similarly to RGB frames.

Subspace clustering. A specific kind of trajectory-based technique is subspace clustering ap-
proaches, which rely on the self-expressive property of the data. They can largely be summarised [21]
as solving a constrained optimisation problem argminC ||DC −D||2F + λθ(C) for some dataset
D ∈ Rd×n of n points in d dimensions. C is a matrix of coefficients, which expresses the data
and can be represented as a linear combination of other points. Given a solution for the coefficient
matrix, it is transformed into an affinity matrix for spectral clustering. The approaches mainly
differ in the second term of the objective and specialized methods to solve the optimisation problem.
SSC [17] define θ(C) as l1 norm. LLR [38] use nuclear norm instead, while LSR [41] uses instead l2
regularisation. [41, 43, 64] combines l1, l2, and nuclear norms. Under some strong assumptions [21],
these approaches enjoy some theoretical guarantees. However, they are difficult to scale in practice as
the number of points n grows, as C is n× n. Additionally, the secondary step of spectral clustering
is also limiting and difficult to tune. Instead, we take inspiration from these approaches and propose a
way to supervise the network directly using the self-expressive property of point trajectories.

3 Method

Our goal is to solve the video segmentation task in an unsupervised manner: given a video,
we want to segment out the objects that are moving independently within it. A video is a
sequence of frames It ∈ RHW×3, each of which is an RGB image defined on the lattice
Ω = vec({1, . . . ,H} × {1, . . . ,W}) ∈ RHW×1. To segment the objects, we self-supervise a
neural network Φ that takes as input each frame It in turn, and outputs a corresponding segmentation
mask Φ(It) = Mt ∈ [0, 1]HW×K where K is the number of possible segments we expect to observe
in the video. Segmentation matrix entries softly assign each pixel to one of K possible segments.

The challenge is how to supervise the network Φ without labels, utilising only the video itself as
training material. The key inductive principle that we propose to use is that physical points that
belong to the same object tend to have highly correlated motion, often called principle of common fate.
When these points are projected to pixels, they result in corresponding highly correlated apparent
motions, which we can measure using techniques like optical flow and point tracking. Therefore,
we propose to supervise the network Φ from an analysis of apparent motion extracted automatically
from the video using off-the-shelf components.

Motion can be measured at two temporal scales. Optical flow extracts instantaneous motion, mea-
suring the 2D velocity of the 3D points found at each pixel in each video frame. Point tracking
extracts long-term motion, estimating the 2D location of a certain number of 3D points throughout
the video’s duration. These two sources of information are complementary. Optical flow is dense,
easy to extract, and easy to model to discover correlations within it; however, by considering different
times in isolation, it ignores most of the correlations that exist in the data. Tracks are sparse, more
difficult to extract and harder to model, but potentially contain information ignored by optical flow.

Prior works such as [10] have studied how to model optical flow for segmentation. Here, motivated by
a new generation of high-quality point trackers [14, 15, 22, 28], we aim at developing the machinery
necessary to use track information as well. From this analysis, we construct losses which assess the
quality of the predicted mask Mt given the video itself. Next, we introduce two such losses, one for
optical flow from prior work, and a new one based on point tracking.
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3.1 Learning from optical flow

First, we describe the case of optical flow. Because optical flow is instantaneous, we can fix our
attention on a specific frame I and corresponding mask M , dropping for now the time index t. The
optical flow F ∈ RHW×2 for this image associates a 2-dimensional flow vector to each of the H×W
pixels. Each flow vector can be understood as the velocity of the pixel.

Let Mk ∈ RHW×1 be the binary matrix for segment k, obtained by extracting the k-th column of M .
Let Fk = Mk ⊙ F denote the Hadamard (element-wise) product between the mask and flow vectors,
broadcasting the mask along the rows.

Assuming that the object is rigid, the optical flow can be approximated as a linear parametric model of
2D coordinate embeddings (see [1] for an overview). Following [10], we consider a six-dimensional
quadratic embedding kernel emb([x, y]) = [x, x2, y, y2, xy, 1] ∈ R1×6 for pixel coordinates
[x, y] ∈ Ω and associate to each region k a corresponding set of 12 parameters θk ∈ R6×2. Optical
flow vectors within a region should be expressible as a linear combination of these six basis functions.

We then consider all pixels embeddings stacked in a single matrix Ek = Mk ⊙ emb(Ω) where the
product with the soft mask ensures that the embeddings are “active” only if the corresponding pixels
are. The optical flow vectors in the region are then approximated as

Fk ≈ F̂k = Ekθ̂k where θ̂k = (E⊤
k Ek)

−1E⊤
k Fk, (1)

where θ̂k is obtained via least square. We can use the residual of this approximation as a measure of
how well the mask Mk fits the data:

Lf (M |F ) =
∑

k

∥Fk − F̂k∥2F =
∑

k

∥Fk − Ekθ̂k∥2F . (2)

Intuitively, this considers the correlation of pixel motion in the spatial sense: how pixel coordinates
determine its motion based on motion parameters θk.

3.2 Learning from trajectories

Having covered optical flow, we move now to developing an analogous loss for tracking. We write
P ∈ R2T×N for the track matrix, with one trajectory per column. With slight abuse of notation, we
write (P )t ∈ R2×N for indexing rows corresponding to point locations at some time t. To connect
pixel-wise masks and sparse points, we use a sampling operation π(·), writing π(Mk, (P )t) = M̂k ∈
[0, 1]N×1 for mask values at point locations at an appropriate time. Furthermore, we denote by
Pk = P ⊙ M̂k the masked version of the trajectory matrix, selecting the columns/trajectories that
belong to object k with obvious broadcasting of the mask values.

Unlike optical flow, trajectories are too complex to be modelled using a small set of fixed basis
functions. Instead, we posit that the set of trajectories should be low-rank — all trajectories belonging
to the same object should be explained well by a linear combination of some small number of
trajectories. We illustrate this intuition in Fig. 1 using a 2D example.

This assumption results in a factorization of Pk using singular value decomposition (SVD) as
Pk = UkΣkV

⊤
k , where (Uk,Σk, Vk) = SVD(Pk). As Pk should be low-rank, we can thus form an

approximation using truncated SVD, by considering only first r components. We write ⌊Uk⌋r to
denote such truncation. With this, we obtain the loss

Lrec@r(M |P ) =
∑

k

∥∥Pk − ⌊Uk⌋r⌊Σk⌋r⌊Vk⌋⊤r
∥∥2
F
. (3)

Since truncated SVD offers optimal decomposition for the error above, lowering this loss amounts to
making Pk as close as possible to rank r, i.e., by grouping trajectories into Pk that do not increase its
rank, and should come from rigid objects.

As we show in Section 5.3, we found an alternative formulation of this idea works better. Note the
rank r matrix has the r-th and all later singular values as 0. We can optimise singular values higher
than r-th to be close to 0 (ignoring Uk and Vk). Thus, for trajectories, we formulate a loss simply as:

Lt(M |P ) =
∑

k

min(2T,N)∑

i=r

σi(Pk), (4)

where σi(Pk) is the i-th singular value of Pk. We assume r ≪ min(2T,N).
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Figure 1: Illustrative 2D example for the low-rank nature of Pk. A triangle undergoes rigid rotation
over three frames. As the rate of rotation is not constant, the flow vectors and point positions are
difficult to model. However, the point p is part of the triangle and can be expressed as a combination
of the three vertices at an appropriate time. Thus, the last column of Pk is linearly dependent, and Pk

is rank deficient. Any points in the triangle could be included in Pk without increasing its rank.

Meaning of decomposition. We show that under certain simplifying assumptions, the decomposi-
tion in (3) is exact and models time-varying camera motion and object geometry as two terms. We
consider a simple case of a rigid body motion observed through a perspective camera. For points on
the object, we can consider only the relative motion between the camera and the object and attribute
it all to the camera for simplicity.

Given (stacked) camera projection matrices Wt ∈ R3T×4, points X̃k ∈ R4×N in homogenous
coordinates that remain at constant projective depth d ∈ RN×1 from the camera over the whole
sequence, we note the following equation [23]:

P̃k = WtX̃k diag(d)
−1, (5)

where P̃k ∈ R3T×N is Pk in homogenous coordinates. Both Wt and X̃k diag(d)
−1 can be recovered

by considering a truncated SVD at rank 4: Wt = ⌊Uk⌋4⌊Σk⌋4, and X̃k diag(d)
−1 = ⌊Vk⌋⊤4 .

The trajectory matrix factorises into the time-varying camera matrices and object geometry. As the
depth is not constant in the real-world setting, this decomposition is approximate and suggests the
following alternative loss:

Lper =
∑

k

∥P̃k −WtX̃k diag(d)
−1∥2F , (6)

where Wt, and X̃k diag(d)
−1 are obtained via SVD as above.

Choice of r. Setting r correctly is important. Intuitively, it captures the degrees of freedom present
in the trajectory data or the number of trajectories that are sufficient to form a basis. From the analysis
above, we saw that rank r = 4 corresponds to assuming constant depth and perspective camera.
However, higher r is needed to tolerate changing depth and tracking errors [12, 23]. Similarly, not all
motion is rigid in real-world videos, which also requires increasing r. We empirically determined
r = 5 to yield good results.

3.3 Training a segmenter using flow and trajectories

The losses above require optical flow F , trajectories P , and masks Mk obtained using a segmentation
network Φ(I) = M . This suggests a simple procedure of training a segmentation network given a
dataset of videos, which we summarise in Fig. 2. We precalculate optical flow for each frame and
obtain a set of point trajectories for each video using off-the-shelf pretrained networks. For training,
we consider triples of (I, F, P )i for each frame i, where for trajectories P , we take trajectories for
which the points are visible in the image I. This can be accomplished by making use of visibility
predictions in the output of point trackers or calculating trajectories by querying points in each frame.
We use bilinear sampling for π(·) to obtain mask values at trajectory coordinates.

Temporal smoothing. We include a temporal smoothing loss, which matches mask predictions
between two frames offset by ∆t using the predicted trajectories:

Lτ = ∥π(Φ(It), (Pt)t)− π(Φ(It+∆t), (Pt)t+∆t)∥22 , (7)
where It is the t-th frame and Pt are trajectories associated with t-th frame. We write the final loss
as: L = λfLf + λtLt + λτLτ , where λf , λt, λτ balance the contribution of the different loss terms.
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Figure 2: Overview of our approach. We self-supervise a segmentation network, i.e., without
access to mask annotations, using both short-term motion information (optical flow) and long-term
motion (point trajectories). We design a loss function that encourages the segmentation network
to cluster regions where trajectories form low-rank-r groups, which should align well with objects.
Off-the-shelf methods are used to estimate optical flow and point trajectories given a dataset of videos.

Choice of k. Following prior work [10], we set k, the number of predicted masks, to be higher than
the maximum number of objects in the scene to account for potential parallax and non-rigid motion.
In the binary segmentation case, we recover two components by considering the average appearance
feature of each component and solving for the normalised cut on a graph with k nodes.

4 Feasibility study

Our proposed trajectory loss (4) enables training a segmentation network using trajectory data. We
first show the feasibility of the proposed cost function in a controlled setting, without actually training
Φ. To this end, we consider a synthetic scene from the MOVI-F Kubric [20] dataset for which we
obtain ground-truth trajectories for every point and ground-truth object segmentation masks. We
explore the loss landscape of the proposed formulation by corrupting the segmentation masks along
several principled axes and studying the effect of such corruptions on the trajectory loss.

First, we consider a random alteration of mask pixels, which we refer to as mask noise. We control
the amount of mask noise using η such that 0.0 corresponds to no pixels changed and 1.0 corresponds
to completely random masks. Along this axis, we test whether our loss favours predictions with lower
noise. Second, we consider structural alterations, namely under/over-segmentation. To simulate
under-segmentation, we merge object masks with the background at random. To simulate over-
segmentation, we randomly split the existing object mask into two parts in the middle along either the
x or y-axis. We represent this type of mask corruption using integers. Negative values indicate the
number of objects removed, while positive values correspond to new objects generated from existing
ones. Such structural corruption investigates whether the loss can correctly identify the number of
moving objects. Finally, we consider the “softness” of the predicted masks by transforming masks
into logits and increasing the temperature τ in the softmax operation. This tests whether the loss will
prefer low-entropy values. We leave further details of the corruption procedure to Appendix D.

The results of these analyses are shown in Figure 3. All three plots show the loss value as a function
of structural corruption. The trajectory loss decreases as the noise and temperature of the masks are
reduced, as seen in the first two plots. The third plot also shows that such solutions are preferred in
combination. Furthermore, we observe that the loss values are lower when the correct number of
segments is detected, and this holds even in the presence of noise or when masks are more uniform.
Note, however, that over-segmentation is penalised less than under-segmentation, i.e., missing moving
objects leads to a higher value of the loss than, e.g., splitting an object into several components.
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Figure 3: Feasibility analysis of Lt. Using a synthetic sequence (left), we vary the amount of noise
η injected into the mask, the temperature τ of the mask logits and plot the loss value as a function of
the mask under/over segmentation. The plots show that the loss is reduced in low-noise, low-entropy
settings and penalises both over- and under-segmentation.

5 Experiments

In this section, we evaluate our approach for unsupervised motion segmentation and compare it
with simple baselines and prior subspace clustering methods. Next, we compare our method with
state-of-the-art methods for unsupervised video object segmentation across several datasets in a
binary segmentation setting. We finish with ablation experiments of our approach.

Datasets. We consider four primary datasets in this study. We use the synthetic MOVi-F variant of
the Kubric [20] dataset with ground truth trajectories for comparison with subspace clustering-based
approaches. We adopt this setting to eliminate noise in point trajectories as previous methods are
sensitive to it. We report the adjusted Rand index (ARI) as the main metric, measuring how close
clustering is to the ground truth up to the permutation of cluster identities, where 1 is a perfect match,
and 0 means roughly random assignment. We also report FG-ARI, i.e., ARI only on foreground
pixels (determined by ground truth masks), which identifies how well different objects are separated.

We also evaluate our approach on real-world datasets: DAVIS 2016 [53], SegTrackv2 (STv2) [35],
and FBMS [51], which are popular benchmarks for video object segmentation. Following standard
practice [69, 70], foreground objects in STv2 and FBMS are consolidated. We report the Jaccard (J )
score, computed using Hungarian matching between predicted and ground truth segmentations.

Table 1: Comparison of our LRTL
trajectory-based formulation with
prior methods.

MOVi-F
Method ARI↑ FG-ARI↑
K-Means 15.26 42.53
SSC [17] 11.12 39.21
LRR [38] 7.47 37.36

LRTL (Ours) 46.07 65.76

Implementation. For the experiments on real-world datasets,
optical flow is estimated using RAFT [60] and point trajecto-
ries using CoTracker [28]. Trajectories are computed within
a context window f = 20 around each frame, with reflec-
tion padding around video boundaries, resulting in chunks of
T = 2f + 1 = 41 frames. To reduce the effect of noisy predic-
tions, we also filter trajectories along the time dimension using
an average filter with a window size of 11. For the experiments
on MOVi-F, a small U-Net [56] is trained as the segmentation
network, starting from random initialisation. For fairness of
comparisons on DAVIS, STv2 and FBMS, we use the same
architecture as in [10] — MaskFormer with DINO backbone.
We specify further details in Appendix E.

5.1 Comparison to trajectory-based methods

In Table 1, we compare our low-rank trajectory loss (LRTL) with prior subspace clustering approaches
in a per-video optimisation setting. Subspace clustering operates on a similar intuition to our proposed
trajectory loss by a grouping of trajectories that should be linearly dependent. We also consider K-
means clustering of trajectories as a simple baseline. For fair comparisons, we train our segmentation
model optimising only the trajectory loss (Lt). We use k = 25 components for each video and train
for 5000 steps. This is comparable to the computation requirements and steps of other methods. For
K-means, SSC [17] and LRR [38], we search for an optimal set of hyperparameters and the number
of components k, reporting the best results. Our approach shows significantly stronger performance
than simple K-Means and subspace clustering approaches.
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Table 2: Unsupervised video segmentation on DAVIS, SegTrackv2, and FBMS. Where possible,
we report results without widely applicable post-processing (e.g., CRF) or indicate results in grey.

Inf. Input Input Motion Est. DAVIS STv2 FBMS
Method RGB Motion Resolution Method J ↑ J ↑ J ↑
Single-sequence methods
FTS [52] ✓ ✓ – LDOF [5] 55.8 47.8 47.7
CUT [31] ✓ ✓ – LDOF [5] 55.2 54.3 57.2
DS [72] ✓ ✓ 240× 426 RAFT [60] 79.1 72.1 71.8
Ponimatkin et al. [54] ✓ ✗ 480× 848 ARFlow [39] 80.2 74.9 70.0
OCLR [67] (test ft.) ✓ ✓ 480× 848 RAFT [60] 80.9 72.3 69.8

Single-stage end-to-end methods
OCLR [67] ✗ ✓ 112× 224 RAFT [60] 72.1 67.6 65.4
DivA [34] ✓ ✓ 128× 224 RAFT [60] 72.4 64.6 60.9
Meunier et al. [45] ✗ ✓ 128× 224 RAFT [60] 73.2 55.0 –
GWM [10] ✓ ✗ 128× 224 RAFT [60] 79.5 78.9 78.4

Multi-stage methods
RCF [37] ✓ ✗ 480× 848 RAFT [60] 80.9 76.7 69.9
LOCATE [59] ✓ ✗ 480× 848 ARFlow [39] 80.9 79.9 68.8

LRTL (Ours) ✓ ✗ 192× 352
RAFT [60] 82.2 81.2 79.6CoTracker [28]

Table 3: Alternative losses to our proposal.
Other variants do not match the performance
of our formulation.

Loss DAVIS (J ↑)

Lrec@3 (3) 11.1
Lper (6) 18.2
Lrec@5 (3) 14.6

tracks-as-flow 65.3

Ours Lt (4) 71.9

Table 4: Ablation of loss terms. All loss terms
synergise to improve performance.

Loss DAVIS (J ↑)

λfLf 78.5
λtLt 71.9

λtLf + λtLt 81.7

λtLf + λtLt + λτLτ 82.2

5.2 Unsupervised video object segmentation

We compare to recent methods on the unsupervised video object segmentation task without first-frame
prompting or post-processing. In this setting, we train a single network on the benchmark datasets for
binary video segmentation. We compare with single-sequence methods that perform optimisation for
each sequence/video individually. Additionally, we benchmark dataset-wide single-stage end-to-end
methods where training is performed over multiple videos simultaneously, training a network in
an end-to-end manner. We also compare with multi-stage methods that train and re-train several
networks. We report our results on standard benchmarks in Table 2. While the closest prior work
relies on multiple stages of training, pseudo-labelling, applying CRF, and retraining, our end-to-end
trained method shows better performance at lower resolutions. We attribute this to the effectiveness
of our approach in incorporating long-term motion information.

In Fig. 4, we show qualitative results of our approach and compare with RCF [37], a state-of-the-art
multi-stage approach. Our network trained with both flow and trajectory losses yields segmentations
with noticeably better boundaries despite operating at a lower resolution. Notably, our formulation
also effectively avoids segmenting shadows and water ripples of the swan, which are difficult to
separate based on instantaneous motion alone.

5.3 Ablations

Alternative losses. We have explored several alternative formulations of the trajectory loss in our
approach and present the analysis in Table 3. Losses based on full SVD reconstruction fail to train a
network sufficiently. Lper performs the best out of these, likely as DAVIS contains several scenes
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Figure 4: Qualitative comparison of our results on DAVIS with RCF which uses higher resolution
and multi-stage training. Our method contains slightly better boundaries, does not segment shadows
and separates water ripples from the swan.

with a panning camera tracking a rigid object at an approximately constant distance, which matches
the assumptions. Increasing or decreasing the rank of the approximation performs worse. We also
consider track-as-flow loss, where trajectories P are treated as optical flow by subtracting positions
from adjacent times. Then, for T frames, Eq. (2) can be applied. We find that such a formulation still
underperforms in comparison to our trajectory-based formulation (Eq. (4)).

We believe our formulation provides better results than the above for two possible reasons. First,
by minimising higher-than-r singular values, we are not strictly enforcing assumptions like rigidity.
Second, our loss formulation is more numerically stable as it requires only gradients w.r.t. to the
singular values. As we seek to drive them close to zero, the matrices Pk become increasingly
ill-conditioned as the training progresses. Additionally, gradients w.r.t. U and V ⊤ depend on inverse
singular values Σ−1 [63], which become numerically unstable as they are approaching zero. On the
other hand, dΣ = IN ◦ (U⊤ dPk V ) does not have this problem.

Influence of losses. In Table 4, we consider the method with only the flow loss component and only
the trajectory loss component. We find that our trajectory-based loss improves flow-only performance.
Using only trajectory-based loss shows weaker performance than just optical flow, likely due to only
a sparse set of points and noise introduced by estimating positions for occluded points. Ablating
temporal smoothing loss slightly lowers performance as well.

Limitations. While we have demonstrated the effectiveness of learning segmentation from long-
term motion, there is potential for further improvements in leveraging point trajectories. First, while
modern trackers predict reasonable positions for occluded points, naturally, these predictions are
less accurate. Thus, a more explicit handling of occlusions and tracking noise would likely help.
Second, we currently only use trajectory estimates from nearby frames for training. This means that
we sometimes track the same point multiple times, which could be avoided with caching trajectories.
While we handle non-rigidity using over-segmentation, extending this principle to video with multiple
non-rigid objects is an important feature direction.

6 Conclusion

We have introduced a principled method to train an image segmentation network using long-term
motion information expressed as point trajectories. Our trajectory loss formulation follows the
principle of common fate and aims to group trajectories into low-rank matrices, representing the idea
the motion of points belonging to the same object can be roughly explained as a combination of other
points. Using synthetic data we have shown that such a loss should prefer low-noise and low-entropy
solutions as well as identify the correct number of moving objects. In comparison with other methods,
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our loss formulation has shown superior performance compared to subspace clustering baselines
on synthetic data and achieved state-of-the-art results on unsupervised video object segmentation
benchmarks when combined with optical flow-based loss.
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Table 5: Influence of r, the rank of the trajectory
matrix used in loss function (4).

r DAVIS (J ↑)

3 76.0
4 79.6
5 82.2
6 80.9

Table 6: Influence of k, the number of predicted
components before merging.

k DAVIS J ↑
2 78.0
3 82.0
4 82.2
5 72.8

Table 7: Influence of context length of the tra-
jectory matrix.

Context length DAVIS (J ↑)

10 79.1
15 81.0
20 82.2
30 80.8

Table 8: Influence of trackers used to estimate
point trajectories.

Tracker DAVIS (J ↑)

TAPIR [15] 73.4
PIPs++ [74] 74.9

BootsTap [16] 76.8
CoTracker [28] 78.9

Supplementary material

In this supplementary material, we consider additional ablations of our approach (Appendix B),
include further results (Appendix C), and provide the implementation details (Appendix E). Accom-
panying this supplementary material, we include videos of our results on DAVIS and SegTrackv2
datasets. We also include an example video visualising a sample of trajectories that the model receives
as input. The code and models will be released upon acceptance.

A Broader impact

Segmentation is a component in a very large and diverse spectrum of applications in healthcare, image
processing, computer graphics, surveillance and more. As with many technologies, the application
can be good or bad. In this paper, we explore how to train a model to perform segmentation in an
unsupervised manner. This has the positive benefit of removing manual labour requirements to obtain
annotations, which might also eventually apply to bad actors. We, however, consider the immediate
real-world impact beyond the research community of our work here limited as unsupervised systems
still show lower performance than supervised counterparts.

B Additional ablations

Rank r of trajectory matrix. In Table 5, we vary r, the rank of the trajectory matrix used in the
trajectory loss (Eq. (4)). As previously mentioned, the choice of rank reflects the degrees of freedom
in the system and controls implicitly the assumptions about the types of motion and cameras used
to capture sequences. At r = 3 and 4, we observe slight impact on the performance in comparison
to r = 5. r = 5 appears to be the optimal setting, which is what we used in our main experiments.
At r = 6, the performance drops again, likely as it becomes sufficient to group and explain simple
motions together.

Number of segments k. In Table 6, we vary k, the number of masks predicted by our method,
before merging. As in prior work [10], the k = 4 appears to be the optimal setting. The performance
drops beyond this point as it becomes difficult to group objects.

Influence of context window length T . In Table 7, we vary the length of the context windows (f )
and thus T for our method when considering trajectories. We find increasing the context window
helps slightly. However, the performance starts to drop afterwards. We hypothesise that this is due to
difficulty predicting sensible point trajectories for points that move outside of the frame and become
invisible, as DAVIS contains many videos where the camera tracks the main subject. Though several
values of this setting are viable.
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Table 9: Alternative network architectures for
segmentation.

Network DAVIS (J ↑)

UNet 80.6
MaskFormer + Swin-Tiny 81.2

MaskFormer + DINO 82.2

Table 10: Comparison with appearance-only
methods.

Method DAVIS (J ↑)

VideoCutLER [65] 67.2
VideoSAUR [73] 17.5

LRTL (Ours) 82.2

Source of tracks. In Table 8, we experiment with different trackers to obtain tracks. We consider
TAPIR1, PIP++2 and BootsTap3 along CoTracker. Due to the limitation of some options (PIPs++ not
predicting visibility) and inherent noise in invisible tracks for TAPIR, we lowered the context window
to 15. We also do not consider tracks from adjacent frames as this seems to lower performance
for other trackers. Finally we did not use EMA in these experiments. We observe that CoTracker
performs the best while other trackers show slightly weaker results. We hypothesise this is due to
CoTracker estimating reasonable trajectories for occluded points, which are included in the matrix
Pk. Some trackers, e.g., TAPIR, are restricted to predicting points within the frame, thus providing
extremely noisy estimates in scenes where objects move outside the frame.

Alternative networks. As our proposed loss function is network-architecture agnostic as it only
requires mask prediction. Thus, any network which predicts masks or has mask-like representation
could be used. In Table 9, we experiment with changing the segmenter architecture in the DAVIS
benchmark. This shows that we can swap different network architectures with relative ease and obtain
similar results.

Inference speed. Here we provide the inference time comparison using different networks as
average FPS during DAVIS evaluation. For MaskFormer + DINO configuration, we measure 3.3 FPS,
while with UNet we measure 6.4 FPS. Note that since our contribution is a loss function, it is network
architecture agnostic. Using it does not affect inference time; only the choice of network architecture
does. We matched the architecture with prior work for the best comparisons.

Comparison with appearance-only works. Finally, we include a comparison to unsupervised
methods that consider only appearance during learning. In Table 10, we provide a comparison of
VideoCutLER [65] and VideoSAUR [73] on DAVIS using the same merging strategy for combining
multiple predictions to a binary segmentation as in our method.

Our method shows a significant advantage. We observe that VideoCutLER has trouble segmenting
instances from crowds in the background. VideoSAUR has imprecise object boundaries which
severely impacts performance when measurred using Jaccard score.

C Additional results

C.1 Qualitative results on SegTrackv2

In Fig. 5, we provide additional qualitative results from our approach on the SegTrackv2 dataset.
We compare with the state-of-the-art multi-stage Relaxed Common Fate (RCF) approach [37]. Our
method correctly identifies more parts of the objects and has better boundaries.

D Parametric mask alterations

In this section, we show the effect of the parametric ground truth mask alterations used to study the
trajectory loss in section 4.1. The purpose of these alterations is to disturb ground truth masks in a

1Code and models available https://github.com/google-deepmind/tapnet under Apache-2.0 li-
cense.

2Code and models available https://github.com/aharley/pips2 under MIT license.
3Code and models available https://github.com/google-deepmind/tapnet under Apache-2.0 li-

cense.
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Figure 5: Qualitative comparison of our results on SegTrackv2 with RCF which uses higher resolution
and multi-stage training. Our method contains slightly better boundaries and segments more whole
objects.

η = 0.0 η = 0.25 η = 0.5 η = 0.75 η = 1.0

Figure 6: Example noise mask alteration. The parameter η is the probability of assigning a mask
pixel at random.

controlled way to enable studying the effect this has on the loss. For this purpose, we use synthetic
data from MOVi-F sequences of the Kubric [20] dataset suite, which is the same data that is used to
train CoTracker [28], TAPIR [15], PIP [22] and similar. We consider three types of alterations:

• The first kind of alteration is random noise. With probability η, we set each mask pixel to a
random class sampled from U(0,K), where K = 20 in this case. When η = 0, thus, there
is no alteration. When η = 0.5, around half of the mask pixels (in expectation) are assigned
randomly. Fig. 6 shows the effect of η in practice.

• The second kind of alteration we consider is a structural change meant to approximate
over/under-segmentation. For under-segmentation, we change the mask regions correspond-
ing to the whole object to the background. Fig. 8 shows this in effect. For over-segmentation,
we split an existing component randomly along an axis passing through the object centre
and parallel to either the x- or y-axis at random. Fig. 9 shows this in effect. We parameterise
this alteration with integers s, where a positive number controls the number of components
split, and negative numbers correspond to the number of components set to the background.

• The third kind of alteration is temperature. Its purpose is to model how the entropy of the
categorical distribution modelled by the segmentation network might affect the loss. For this,
we increase the temperature τ in softmax operation softmax(l/τ) for logits l calculated
from the input mask, which results in increasingly “soft” masks.
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s = −4 s = −3 Figure 7: s = −2 s = −15 s = 0

Figure 8: Example mask structural mask alteration showing modification used to approximate under-
segmentation. The parameter s controls the number of objects set to the background.

s = 0 s = 1 s = 2 s = 3 s = 4

Figure 9: Example structural mask alteration modelling over-segmentation. The parameter s controls
the number if objects split into two at random.

The three types of alteration are composed to generate a synthetic prediction mask that can be used
to investigate how the trajectory loss behaves as the mask changes. We use 25 trials to estimate the
value of the loss for a given configuration of the parameters s, η, τ .

E Implementation details

Here, we further specify the configuration and implementation details used in our experiments.

E.1 Extracting flow

We use RAFT [60]4 to extract optical flow pretrained on FlyingThings3D [44]. We follow the
methods used to extract flow in previous work [10, 69]. Namely, we consider pairs of frames with a
distance in time of either 1 or 2, both in forward and backward directions for DAVIS and SegTrackv2.
For FBMS, we consider distances of 3 and 6 due to lower motion setting in the dataset. The optical
flow is extracted before training.

E.2 Extracting trajectories

We use CoTracker [28] to extract point trajectories. CoTracker is trained on MOVi-F Kubric [20]
datasets. We use CoTracker v25. We query at every 4th-pixel coordinate for each frame to extract
point trajectories. At 480×854 resolution for DAVIS, this results in 25k points for each frame. When
tracking, we find it beneficial to inject auxiliary query points. For this, we define two additional
query grids with a stride of 32, querying a frame seven frames in the future and the past (or less if at
the video boundaries). This generates around 2k additional points, which we do not use for training.
When processing videos of heterogeneous resolutions, we resize the input to 480× 854 to maintain
the same number of points.

4Code and models available https://github.com/princeton-vl/RAFT/tree/master under BSD-3
license.

5Code and models available https://github.com/facebookresearch/co-tracker under non-
comercial license.
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E.3 Training hyperparameters

For the segmentation network, we use the same model architecture as in [10] – MaskFormer with
DINO backbone. We feed images at 192× 352 resolution. We also use random horizontal flipping
augmentation. The network is trained to predict k = 4 components, which, in the case of binary
segmentation, are then merged into two following [10]. We train using AdamW optimiser, with a
learning rate of 1.5e-4, weight decay of 0.01, a batch size of 8, and a linear learning warmup schedule
for 1500 iterations. We train for 5000 iterations.6 We use an Exponential Moving Average (EMA)
with the decay power of 2/3 with a warmup of 1500 iterations and update every 10 steps to help
stabilise the training. On SegTrackv2 we instead used decay power 4/5 as the dataset is considerably
smaller than others. We set λf = 0.03, λt = 5 ∗ 10−5, and λτ = 0.1 in all experiments, which yields
loss values in a similar numerical range. For the temporal smoothing loss, we use ∆t = 5.

E.4 MOVi-F experiments

When conducting experiments on the MOVi-F dataset (Sec. 4.2), we consider ground-truth trajectories
obtained from modified rendering script [20]. We normalise the trajectories to the [0, 1] range based
on image width and height.

For K-Means, we consider the trajectories with the initial position at T = 0 subtracted, thus clustering
offsets from the initial position.

For SSC [17], we translate the method to Python following the original implementation in Matlab7.
We use the ADMM variant, which we found to give better results. We set the α = 100 and kept the
rest of the hyperparameters unchanged. To transform the coefficient matrix into a graph adjacency,
we found that simple symmetrisation yielded slightly better results than the proposed method that
additionally normalised and filtered values. We report results for this method using the optimal
number of clusters for spectral clustering.

For LRR [41], we similarly translate the method to Python following the original implementation in
Matlab8. We use λ = 0.2. Additionally, we found it beneficial to reduce ρ = 1.01 and use a larger
number of iterations (10k) than proposed. Similarly to SSC, we experimented with different ways to
transform the coefficient matrix to adjacency, including automatically determining the number of
clusters based on the block-diagonal structure. We found, however, that using simpler symmetrisation
with optimal numbers of clusters determined by an oracle gave the best results.

When considering our trajectory loss, we parameterise the masks with a small randomly initialised
Unet [56] predicting a 25-way segmentation, which we optimize using AdamW optimizer.

Note that K-Means, SSC and LRR baselines cluster trajectories rather than segmenting the image. To
map back to the image domain and obtain segmentation masks, we repeatedly apply the method for
each frame within a sequence, considering the trajectory for each pixel. This enables the most direct
way to establish segmentation of the images through significant additional computation effort. An
alternative could be to consider sequence wide-trajectories jointly; however, approaches like SSC and
LLR do not scale well to such a large number of trajectories. For our trajectory loss, optimisation can
be performed per sequence and, as we show in our real-world experiments, dataset-wide.

6We estimate about 3 hours to train a model using A6000 GPU (peak GPU memory 25GB). We estimate
around 100 GPU hours to train models for the results here.

7Code available at http://www.vision.jhu.edu/code/
8Code available at https://sites.google.com/site/guangcanliu/
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have confirmed the viability of our loss formulation in controlled simu-
lated settings, per-sequence optimisation settings with no tracking noise and in real-world
settings. We also considered alternative formulations of the trajectories and found them to
underperform.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: the paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We list all relevant details in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not include code at the time of submission but commit to releasing the
code and models at a later time.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include brief summary of key details in Section 5 and complete information
in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not include confidence intervals when reporting main experimental
results due to the computational burden of doing so. We report ±σ intervals in our feasibility
study.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We give the computation cost of a single experiment and estimate total GPU
hours required to train models for the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We make use of publicly available and open-source code and models, respect-
ing individual licenses.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As our key proposal is a method for learning segmentation using trajectory
data, we do not foresee our models trained for benchmark datasets requiring safeguards as
their use is limited due to the small dataset scale.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the models we build upon which are released on open licenses
permitting such use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

24

112596https://doi.org/10.52202/079017-3576

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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