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Abstract

The neural network memorization problem is to study the expressive power of
neural networks to interpolate a finite dataset. Although memorization is widely
believed to have a close relationship with the strong generalizability of deep
learning when using over-parameterized models, to the best of our knowledge, there
exists no theoretical study on the generalizability of memorization neural networks.
In this paper, we give the first theoretical analysis of this topic. Since using i.i.d.
training data is a necessary condition for a learning algorithm to be generalizable,
memorization and its generalization theory for i.i.d. datasets are developed under
mild conditions on the data distribution. First, algorithms are given to construct
memorization networks for an i.i.d. dataset, which have the smallest number of
parameters and even a constant number of parameters. Second, we show that, in
order for the memorization networks to be generalizable, the width of the network
must be at least equal to the dimension of the data, which implies that the existing
memorization networks with an optimal number of parameters are not generalizable.
Third, a lower bound for the sample complexity of general memorization algorithms
and the exact sample complexity for memorization algorithms with constant number
of parameters are given. It is also shown that there exist data distributions such that,
to be generalizable for them, the memorization network must have an exponential
number of parameters in the data dimension. Finally, an efficient and generalizable
memorization algorithm is given when the number of training samples is greater
than the efficient memorization sample complexity of the data distribution.

1 Introduction

Memorization is to study the expressive power of neural networks to interpolate a finite dataset [9].
The main focus of the existing work is to study how many parameters are needed to memorize. For
any dataset Dy, of size N and neural networks of the form F : R — R, memorization networks
with O(NV) parameters have been given with various model structures and activation functions
[31L 150, 130, 29, 26} 147, 156, 11} 165]]. On the other hand, it is shown that in order to memorize an
arbitrary dataset of size N [64}[56], the network must have at least (N') parameters, so the above
algorithms are approximately optimal. Under certain assumptions, it is shown that sublinear O (N 2/ 3)
parameters are sufficient to memorize Dy, [49]. Furthermore, Vardi et al. [55]] give a memorization
network with optimal number of parameters: O(v/N).

Recently, it is shown that memorization is closely related to one of the most surprising properties

of deep learning, that is, over-parameterized neural networks are trained to nearly memorize noisy
data and yet can still achieve a very nice generalization on the test data [45,[7, |4]. More precisely, the
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double descent phenomenon [45] indicates that when the networks reach the interpolation threshold,
larger networks tend to have more generalizability [41),|10]. It is also noted that memorizing helps
generalization in complex learning tasks, because data with the same label have quite diversified
features and need to be nearly memorized [[19, 20]. A line of research to harvest the help of
memorization to generalization is interpolation learning. Most of recent work in interpolation
learning shows generalizability of memorization models in linear regimes [[7, [12} 38} 153159, |66].

As far as we know, the generazability of memorization neural networks has not been studied the-
oretically, which is more challenging compared to the linear models, and this paper provides a
systematic study of this topic. In this paper, we consider datasets that are sampled i.i.d. from a data
distribution, because i.i.d. training dataset is a necessary condition for learning algorithms to have
generalizability [54/44]). More precisely, we consider binary data distributions D over R"™ x {—1,1}
and use D, ~ DY to mean that Dy, is sampled i.i.d. from D and |D;,.| = N. All neural networks
are of the form F : R™ — R. The main contributions of this paper include four aspects.

First, we give the smallest number of parameters required for a network to memorize an i.i.d. dataset.
Theorem 1.1 (Informal. Refer to Section El) Under mild conditions on D, if Dy, ~ DN it holds

(1) There exists an algorithm to obtain a memorization network of Dy, with width 6 and depth
O(VN).

(2) There exists a constant Np € Z_. depending on D only, such that a memorization network of Dy,
with at most Np parameters can be obtained algorithmically.

Np is named as the memorization parameter complexity of D, which measures the complexity of
D under which a memorization network with < Np parameters exists for almost all Dy, ~ DN,

Theorem|[I.T]allows us to give the memorization network for i.i.d dataset with the optimal number of
parameters. When NV is small so that \/N < Np, the memorization network needs at least ﬁ(\/ﬁ )
parameters as proved in [6] and (1) of Theorem[I.T] gives the optimal construction. When NN is large,
(2) of Theorem [I.1] shows that a constant number of parameters is enough to memorize.

Second, we give a necessary condition for the structure of the memorization networks to be generaliz-
able, and shows that even if there is enough data, memorization network may not have generalizability.

Theorem 1.2 (Informal. Refer to Section . Under mild conditions on D, if Dy, ~ DN, it holds

(1) Let H be a set of neural networks with width w. Then, there exist an integer n > w and a
data distribution D over R™ x {—1, 1} such that, any memorization network of Dy, in H is not
generalizable.

(2) For almost any D, there exists a memorization network of Dy,., which has O(\/N) parameters
and is not generalizable.

Theorem |1.2|indicates that memorization networks with the optimal number of parameters O(v/N)
may have poor generalizability, and commonly used algorithms for constructing fixed-width memo-
rization networks have poor generalization for some distributions. These conclusions demonstrate
that the commonly used network structures for memorization is not generalizable and new network
structures are needed to achieve generalization.

Third, we give a lower bound for the sample complexity of general memorization networks and the
exact sample complexity for certain memorization networks.

Theorem 1.3 (Informal. Refer to Section[6). Let Np be the memorization parameter complexity
defined in Theorem[I.1| Under mild conditions on D, we have
(1) Lower bound. In order for a memorization network of any Dy, ~ DY to be generalizable, N

. 2
must be > Q(ln;(viﬁp)

(2) Upper bound. For any memorization network with at most Np parameters for Dy, ~ DN, if
N = O(N31n Np), then the network is generalizable.

Here, © and O mean that certain small quantities are omitted. Also, we keep the logarithm factor of Np for
comparison with the upper bound
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Notice that the lower bound is for general memorization networks and the upper bound is for
memorization networks with < Np parameters, which always exist by (2) of Theorem In
the latter case, the lower and upper bounds are approximately the same, which gives the exact
sample complexity O(N3) in this case. In other words, a necessary and sufficient condition for the
memorization network in (2) of Theoremto be generalizable is N = O(N3).

Remark 1.4. Unfortunately, these generalizable memorization networks cannot be computed effi-
ciently, as shown by the following results proved by us.

(1) If P # NP, then all networks in (2) of Theorem [I.3]cannot be computed in polynomial time.

(2) For some data distributions, an exponential (in the data dimension) number of samples is required
for memorization networks to achieve generalization.

Finally, we want to know that does there exist a polynomial time memorization algorithm that can
ensure generalization, and what is the sample complexity of such memorization algorithm? An
answer is given in the following theorem.

Theorem 1.5 (Informal. Refer to Section [7). There exists an Sp € Z. depending on D only such that,
under mild conditions on D, if N = O(Sp), then we can construct a generalizable memorization
network with O(N?n) parameters for any Dy, ~ DY in polynomial time.

Sp is named as the efficient memorization sample complexity for D, which measures the complexity
of D so that the generalizable memorization network of any Dy, ~ DN can be computed efficiently
if N =0(Sp).

The memorization network in Theoremhas more parameters than the optimal number O(v/N) of
parameters required for memorization. The main reason is that building memorization networks with
O(\/N ) parameters requires special technical skill that may break the generalization. On the other
hand, as mention in [7]], over-parametrization is good for generalization, so it is reasonable for us to
use more parameters for memorization to achieve generalization.

Remark 1.6. We explain the relationship between our results and interpolation learning [7]]. Inter-
polation learning uses optimization to achieve memorization, which is a more practical approach,
while our approach gives a theoretical foundation for memorization networks. Once an interpolation
is achieved, Theorem[I.2] (1) of Theorem[I.3] and Theorem [I.5]are valid for interpolation learning.
For example, according to (1) of Theorem , Q(N23) is a lower bound for the sample complexity
of interpolation learning, and by Theorem , O(Sp) is an upper bound for the sample complexity
of efficient interpolation learning.

Main Contributions. Under mild conditions for the data distribution D, we have

* We define the memorization parameter complexity Np € Z of D such that, a memorization
network for any Dy, ~ DN can be constructed, which has O(V'N) or < Np parameters.
Here, the memorization network has the optimal number of parameters.

* We give two necessary conditions for the construction of generalizable memorization

networks for any D, in terms of the width and number of parameters of the memorization
network.

* We give a lower bound Q(N3) of the sample complexity for general memorization networks

as well as the exact sample complexity O(NN3) for memorization networks with < Np
parameters. We also show that for some data distribution, an exponential number of samples
in n is required to achieve generalization.

* We define the efficient memorization sample complexity Sp € Z, for D, so that general-
izable memorization network of any D;, ~ D" can be computed in polynomial time, if

N = O(Sp).

2 Related work

Memorization. The problem of memorization has a long history. In [9], it is shown that networks
with depth 2 and O(NN') parameters can memorize a binary dataset of size N. In subsequent work,
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it is shown that networks with 6(N ) parameters can be a memorization for any dataset [31} 50, 11}
30,165, 1291 164,156, 26| 147]] and such memorization networks are approximately optimal for generic
dataset [[64, 56]]. Since the VC dimension of neural networks with N parameters and depth D and
with ReLU as the activation function is at most 5(]\7 D) [24, /5 16], memorizing some special datasets
of size N requires at least Q(v/N) parameters and there exists a gap between this lower bound
Q(+v/N) and the upper bound O(N). Park et al. [49] show that a network with O(N?/3) parameters
is enough for memorization under certain assumptions. Vardi et al. [S5] further give the memorization
network with optimal number of parameters O(v/N ). In [22]], strengths of both generalization and
memorization are combined in a single neural network. Recently, robust memorization has been
studied [35}162]. As far as we know, the generazability of memorization neural networks has not been
studied theoretically.

Interpolation Learning. Another line of related research is interpolation learning, that is, leaning
under the constraint of memorization, which can be traced back to [52]. Most recent works establish
various generalizability of interpolation learning in linear regimes [[7, 12} 38,153] 59} 166l]. For instance,
Bartlett et al. [7] prove that over-parametrization allows gradient methods to find generalizable
interpolating solutions for the linear regime. In relation to this, how to achieve memorization via
gradient descent is studied in [13) [14]]. Results of this paper can be considered to give sample
complexities for interpolation learning.

Generalization Guarantee. There exist several ways to ensure generalization of networks. The
common way is to estimate the generalization bound or sample complexity of leaning algorithms.
Generalization bounds for neural networks are given in terms of the VC dimension [24 5, |6]], under
the normal training setting [27} 44\ 8], under the differential privacy training setting [1], and under the
adversarial training setting [60, 58]]. In most cases, these generalization bounds imply that when the
training set is large enough, a well-trained network with fixed structure has good generalizability. On
the other hand, the relationship between memorization and generalization has also been extensively
studied [45) 41} 10, 19, 120]]. In [25], sample complexity of neural networks is given when the norm
of the transition matrix is limited, in [36], sample complexity of shallow transformers is considered.
This paper gives the lower bound and upper bound (in certain cases) of the sample complexities for
interpolation learning.

3 Notation

In this paper, we use O(A) to mean a value not greater than cA for some constant ¢, and O to mean
that small quantities, such as logarithm, are omitted. We use Q2(A) to mean a value not less than cA

for some constant ¢, and ) to mean that small quantities, such as logarithm, are omitted. We say for
all (x,y) ~ D there is event A stand means that P, ,)~p(A) = 1.

3.1 Neural network

In this paper, we consider feedforward neural networks of the form F : R™ — R and the [-th hidden
layer of F(z) can be written as

X; = U(Wle_l + bl) € R™,

where o = Relu is the activation function, Xy = 2 and Ny = n. The last layer of F is F(z) =
Wir+1 X1 +br+1 € R, where L is the number of hidden layers in F. The depth of F is depth(F) =
L + 1, the width of F is width(F) = max’_, {n;}, the number of parameters of F is para(F) =

ZiL:O ni(n;+1 + 1). Denote H(n) to be the set of all neural networks in the above form.

3.2 Data distribution

In this paper, we consider binary classification problems and use D to denote a joint distribution on
D(n) = [0,1]™ x {—1, 1}. To avoid extreme cases, we focus mainly on a special kind of distribution
to be defined in the following.

Definition 3.1. For n € Z, and ¢ € Ry, D(n, ¢) is the set of distributions D on D(n), which has a
positive separation bound: inf , 1) . _1)~p ||z — 2[]2 > c.
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The accuracy of a network F on a distribution D is defined as

Ap(F) =Py~ (Sgn(F(x)) = y).

We use Dy, ~ D to mean that Dy, is a set of N data sampled i.i.d. according to D. For convenience,
dataset under distribution means that the dataset is i.i.d selected from a data distribution.

Remark 3.2. We define the distribution with positive separation bound in for the following reasons.
(1) If D, ~ DN and D € D(n,c), then z; # x; when y; # y;. Such property ensures that D,
can be memorized. (2) Proposition [3.3] shows that there exists a D such that any network is not
generalizable over D, and this should be avoided. Therefore, distribution D needs to meet certain
requirements for a dataset sampled from D to have generalizability. Proof of Proposition[3.3]is given
in Appendix [Al (3) Most commonly used classification distributions should have positive separation
bound.

Proposition 3.3. There exists a distribution D such that Ap(F) < 0.5 for any neural network F.

3.3 Memorization neural network

Definition 3.4. A neural network 7 € H(n) is a memorization of a dataset Dy, over D(n), if
Sgn(F(z)) =y for any (z,y) € Dy,
Remark 3.5. Memorization networks can also be defined more strictly as F(x) = y for any (x,y) €

Dy,. In Proposition 4.10 of [62]], it is shown that these two types of memorization networks need
essentially the same number of parameters.

To be more precise, we treat memorization as a learning algorithm in this paper, as defined below.

Definition 3.6. £ : U,cz, 2D(n) _y Unez, H(n) is called a memorization algorithm if for any n
and Dy, € D(n), L(Dy,) is a memorization network of Dy,..

Furthermore, a memorization algorithm L is called an efficient memorization algorithm if there exists
a polynomial poly : R — R such that £(D;,) can be computed in time poly(size(D;,)), where
size(D;,) is the bit-size of Dy,..

Remark 3.7. Ttis clear that if £ is an efficient memorization algorithm, then para(L(D;,)) is also
polynomial in size(Dy,.).

There exist many methods which can construct memorization networks in polynomial times, and all
these memorization methods are efficient memorization algorithms, which are summarized in the
following proposition.

Proposition 3.8. The methods given in [9)|62)] are efficient memorization algorithms. The methods
given in [155149|] are probabilistic efficient memorization algorithms, which can be proved similar to
that of Theorem[d.1| More precisely, they are Monte Carlo polynomial-time algorithms.

4 Optimal memorization network for dataset under distribution

By the term “dataset under distribution”, we mean datasets that are sampled i.i.d. from a data
distribution, and is denoted as D;,- ~ D. In this section, we show how to construct the memorization
network with the optimal number of parameters for dataset under distribution.

4.1 Memorization network with optimal number of parameters

To memorize N samples, ﬁ(\/ N) parameters are necessary [6]. In [53], a memorization network is
given which has O(v/ N) parameters under certain conditions, where O means that some logarithm

factors in N and polynomial factors of other values are omitted. Therefore, O(v/N) is the optimal
number of parameters for a network to memorize certain dataset. In the following theorem, we show
that such a result can be extended to dataset under distribution.

Theorem 4.1. Let D € D(n,c) and Dy, ~ DN. Then there exists a memorization algorithm L

such that L£(Dy,.) has width 6 and depth (equivalently, the number of parameters) O(v/N In(Nn/c)).
Furthermore, for any € € (0,1), L(Dy-) can be computed in time poly(size(Dy,),In(1/€)) with
probability > 1 — e.
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Proof Idea. This theorem can be proven using the idea from [33)]. Let Dy, = {(z;, yz)}f\/=1 The
mainly different is that in [55]], it requires ||z; — x;|| > cfor all i # j, which is no longer valid
when Dy, is sampled i.i.d. from distribution D. Since D has separation bound ¢ > 0, we have
llz; — ;|| > cforall i,j satisfying y; # y;, which is weaker. Despite this difference, the idea of
[55)] can still be modified to prove the theorem. In constructing such a memorization network, we
need to randomly select a vector, and each selection has a probability of 0.5 to give the correct vector.
So, repeat the selection In(1/¢) times, with probability 1 — €, we can get at least one correct vector.
Then we can construct the memorization network based on this vector. Detailed proof is given in

Appendix|B|
Remark 4.2. The algorithm in Theorem[4.1]is a Monte Carlo polynomial-time algorithm, that is, it

gives a correct answer with arbitrarily high probability. The algorithm given in [55]] is also a Monte
Carlo algorithm.

4.2 Memorization network with constant number of parameters

In this section, we prove an interesting fact of memorization for dataset under distribution. We
show that for a distribution D € D(n, c), there exists a constant Np € Z such that for all datasets
sampled i.i.d. from D, there exists a memorization network with Np parameters.

Theorem 4.3. There exists a memorization algorithm L such that for any D € D(n, c), there is an
NI, € Z satisfying that for any N > 0, with probability 1 of Dy, ~ DY, we have para(L(Dy,)) <
N1,. The smallest N}, of the distribution D is called the memorization parameter complexity of D,
written as Np.

Proof Idea. It suffices to show that we can find a memorization network of Dy, with a constant
number of parameters, which depends on D only. The main idea is to take a subset D;,. of Dy, such
that Dy, is contained in the neighborhood of D,,.. It can be proven that the number of elements in
this subset is limited. Then construct a robust memorization network of Dy, with certain budget [I62]],
we obtain a memorization network of Dy,., which has a constant number of parameters. The proof is
given in Appendix|[C]

Combining Theorems .1 and[4.3] we can give a memorization network with the optimal number of
parameters.

Remark 4.4. What we have proven in Theorem [4.3|is that a memorization algorithm with a constant
number of parameters can be found, but in most of times, we have NZ’) > Np. Furthermore, if NZ’) is
large for the memorization algorithm, the algorithm can be efficient. Otherwise, if N7, is closed to
Np, the algorithm is usually not efficient.

Remark 4.5. Tt is obvious that the memorization parameter compelxity Np is the minimum number
of parameters required to memorize any dataset sampled i.i.d. from D. Np is mainly determined by
the characteristic of D € D(n, ¢), so Np may be related to n and c. It is an interesting problem to
estimate Np.

S Condition on the network structure for generalizable memorization

In the preceding section, we show that for the dataset under distribution, there exists a memorization
algorithm to generate memorization networks with the optimal number of parameters. In this section,
we give some conditions for the generalizable memorization networks in terms of width and number
of parameters of the network. As a consequence, we show that the commonly used memorization
networks with fixed width is not generalizable.

First, we show that networks with fixed width do not have generazability in some situations. Reducing
the width and increasing depth is a common way for parameter reduction, but it inevitably limits the
network’s power, making it unable to achieve good generalization for specific distributions, as shown
in the following theorem.

Theorem 5.1. Let w € Z and L be a memorization algorithm such that L(Dy,) has width not more
than w for all Dy,.. Then, there exist an integer n > w, ¢ € Ry, and a distribution D € D(n, c) such
that, for any Dy, ~ DN, it holds Ap(L(Dy,)) < 0.51.
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Proof Idea. As shown in [40, 48], networks with small width are not dense in the space of measurable
functions, but this is not enough to estimate the upper bound of the generalization. In order to
further measure the upper bound of generalization, we define a special class of distributions. Then,
we calculate the upper bound of the generalization of networks with fixed width on this class of
distribution. Based on the calculation results, it is possible to find a specific distribution within
this class of distributions, such that the fixed-width network exhibits a poor generalization of this
distribution. The proof is given in Appendix|[D]

It is well known that width of the network is important for the network to be robust [2} [17, 18] 137, 167].
Theorem [5.1] further shows that large width is a necessary condition for generalizabity.

Note that Theorem [5.T]is for a specific data distribution. We will show that for most distributions,
providing enough data does not necessarily mean that the memorization algorithm has generalization
ability. This highlights the importance of constructing appropriate memorization algorithms to ensure
generalization. We need to introduce another parameter for data distribution.

Definition 5.2. The distribution D is said to have density r, if P,.p(z € A)/V(A) < r for any
closed set A C [0, 1]™, where V(A) is the volume of A.

Loosely speaking, the density of a distribution is the upper bound of the density function.

Theorem 5.3. Forany n € Z.,r,c € Ry, if distribution D € D(n, c) has density r, then for any
N € Zy and Dy, ~ DN there exists a memorization network F for Dy, such that para(F) =

O(n + /N In(Nnr/c)) and Ap(F) < 0.51.

Proof Idea. We refer to the classical memorization construction idea [155|]. The main body includes
three parts. Firstly, compress the data in Dy, into one dimension. Secondly, map the compressed data
to some specific values. Finally, use such a value to get the label of input. Moreover, we will pay more
attention to points outside the dataset. We use some skills to control the classification results of points
that do not appear in the dataset Dy, so that the memorization network will give the wrong label to
the points that are not in Dy, as much as possible to reduce its accuracy. The general approach is the
following: (1) Find a set in which each point is not presented in Dy, and has the same label under
distribution D. Without loss of generality, let they have label 1. (2) In the second step mentioned in
the previous step, ensure that the mapped results of the points in the set mentioned in (1) are similar
to the samples with label —1. This will cause the third step to output the label —1, leading to an
erroneous classification result for the points in the set. The proof is given in Appendix|[E]

Remark 5.4. Theorem 5.1|shows that the width of the generazable memorization network needs to
increase with the increase of the data dimension. Theorem |5.3|shows that when para(F) = O(v/N),
the memorization network may have poor generalizability for most distributions. The above two
theorems indicate that no matter how large the dataset is, there always exist memorization networks
with poor generalization. In terms of sample complexity, it means that for the hypotheses of neural
networks with fixed width or with optimal number of parameters, the sample complexity is infinite,
contrary to the uniform generalization bound for feedforward neural networks 63, Lemma D.16].

Remark 5.5. It is worth mentioning that the two theorems in this section cannot be obtained from the
lower bound of the generalization gap [44]], and more details are shown in Appendix [E]

6 Sample complexity for memorization algorithm

As said in the preceding section, generalization of memorization inevitably requires certain conditions.
In this section, we give the necessary and sufficient condition for generalization for the memorization
algorithm in Sectiond]in terms of sample complexity.

We first give a lower bound for the sample complexity for general memorization algorithms and
then an upper bound for memorization algorithms which output networks with an optimal number of
parameters. The lower and upper bounds are approximately the same, thus giving the exact sample
complexity in this case.
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6.1 Lower bound for sample complexity of memorization algorithm

Roughly speaking, the sample complexity of a learning algorithm is the number of samples required to
achieve generalizability [44]]. The following theorem gives a lower bound for the sample complexity
of memorization algorithms based on Np, which has been defined in Theorem@

Theorem 6.1. There exists no memorization algorithm L which satisfies that for anyn € Z,c €

Ry,6,6 € (0,1),if D € D(n,c) and N > v%(l — 2¢ — §), it holds

]P)’Dt,,,NDN (A(E(Dt’,«)) Z 1-— 6) Z 1-— 6

where v is an absolute constant which does not depend on N, n, c, €, 6.

Proof Idea. The mainly idea is that: for a dataset Dy, C [0,1]™ x {—1,1} with |Dy.| = N, we can
find some distributions D1, Do, ..., such that if Dy, ; ~ (D;)N, then with a positive probability, it
hold Dy, ; = Dy, In addition, each distribution has a certain degree of difference from the others. It
is easy to see that L(Dy,.) is a fixed network for a given L, so L(Dy,.) cannot fit all D; well because
D; are different to some degree. So, if a memorization algorithm L satisfies the condition in the
theorem, we try to construct some distributions {Di}?:p and use the above idea to prove that L
cannot fit one of the distributions in {D;}!_,, and obtain contradictions. The proof of the theorem is
given in Appendix

Remark 6.2. In general, the sample complexity depends on the data distribution, hypothesis space,
learning algorithms, and €, §. Since Np is related to n and ¢, the lower bound in Theorem also
depends on n and c. Here, the hypothesis space is the memorization networks, which is implicitly
reflected in Np.

Remark 6.3. Roughly strictly, if we consider interpolation learning, that is, training network under the
constraint of memorizing the dataset, then Theorem [6.1] also provides a lower bound for the sample
complexity.

This theorem shows that if we want memorization algorithms to have guaranteed generalization, then
about O(N3) samples are required. As a consequence, we show that, for some data distribution, it
need an exponential number of samples to achieve generalization. The proof is also in Appendix [F}
Corollary 6.4. For any memorization algorithm L and any €,6 € (0,1), there existn € Z,,¢ > 0
and a distribution D € D(n, c), such that in order for L to have generalizability on D, that is for all
N > Ny, there is

PD“,N’DN (A(ﬁ(Dtr)) Z 1 — 6) 2 1-— (S,

Ny must be more than U(2Q[ﬁ]c4(l — 2¢ — §)/n?), where v is an absolute constant not depending

on N,n,c,e,0.

6.2 Exact sample complexity of memorization algorithm with Np parameters

In Theorem it is shown that ﬁ(N%) samples are necessary for generalizability of memorization.
The following theorem shows that there exists a memorization algorithm that can reach generalization
with O(N3) samples.
Theorem 6.5. For all memorization algorithms L satisfies that L£(Dy,.) has at most Np parameters,
with probability 1 for Dy, ~ DV, we have
() Foranyce€ Rye,d € (0,1), n € Zy, if D € D(n,c) and N > w, then
Pp,, ~ox (A(L(Dir)) 21 —€) 214,
where v is an absolute constant which does not depend on N,n,c, ¢, 0.

(2) If P NP, then all such algorithms are not efficient.

Proof Idea. For the proof of (1), we need to use the Np to calculate the VC-dimension [I6]], and
take such a dimension in the generalization bound theorem [44|] to obtain the result. For the proof
of (2), we show that, if such algorithm is efficient, then we can solve the following reversible 6-SAT
[43l] problem, which is defined below and is an NPC problem. The proof of the theorem is given in

Appendix
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Definition 6.6. Let ¢ be a Boolean formula and @ the formula obtained from ¢ by negating each
variable. The Boolean formula ¢ is called reversible if either both ¢ and @ are satisfiable or both
are not satisfiable. The reversible satisfiability problem is to recognize the satisfiability of reversible
formulae in conjunctive normal form (CNF). By the reversible 6-SAT, we mean the reversible
satisfiability problem for CNF formulae with six variables per clause. In [43]], it is shown that the
reversible 6-SAT is NPC.

Combining Theoremsand we see that N = O(N3) is the necessary and sufficient condition
for the memorization algorithm to generalize, and hence O(N3) is the exact sample complexity for
memorization algorithms with Np parameters over the distribution D(n, c).

Unfortunately, by (2) of Theorem|[6.5] this memorization algorithm is not efficient when the memo-
rization has no more than Np parameters. Furthermore, we conjecture that there exist no efficient
memorization algorithms that can use O(N2) samples to reach generalization in the general case, as
shown in the following conjecture.

Conjecture 6.7. 1f P# NP, there exist no efficient memorization algorithms that can reach generaliza-
tion with O(N2) samples for all D € D(n, c).

Remark 6.8. This result also provides certain theoretical explanation for the over-parameterization
mystery [45,[7,14]]: for memorization algorithms with Np parameters, the exact sample complexity

O(N3) is greater than the number of parameters. Thus, the networks is under-parameterized and for
such a network, even if it is generalizable, it cannot be computed efficiently.

7 Efficient memorization algorithm with guaranteed generalization

In the preceding section, we show that there exist memorization algorithms that are generalizable
when N = O(N%), but such an algorithm is not efficient. In this section, we give an efficient
memorization algorithm with guaranteed generalization.

First, we define the efficient memorization sample complexity of D.

Definition 7.1. For (z,y) ~ D, let L, = min; _,pllz — 2[]2 and B((z,y)) =
By (%, L(z,4)/3.1) = {z € R":||z— |2 < L(,4)/3.1}. The nearby set S of D is a subset of sample
(w,y) which is in distribution D and satisfies: (1) for any (z,y) ~ D, x € U, w)esB((2,w)); (2)
|S] is minimum.

Evidently, for any D € D(n, c), its nearby set is finite, as shown by Proposition[7.7] Sp = |S| is
called the efficient memorization sample complexity of D, the meaning of which is given in Theorem
Remark 7.2. In the above definition, we use L, /3.1 to be the radius of B((z,y)). In fact, when
3.1 is replaced by any real number greater than 3, the following theorem is still valid.

Theorem 7.3. There exists an efficient memorization algorithm L such that for any ¢ € R,¢,6 €
(0,1, n € Zy, and D € D(n,c), if N > M, then

Pp,, ~pn (A(L(Dr)) 21 —¢€) > 1—6.
Moreover, for any Dy, ~ DV, L(Dy,) has at most O(N2n) parameters.

Proof Idea. For a given dataset Dy, C [0,1]™ x {—1, 1}, we use the following two steps to construct
a memorization network.

Step 1. Find suitable convex sets {C;} in [0, 1]™ such that each sample in Dy, is in at least one of
these convex sets. Furthermore, if v,z € C; and (z,ys),(2,y.) € Dy, then y, = y., and define

Y(Ci) = Y

Step 2. Construct a network F such that for any x € C;, Sgn(F(z)) = y(C;). This network must be
a memorization of Dy, because each sample in Dy, is in at least one of {C;}. Hence, if © € C; and
(2,Yz) € Dy, then Sgn(F(z)) = y(C;) = yu. The proof of the theorem is given in Appendix|H|
Remark 7.4. Theoremﬁ shows that there exists an efficient and generalizable memorization
algorithm when N = O(Sp). Thus, Sp is an intrinsic complexity measure of D on whether it is
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easy to learn and generalize. By Theorem Sp > N% for some D, but for some “nice” D, Sp
could be small. It is an interesting problem to estimate Sp.

Remark 7.5. Theorem uses O(N?n) parameters, highlight the importance of over-

parameterization [435, [7, |4]. Interestingly, Remark shows that if the network has O(v/N) parame-
ters, even if it is generalizable, it cannot be computed efficiently.

The experimental results of the memorization algorithm mentioned in Theorem are given in
Appendix [l Unfortunately, for commonly used datasets such as CIFAR-10, this algorithm cannot
surpass the network obtained by training with SGD, in terms of test accuracy. Thus, the main purpose
of the algorithm is theoretical, that is, it provides a polynomial-time memorization algorithm that
can achieve generalization when the training dataset contains O(Sp) samples. In comparison of
theoretical works, training networks is NP-hard for small networks [32, |51} 39} [15} 13} 142} [16} 23| [21]]
and the guarantee of generalization needs strong assumptions on the loss function [46} 27, 34,161 60,
S8.

Finally, we give an estimate for Sp. From Corollary [6.4]and Theorem[7.3] we obtain a lower bound
for S’D.

Corollary 7.6. There exists a distribution D € D(n, ¢) such that Sp In(Sp/d) > ﬁ(ﬁ—in[ﬁ] ).

We will give an upper bound for Sp in the following proposition, and the proof is given in Appendix
From the proposition, it is clear that Sp is finite.

Proposition 7.7. For any D € D(n,c), we have Sp < ([6.2n/c] + 1)™.

Remark 7.8. The above proposition gives an upper bound of Sp when D € D(n, ¢), and this does
not mean that Sp is exponential for all D € D(n, ¢). Determining the conditions under which Sp is
small for a given D is a compelling problem.

8 Conclusion

Memorization originally focuses on theoretical study of the expressive power of neural networks.
Recently, memorization is believed to be a key reason why over-parameterized deep learning models
have excellent generalizability and thus the more practical interpolation learning approach has been
extensively studied. But the generalizability theory of memorization algorithms is not yet given, and
this paper fills this theoretical gap in several aspects.

We first show how to construct memorization networks for dataset sampled i.i.d from a data distri-
bution, which have the optimal number of parameters, and then show that some commonly used
memorization networks do not have generalizability even if the dataset is drawn i.i.d. from a data
distribution and contains a sufficiently large number of samples. Furthermore, we establish the
sample complexity of memorization algorithm in several situations, including a lower bound for
the memorization sample complexity and an upper bound for the efficient memorization sample
complexity.

Limitation and future work Two numerical complexities Np and Sp for a data distribution D are
introduced in this paper, which are used to describe the size of the memorization networks and the
efficient memorization sample complexity for any i.i.d. dataset of D. Np is also a lower bound for
the sample complexity of memorization algorithms. However, we do not know how to compute
Np and Sp, which is an interesting future work. Conjecture [6.7]tries to give a lower bound for the
efficient memorization sample complexity. More generally, can we write Np and Sp as functions of
the probability density function p(z,y) of D?

Corollary|[6.4]indicates that even for the “nice” data distributions D(n, c), to achieve generalization for
some data distribution requires an exponential number of parameters. This indicates that there exists
“data curse of dimensionality”, that is, to achieve generalizability for certain data distribution, neural
networks with exponential number of parameters are needed. Considering the practical success of
deep learning and the double descent phenomenon [435]], the data distributions used in practice should
have better properties than D(n, c¢), and finding data distributions with polynomial size efficient
memorization sample complexity Fp is an important problem.

Finally, finding a memorization algorithm that can achieve SOTA results in solving practical image
classification problems is also a challenge problem.
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A Proof of Proposition 3.3

Using the following steps, we construct a distribution D in [0, 1] x {—1,1}. We use (z,y) ~ D to
mean that

(1) Randomly select a number in {—1, 1} as the label y.

(2) If we get 1 as the label, then randomly select an irrational number in [0, 1] as samples x; if we get
—1 as the label, then randomly select a rational number in [0, 1] as samples x.

Then Proposition [3.3]follows from the following lemma.

Lemma A.1. For any neural network F, we have Ap(F) < 0.5.

Proof. Let F be a network. Firstly, we show that F can be written as

F= ZL I(z e Ay), 1)

where L; are linear functions, I(x) = 1 if x is true or I(x) = 0. In addition, A; is an interval and
A;NA; =0 whenj # 4, and L;(z)I(x € A;) is a non-negative or non-positive function for any
i€ [M].

It is obvious that the network is a locally linear function with a finite number of linear regions, so we
can write

Fe ZL’ I(x € AL, @

where L; are linear functions, A; is an interval and A’ N A} = () when j # i.

Consider that L(z)I(z € A}) = Li(x)I(x € AL, Li(z) > 0) + Li(x)I(x € AL, Li(z) < 0),
and L’( VI (z € A}, Li(x) > 0) is a non-negative funct1on {z € A],L\(x) > 0} is an interval
which is disjoint with {z € A}, L{(z) < 0}. Similarly as L(x)I(z € A’ ,Li(z) < 0), so we use
Li(x)I(x € A})in () instead ofL’( VI (ze€ AL Li(x)>0)+ L;(a:)l(x € A}, Li(x) < 0). Then
we get the equation

By equation (2)), we have that

Play)~p(Sen(F(z)) = y)
Poy)~n(Sen(2izy Li(x)I(z € Ai)) = y) 3
= ZM Prp oy (Sen(Li(z)I(z € A;)) = y,x € A;)
= ZZ 1Py~ (Sgn(Li(z)I(x € Aj)) =yl € A)Pg pyp(z € Aj).
The second equation uses A; N A; = 0.

For convenience, we use * € R, to mean that z is an irrational number and z ¢ R, to mean
that = is a rational number. Then, if L;(z)I(x € A;) is a non-negative function, then we have
]P’(gc p~p(Sgn(L;i(z)I(x € A;)) = ylz € A;) < Puy)~p(r € R, |z € A;). Moreover, we have
that
P(m’y)wp(x S RT‘JZ S Al)
P(zﬁy)ND(l‘ERT,IEAi)

P(o,y)~D(TEA;)
0.5P(w,y)~D($€AL“$ER7‘)

P(s,y)~p (EA:)

0.5P(x )~ (z€EAi[ZER,)
P(m,y)~D(meRr)P(m,y)ND(IGAi ‘IGRT')JF]P(myy)ND (ngT)P(mJ/)ND(IGA" le¢R:)
P(w,y)ND(IIJEAjl.’L'GRT)
Pio,y)~p (ZEATER, )P, D (zEA[ER,)

By (2) in the definition of D, we have P(, ,y.p(z € Aj|lr € R,) = P, yop(z € Aslr & R;).
Substituting this in equation (3), we have that P, ,)~p(Sgn(L;(z)I(z € A;)) = ylr € A;) <

N P(‘E,,)N (%EA{,‘CL‘GRT)
Payp(® € Rz € A;) = IP’(,Ly)ND(zeA,;\;e]?r)Jr]P’(m,y)ND(mGAi|I¢RT
when L;(x)I(z € A;) is a non-positive function.

y = 0.5. Proof is similar
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Using this in equation (2)), we have that
Pay)~o(Sen(F (@) = y)
= Zi:l P(ly)ND(Sgn(Lz(x)I(x c A7)) = y|$ S Ai)P(Ly)ND(z S Az)
< M 05P ~n(a € A7) < 0.5.

The lemma is proved. O

B Proof of Theorem 4.1

For the proof of this theorem, we mainly follow the constructive approach of the memorization
network in [55]]. Our proof is divided into four parts.

B.1 Data Compression

The general method of constructing memorization networks will compress the data into a low
dimensional space at first, and we follow this approach. We are trying to compress the data into a
1-dimensional space, and we require the compressed data to meet some conditions, as shown in the
following lemma.

Lemma B.1. Let D be a distribution in [0, 1]" x {—1, 1} with separation bound c and Dy, ~ DV .
Then, there exist w € R™ and b € R such that

(1): O(nN?/c) > wx +b > 1forall z € [0,1]";

(2): |lwx —wz| > 4 forall (x,1),(z,—1) € Dy,

To prove this lemma, we need the following lemma.
Lemma B.2. Foranyv € R" and T > 1, let u € R™ be uniformly randomly sampled from the

[lv]]2 8 2
< =)< %

This is Lemma 13 in [49]. Now, we prove the lemma|B. 1

hypersphere S™~1. Then we have P(|{u,v)

Proof. Letco = min(, _1),(z,1)ep,, || — 2||2. Then, we prove the following result:
Result R1: Let . € R™ be uniformly randomly sampled from the hypersphere S™ !, then there are
P(|{u, (z = 2))| = 1%/ ,V(z,-1),(2,1) € D) > 0.5.

By lemma and take 7' = 4N?2, for any x, z which satisfies (z, —1),(z,1) € D, we have
that: let u € R™ be uniformly randomly sampled from the hypersphere S™!, then there are

P(|{u, (z — 2))| < 13%21/-%) < 15, using ||z — z||2 > co here. So, it holds

P(l{u, (& = 2))| > 350/, Y, 1), (2,1) € Dyy)

> 1= 1) eyene P(u, (z = 2) < 1321/ 7%)
S 2N?
iNZ-
= 05
We proved Result R1.

In practice, to find such a vector, we can randomly select a vector u in hypersphere S™~!, and verify
that if it satisfies |(u, (x — 2))| > ;%% 1/-=,V(z, 1), (2,1) € Dy,. Verifying such a fact needs
poly(B(Dy,)) times. If such a u is not what we want, randomly select a vector v and verify it again.

In each selection, with probability 0.5, we can get a vector we need, so with In 1 /¢ times the selections,
we can get a vector we need with probability 1 — e.

Construct w, b and verify their rationality
By the above result, we have that: there exists a « € R™ such that ||u||z = 1 and |(u, (z — 2))| >
1221/ V(z,-1),(2,1) € Dy, and we can find such a u in poly(B(Dy,),In(1/€)) times.
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164/nN?

Now, let w =
co

wand b = ||w||24/n + 1, then we show that w and b are what we want:

(1): We have O(nN?/c) > wx + b > 1forall z € [0, 1]"™.

Firstly, because D is defined in [0, 1] x {—1, 1}, so it holds ||z||2 < \/n for any (z,y) € Dy, and
consequently wz + b > b — ||w||av/n > 1.

On the other hand, |wxz| < [|w]|2y/n < O("ZZQ), sowz+b < |wz|+b < O(nN?/cy) < O(nN?/c).

(2): We have |w(z — 2)| > 4 forall (z,1), (2, —1) € Dy,.

16y/nN? 16/nN?
| > |2y (g — 2| = L

u(z — u(z — z)|. Because |u(z — 2)| >

16/nN? 16(/nN?
M%%,sﬂw(m—zﬂ:{i:m(x—z)\z ‘f 4\/%’]\,2:4.

It is easy to see that |w(x — 2)

By Definition[3.T] we know that ¢y > ¢. So, w and b are what we want. The lemma is proved. [

B.2 Data Projection

The purpose of this part is to map the compressed data into appropriate values.

Letw € R™ and b € R be given and Dy, = {(x;, )} ;. Without losing generality, we assume that
0 <wx; < WLjyq-

In this section, we show that, after compressing the data into 1-dimension, we can use a network

N

F to map wx; + b to V] where {v; }g[;/om] € R are given values. This network has O(v/N)
N

parameters and width 4, as shown in the following lemma.

N

7]
Lemma B.3. Let {z;}Y, C R, {vj}j[:év] C R*. Assume that v; < ;1. Then a network F with
width 4 and depth O(v/'N)) (at most O(V N ) parameters) can be obtained such that F(x;) = vi__|
v N
foralli € [N].

Proof. Let F'(x) be the i-th hidden layer of network F, (F); be the j-th nodes of i-th hidden layer
of network F.

Let ¢; = ;41 — x; and t(i) = argmaxje[N]{[j/\/N} = i}. Consider the following network F:
The 2i + 1 hidden layer has width 4, and each node is:
(F*)1(z) = Relu((F*)2(z) — (Te(i)+1) + 20433y /3);

(F>)a(z) = Relu((F*)2 (@) — (T4(iy41) + Gei)/3);
(F2H1)5(2) = Relu((F2), (z));
(F2+1)4(z) = Relu((F2)a(a)).
For the case i = 0, let (F9)2(z) = x and (F')3(x) = vo.
The (2i + 2)-th hidden layer is:
(F22)1 (@) = Relu((F*)s(a) + =2 (P, (@) = (F2H)a(w)));
(i) /3
(F2+2),(z) = Relu((F¥*+1) ().

The output is F(z) = (F2IV/VN), (z).

This network has width 4 and O(v/N) hidden layers. We can verify that such a network is what we
want as follows.

Firstly, it is easy to see that (F?"*2)y(z) = Relu((F*')4(z)) = Relu((F¥)s(z)) =
Relu((F#71)4(x)) = - - = Relu((F1)4(z)) = Relu(x) = z.
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Then, for W((}‘ziﬂ)l(x)_(}—2i+1)2(x)) _ v;t—(::/_gl (Relu(@—24(5)11+2¢(s) /3) — Relu(z—

Ty(i)4+1 + Qu(i)/3). easy to verify that, when x < @y(;), itis 0; when & > xy(; 1), itis vi11 — v;.

By the above two results, we have that (F212); (z) = Relu((F?**1)3(x) + %((}"2”1)1 () —

(F2H)5(2))) = Relu((F?)1(x)) when 2 < ay(;); and (F*+2);(z) = Relu((F**1)3(z) +
L (PP () — (FPH )a(2))) = Relu((F#)1 () + vip1 — v;) when @ > (i1

Qt(i)/3

So, we have that, if ¢t(i—1)+1 < j < t(i), there are (F2)1(x5) = vo, (F)1(zj) = v1—vo+ve = v1,
(Fﬁ)l(xj) = Vg — V1 +V1 = Vo, ..., (.Fm)l(l‘j) = v; — Vi1 + vi—1 = v;; and .7:(33]) =
(FENIVN) (25) = (FANIYRI=2), () = - = (P01 () =

So, by the definition of #(i), we have that F(x;) = v|_s_j, such F is what we what and the lemma is
Vg

proved. O

B.3 Label determination

The purpose of this part is to use the values to which the compressed data are mapped, mentioned in
the above section, to determine the labels of the data.

Assuming z; is compressed to ¢; where ¢; > 1 is given in section Value v; in section is
designed as: v; = [¢;(/77141] - - - [¢(;41) (A ]» Where we treat [c;] as a w digit number for all j (w is

a given number). If there exist not enough digits for some c;, we fill in 0 before it, and we use ab to
denote the integer by putting a and b together.
First, prove a lemma.

Lemma B.4. For a given N, there exists a network f : R — R? with width 4 and at most O(w)
parameters such that, for any w digit number a; > 0, we have f(a1az ... an) = (a1,az ... an).

Proof. Firstly, we show that, for any ¢ > b > 0, there exists a network F, ;(z) : Rt — Rt
with depth 2 and width 3, such that F, ;(z) = = when = € [0,a], and F;, ;(x) = = — a when
x € [a+b,2a).

We just need to take F,, ,(z) = Relu(z) — a/bRelu(z — a) + a/bRelu(xz — (a + b)).1 1t is easy to
verify that this is what we want.

Now, let ¢ € N7 satisfy 2¢ < 10v*+! — 1 an 297! > 10+ and p < 10%. We consider the

following network:
F = Fy ,0Fo -0 Fsq-1,0 Fhay,

and show that, F(arag ... an/10*WV 1) = @z axn /100N -1,
Firstly, we have Fya ,(@1a2 .- an/10°V="1) = a1 (q)az . .. an /10*N =1 where a,(q) = a if
a1as .. .aN/lOw(Nfl) <2%and a;(q) = ay — 2% if ayaz - .- aN/lO“’(N’l) > 29 4 p. Just by the

definition of ¢, we know that there must be @1as ... ay /10N =1 < 2941 Further by the definition
of p, one of the following two inequalities is true:

aias . ..aN/l()w(Nfl) < 2%o0raias... aN/l()w(N*l) > 29+ p.

So using the definition of Fq ;,, we get the desired result.

Similarly as before, for k = ¢ — 1,¢ — 2,...,0, we have For ,(a1(k + 1)az... an /10N -1)) =
ar(k)ag ... ayn/10°N=1 where a; (k) = ai(k + 1) if a1 (k + Daz . ..an/10*N =1 < 2F and
ar(k) = ar(k+1) =28 if a1 (k + Dag ... an/10°0 =1 > 2k 4y

Then we have the following result: a; (k) < 2¥ forany k = 0, 1, ..., q. By the definition, it is easy
to see that a; < 29%1. If a; < 29, then a;(q) < a1 < 29;if a; > 29, then @raz .- axn/10*N -1 >
29+ p,soa(q) = a; — 29 < 291 — 24 = 29, Thus a;(q) < 2¢. When a;(t) < 2! forat € [q],
similar as before, we have a1 (t — 1) < 2t=1 Andt = q is proved, so we get the desired result.

It is easy to see that, a; (k) are non negative integers, so there must be F'(ajaz - -- aN/lO“’(N’l)) =
a1(0)ag . ..an/10*WV=1 = G an /10N =1 by a;(0) < 2° = 1, which implies a; (0) = 0.
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Now we construct a network Fj, as follows:

Fy(z) = Fp1 o Fyp1(x) such that:

Fyi(x) : R — R? and Fy () = (F(2/10%(N =) 2) where x is defined as before.
Fyo(z) : R? = R? and Fyo((71,22)) = (22/10°N =Y — 7, 29 % 10wV -1)),
Now we verify that F; is what we want.

By the structure of F', 73, has width 4 and depth O(w), so there are at most O(w) parameters.

It is easy to see that Fyy (a1az ---an) = (az- - aN/IOU’(N*l), aiag .- - ay). Then by the definition
of Fpo(x), we have Fy(x) = (a1,a3-..ayn), this is what we want. The lemma is proved. O

By the preceding lemma, we have the following lemma.

Lemma B.5. There is a network R? — R with at most O(Nw) parameters and width 6, and for
any {a;}_, where a; is a w digit number and a; > 1, which satisfies f(x,a1az-..an) > 0.1 if
|z — ag| < 1forsome k € [N], and f(x,a1az--an) = 0if |x — ax| > 1.1 forall k € [N].

Proof. The proof idea is as follows: First, we use  and @iaz ... ay to judge if |x — a1| < 1 as
follows: Using lemma we calculate a; and a3 - .. ay and then calculate |z — aq].

If |z — a1| < 1, then we let the network output a positive number; if | — a1| > 1, then calculate
as-..an,and use x and a3 ... ay to repeat the above process until all |z — a;| have been calculated.

The specific structure of the network is as follows:

step 1: Firstly, for a given N, we introduce a sub-network f, : R? — R2, which satisfies
(fo)r(z,araz an) > 0.11if |z — a1| < 1, and fs(z,a1a2.--any) = 0if |x — aq] > 1.1, and
(fs)2(z,a1az --an) =Gz .--an- And f, has O(w) parameters and width 5.

The first part of f; is to calculate a; and a3 - .. ay by lemma We also need to keep x, and the
network has width 5. The second part of f; is to calculate |z — a1| and keep @3 ... ax by using
|x] = Relu(z) + Relu(—=x), which has width 4. The output of f is Relu(1.1 — |« — a4|). Easy to
check that this is what we want.

step 2: Now we build the f mentioned in the lemma.
Let f=gofnofn-1-0fr

For each i € [N], we will let the input of f; which is also the output of f;_; when ¢ > 1 be the form
(z,@;a4;101 ---an, ¢; ), where ¢; = 0. The detail is as follows:

For ¢ € [N], in f;, construct fi(x,G;a;71..-an) at first, and then let ¢;11 = ¢ +
(fs)1(z,a;a:41 ---an), to keep ¢; in each layer, where we need one more width than fs. Then,
output (x, @;31G;12 - - - GN, ¢i+1), Which is also the input of (¢ + 1)-th part.

The output of f is ¢n 41, thatis, g(z,0,gn+1) = qn+1. Now, we show that, f is what we want.

(1): f has at most O(Nw) parameters and width 6, which is obvious, because each part f;, f; has
O(w) parameters by lemma and f has at most IV parts, so we get the result.

(2): f(z,ataz---any) > 0.1if | — ax| < 1 for some k.

This is because when | — ag| < 1, the k-th part will make gi+1 = qx + fs(x, @Qgars1---an) > 0.1,
because (fs)1(x, agars1---an) > 0.1 as said in step 1. Since gj+1 = ¢; + (fs)1 > g, we have
flz,a1az . -an) = qn+1 > qr+1 > 0.1.

3): f(z,a1az--an) = 0if |z — ax| > 1.1 for all k.

This is because when |« —ay| > 1.1, the k-th part will make gx1+1 = qx + f5(%, Gxrr1 - - AN) = Gk
because fs(x,arart1---an) = 0 as said in step 1. Since fq(x,arart1---an) = 0 for all k, we
have f(z,a1a3 - -an) = qn+1 = gy + fs(z,an) =gv =+ =qo = 0. O
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B.4 The proof of Theorem 4.1

Now, we will prove Theorem[.1] As we mentioned before, three steps are required: data compression,
data projection, and label determination. The proof is as follows.

Proof. Assume that D,,. = {xi}f\il without loss of generality, let x; # ;. Now, we show that there
is a memorization network JF of Dy, with O(v/NN) parameters.

Part One, data compression.

The part is to compress the data in Dy, into R. Let w, b satisfy (1) and (2) in lemma|[B.1] Then, the
first part of F is f1(z) = Relu(wx + b).

Part two, data projection.

Let ¢; = fi(z;), without loss of generality, we assume ¢; < ¢; 41 and y; = 1. We define ¢ as:
¢ = ¢; if x; has label 1; otherwise ¢} = ¢;.

Lett(i) = argmaxje[N]{[j/\/N] =i}and vy = [C;(k71)+1][0£(k71)+2] . [c;(k)].

In this part, the second part of 7 (z), named as f2(z) : R — R?, need to satisfy f2(c;) = (v[\%] ,Ci)
No

for any i € [V].

By lemma a network with O(\/N ) parameters and width 4 is enough to map z; to v and
N

for keeping the input, and one node is needed at each layer. So f5 just need O(\/N ) parameters and
width 5.

Part Three, Label determination.

In this part, we will use the v, mentioned in part two to output the label of input. The third part,
nameed as f5(v, ¢), should satisfy that:

For f3(vk,c), where v = (¢}, 1) 4]l¢) 1)1l - - - [€hpy] is defined above, if |c — | < 1 for
some g € [t(k — 1) + 1,¢(k)], then f3(vg,c) > 0.1; and f3(vg,c) = 0if |c — c| > 1.1 for all
g€ t(k—1)+1,tk).

Because the number of digits for ¢; is O(In(nN/c)) by (1) in lemma|[B.1]and lemma [B.3] we know
that such a network need O(v/N In(Nn/c)) parameters.

Construction of F and verify it:

Let F(x) = f3(f2(f1(z))) — 0.05. We show that F is what we want.

(1): By parts one, two, three, it is easy to see that F has at most O(v/N In(Nn/c)) parameters and
width 6.

(2): F(x) is a memorization of Dy,.. For any (x;,y;) € Dy, consider two sub-cases:

(1.1: if y; = 1): Using the symbols in Part Two, fo(f1(x;)) will output (v[%], fi1(z;)). Since
N

¢ = ¢; because y; = 1, by part three, we have f3(f2(f1(x))) — 0.05 > 0.1 — 0.05 > 0.

(1.2 if y; = —1): By (2) in lemma for V(z,1) € Dy, we know that |f1(x;) — [f1(z1)]]
|f1(zi) = fi(z1)| = |fi(z1) = [fi(z1)]| > 4 — 1 = 3. So, by part three, we have f3(f2(f1(7:)))
0—0.05<0.

The Running Time: In Part One, it takes poly(B(Dy,),ln€) times to find such w and b with
probability 1 — €, as said in lemma|[B.T} In other parts, the parameters are calculated deterministically.
We proved the theorem. ]

v

C Proof of Theorem

Proof. 1t suffices to show that there exists a memorization algorithm L, such that if D € D(n, ¢) and
Dy, ~ DV, then the network L(D;,) has a constant number of parameters (independent of N). The
construction has four steps.
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Step One: Calculate the min g,y ), (2,y.)ep, || — 2[|2, name it as co.

Step Two: There is a Dy, C Dy, such that:

(cl): For any (z,y.), (2,y.) € Ds, itholds ||z — z||2 > ¢o/3;

(c2): For any (2, Yz ) € Dy, itholds ||z — z||2 < ¢o/3 for some (z,y,) € Ds.
It is obvious that such Dy exists.

Step Three: We prove that |Dy| < % where C,, is the volume of unit ball in R™. Let
Q= %, consider that ¢y > ¢, so there are |Ds| < Q.
Let Bo(z,7) = {2z : ||z — x||2 < r}, and V(A) the volume of A.

Due to Dy C Dy C [0,1]" x {=1,1}, s0 Uy yyep, Ba(w,c0/3) € [—co/3,1 4 co/3]". By
condition (c1), we have Ba(x,¢o/3) N Ba(z,¢o/3) = 0 for any (z,y,), (2,y.) € Ds, so we have

n . 2co/3)™
Y emen, V(Ba(@,co/3)) < (1+2¢0/3)", which means |Dy| < (A20/87 < Q.

Step Four: There is a robust memorization network [62] with at most O(@Qn) parameters for Dy
with robust radius ¢(/3, and this memorization network is a memorization of Dy,..

By condition (c1), there is a robust memorization network F,,, with O(|Ds|n) parameters for Dy
with radius ¢y /3 [62]. By step three, we have |Ds| < @, so that such a network has at most O(Qn)
parameters.

By condition (c2), for any (z,y) € Dy, there is a (z,y,) € Dj satisfying ||z — z||2 < ¢o/3. Firstly,
there must be y,, = ., because the distribution D has separation bound cg, and if y, # y. then
llz — z||2 > co > co/3. Then, since robust memorization F,,, has robust radius co/3, we have
Sgn(Fim(2)) = Sgn(Frm(2)) = ¥ = Ya, S0 Fym is @ memorization network of Dy,.. The theorem
is proved. O

D Proof for Theorem 5.1

In this section, we will prove that networks with small width cannot have a good generalization for
some distributions. For a given width w, we will construct a distribution on which any network with
width w will have poor generalization. The proof consists of the following parts.

D.1 Disadvantages of network with small width

In this section, we demonstrate that a network with a small width may have some unfavorable
properties. We have the following simple fact.

Lemma D.1. Let the first transition weight matrix of network F be W. Then if Wx = W z, we have
F(z) = F(2).

If W is not full-rank, then there exist x and z satisfying Wa = Wz. Moreover, if x and z have
different labels, according to lemma|D.1] we have F(x) = F(z), so there must be an incorrect result
given between F(x) and F(z).

According to the theorem of matrices decomposition, we also have the following fact.

Lemma D.2. Let the first transition weight matrix of network F : R™ — R be W. If W has width
w < n, then exists a W, € RY*™, whose rows are orthogonal and unit such that Wix = Wiz
implies F(x) = F(2).

Proof. Using matrix decomposition theory, we can write W = NWj, where N € R¥*" and
Wi € R¥*™ and the rows of W are orthogonal to each other and unit.

Next, we only need to consider W as the first transition matrix of the network F and use lemma
O

At this point, we can try to construct a distribution where any network with small width will have
poor generalization.
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D.2 Some useful lemmas

In this section, we introduce some lemmas which are used in the proof in section @

Lemma D.3. Let B(r) be the ball with radius r in R™. For any given § > 0, let e = 2§ /n. Then we

VIBWI=er) 4 _g.

have =)

Proof. Wehave% W:(l—ﬁ)n/221—n€/2:1—5. O

For w € R*? and ¢ € R%, let g o w = Z?Zl q; w;, where g; is the ¢-th weight of ¢, w; is the i-th row
of w;. Then we have
Lemma D.4. Let W € RY*™, and its rows are unit and orthogonal.

(1): For any q1 # q2 € RY, we have

{zeR"  We=W(goW)}n{z eR": Wz =W(ga0o W)} =0.
(2): If S is the unit ball in R™, then S = Ugcgrw |q|l,<112 € R : Wa = W(qo W),z € S}.
(3): Forany g € RY, {x € R" : Wa = W(qo W),z € S} is a ball in R"™" with volume
(1—|q||3)»~®)/2C,, _,,, where C; is the volume of the unit ball in R".
Proof. First, we define an orthogonal coordinate system {W;}?_; in R™. Let W; be the i-th row of
W when i < w. When ¢ > w, let W; be a unit vector orthogonal with all W; where j < i.

Then for all x € R™, we say ; is the i-th weight of x under such coordinate system. Then,
Wz = Wzifand only z; = Z; for i € [w].

Now, we can prove the lemma.

(1): The first weight w of g; o W under orthogonal coordinate system {W;}?_; is ¢1, soif x € {x €
R™: Wz = W(q1 o W)}, we have Z; = (q1); for i € [w].

The first w weight of g2 o W under orthogonal coordinate system {WW;}_; is g2, soif x € {x € R™:
Wz =W (g2 0o W)}, we have Z; = (¢2); for i € [w]. Because ¢1 # g2 € R™, we get the result.
(2): For any = € R”, let q(x) = (T1, T3, . . ., Tw) € R™. Itis easy to see that ||z|[ = />0, 7i%
so [|lg(z)|]2 < 1 when ||z||2 < 1.

Now we verify that: forany s € S, wehave s € {x e R" : Wz = W(q(s) o W),z € S}.

Firstly, we have Ws = Y | < w;, Y0 | Siw; >= % 5.

Secondly, we have W (g(s)o W) = Y1 | < w;, >ory Siw; >= > 1 §;. SoWs =W(q(s)oW),
resultingin s € {z € R" : Wa = W(q(s)oW),x € S}, which implies that S = Uyepw ||q),<1{7 €
R": Wz =W(qo W),z € S}.

(3): By the proof of (2), we know that if z satisfies Z; = ¢; fori € [w], thenz € {x e R" : Wa =
W(goW)}. By (1), {z € R™ : Wz = W(q o W)} will not intersect for different q. Therefore,
ze{reR": Wa=W(qo W)} equals z; = g; fori € [w].

Since ||z]|s = /27, 7%, when z € {z € R" : Wz = W (g o W)}, we have 7; = ¢; for i € [w],
s0 30 i1 @i = ||z]|3 — |lg|3. and such n — w weight is optional.

Therefore, {z € R" : Wz = W(qo W),z € S} is aball in R"* with radius \/1 — ||q||3, so we
get the result. [

(r3—2)" —(ra—z)" .
5 > 2
(ri—z)" = 1

Lemma D.5. Letrs > 1ry > 1, n > 1and x < 1y, then

Proof. Let f(z) = r2=2)"=(a=2)" eyt need to prove f(z) > f(0) when z < 1. We calculate

(ri—z)™
the derivative f(z) at first:
fz) = ((rs—2)" = (ro=a)") (i —a)" =((rs—z)" —(ra—=z)") ((rsi—2)")"

(r1—x)2"
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It is easy to calculate that ((r3 — )" — (ro — 2)") = —n((rs — )" ! — (ro — )"~ !) and
((ry —x)™) = —n(ry — )"~ 1. Putting this into the above equation, we have

fl@)==P)(((rs = )" = (r2 = 2)" ") (r1 = 2) = ((rs — 2)" = (r2 = 2)"))
Where P(x) is a positive value about x. Since

((rs —2)" ' = (rg —2)" 1) (r1 — ) — ((r3 —2)" — (r2 — 2)")
—(rg — )" Y(r3 —71) + (rg — )" (roy — 1)

IA

we have f'(x) > 0, resulting in f(z) > f(0). The lemma is proved. O

LemmaD.6. Leta >b>1,n>m>1Ifa™ —b" =1. Thena™ —b™ < 1.

Proof. We have 1 = @™ —b" > b""™(a™ — b™) > a™ — b™. O

Lemma D.7. Let a > gb where g < 1 and a,b > 0. Then min{a, b} > gb.

Proof. When min{a, b} = b, by ¢ < 1, the result is obvious. When min{a, b} = a, by a > ¢b, the
result is obvious. O

Lemma D.8. For any w > 0, there exist r1, 12,13 and n such that
(1): 3 —ry =r};

(2): P30 — BT > 0.9977 Y,

Proof. Because the equations are all homogeneous, without loss of generality, we assume that r; = 1.
We take o = 21/ — 1, B4+ o = 3™ — 1, and n to satisfy 3*/" < 1.001. Letry = 1 + o,
r3 = 1+ o + 5. We show that this is what we want.

At first, we have rf — 7} = 1+ a4+ 8)" - (1+ @)™ =3—-2 =1 = r}. We also have
(14 a+ B)* < 1.001, named (k1). So we have

ry Y —ry Y
— (1 + o+ ﬁ)n—w _ (1 + a)n—w
(A+at+p)" " (14+a)” —(1+a)"

(+a)™
> (14+a+8) 1(‘(1)3-1@ —(1+a) (by (k1))
_ (4otB)"—(A+a+8)" " " ((1+a+B)"—(1+a)™)—(1+a)"
> (1+a+5)"—(1+a)"—0.0011(?-(|)-1a+,8)" (by (k:l))
= - 1.001
—  (4o+B)"—(1+a)"—0.003
_ 1-0.003 109!
= 1001
> 0.99.
The lemma is proved. O

D.3 Construct the distribution

In this section, we construct the distribution in Theorem [5.1]

Definition D.9. Let ¢ be a point in [0,1]", 0 < 71 < ry < r3, and we define B5(2,t) = {x € R* :
||[x — z||2 < t}, where k € N,z € RF and ¢ > 0.

The distribution D(n, ¢, r1, 72, r3) is defined as:
(1): This is a distirbution on R™ x {—1,1}.

(2): A point has label 1 if and only if it is in B¥ (g, r1). A point has label -1 if and only if it is in
B3 (q,73)/ B3 (q,72)-
(3): The points with label 1 or -1 satisfy the uniform distribution, and let the density function be

_ _ 1
F(@) = A = vEram VT @) TV B @)
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We now prove Theorem 5.1}

Proof. Use the notations in Definition[D.9]

Now, we let ;, ¢, n, w satisfy:

(cl): B (g,r3) € [0,1]";

c2):ry —ry =71

(€3):ry ™ —ry”™" > 0.99r7".

Lemma [D.8ensures that such 7;, ¢, n exist.

Let distribution D = D(n, g, 71,72, 73), where D(n, ¢, 71,72, 73) is given in Definition|D.9} Now, we
show that D is what we want. We prove that for any given F with width w, we have Ap(F) < 0.51.

Firstly, we define some symbols. Using lemma let W € RY*™ whose rows are unit and
orthogonal and satisfy that Wa = Wz implying F(x) = F(2).

Then define S1, = {z : Wz = Wa,z € Bi(q,r1)} and S2, = {z : Wz = Wz, z €
B3 (q,r3)/ B3 (¢,72)}

By lemma@ we know that, for any given z, the points in S} ; U S , have the same output after

inputting to ./, but the points in S; ;, have label 1 and the points in S3 , have label -1. So F must
give the wrong label to the point in Sy , or Sa ;.

The proof is then divided into two parts.
Part One: Let h € BY(0,r1), and 2(h) = ¢ + ho W € R, where o is defined in section[D.2}
Consider that for any given h, F must give the wrong label to the point in S1,;) or S2,;), we have

that F will give the wrong label with probability at least min{P, ,,~p(z € Sl,)), Pz y)p (T €
S2,(ny)}- So, now we only need to sum these values about /.

For any different hy1, hy € By (0,71), we have S1,¢,) N Slyy) = 0, S24(n,) N S24(n,) = 0, and
UneBy (0,r1)SLe(n) = B3 (g,71). By (1) and (2) in lemma Proof is similar for 52,,;,). Then, by
the volume of S1,1), S24 (1) calculated in lemma@ we know that, the probability of F producing
an error on distribution D is at least

Jheny 0,0 WP y)op (@ € Slom), Pay)np(T € S2:(n))}
= Mnw TzE€BY (0,r1) min{(r} — HCUH%)(n_w)/Za

(3 = || [[3) "2 = (r3 — [[a]]2) "~/ *} da

where C),_,, is the volume of the unit ball in R"~* as mentioned in lemma Next, we will
estimate the lower bound of this value

Part Two: Firstly, by lemma we know that
(,rg)(n,fur)/27(,r§)(nfw)/2
(r2)(n—w)/2

P lloll3) 72— (r || 3 2
F=Tlella) =172 =

(r2)(n=w)/2 _(;2)(n—w)/2
Then, by lemma m and (c2) , we know that =2 (TQ)(n,Uj Y& < 1. Thus by lemma ﬁ we
have
ACh—w min{(r — ||2|[3)" )2, (r} — ||2[13) "2 = (r5 — [|2][3) "2 }dz

xeBY (0,r1) )(
= /\C”_w z€BY (0,r1) mln{(r% - ||x‘|g)(n—w)/27
2

(r3—[l=[13) "2 — (3 —||2|[3) "~ /2 2\ (n—w)/2
= [z|2) w7z (r{ — ||$H2)( )/ }dx

2 /\C”_w meB;’(O,rl)min{(r% - ||x‘|%)(71—w)/27
2 (n—w)/2 _ r2 (n—w)/2 —w
U s (8 — ([l B) ) 2 e
P2y (n—w)/2 _(,.2y(n—w)/2 e
> A i B [ o, — [[13) ) 2

P2y (n=w)/2 (1 2\(n—w)/2
P~y = 1).
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From 7§ — rf = r7, we know that AV (B (q,71)) = A(V(B%(q,r3)) — V(Bg(q,72))) = 0.5, so
Piz.yyop(y = —1) = P, yy~p(y = —1) = 0.5, and further consider the (c3), we have

(r3)(nm 2 (p3ynmw)/2 _
(D)) /2 ]P(ac,y)ND(y =1)
2)(nEw) /2 (y2)(n-w)/2

0.5(T - w)/2
0.49.

AV,

The theorem is proved. O

E Proof of Theorem

Firstly, note that Theorem 5.3 cannot be proved by the following classic result.

Theorem E.1 ([57]). Let D be any joint distribution over R™ x {—1, 1}, Dy, a dataset of size N
selected i.i.d. from D, and H = {h : R™ — R} the hypothesis space. Then with probability at least

1-6,
Rady(H Inl/6
sup [R(h, D) — R(h,Dyy)| > —N T2 N )—0(\/7Il / ),

heH 2 N

where R(h, D) is the population risk, R(h, Dy,.) is the empirical risk, and Rad y (H) is the Rader-
mecher complexity of H.

Theorem@]is the classical conclusion about the lower bound of generalization error, and theorem
and Theorem [E.T]are different. Firstly, Theorem [E.T]is established on the basis of probability,
whereas Theorem [5.3|is not. Secondly, Theorem [E.T| highlights the existence of a gap between the
empirical error and the generalization error for certain functions within the hypothesis space, and
does not impose any constraints on the value of empirical error. However, memorization networks,
which perfectly fit the training set, will inherently have a zero empirical error, so Theorem [E.T] cannot
directly address Theorem[5.3] Lastly, Theorem [E.T|relies on Radermacher complexity, which can be
challenging to calculate, while Theorem [5.3]does not have such a requirement.

For the proof of Theorem we mainly follow the constructive approach of memorization network
in [55]], but during the construction process, we will also consider the accuracy of the memorization
network. Our proof is divided into four parts.

E.1 Data Compression

The general method of constructing memorization networks compresses the data into a low dimen-
sional space at first, and we adopt this approach. We are trying to compress the data into 1-dimension
space. However, we require the compressed data to meet some conditions, as stated in the following
lemma.

Lemma E.2. Let D be a distribution in [0, 1]™ x {—1, 1} with separation bound ¢ and density r, and
Diy ~ DN . Then, there are w € R™ and b € R that satisfy:

(1): O(nN3r/c) > wx +b>1forall x € [0,1]";

(2): |lwx —wz| > 4 forall (x,1),(z,—1) € Dy

(3): Pz ) (3(2,92) € Dy, |wz —wz| < 3) < 0.01.

Proof. Since distribution D is definition on [0, 1]", we have ¢ < 1 and r > 1.
ey)~D( € Ba(z,11)) < 1V (Ba(z,11)) <

m. It is easy to see that r; < 1 because

Because the density function of D is r, we have ]P’(
r(2r)"™ = fgon= forall z € R", where r; =
r>1.

Then, we have the following two results:

Result one: Let u € R™ be uniformly randomly sampled from the hypersphere S™~!. Then we have
P(|{u, (z — 2))| = 1521/ =, V(x, 1), (2,1) € Dy,) > 0.5.The proof is similar to that of lemma
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Result Two: Let u € R™ be uniformly randomly sampled from the hypersphere S™~!. Then
Pou(P(ay)~D (@i 4i) € Dir, [(u, (2 — )| < gz /) ) < 0.01) > 0.5.

Firstly, by lemma and take 7' = 800N 2, we can get that: for any given v € R, if u € R" be
uniformly randomly sampled from the hypersphere S™~!, then P(|{u,v)| < 8%0']‘\,22 \/ =) < 50w
Thus, by such inequality, the density of D and the definition of 1, we have that:

P oy (I (& — )] < goiry /)

|
= Puey~o((u (@ —) < gz /75| 12 = vll2 = 71)Pg)ep(llz = vll2 2 1)

+Pu ,(z, y)~D(|< ( )>| < 800N2 %| ||£L‘*’U||2 <T1)P(x,y)ND(||CC*U||2 <T1)
< Pyl (@—v)l < ||8160]1<[|L2 Zl |z —vll2 = 71) + P yon(llz — vz < 1)
< Pu(|(u (2 - 0))| < Lggwe \/%) + Pl yp (| = vl < 1)
< oonz + 0wz = 1/(200N3).

On the other hand, we have

P“s(x’y)ND(Kua (l‘ )>| < 800N2 \/E)
2 PU(P(x»y)ND(|<u7 (‘T - U)H < 800N2 \/7) > 0. Ol/N) * 0. Ol/N

So, we have Py, (P, )~p (|(u, (x—2))| < soozvﬂ/ ~) >0.01/N) < 2001N2/(0.01/N) =1/(2N).
Name this inequality as (¥).

On the other hand, we have

PU(P(%Z/)N'D(H(Z“ yi) € Dtm \(u, (I — )>| < 800N2 \ ) < 0. 01)
= 1- Pu(P(z,y)ND(H(xhyi) S Dtr7 |< (Z‘ — $1)>‘ < 800N2 \ nm ) > 0. 01)

Then, if a u € R™ satisfies P(, ,)op (3(xs,%:) € Dr, [(u, (x — 3))| < gogwzy/ ns) = 0.01, then

we have P, ) op(|u(z — 2;)| < goexz 1/ s) > 0.01/N for some (z;,y;) € D

So taking v as z; in inequality (*) and using the above result, we have

Pu(P (o 3)on (3, 41) € Dir, (1, (2 — 1)) < st/ ) < 0.01)
= 1 -Pu(Py)y~p (@i, %) € D, [{u, (x — 24))| < 555852 \/>) >0.01)
> 1= yenn PulPy~n(lu, (2 2)] < gigey/) > 0.01/N)
> 1-Nyp =05
So we get the result. This is what we want.
Construct w, b and verify their property

Consider the fact: if A(u), B(u) are two events about random variable u, and P, (A(u) = True) >
0.5,P,(B(u) = True) > 0.5, then there is a u, which makes events A(u) and B(u) occurring
simultaneously. By the above fact and Results one and two, we have that there exist ||u||s = 1

and u € R such that [(u, (z — 2))| > 1521/ =, V(z, 1), (2,1) € Dy and P, o) op(I(zi, i) €
Dy, [{u, (2 — )| < go0872 \V n ) < 0.0L.

2 2
Now, let w = max{ 2400;{77]\[ , 16‘/5”\’ tu and b = ||w||24/n + 1, then we show that w and b are
what we want:

(1): we have O(nN?3) > wx +b > 1forall z € [0,1]".
Firstly, because D is defined in [0, 1]™ x {—1, 1}, we have ||z||2 < v/n, resulting in and wz + b >

b—[[w]l2v/n > 1.
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On the other hand, using ¢ < 1 and r; < 1, we have |wz| < ||w||2v/n < O("N ), sowx +b <
lwz|+b < O(nN3rt/m/c).
(2): We have |w(z — z)| > 4 forall (z,1), (2, —1) € Dy,.

It is easy to see that |w(z — 2)| > |16‘FN u(x — z)| = ww(

16y/nN 16y/nN? ¢
W,so|w(x—z)|f%| (x—2)| > \C TmNe = 4

(3): we have P, y.p(3(2,42) € Dy, |lwr — wz| < 3) < 0.01.

x — z)|. Because |u(z — 2)| >

Because |w(xz — 2)| > MM(x —2)| > |u(z — z)|, and consider that P(, ,)~p(3(z,y.) €
Dy, [u(z — 2)| < go55z1/ =) < 0.01, we get the result. So, w and b are what we want. and the

lemma is proved. O

E.2 Data Projection

The purpose of this part is to map the compressed data to appropriate values. Let w € R™ and b € R

be given, and D, = {(x;,y;)}Y,. Without losing generality, we assume that wz; < wz;41.

In this section, we show that, after compressing the data into 1-dimension, we can use a network F
N

oveitl
to map wx; + b to v EE where {v; } jlz“om are the given values. Furthermore, F should also satisfy
VN

[+
Flwz +b) € {v; }j[;/om for all z € [0, 1]™ except for a small portion.

This network has O(v/N) parameters, as shown below.

vl
Lemma E.3. Let w € R™ and b € R be given, {vj}jgom CRand1 > e > 0 be given.

Let Dy = {(4,v:)}}Y., and Dy, ~ DN where D is a distribution, and assume that wz; + b <
wxiy +b.
Then a network F with width O(v/N), depth 2, and at most O(\/N) parameters, can satisfy that:
(1): F(wz; +b) = v . j foralli € [N];

yeuil

(2): Py (Flwz +b) € {vj}j@ )>1-e

Proof. Let ¢; = (wxi+1 +b) — (wx; + b) and ¢ = min;{¢; }. Then we consider the set of points
S = {wz; +b+ S * j}yi/lelﬂ, for any i. We have that:
Y oses, Plagy~p(wr +b € (s — 55 /2,5 + 55 /2))

= Puy~p(@seSi,wr+be (s—35/2,5+ 35/2))
< 1

Consider that [S;| > N/e, so for any i, there is a s; € S;, makes that P(, ,)~p(wz + b € (s; —
Iv/2si+3v/2) < %
And it is easy to see that S; satisfies the following result: if z € S;, then:

wzi+b<wxi+b+2q—;[§z§wxi+b+2q—;([]\7/e]+l)<wxi+b+qi:wxi+1+b.

So we have (s; — 3% /2, 5; + 357 /2) € (wz; 4+ b, wx;11 + b), Name this inequality as ().

Letk = [[\F]] and t(i) = argmaxje[N]{[j/\/N] = i}. Now, we define such a network:

Flx) = Zle ”ig‘l (Relu(z — s¢(y + 357 /2) — Relu(z — s45) — 55 /2)) + vo.

This network has width 2k, depth 2 and O(v/N) parameters. We can verify that such networks satisfy
(1) and (2).
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Verify (1): For a given i € [N], let (i) = [\/ﬁ] Then, when j < (i), we have ¢(j) < i, s0 s;(j) +
s /2 < wxyj)41 + b < wa; + b (this has been shown in (x)), resulting in: %(Relu(wxi +
b— 1) + s /2) — Relu(wz; +b — 545y — 55 /2) = v; —vj—1. When j > ¢(i), similar to before,
we have s;(;) — 5 /2 > wx; + b, resulting in “ == (Relu(wz; +b — s4(j) + 35 /2) — Relu(wa; +
2N

b—s1(j) — an/2) = 0. So F(z;) = vo + (v1 — vo) + - + (ve(i) = Ve(iy—1) = Ve(s)» this is what
we want.

Verify (2): At first, we show that for any z € [0, 1]" satisying waz +b ¢ U_, (s; — 55 /2, 5; + 35 /2),
we have F(z) € {v;}.

This is because: for any z satisfies wz +b ¢ UY_, (s; — 25 /2, s; + 2 /2), we have F(wz + b) =
vo + (v1 —vo) + -+ + (vk — Vk—1) = vk, Where k satisfies s,y < wx + b and k is the maximum.
The proof is similar as above.

Second, we show that the probability of such z is at least 1 — e.
By P, yy~p(wx +b € (55 — 557 /2, 8: + 55 /2)) <  for any i, we have P, ,y.p(3i,wx + b €

(5i = 35 /2,8 + 3x/2)) S S Playyep Wz +b € (55— 55 /2,8 + 35/2)) < e/N* N =¢,
this is what we want. So F is what we want. The lemma is proved. O

E.3 Label determination

This is the same as in section[B.3]

E.4 The proof of Theorem[5.3]

Three steps are required: data compression, data projection, label determination. The specific proof
is as follows.

Proof. Assume that D,,. = {a:i}fil, without loss of generality, let x; # ;. Now, we show that there
is a memorization network JF of Dy, with O(v/N) parameters but with poor generalization.

Part One, data compression. The first part is to compress the data in D, into R, let w, b satisfy
(1),(2),(3) in lemmalE.2} Then, the first part of F is f1(z) = Relu(wz + b).

On the other hand, not just samples in D, all the data in R™ have been compressed into R by f1 (z).
By (3) in lemma we have P, ,y.p(3(2,¥z) € Dy, Jwr — wz| < 3) < 0.01, resulting in, we
have P, ,ywp(|lwz —wz| > 3 for ¥(z,y.) € Dy) > 0.99. By the probability theory, we have

P, )~ (|wz —wz| > 3 for V(z,y.) € Dy > 0.99)

= Puyp(lwe —wz|[ >3 forV(z,y:) € Dy > 0.99,y = —1)+
P(oy)~p(|wz — wz| > 3 for V(z,y.) € Dy > 0.99,y = 1)

> 0.99.

Without losing generality, we assume that P, ) .p(V(2,9.) € Dy, |lwz —wz| > 3,y = 1) >
0.99/2, which represents the following fact. Define S = {z : z has label 1 and |wx — wz| >
3 forV(z,y.) € Dy }. Then the probability of points in S is at least 0.99/2. In the following proof,
in order to make the network having bad generalization, we will make the network giving these points
(the points in .S) incorrect labels.

Part two, data projection.

Let ¢; = f1(x;)/ Without losing generality, we will assume ¢; < ¢;41.

Now, assume that we have N samples in Dy, with label 1, and {%; j-vz‘)l C [N] such that z;; has label
l,and i; < ij41. Let t(i) = argmaxje[N]{[j/\/]TO] =i} and v = [Ci, 1y ) [Ciruryia) -+ [Cirg)-

In this part, the second part of F(z), named as fo(x), need to satisfy fa(c;;) = (v[%],c,;j).

N
Furthermore, we also hope that P, ,y.p(f2(f1(2))[1] € {vi}) > 0.999, where fo(f1(x))[i] is the
i-th weight of f>(f1(z)), and P(, 1) ~p(f2(f1(2))[2]) = f1(2).
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By lemma a network with O(v/N) parameters and depth 2 is enough to calculate YL by ¢;;,
N

and the output in {v;} has probability 0.999. Retaining c; just need one node. So f» need O(v/N)
parameters.

Part Three, Label determination. In this part, we will use the v; mentioned in part two to
output the label of inputs. The third part, named as f3(v,c), should satisfy that for f3(vg,c),

where v, = [ci, ) ][€i, 01y 0] - - - [Ciyy ] @S mentioned above, if |c — ¢;, [ < 1 for some ¢ €
[t(k — 1) + 1,t(k)], then f3(vy,c) > 0.1, and f3(vg,c) = 0 when |c —¢;, | > 1.1 for all ¢ €
[t(k—1)+1,t(k)].

This network need O(v/ Ny In(Nonr/c)) parameters, by (1) in lemmaand lemma
Construction of 7 and verify it:

Let F(x) = f3(f2(f1(z))) — 0.05. We show that F is what we want.

(1): By parts one, two, three, and the fact Ny < N, it is easy to see that F has at most O(n +
VN In(Nnr/c)) parameters.

(2): F(x) is a memorization of D;,.. For any (z,y) € Dy, two cases are consided.

(1.1, if y = 1): using the symbols in Part two, because y = 1, so x = x;, for some k. As mentioned in
part two, f(f1(z)) will output (vi[ . ],fl(x)). Then, by part three, because | f1(x) — [f1(2)]] < 1,

No

so we have f3(f2(f1(x))) — 0.05 > 0.1 — 0.05 > 0.

(1.2if y = —1): By (2) in lemmal[E.2] for V(z, 1) € Dy, we know that | f1(z) — [f1(2)]| > | f1(z) —
f1(2)] = 1f1(z) = [f1(2)]] = 4 — 1 = 3. So, by part three, we have f5(f2(f1(x))) =0 —0.05 < 0.

(3): Ap(F) < 0.51. We show that, almost all z € S (S is mentioned in part one) will be given
wrong label.

For z € S, we have |wx — wz;| > 3, so lwz + b — [wz; + b]| > 2 for all (z;,y;) € Dy, Then for
any v;, by part three and the definition of v;, we have f3(v;, wz + b) = 0 when = € S. So, when
fo(f1(2)[1] € {v;} and = € S, we have f3(f2(f1(z))) —0.05 =0 — 0.05 < 0.

Consider that for any x € S, the label of z is 1 in distribution D. So when = € S satisfies
fa(f1(x))[1] € {v;}, we find that f(x) gives the wrong label to z. Since P(x € S) > 0.99/2 and
P(f2(fi(x))[1] € {v:}) > 0.999, we have P(z € S, fo(f1(x))[1] € {v;}) > 0.99/2 — 0.001 >
0.49.

By the above result, we have that, with probability at least 0.49, Sgn(f(z)) # y, so Ap(f) < 0.51.
So, we prove the theorem. O

F Proof of Theorem [6.1]

We first give three simple lemmas.
Lemma F.1. We can find olre7] points in [0, 1]™, and the distance between any two points shall not

be less than c.

n
2

Proof. Lett = [fc 1 ]. We just need to consider following points in [0, 1]™:

For any given 41,142,143, ...,% € {0,1}, let z;, 4, 4,.... i, be the vector in [0, 1]™ satisfying: for any
j € [t], the (j — 1)[c*] + 1 to j[c®] weights of z;, i, is.... i, 1S i;; Other weights are 0.

We will show that, if {i177;27i33-"7it} # {j17j27j3a"'7jt}9 then it holds ||wi17i2,i35~~-7it -
Tjy isis..gell2 > c. Without losing generality, let i1 # j;. Then the first [¢?] weights of
Ty iais,.. i, and X5, j, 5. i, are different: one is all 1, and the other is all 0. So, the distance

between such two points is at least y/[c?] > c.

Then {2, iy is,....it }i,€[0,1] 1S the 2! point we want, so we prove the lemma. O
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LemmaF.2. Ife, 0 € (0,1) and k, x € Z satisfy that: © < k(1 —2¢— ), then Zw(zgkjo (k;x)) <
2k (1 —9).

Proof. We have

T ke -z rok—zx ke €
20(Ylk (F77)) < 2v2he bl <ok ke < ok(1 —4),

The first inequality sign uses Z;n:() (™) < m2"/n where m < n/2, and by x < k(1 — 2¢ — §), so
[ke] < (k — x)/2. The third inequality sign uses the fact © < k(1 — 2¢ — §). O

Lemma F3. If k,v € R" such that kv > 3, and a = [kv] and 3 < b < \/Ehl(\/%) then
a > (b/In(b))?v/2.

Proof. If Vk < b/In(b), then b < VkIn(vEk) < VEIn(b) < b, which is impossible. So b <
VkIn(vk), and then vk > b/ In(b). Resulting in a > kv — 1 > kv/2 > (b/ In(b))?v/2. O

Now, we prove Theorem

Proof. By Theorem we know that there is a v; > 1, when vV N > n, for any distribution
D € D(n,c) and Dy, ~ DV, Dy, has a memorization with v1v/N In(Nn/c) parameters. We will
show that Theorem |6.1|is true for v = ﬁ
1
Assume Theorem [6.1]is wrong, then there exists a memorization algorithm £ such that for any
2
n€Zy,cede(0,1),if DeDn,c)and N > ﬁ * lnzjzfiﬁv)(l — 2¢ — §), we have
1

Pp, ~pn(A(L(Dy)) >1—€) > 1—0.

We will derive contradictions based on this L.
Part 1: Find some points and values.
We can find k, n, ¢, d, € satisfying

(1): we have n, k € Z; and 12v; < n < Vk. Let ¢ = 1, and we can find k points in [0, 1] and the
distance between any pair of these points is greater than c;

(2): 0,e € (0,1) and ¢ = [k(1 — 2e — §)] > 3.
By lemma to make (1) valid, we just need n? < k < 2", and (2) is easy to satisfy.
Part 2: Construct some distribution

Let {u; }¥_; satisfy u; € [0,1]™ and ||u; — u,||2 > ¢. By (1) mentioned in (1) in Part 1, such {u; }¥_;
must exist. Now, we consider the following types of distribution D:

(c1): D is a distribution in D(n, ¢) and P, ,yp(z € {u}i ) = 1.

(€2): Py ) (z = u;) = Py yyp (@ = u;) = 1/k forany i, j € [k].

It is obvious that, by ||u; — u;||2 > ¢, such a distribution exists. Let S be the set that contains all
such distributions. We will show that for D € S, it holds Np < vy vk In(kn/c).

By Theorem E] and definition of vy, we know that for any distribution D € S, let y; be the

label of u; in distribution D € S. Then there is a memorization F of {(u;,v;)}*_, with at most

v1Vk In(kn/c) parameters. Then by (c1), the above result implies Ap(F(2)) = 1, so we know that
Np < le/Eln(kn/c) for any D € S. Moreover, by kK > n > 3, ¢ = 1 and it is easy to see that
Np > n. We thus have 3 < Np < 4v1VkIn(VE).

Part 3: A definition.
Moreover, for D € S, we define S(D) as the following set:
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Z € S(D) if and only if Z € [k]? is a vector satisfying: Define D(Z) as D(Z) = {(uz,, Yz, )} i1,
then Ap(L(D(Z))) > 1—e¢, where z; is the i-th weight of Z and y., is the label of u, in distribution
D.

It is easy to see that, if we i.i.d select ¢ samples in distribution D to form a dataset D,,., then
(1): By ¢2, with probability 1, Dy, only contains the samples (u;, y;) where j € [k];

(2): Let D, has the form shown in (1). Then every time a sample is selected, it is in {(u;, y;)}r_;.
Now we construct a vector in [k]? as follows: the index of i-th selected samples as the i-th component
of the vector. Then each selection situation corresponds to a vector in [k]? which is constructed as
before. Then by the definition of S(D), we have Ap(L(Dy,)) > 1—eif and only if the corresponding
vector of Dy, is in S(D).

Putting Np < 4v1vVkIn(vE) and ¢ = [k(1—2¢—0)] in lemma we have ¢ > (%4”1))))2(1—

A In(Np /(4v1
N4 (1—2e—0)
2¢=0)/2 > 3207 n? (o)

By the above result and the by the assumption of £ at the beginning of the proof, so that for any
D e S wehavet

|S(D)|
kd

Pp,,~ps(A(L(Dyr)) 2 1—€) = >1-4. 4)

Part 4: Prove the Theorem.

Let S, be asubset of S, and Ss = {Dj, i,....i, }i,e{-1.1},jek] C S, where distribution D, 4, 4,
satisfies the label of w; is i;, where j € [k].

We will show that there exists at least one D C S, such that |S(D)| < (1 — 6)k¢?, which is contrary
to equation To prove that, we just need to prove that Y5, ¢ |S(D)| < (1—6)25k, use |S,| = 2
here.

To prove that, for any vector Z € [k]9, we estimate how many D € Sy which makes Z to be included

in (D).
Part 4.1, situation of a given vector Z and a given distribution D.

Fora Z = (z;)!_, and D such that Z € S(D), letlen(Z) = {c € [k] : 3i,c = z;}. We consider the
distributions in Sy that satisfy the following condition: for i € len(Z), the label of w; is equal to the
label of u; in D.

Obviously, we have 28~1»(#)| distributions that can satisfy the above condition in S,. Let such
distributions make up a set Sss(D, Z). Now, we estimate how many distributions D; in S.(D, Z)
satisfy Z € S(D;).

For any distribution G € S, let y(G); be the label of u; in distribution G, and define the dataset
Dy = {(us;,y(D)2,)}l_,. Then Z € S(D;) if and only if: for at least k — [ke] of i € [k], L(Dy,.)
gives the label y(D;); to u;.

Firstly, consider that when ¢ € len(Z). For any D, € Ss(D, Z), we have y(D;); = y(D); and
L(Dy,-) must give the label y(D); to u;, so when i € len(Z), L(Dy,.) gives the label y(Dy); to u;.

Then, consider i ¢ len(Z). Because Z is a given vector, so if Z € S(D,), the label y(D;); where
i ¢ len(Z) are at most [ke] different from the label of u; given by L£(Dy,.).

So, by the above two results, this kind of D, is at most Zy:(]) (k_“ei"(z)‘). So, we have
Sl (k= 1en(2)1y qumber of distributions Dy in Sy, (D, Z) satisfy Z € (D).

Part 4.2, for any vector Z and distribution D.

Firstly, for a given Z, we have at most 2/**"(?)! different Sss(D, Z) for D € Dg.

Because when Dy and D; satisfy y(D;); = y(D2); for any i € len(Z), we have Dss(D1,Z) =
D,s(Dy, Z), and 21°7()l situations of label of u; where i € len(Z), so there exist at most 2/'*»(%)
different S;5(D, Z).
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By part 4.1, for a Ss5(D, Z), at most Zy:(]) (k_“ein(z)‘) of Dy € S55(D, Z) satsify Z € S(Ds). So
by the above result and consider that Dy = Upep,Sss(D, Z), at most llen(Z)]| ng;(]) (kfllei“(z)l)
number of D € S such that Z € S(D;).

. . en ke —|len
And there exist k4 different Z, s0 Y .o [S(D)[ <>, 2llen(2)| ZE:& (]C |lei (Z)‘) <>, 2R1 -
§) = k92%(1 — 6). For the last inequality, we use 2/1e0(2)1 Yo lEd (h=llen(Z)ly 9k (1 _ 4 which
can be shown by [len(Z)| < ¢ and lemmal|F.2}

This is what we want. we proved the theorem. O

We now prove Corollary [6.4}

Proof. Using lemma we can find 2(727) points in [0, 1]™ and the distance between any two points
shall not be less than c. So we take a €, such that 1 — 2e — 6 > 0, n = 3[12v1 /(1 — 2e — §)] + 3,

¢=1land k = 2/7) in the (1) in the part 1 of the proof of Theorem then similar as the proof of
Theorem|[6.1] and we get this corollary. O

G Proof of Theorem

G.1 The Existence
Firstly, it is easy to show that there exists a memorization algorithm which satisfies £(D;,.) < Np
when D;, ~ DV with probability 1. We just consider the following memorization algorithm:

For a given dataset D, let £(D) be the memorization of D with minimum parameters, as shown in

Theorem Then para(£(D)) < O(+/|D]).

And if D is i.i.d selected from distribution D, where D € D(n, ¢), then by the definition of £ and
Np in Theorem 4.3} we have para(L(D)) < Np with probability 1. So £ is what we want.

G.2 The Sample Complexity of Generalization

To prove (1) in the theorem, we need three lemmas.

Lemma G.1 ([44]). Let H be a hypothesis space with VCdim h and D is distribution of data, if
N > h, then with probability 1 — § of Dy, ~ DN, we have

8hln 2N 4+ 81n 3
Ep<f>—EDw<f>S\/ e

forany F € H. Here, Ep(F) = E(zy~oll(F(z) = y)l, Ep, (F) = X1 yep, ) [(F(2) = y)]
and I(z) = 1 ifx is true or I(z) = 0.

Moreover, when h > 1, we have

8eN
8hin S

|Ep(F) — Ep,, (F)| < ~

Lemma G.2. [fe < ba/c, then we have aln(bu) < cu when u > 2aln(ba/c)/c.

Proof. Firstly, we have “l‘ég’“) — 1“(b“£5(/2“/a)) , and we just need to show W <1.

Then, we show that there are 21In(ba/c) < ba/c. Just consider the function g(z) =  — 2Inz, by
g (x)=1—-2/z,50¢ () > 0whenx > 2,50 g(ba/c) > g(e) = e — 2 > 0, this is what we want.
Now we consider the function f(z) = In((ba/c)x)/x, by the above result, we have that 1 <
21In(ba/c) < ba/c, we have that

f@In(ba/c))

In(2(ba/c)In(ba/c))/(21n(ba/c))

In((ba/c) x (ba/c))/(21n(ba/c))

1.

A
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And consider that f'(x) = Lbf/c)m) < 0 when = > 1, so, when = > 2In(ba/c), we have

xT

f(z) < f(2In(ba/c)) < 1, which means that when cu/a > 21n(ba/c), it holds In(ba/c(cu/a)) <1.

cu/a
The lemma is proved. O

Lemma G.3 ([6l]). Let H,, be the hypothesis space composed of the networks with at most m
parameters. Then the VCdim of H,, is not more than gqm? In(m), where q is a constant not dependent
on m.

Then we can prove (1) in the theorem.

Proof. Let Dy, ~ DN. Because the algorithm satisfies the condition in theorem, then £(Dy,.) €
Hy,, where Hy, is defined in lemma By lemma [G.3] the VCdim of Hp,, is not
more than ¢gNZ In(Np) for some ¢ > 1. Using lemma to this fact, we have N >

64ge NZ In(N
16gN3 In(Np) In(*2“7 (VD))

— . Take these values in lemma|G.1} and considering that the memoriza-
tion algorithm £ must satisfy that Ep,, (£(Dy,)) = 1, using lemma|G.2] just take a = 8gN3 In(Np),
b= 8e/d and ¢ = €2 in lemma|G.2)), we have

8¢N3 In(Np) In 8<¥
1 —ED(E(Dt7)) S \/ qiNp n( D) n 5 S c
N
which implies 1 — € < Ep(L(Dy,)). The theorem is proved. O

G.3 More Lemmas

We need three more lemmas to prove Theorem [6.3]

Lemma G.4. Let D C [0,1]" x {—1,1}. Then D has a memorization with width 1 if and only if D
is linearly separable.

Proof. If D is linearly separable, then it obviously has a memorization with width 1.

If D has a memorization with width 1, we show that D is linearly separable. Let F be the memoriza-
tion network of D with width 1, and JF; the first layer of F.

Part 1: We show that it is impossible to find any (x1,1), (z2, —1), (z3,1) € D such that F;(x1) <
Fi(z2) < Fi(z3). If we can, then contradiction will be obtained.

Assume (z1,1), (x2, —1), (3, 1) € D such that F(x1) < Fi(x2) < Fi(zs).

It is easy to see that, for any linear function wx+band u < v < k, we have wu+b < wv+b < wk+b
or wu + b > wv + b > wk + b, which implies Relu(wu + b) < Relu(wv + b) < Relu(wk + b) or
Relu(wu + b) > Relu(wv + b) > Relu(wk + b).

Because (x1,1), (2, —1), (x3,1) € D satisfy that 7 (z1) < Fi(z2) < Fi(z3), and each layer of
F is a linear function composite Relu, so after each layer, the order of F1 (1), Fi(x2), F1(x3) is
not changed or contrary. So there must be F(z1) < F(z2) < F(xs) or F(z1) > F(x2) > F(x3).
Then F cannot classify x1, x2, 3 correctly, which contradicts to the fact that F is a memorization of
D.

Part 2: We show that, it is impossible to find any (1, —1), (z2, 1), (x3, —1) € D such that F;(x1) <
.7:1(232) < ./_‘.1(%3)

This is similar to Part 1.

By parts 1 and 2, without losing generalization, we know that for any (x1, 1), (2, —1) € D, it holds
Fi(x1) > F1(z2). Since F is a linear function composite Relu, D is linear separable. O

Lemma G.5. Let D = {(x;,y;)} C [0,1] x {—1,1}. Then D has a memorization with width 2 and
depth 2 if and only if at least one of the following conditions is valid.

(c1): There is a closed interval I such that: if (x,1) € D then x € I and if (v, —1) € D then x ¢ I.
(c2): There is a closed interval I such that: if (x,1) € D thenx ¢ I and if (x,—1) € D then x € I.
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Proof. Part 1: We show that if condition (c1) is valid, then D has a memorization with width 2 and
depth 2. It is similar for (c2) to be valid.

Let I = [a,b]. If for all (z,—1) € D, we have x < a, then D is linear separable, and the result is
valid. If for all (x, —1) € D, we have x > b, then D is linear separable, and the result is valid. Now
we consider the situation where x > a for some (x, —1) € D and z < b for some (x,—1) € D.

Let x_; = max(y _1)ep{r < a}. Then for Fi(z) = v — (x_1 + a)/2, it is easy to verify that
Fy(xz) > “== forall x > aand F(z) < 0 for all (g, —1) € D such that zy < a.

Let 71 = min(, _1)ep{x > b}. Then for F»(x) = x— (x1 +b)/2, itis easy to verify that F(x) < 0
forall x < band Fy(x) > (21 — b)/2 for all (xg, —1) € D such that 2y > b.

Let the network F be defined by F' = Relu(F}(z)) — TRelu(Fy(z)) —t, where T = —2— isa

Ilfb
positive real number, and ¢ = “—= > 0.
Now we prove F'is what we want. It is easy to see that, F' is a depth 2 width 2 network. When
@ € [a,b], then Fi(2) > “—5=* and Fy(z) < 0, s0 F(x) > 0. For (2, —1) € D such that z < a, we
have 71 (z) < 0 and Fy(x) < 0,s0 F(z) < 0; for (x,—1) € D such that z > b, we have F;(z) < 1

and Fh(z) > 2=t 50 F(z) < 1—2 — 2={=1 < 0, this is what we want.

Part 2: If D has a memorization with width 2 and depth 2, then we show that D satisfies conditions
(cl) or (c2).

If D is linear separable, (cl) and (c2) are valid. If not, without losing generality, as-
sume that (z1,1), (22, —1),(z3,1) € D such that 1 < z3 < a3 (for the situation that
(x1,—1), (z2,1), (z3,—1) € D such that x; < x2 < x3, the proof is similar). Then we show
that if (z, —1) € D, we have 21 < z < z3. Assume (zo, —1) € D such that 2y < x1, then we have
that g < 1 < x2 < x3, then we can deduce the contradiction.

Let F' = aRelu(F(z)) + bRelu(Fz(x)) + ¢ be the memorization network of D, where F;(x) is a
linear function. Let u, v € R such that Fy (u) = Fy(v) = 0, without loss generality, let u < v.

Then we know that F' is linear in such three regions: (—oo, u], [u,v] and [v, c0). We call the three
regions as linear regions of F'. We prove the following three results at first.

(1): The slope of F on (—oo, u] is positive.

Firstly, we show that ¢ € (—oo, u]. If not, since (zg, —1), (x1, 1), (x2, —1) are not linear separa-
ble, and (x1, 1), (z2,—1), (x3,1) are not linear separable, we have (xg, —1), (z1,1) € [u,v] and
(x2,—1),(x3,1) € [v,00). Then, because 1 > xo and F(x1) > F(z), and F is linear in [u, v], we
have that F'(v) > F(x1) > 0. Now we consider the points (v, 1), (x2, —1), (z3,1). It is easy to see
that F' memorizes such three points and they are in the linear region of F, so (v, 1), (z2, —1), (z3,1)
is linear separable, which is impossible because v < x2 < x3 and resulting in contradiction, so
xo € (—00,u).

If the slope of F' on (—oo, u] is not positive, since u > xo, we have F'(u) < 0. Now we consider the
points (u, —1), (21, 1), (z2, —1), (x3,1). Just similar to above to get the contradiction. So the slope
of F on (—oo, u] is positive.

(2): The slope of F on [v, 00) is positive. Similar to (1).
(3): The slope of F on (—oo, u] is negative. If not, F' must be a non-decreasing function, which is
impossible.

Using (1),(2),(3), we can get a contradiction, which means that there is a (xg, —1) € D such that
o < 7 is not possible.

Consider that, in a linear region of F, if the activation states of ' and F5 are both not activated, then
on such linear regions, the slope of F'is 0. But due to (1),(2),(3), all linear regions have non-zeros
slope of F, so on each linear regions, at least one of F} and F5 is activated. So, the activation states
of Fy and F; at (—oo,u], [u,v] and [v,00) is (—,+), (+,+), (+, —) (+ means activated, - means
not activated).
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Then the slope of F on [u, v] is equal to the sum of the slopes of F' on (—oo, u] and the slope of F' on
[v,00). But by (1),(2),(3), that means a negative number is equal to the sum of two positive numbers,
which is impossible. So we get a contradiction.

Soif (zg, —1) € D, we have x¢ > 1. Similar to before, we have zyp < 3. So we get the result.

By the above result, all the samples (zg, —1) € D satisfies « € (z1, z3), so there is a close interval
in (21, x3) such that: if (xg, —1) € D, then z is in such interval, then (c2) is vald, and we prove the
lemma. O

G.4 The algorithm is no-efficient.

Now we prove (2) of theorem [6.5] that is, all such algorithm is not efficient if P # N P. We need the
reversible 6-SAT problem defined in definition [6.6]

Proof. We will show that, if there is an efficient memorization algorithm which satisfies the conditions
of the theorem (has at most Np parameters with probability 1), then we can solve the reversible
6-SAT in polynomial time, which implies P = N P.

Firstly, for the 6-SAT problem, we write it as the following form.
Let ¢ = A, p;(n,m) be a 6-SAT for n variables, where ¢;(n, m) = \/?215:,»7]» and Z; ; is either
or —z4 for some s € [n] (see Definition[6.6). Then, we define some vectors in R™ based on ; (n, m).
For i € [m], define Q¥ € R" as follows: Qf[j] = 1if z; occurs in ¢;(n,m); Q¥ [j] = —1if ~x;
oceurs in ¢;(n, m); Q7 [j] = 0 otherwise. Q7 [j] is the j-th entry in Q7 , then six entries in Q; are 1
or —1 and all other entries are zero.
Now, we define a binary classification dataset D(¢) = {(;, y;)}[*" < [0,1]™ x [2] as follows.

() Fori € [n], z; =1;/3+1.11/3,y;, = 1.

() Forie{n+1n+2,. .20} 2 =111, ,,/3+1.11/3, y; = —1.

B)Fori e {2n+1,2n+2,... .30}, 2 = —1;_0,/3 4+ 1.11/3,y; = 1.

@) Fori€ {3n+1,3n+2,... 4n}, z; = —1.11;_3,/3 + 1.11/3, y; = —1.

(5)Fori € {4n+1,4n+2,...,dn+m}, z; = 1/12Q¢ ,, +1.11/3,y; = 1.

i—4n

Here, 1, is the vector whose i-th weight is 1 and other weights are 0, 1 is the vector whose weights
are all 1.

Let £ be an efficient memorization algorithm which satisfies the condition in the theorem. Then we
prove the following result: If n > 4 and ¢ is a reversible 6-SAT problem, then para(L(D(p))) = n+8
if and only if ¢ has a solution, which means P = NP and leads to that £ does not exist when
P = N P. The proof is divided into two parts.

Part 1: If o is a reversible 6-SAT problem that has a solution, then para(L(D(y))) = n +

n + 8.
To prove this part, we only need to prove that para(L(D(y))) > n + 8 and para(L(D(p))) < n + 8.
Part 1.1: we have para(L(D(p))) > n + 8.

Firstly, we show that {(x1,1), (zn+1,—1), (2n+1,1), (3n41,—1)} C D(p) are not lin-
early separable. This is because {z1,Tnt1,%2n+1,T3n+1} IS a linear transformation of
{11,1.114,-14,—-1.111}, so {(x1,1), (®nt1, —1), (2041, 1), (X341, —1)} C D(¢p) are not lin-
early separable if and only if {(1,1), (1.114,—-1),(—14,1),(—1.111, —1)} are not linearly separa-
ble, by the definition of 14, easy to see that {(11,1), (1.11;,—1),(=14,1),(—1.113,—1)} are not
linearly separable, so we get the result.

By the above result, a subset of D(¢) is not linearly separable, so we have that D(¢) is not linearly
separable. So, by lemma[G.4] £(D(¢)) must have width more than 1. For a network with width at
least 2, when it has depth 2, it has at least 2n + 5 parameters; when it has depth 3, it has at least n + 8
parameters; when it has depth more than 3, it has at least n + 10 parameters. So when n > 4, we
have para(L(D(p))) > n + 8.

Part 1.2: If ¢ is a reversible 6-SAT problem that has a solution, then para(L(D(y))) < n + 8.
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We define a distribution D at first. D is defined on D(¢p), and each point has the same probability. It
is easy to see that, D € D(n, 1/30).

Since when N > m + 4n, we have Pp, ..p~ (Dy = D(g)) > 0, so by the definition of Np and the
fact £ satisfies the conditions in the theorem, we have para(L(D(p))) < Np. Moreover, because D
is defined on D(p), we will construct a network with n + 8 parameters to memorize D(¢) to show
that Np < n + 8, which implies para(L(D(y))) < Np < n + 8 because L satisfies the condition in
the theorem.

This network has three layers, the first layer has width 1; the second layer has width 2; the third
output layer has width 1.

Let s = (s1,82,...,8,) € {—1,1}" be a solution of ¢. Then the first layer is 73 (x) = Relu(3s(z —
1.11/3) + 3). Then we have the following results:

(1): Fi(z) =4.1or Fi(x) = 1.9 forall (z,—1) € D(p);
(2): 2 < |Fi(z)| < 4forall (x,1) € D(p).
(1) is very easy to validate. We just prove (2).

Fori € [n]andi € {2n+ 1,...,3n}, because s € {—1,1}", so 3s(x — 1.11/3) = 1 or 3s(z —
1.11/3) = —1, which implies 2 < |F;(x;)| < 4.

Fori € {4n+1,...,4n+ m}, z; — 1.11/3 has only six components that are not 0. Because s is
the solution of ¢, which indicates that at least one of the six non-zero components of z; — 1.11/3
has the same positive or negative shape as the corresponding component of s. Consider that such six
non-zero components of x; —1.11/3 arein {—1/12,1/12},s0 3s(x; —1.11/3) > 1/4—5/4 = —1.

Moreover, because ¢ is a reversible problem, so ¢;(n,m) and ¢;(n, m) are both in the ¢, which
indicates that the positive and negative forms of the six non-zero components of x; — 1.11/3
cannot be exactly the same as the positive and negative forms of the corresponding components
in s, or there must be ¢;(n,m) = 0, which contradicts to s is the solution of ¢. So, we have
3s(x; —1.11/3) < 5/4—1/4 = 1.

Then we have that, fori € {dn + 1,...,4n + m}, itholds 3s(z; — 1.11/3) € [—1, 1], resulting in
2 < |Fi(z;)| < 4. We proved (2).
By (1) and (2), and using lemma|[G.3] there is a network 5 : R — R with width 2, depth 2 and 7

parameters that can classify the {(F7 (), yi)}?ﬁf’", so Fs o Fj is the network we want.

By such a network, we have that Np < n + 8, and then, we have para(L(D(y))) < Np < n + 8.
We proved the result.

Part Two: If ¢ is a reversible 6-SAT problem and para(L(D(y))) = n + 8, then ¢ has a solution.

If £(D(y)) has width 2 of the first layer, then para(L(D(¢))) > 2n 4+ 5 > n + 8, so when
para(L(D(p))) = n + 8, the first layer has width 1.

Write L(D(p)) = Fa(Fi(z)), and write F; as Fi(z) = Relu(3s(z — 1.11/3) + b), and let
s =1(81,82,...,58n).
We will prove that Sgn(s) = (Sgn(s1), Sgn(sz2),Sgn(ss),...,Sgn(sy,)) is a solution of . The proof
is given in two parts.

Part 2.1 we have 1.1|s;| > |s;| for any ¢, j € [n]. Firstly, we have s; # 0 for any ¢ € [n]. Because
if s; = 0, it holds Fi(x;) = F1(xn+s), which implies that £(D(p)) gives the same label to x; and
Zn+4, but z; and x,,4, have the different labels in dataset D(y), so it contradicts £(D(y)) is the
memorization of D(¢p).

Without losing generality, let |s1]| > |s2| > -+ > |s,|. Then we just need to prove that 1.1]s,,| > |s1].

Because D(¢p) is not linear separable, so by lemmal|G.4} £(D(¢)) has width more than 1. Because
JF1 has width 1, so F5 has width 2 and 7 parameters, resulting in that 5 is a network with width 2
and depth 2. And 7 can classify such six points: {(F1(2:), ¥i) ie{1,n+1,2n41,3n+1,2n,4n} -

If s; > 0, taking the values of 1, Zp41, Z2n+1, T3nt1 in Fi, we have 1.1s; + b = Fi(zp41)

>
S1 +b = ‘/_'.1(561) Z —S1 +b = fl(xQnH) Z 71181 +b = f1($371+1), which 1rnpl1es fl(I71+1) 2
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Fi(z1) = Fr(xant1) = Fi(xzns1); if s1 < 0. Similarly as before, we have Fy (z41) < Fi(z1) <
Fi(xont1) < Fi(xznt1)- So, Fi(x1) and Fi(x2,41) are always in the interval from Fj (2,41) to
Fi(T3n+1)-

Consider that x,, 1 and x3,1 have label —1, x; and x3,41 have label 1, so by Lemma@ if
{(Fi(z), yi) Fie{1,n+1,2n41,3n+1,2n,4n} can be memorized by a depth 2 width 2 network, then
F1(zap) and Fi(x4,) must be not in the interval from Fj(x1) to Fi(x2,41), or we cannot find a
interval satisfies the conditions of lemmalG.3l

Since max{Fi(zay), F1(x4n)} = 1.1|s,| + b, to ensure that Fj(x9,) and Fi(z4,) are not

in the interval from Fj(x1) to Fi(zan+1), we have max{Fi(xa2,), F1(24n)} = 1.1]s,] +
b > max{Fi(z1),F1(xan+1)} = |s1| + b or max{Fi(zan), F1(xan)} = L11llsp| + 0 <
min{F(x1), F1(Z2n+1)} = —|s1| + b. The second case is impossible, so we have 1.1]s,,| > |s1].

This is what we want in this part.

Part 2.2 We show that Sgn(s) is the solution of ¢. Assume that Sgn(s) is not the solution of
@. Thereis ai € {4n + 1,...,4n + m}, such that the positive and negative forms of the six
non-zero components of x; are exactly the same as the positive and negative forms of the corre-
sponding components in s. Then sz; + b > 6/4|s,| + b > 6/4.4|s1] + b > 1.1]s1| + b. So, by
max{F1(T14n), F1(Z3n+1)} = L.1|s1| + b and min{F; (z14n), F1(z3n+1)} = —1.1]s1| + b, we
know that F; (z;) is not in the interval from Fi (214, ) to F1 (Z3n41)-

Then similar to part 2.1, consider the point { (F1 (), ¥i) }ic{1,n+1,2n41,3n+1,i}» We have that F; (1)
and F(z2,41) are always in the interval from Fi(z,,41) to F1(23,41), but F1(z;) is not in the
interval from F(x14,) to Fi (23,+1). By lemma and the fact that the label of F;(x,,41) and
F1(x3n41) is different from that of other three samples, we cannot find an interval satisfying the con-
dition in lemma|G.5] so ,(z) cannot classify such five points: {(F1(%;), ¥i) im1,n+1,2n+1,3n+1,i-
This is contradictory, as £(D(ip)) is the memorization of D(p). So, the assumption is wrong, we
prove the theorem. O

H Proof of Theorem

H.1 Proof of Proposition|7.7

Proof. Tt suffices to prove that we can find an S.(D) C {(x,y)||(z,y) ~ D} such that for any
(z,y) ~ D, we have x € U w)es,.(p)B((2,w)).

Let S = {(i1¢/(6.2n),i2¢/(6.2n), ..., inc/(6.2n))||i; € {0,1,...,[6.2n/c] + 1}}, and define
Sc(D) as: for any (i1¢/(6.2n),i2¢/(6.2n), ... ,i,c¢/(6.2n)) € S, randomly take a (z,y) ~ D
satisfying ||z — (i1¢/(6.2n),i2¢/(6.2n), ..., inc/(6.2n))||o < ¢/(6.2n) (if we have such a ), and
put (z,y) into S.(D).

Then, we have that, for any (x,y) ~ D, there is a point z € S, such that ||z — z|| < ¢/(6.2n), and
there is a (z,,y,) € S¢(D) such that ||z — 2,||cc < ¢/(6.2n), s0 ||z, — 2||s0 < ¢/(3.1n), which
implies ||z — .||o0 < ¢/3.1.

Since the radius of B((z,w)) is more than ¢/3.1, for any (z,y) ~ D, we have z €
U(z,w)es.(p)B((z,w)), we prove the lemma. O

H.2 Main idea

For a given dataset Dy, C [0, 1]™ x {—1,1}, we use the following two steps to construct a memoriza-
tion network:

(c1): Find suitable convex sets {C;} in [0, 1]™, ensuring that: each sample in Dy, is in at least one
of these convex sets. Furthermore, if z, 2z € C; and (x,y,.), (2,9.) € Dsr, then y,, = y., and define

y(Ci) = Yo

(c2): Construct a network F satisfying that for any = € C;, Sgn(F(z)) = y(C;). Such a network
must be a memorization of Dy, because each sample in Dy, is in at least one of {C; }, so if z € C;
and (z,y) € Dy, then Sgn(F(z)) = y(C;) = y,, which is the network we want.
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H.3 Finding convex sets
For a given dataset Dy, C [0,1]" x {—1,1}, let Dy, = {(z:, i)}, and for i € [n], the convex
sets C; are constructed as follows:

(1): For any ¢, j € [N], define S; j(x) = (2; — ;) (2 — (0.51 % 2; + 0.49 % x;)), it is easy to see that
S, ; 1s a vertical between x; and x;;

(2): The convex sets C; are defined as C; = Nje[ny,y, 2y, 17 € [0, 1]"]S; ;(z) > 0}.

Now, we have the following lemma, which implies that C; satisfies conditions (c1) mentioned in
above.

Lemma H.1. If C; are constructed as above, then

(1): z; € Cy;

(2): If z € C; and (z,y,) € Dy, theny, = y;;

(3): C; is a convex set.

Proof. Firstly, we show that z; € C;. For any 4,j € [N], taking z; into S, ;(x), we have

Sij(w:) = 0.49||z; — 25113 > 0,50 7; € {w € [0,1]"][S; j(x) > 0}. Thus z; € Nje(nyy, 2y, {2 €
[0,1]7(|Si,;(x) > 0} = Ci.

Then, we show that: if y; # y;, then z; ¢ C;, which implies (2) of lemma is valid.

For any i, j € [N], taking ; into S; j(z), we have S; j(z;) = —0.51||z; — z;]|3 < 0,s0z; ¢ {z €
[0,1]"]]:S5,5(x) > O}. Thus 25 & Nie[n),y, 2y, {z € [0,1]"]|Sik(x) > 0} = Ci.

Finally, we show C; is a convex set. Because for any 4,5 € [N], {z € [0,1]"]|S; ;(z) > 0} isa
convex set, and the combination of convex sets is also convex set, so C; is a convex set. O

H.4 Construct the Network

We show how to construct a network F, such that Sgn(F(x)) = y(C;) for any x € C;, where C; is
defined in section [H.3]

For a given dataset Dy, = {(z;,v:)}},, we construct a network F,,.,, which has three layers as
following.

(1): Let r = 0.01 % min; je[ni,y, 2y, ||2i — ;3. Forany i, € [N], S; ; defined in section|H.3] let
Ui() = e [Ny, 2y REIU(=5i;(2)) — 7. Itis easy to see that u; is a depth 2 network.

(2): The first two layers are F; : R® — RY. Let JF(x)[i] be the i-th output of F;(x), then let
Fi(z)[i] equal to Relu(—u;(x)). It is easy to see that, F; () requires O(N?n) parameters.

(3): The third layer is F» : RY — R, and Fo(v) = Ziil Yiv;, where v; is the i-th weight of v;.

Now, we prove that Sgn(F,em (z)) = y(C;) for any x € C;. We need the following lemma.
Lemma H.2. Forany x € C;, we have u;(z) < 0 and w;(x) > 0 when y; # y;.

Proof. Assume that x € C;. We prove the following two properties, and hence the lemma.

P1. u;(x) < 0.

By the definition of C;, we have S, ;(x) > 0 for all j € [N] staisfying y; # y;, so u;(z) =
2 ey ys REW(=505(2)) = 7= 2 ey, 0 — 7 = =7 < 0.

P2. u;(x) > 0 when y; # y,.

For any j such that y; # y;, we show S ;(z) < —0.02||z; — z;||3 at first. Because z € Cj, so
S;.;j(x) >0, thatis (z; — z;)(x — (0.51 *x; +0.49 % z;)) > 0, so

(x; — xj)(x — (0.51 * 2; + 0.49 * z;))
(x; — xj)(x — (0.49 x x; —1—20.51 xx)) — 0.02||z; — x||3
651,1'(%) = 0.02|]z; — ;[

Vi
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Thus S;;(z) < —0.02||z; — z;]|3. Then, by the above result, taking the value of r in it, we have
u;(z) > Relu(=S; ;(z)) —r > 0.02||z; — ;|3 —r > 0. O

By the above lemma, we can prove the result.

Lemma H.3. we have Sgn(Fem () = y; for any x € C;.

Proof. Let x € C;. By lemma[H.2] we have Fi(z)[i] > 0, and Fy(z)[j] = 0 when j satisfies
Y # Ui 50 F(2) = e iny U5F1 @) ] = 5 3 en1,, =y, F1(@)[], by Fi(2)[i] > 0, and we thus
have Sgn(F(z)) = y;. O

H.5 Effective and Generalization Guarantee

In this section, we prove that the above algorithm is an effective memorization algorithm with
guaranteed generalization. We give a lemma.

Lemma H4. Forany a,b,c € R™ such that ||b— al|2 > 3.1||a —c||2, let V be the plane (b— c)(x —
(0.51c + 0.49b)). Then the distance of a to the plane V is greater than ||b — al|/3.1.

Proof. Let ||a — bl|2 = Lap, ||la — ¢||l2 = Lae, ||c — b||]2 = Lpe. Let the angle Zabe = 6. Then the
distance between a and the plane V' is Ly cos 0 — 0.51 L.

. . L} +L% —L
Using cosine theorem, we have cos § = W so we just need to prove that

0.51Lpe > Lqp/3.1, that is & 5Lg,=0. 5L o~ Lav Lve/3.1
inversely proportlonal to Lgc and L. By Lac < Lgp/3.1and Ly, < Lye + Loy < 4.1L4/3.1, we

0.515,~0. SL;:L abLipe /31 > 0520 5/(5511/);;?21/(3 b’ > 0.01. The lemma is proved. O

LZZ)CJ'—Lgb_Lgc _
2Ly

> 0.01. It is easy to see that such value is

have

We now show that the algorithm is effective and has generalization guarantee.

Proof. Let F,,em be the memorization network of Dy, constructed by the above algorithm.
Effective. We show that F,,,.,,, is a memorization of D;,. can be constructed in polynomial time.

It is easy to see that, u; has width at most /V, and each value of parameters can be calculated by Dy,
in polynomial time. So F; defined in (1) in section[H.4]can be calculated in polynomial time. It is
easy to see that the F> defined in (1) in section[H.4|can be calculated in polynomial time. This, 7
can be calculated in polynomial time.

Generalization Guarantee. Let S = {(v;, y,,)}>7, be the nearby set defined in Definition
Then, we show the result in two parts.

Part One, we show that: for a (z;,y;) € Dy, if 2; € B((vj,y0,;)) fora j € [Sp], then Sgn(F(z)) =
y, forany @ € B((v;,y.,))

Firstly, we show that it holds B((v;,v.,)) € C;. For any k € [N] such that y;, # y;, we have
[v; = kll2 > 3.17 > 3.1[|v; — ||, where r is the radius of B((v;,.;)) so by lemma[H.4] the
distance from v; to S () is greater than r, which means that the points in B((v;, ., )) are on the
same side of the plane Sjx(z), by z; € B((vj,¥»,;)) and S (z;) > 0 as said in lemma Thus,
for any x € B((vj,yv,)), we have Six(x) > 0. By C; = Njcn],y, 2,12 € [0,1]"]|S; ;(x) > 0},
we know that B((vj,y,)) € C;.

By the above result, if z € B((v;,y.,)), then z € Cj; so by lemma we have Sgn(F(x)) = y;
forall z € B((vj,yy,))-

Part Two, we show that if Dy, ~ DV and N > Sp/eln(Sp/d), then Pp, o~ (Ap(Fem) >
1—e)>1-4.

Let Q; = P(, )~p(z € B((vi,0;))), then without losing generality, we assume that Q1 < Q2 <
- < Qsp- Then, for the dataset Dy, = {(z4,y:)} Y1, let Z(Dy,) = {j € [Sp]||Fi € [N],
B((vj,Yv;))}. The proof is given in three parts.

m
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part 2.1. Firstly, we show that Ap(Frem) > 1 — Zz‘gZ(D,,T) Q;.
If i € Z(Dy,), then by the definition of Z(D;,), we know that there is a j € [N] such that
xj € B((vs,Yv,)), so by part one, we have Sgn(Frem () = y; for any x € B((vs, Yo, ))-

Moreover, for any (x,y) ~ D and € B((v;, Yu,;)), by lemma[H.1|and B((v;, yy,)) € C; which has
been shown in part one, we know that y = y;.

So Sgn(Frnem(z)) = y; = y for any (x,y) ~ D and x € B((vs,Yyv,)), which means that
Fmem gives the correct label to all z € B((vi,yy,)) when i € Z(Ds, S). So Ap(Fmem) =

2icz(Dus) Qi = 1= Xigz(p,..5) Qi-

part 2.2. Now, we show that Pp, p~ (32,4 7(p,,) @i <€) =1 —0.

Let Cc; = {Dy| Dy ~ DN,i ¢ Z(Dy) and j € Z(Dy,) for Vj > i}, easy to see that Ce;NCe; =
() when 4 # j and Zf\;o Pp, ~p~ (D € Cc;) = 1. Itis easy to see that, Pp, p~ (D € Cc;) <
(1 —Q;)N wheni > 1.

Firstly we have that, if some ¢ € [Sp| makes that (); < €/4, then for any Dy, € Cc; where j < i, we
have Zkg{Z(D”) Qr < Zi=1 Qr <jQ; <iQ; < e

So that, we consider two situations.

Situation 1: There is a i € [Sp] such that Q; < ¢/i.

Let Ny be the biggest number in [Sp] such that Q n, < €/Ny. Then we have that:

IF)DNNDN (Zigz(p”) Q; < 6)
= Pp,ov(Xigzip,,) Qi < €llDir € Uy Cer)Pp, pn (Dyr € U2 Cer)
+Pp,, o (Vig 7y @i < €D € U 1 Cei)Pp, ooy (Dir € UEDL 1 Cer) (5)
= Pp,,pv(Dir € Uy Cox) + Py, ~ov (Xigz(p,,) @i < €l|Dir € UgciDzerHCCk)

S
PD”NDN (Dt'r‘ S U£:£]110+10Ck).

Hence, we have

S
]P)D,WNDN (Dtr € UEQZD]]VOJrlCCk)

S
< ZiS:DNo+1 PDterN (Dtr € CC'L)
D N
< g:No-H(l - Qz)
D —NQ;
< Zg:NOH R
D —N
< Z¢:N0+1 e Ne/i
< SDI —Ne/i
> i=
S SDe—Ne/SD
< 4.

The last step is to take N > Sp/eIn(Sp/d) in. So, taking the above result in equation[5} we have

Pp,,~oy (Xigz(p,,) @i <€)

16+ Pp,, ox (Vigzpr,) @ < €| Din € U L Cer)d
1-4

ARV

which is what we want.

Situation 2: There is no i € [Sp] such that Q; < €/i.
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Then, we have
Pp,, o~ (D € UECSEEC%)
23;1 Pp,, ~p~ (D € Cc;)
Zifl(l - Ql)N

VAN VAN VAN VAR VAN VAN
T3
&
MR
<'b|
=
=

So with probability 1 — d, we have Dy, € Ccy. When Dy, € Ccg, we have Z(Dy,.) = [Sp], so that
>i¢z(p,) @i = 0. Hence, Pp, .o~ (3,0 7(p,,) Qi <€) = 1—0.

part 2.3 Now we can prove the part 2, by part 2.1 and part 2.2, we have that Pp, p~ (Ap(Fmem) >
1—¢€)>Pp, .pv(1— Zi@Z(D” ) Q; > 1—¢€)>1— 6. The theorem is proved. O

I Experiments

We try to verify Theorem [7.3]on MNIST and CIFAR10 [33].

I.1 Experiment on MNIST

For MNIST, we tested all binary classification problems with different label compositions. For each
pair of labels, we use 500 corresponding samples with each label in the original dataset to form a
new dataset Dy,., and then construct memorization network for D;, by Theorem For each binary
classification problem, Table [T shows the accuracy on the samples with such two labels in testset.

Table 1: On MNIST, accuracy for all binary classification problems with different label compositions,
use memorization algorithm by theorem The result in row ¢ and column j is the result for
classifying classes % and j.

category 0 1 2 3 4 5 6 7 8 9

0 - 099 096 099 099 097 09 098 098 0.97
1 0.99 - 097 099 098 099 098 098 098 0.99
2 096 0.97 - 096 097 09 096 097 093 097
3 099 0.99 0.96 - 098 095 098 095 092 0.96
4 099 098 097 098 - 098 097 096 095 091
5 097 099 09 095 0.95 - 096 097 091 0.96
6 096 098 096 098 097 0.96 - 099 095 098
7 098 098 097 095 096 097 099 - 0.95 091
8 098 098 093 092 095 091 095 095 0.96
9

097 099 097 09 091 096 098 091 0.96 -

From Table[I] we can see that the algorithm shown in the theorem [7.3]has good generalization ability
for mnist, almost all result is higher than 90%.

.2 Experiment on CIFAR10

For CIFAR10, we test all binary classification problems with different label combinations. For each
pair of labels, we use 3000 corresponding samples with each label in the original dataset to form a
new dataset D,,., and then construct memorization network for Dy, by Theorem For each binary
classification problem, Table 2| shows the accuracy on the samples with such two labels in testset.

From Table 2} we can see that, most of the accuracies are above 70%, but for certain pairs, the results
may be poor, such as cat and dog (category 3 and category 5).

Our memorization algorithm cannot exceed the training methods empirically. Training, as a method
that has been developed for a long time, is undoubtedly effective. For each pair of labels, we use 3000
corresponding samples with each label in the original dataset to form a training set D,,., and train
Resnet18 [28] on D,,. (with 20 epochs, learning rate 0.1, use crossentropy as loss function, device is
GPU NVIDIA GeForce RTX 3090), the accuracy of the obtained network is shown in Table
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Table 2: On CIFARI10, accuracy for all binary classification problems with different label composi-
tions, use memorization algorithm by theorem[7.3] The result in row ¢ and column j is the result for
classifying classes 7 and j.

category 0 1 2 3 4 5 6 7 8 9
077 074 078 081 0.81 0.85 085 0.68 0.73
078 0.75 0.82 0.78 0.82 0.87 0.79 0.63
0.61 061 065 067 0.67 082 0.77
0.71 054 0.67 0.69 0.83 0.76
066 062 065 082 0.79
0.73 0.67 0.81 0.78
071 0.86 0.81

0.77 -
0.74 0.78 -
0.78 0.75 0.61 -
0.81 0.82 0.61 0.71 -
0.81 0.78 0.65 0.54 0.66 -
0.85 0.82 0.67 067 062 0.73 - .
0.85 0.87 0.67 069 065 0.67 0.71 - 0.82 0.73
068 0.79 082 083 0.82 0.81 0.86 0.82 - 0.69
073 0.63 077 076 0.79 0.78 081 0.73 0.69 -

O XTI UNPB W —O

Table 3: On CIFARI10, accuracy for all binary classification problems with different label composi-
tions, use normal training algorithm. The result in row ¢ and column j is the result for classifying
classes ¢ and j.

category 0 1 2 3 4 5 6 7 8 9
099 098 099 099 099 099 099 098 0.99

0.99

0

1 - 099 098 099 099 099 099 099 099
2 098 0.99 - 099 099 099 099 099 099 099
3 099 098 0.99 - 098 096 097 099 098 0.99
4 099 0.99 099 098 - 099 099 099 099 0.99
5 099 099 099 096 0.99 - 099 099 099 0.99
6 099 099 099 097 099 0.99 - 098 0.99 0.99
7 099 099 099 099 099 0.99 098 - 0.99 0.99
8 098 099 099 098 099 0.99 099 099 0.99
9

099 099 099 099 099 099 099 099 0.9 -

Comparing Tables [2]and 3] it can be seen that the training results are significantly better.

I.3 Compare with other memorization algorithm

Three memorization network construction methods are considered in this section: (M1): Our algo-
rithm in theorem [7.3} (M2): Method in [49]]; (M3): Method in [55]].

In particular, we do experiments on the classification of such five pairs of numbers in MNIST: 1 and
7,2 and 3,4 and 9, 5 and 6, 8 and 9, to compare methods M1, M2, M3. The main basis for selecting
such pairs of labels is the similarity of the numbers. For any pair of numbers, we label the smaller
number as -1 and the larger number as 1. Other settings follow section|[.T} and the result is given in
Table ] We can see that our method performs much better in all cases.

From table 4] our method gets the best accuracy. When constructing a memorization network, the
methods (M2), (M3) compress data into one dimension, such action will break the feature of the
image, so they cannot get a good generalization.
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Table 4: On MNIST, accuracy about different memorization algorithm.

pair (1,7)  Accuracy

Ml 0.98
M2 0.51
M3 0.46
pair (2,3) Accuracy
M1 0.96
M2 0.50
M3 0.51
pair (4,9)  Accuracy
M1 0.91
M2 0.45
M3 0.46
pair (5,6) Accuracy
M1 0.96
M2 0.59
M3 0.47
pair (8,9)  Accuracy
M1 0.96
M2 0.41
M3 0.48
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our paper supports the claims made in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed limitations in Section 8]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided the full set of assumptions in every theorem and made a
complete proof in Appendix [A]to appendix

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have provided reproductive details in Appendix [T}
Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided our codes in the supplemental matrial.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided experimental details in Appendix [I}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Our main contribution is in terms of theory.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided them in Appendix [I}
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]
Justification: Our main contribution is in terms of theory.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: None of this.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If we have negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open-source dataset and models in our paper, and have cited the
original paper of these dataset and models as presented in Appendix

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

https://doi.org/10.52202/079017-3600 113358


paperswithcode.com/datasets

14.

15.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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