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Abstract

Medical Imaging (MI) datasets are fundamental to artificial intelligence in health-
care. The accuracy, robustness, and fairness of diagnostic algorithms depend on
the data (and its quality) used to train and evaluate the models. MI datasets used
to be proprietary, but have become increasingly available to the public, including
on community-contributed platforms (CCPs) like Kaggle or HuggingFace. While
open data is important to enhance the redistribution of data’s public value, we find
that the current CCP governance model fails to uphold the quality needed and
recommended practices for sharing, documenting, and evaluating datasets. In this
paper, we conduct an analysis of publicly available machine learning datasets on
CCPs, discussing datasets’ context, and identifying limitations and gaps in the
current CCP landscape. We highlight differences between MI and computer vision
datasets, particularly in the potentially harmful downstream effects from poor adop-
tion of recommended dataset management practices. We compare the analyzed
datasets across several dimensions, including data sharing, data documentation,
and maintenance. We find vague licenses, lack of persistent identifiers and storage,
duplicates, and missing metadata, with differences between the platforms. Our
research contributes to efforts in responsible data curation and Al algorithms for
healthcare.

1 Introduction

Datasets are fundamental to the fields of machine learning (ML) and computer vision (CV), from
interpreting performance metrics and conclusions of research papers to assessing adverse impacts of
algorithms on individuals, groups, and society. Within these fields, medical imaging (MI) datasets
are especially important to the safe realization of Artificial Intelligence (Al) in healthcare. Although
MI datasets share certain similarities to general CV datasets, they also possess distinctive properties,
and treating them as equivalent can lead to various harmful effects. In particular, we highlight three
properties of MI datasets: (i) de-identification is required for patient-derived data; (ii) since multiple
images can belong to one patient, data splits should clearly differentiate images from each patient; and
(iii) metadata containing crucial information such as demographics or hospital scanner is necessary,
as models without this information could lead to inaccurate and biased results.

In the past, MI datasets were frequently proprietary, confined to particular institutions, and stored
in private repositories. In this particular setting, there is a pressing need for alternative models of
data sharing, documentation, and governance. Within this context, the emergence of Community-
Contributed Platforms (CCPs) presented a potential for the public sharing of medical datasets.
Nowadays, more MI datasets have become publicly available and are hosted on open platforms such
as grand—challengeﬂ or CCP - including companies like Kaggle or HuggingFace.

'https://grand-challenge.org

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.
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Figure 1: A Medical Imaging (MI) dataset containing images, labels, metadata (patient id, patient
sex, etc.), and license (left). After user interaction, on Community-Contributed Platforms we find
duplicated data, missing licenses and metadata, which can lead to overoptimistic results (right).

Community-Contributed Platform

Although the increasing availability of MI datasets is generally an advancement for sharing and adding
public value, it also presents several challenges. First, according to the FAIR (Findable, Accessible,
Interoperable, Reusable) guiding principles for scientific data management and stewardship [122],
(meta)data should be released with a clear and accessible data usage license and should be permanently
accessible. Second, tracking dataset versions is becoming increasingly difficult, especially when
publications use derived versions [89] or the citation practices are not followed [109]. This hampers
the analysis of usage patterns to identify possible ethical concerns that might arise after releasing
a dataset [33]], potentially leading to its retraction [89, [60]. To mitigate the harms associated with
datasets, ongoing maintenance, and stewardship are necessary [89]. Lastly, rich documentation
is essential to avoiding over-optimistic and biased results [[15} |68} [32] [125] [86], attributed to a
lack of meta-data in MI datasets, such as information linking images to specific patients and their
demographics. Documentation needs to reflect all the stages in the dataset development cycle,
such as acquisition, storage, and maintenance [51} 40]. Although CCPs offer ways to enhance
the redistribution of data’s public value and alleviate some of these problems providing structured
summaries, we find that the current CCP governance model fails to uphold the quality needed and
recommended practices for sharing, documenting, and evaluating MI datasets.

In this paper, we investigate MI datasets hosted on CCPs, particularly how they are documented,
shared, and maintained. First, we provide relevant background information, highlighting the dif-
ferences between open MI and CV datasets, especially in the potential for harmful downstream
effects of poor documentation and distribution practices (Section 2.I). Second, we present key
aspects of data governance in the context of ML and healthcare, specifically affecting MI datasets
(Section[2.2)). Third, we analyze access, quality and documentation of 30 popular datasets hosted on
CCPs (10 medical, 10 computer vision, and 10 natural language processing). We find issues across
platforms related to vague licenses, lack of persistent identifiers and storage, duplicates, and missing
metadata (Section [3). We discuss the limitations of the current dataset management practices and
data governance on CCPs, provide recommendations for MI datasets, and conclude with a discussion
of limitations of our work and open questions (Section ).

2 Background

2.1 Characteristics of medical imaging datasets

Anatomy of a medical imaging dataset. A MI dataset begins with a collection of images from
various imaging modalities, such as X-rays, magnetic resonance imaging (MRI), computed tomog-
raphy (CT) scans, and others. The scans are often initially captured for a clinical purpose, such as
diagnosis or treatment planning, and are associated with a specific patient and their medical data.
The scans might undergo various processing steps, such as denoising, registration (aligning different
scans together), or segmentation (delineating anatomical structures or pathologies). Clinical experts
might then associate the scans with additional information, e.g., free text reports or diagnostic labels.
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A collection of scans and associated annotations, i.e., a MI dataset, might be later used for the purpose
of training and evaluating ML models supporting the work of medical professionals [[133} [115].
However, before a dataset is “ready” for ML, further steps are required [123]], including cleaning
(for example, removing scans that are too blurry), sampling (for example, only selecting scans with
a particular disease), and removing identifying patient information. Additional annotations, not
collected during clinical practice, may be required to train ML models, e.g., organ delineations for
patients not undergoing radiotherapy. These annotations might be provided by clinical experts, PhD
students, or paid annotators at tech companies.

Not just “small computer vision”! While MI datasets share some similarities with general CV
datasets, they also have unique properties. The diversity of image modalities and data preprocessing
needed for each specific application is vast. For instance 3D images from modalities like MRI can
vary significantly depending on the sequence used. For example, brain MRI sequences (T1-weighted,
T2, FLAIR, etc.), are designed to emphasize different brain structures, offering specific physiological
and anatomical details. Whole-slide images of histopathology are extremely large (gigapixel) images,
making preprocessing both challenging and essential for accurate analysis. A crucial part of this
process is stain normalization, which standardizes color variations caused by different staining
processes, ensuring consistency across slides for more reliable analysis and comparison [29]. We
refer interest readers in knowing more about preparing MI data of different modalities for ML for
example to [123}167]].

Nevertheless, the complexity of medical image data above is often reduced to a collection of ML-
library-ready images and labels. Yet treating MI datasets as equivalent to benchmark CV datasets is
problematic and leads to harmful effects, also termed data cascades by [102l]. Data cascades can
lead to degraded model performance, reinforce biases, increase maintenance costs, and reduce trust
in Al systems. These problems often stem from poor data quality, lack of domain expertise, and
insufficient documentation, which become increasingly difficult to correct once models are deployed.

First, unlike traditional CV datasets, medical images often require de-identification processes to
remove personally identifiable data, which are more complex than complete anonymization. Certain
attributes like sex and age, need to be preserved for clinical tasks. These attributes are typically
included in an “original release” of MI datasets, they might be removed later in a dataset’s lifecycle.
For example, when medical datasets are shared on CCPs, often only the input desired by ML
practitioners remains: inputs (images) and outputs (disease labels), as shown in Figure|[I]

Second, MI datasets often include multiple images associated with a single patient. This can occur
if a patient has multiple skin lesions, follow-up chest X-rays, or 3D scans split into 2D images. If
images from the same patient end up in both training and test data, reported results may be overly
optimistic as classifiers memorize patients rather than disease characteristics. Therefore, data splitting
at the patient level is crucial to avoid model overfitting. While this practice is common in the MI
community, it may be overlooked if datasets are simply shared as a general CV dataset.

Third, MI datasets should contain metadata about patient demographics. Several studies have shown
how demographic data may alleviate systematic biases and impact disease classification performance
in chest X-rays [68] [106] and skin lesions [4]. These datasets are often the subject of research on bias
and fairness because they include variables for age and sex or gender (typically not described which).
However, many MI datasets lack these variables, possibly due to removal in a ML-ifying step rather
than actual anonymization. Unlike CV datasets where bias can be identified by annotating individuals
in the images based on their gender expression [131]], such information is often unrecoverable from
medical images. Additionally, images may be duplicated; see, e.g., [20] for an analysis of the ISIC
datasets, with overlaps between versions and duplication of cases between training and test sets.

Finally, MI datasets should include metadata about the origin of scans. Lack of such data may lead to
“shortcuts” and other systematic biases. For example, if disease severity correlates with the hospital
where the scans were made (general vs. cancer clinic), a model might learn the clinic’s scanner
signature as a shortcut for the disease [27]]. In other words, the shortcut is a spurious correlation
between an artifact in the image and the diagnostic label. Some examples of shortcuts include patient
position in COVID-19 [32], chest drains in pneumothorax classification [86} 57], or pen marks in
skin lesion classification [125} 15 26]. High overall performance can hide biases in benchmark
evaluations serving underrepresented groups. This cannot be detected without appropriate metadata.
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Evolution of MI datasets. Historically, MI datasets were often proprietary, limited to specific
institutions, and held in private repositories. Due to the privacy concerns and high cost associated
with expert annotations, the sizes of MI datasets were quite small, often in the tens or hundreds of
patients, which limited the use of machine learning techniques. Over the years some datasets have
become publicly available and increased in size, for example, INBreast [82] and LIDC-IDRI [§]]
with thousands, and some even with tens or hundreds of thousands of patients, like chest X-ray
datasets (NIH-CXR 14 [118]], MIMIC-CXR [38]], CheXpert [52]), and skin lesions datasets (ISIC
[22,126]). To augment the dataset’s size and alleviate the high cost of annotation, dataset creators used
NLP techniques to automatically extract labels from medical reports, at the expense of annotation
reliability [85]). Lately, advancements in large language models have redirected the attention of the
MI community towards multi-modal models with both text and images. MI datasets are increasingly
used to benchmark general ML and CV research.

Next to unreliable annotations, publicly available MI datasets have increasingly exhibited biases
and spurious correlations or shortcuts. For example, several studies have shown differences in
the performance of disease classification in chest X-rays [68 [106]] and skin lesions [4] according
to patient demographics. Spurious correlations could also bias results, like chest drains affecting
pneumothorax classification [86} 57]], or pen marks influencing skin lesion classification [125}[15].

Thus, MI datasets need to be updated, similar to ML datasets which may be audited or retracted
[89,160, 133]]. These practices are currently not formalized. Even tracking follow-up work on specific
datasets is challenging due to the lack of stable identifiers and proper citations [109]. Data citation is
crucial for making data findable and accessible, offering persistent and unique identifiers along with
metadata [46| 23]]. Instead, datasets are often referenced by a mix of names or URLSs in footnotes.
When datasets are updated, it often occurs informally. For instance, the LIDC-IDRI website uses red
font size to signal errors and updated labels, while the NIH-CXR 14 website hosts derivative datasets
and job announcements. There exist some systematic reviews of MI datasets [31,|119, [72], however,
this is not a common practice. Furthermore, changes to datasets cannot be captured with traditional
literature-based reviews.

2.2 Data management practices in the medical imaging context

Data governance, documentation, and data hosting practices. Data governance is a nebulous
concept with evolving definitions that vary depending on context [6]. Some definitions relate to
strategies for data management [6], others to formulation and implementation of data stewards’
responsibilities [30]]. The goals of data governance are ensuring the quality and proper use of data,
meeting compliance requirements, and helping utilize data to create public value [54]]. In the context
of research data, a relevant initiative is the FAIR guiding principles for scientific data management
and stewardship [122]]. These principles ensure that data is findable, easily located by humans and
computers with unique identifiers and rich metadata; accessible, retrievable using standard protocols;
interoperable, i.e. it uses shared, formal languages and standards for data and metadata; reusable,
clearly licensed, well-documented, and meeting community standards for future use. The CARE
principles for Indigenous data governance [19] complement FAIR, ensuring that data practices respect
Indigenous sovereignty and promote equitable outcomes.

At this point there are multiple studies proposing and discussing data governance models for the ML
community and its various subfields [54, 165, 181} 55]. For example, a model proposed for radiology
data in [81] is based on the principles of stewardship, ownership, policies, and standardsﬂ A relevant
line of research is the efforts by ML researchers raising awareness about the importance of dataset
documentation and proposing guidelines, frameworks, or datasheets [48) 12,194,140, 34} 51]]. Despite
the existence of many excellent data governance and documentation proposals, the challenge lies
in the implementation of their principles. One of the most common ways to share and manage ML
datasets is for the developers to host data themselves upon release, often on platforms like GitHub

2Stewardship considers accountability for data management and involves establishing roles and responsi-
bilities to ensure data quality, security, and protection. Ownership identifies the relationship between people
and their data and is distinct from stewardship in that the latter maintains ownership by accountable institutions.
Policies: considers organizational rules and regulations overseeing data management. These rules are, for
example, to protect data from unauthorized access or theft, as well as to consider the impact of data, ethics, and
legal statutes. Standards: specific criteria and rules informing proper handling, storage, and maintenance of data
throughout its lifecycle.
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or personal websites. Coupled with the lack of agreement on which data governance principles
should be implemented, this means the lack of standardization and consistent implementation of any
data governance frameworks. Another common solution is to host data on CCPs such as Kaggle or
HuggingFace. CCPs resemble a centralized structure, but they heavily rely on user contributions for
both sourcing datasets and governance. For example, while HuggingFace developed the infrastructure
for providing data sheets and model cards, this is not enforced, and many models or datasets are
uploaded with minimal or no documentation as we show in this paper. In theory, Wikimedia sets a
precedent for some standardization in a highly collaborative and largely self-regulated project [37]],
but data documentation is a more challenging task for someone other than the original contributor,
and it is unfortunately also a less rewarded and prestigious task in the ML community [102].

Data governance for healthcare data. Health data is considered a high-risk domain due to the
sensitive and personal nature of the information it contains. Thus, releasing MI datasets poses
regulatory, ethical, and legal challenges, related to privacy and data protection [97]. Furthermore,
patient demographics could include information about vulnerable populations such as children [81]],
or underrepresented or minority groups, including Indigenous peoples [45]]. To take into account
underrepresented populations and ensure transparency, ML researchers entering medical applications
should adhere to established healthcare standards. These include data standards like FHIRP|[9], which
allows standardized data access using REST architectures and JSON data formats. Additionally, they
should follow standard reporting guidelines such as TRIPO]f_f] [24] and CON SORTE] [[103]], which
are now being adapted for ML applications [10l 25]. These guidelines set reasonable standards for
transparent reporting and help communicate the analysis method to the scientific community. Various
guidelines exist for preparing datasets for ML [123]], including the FUTURE-ALI principles [71]],
which aim to foster the development of ethically trustworthy Al solutions for clinical practice.

A key challenge in MI, as in ML in general, is the sparsity of consistent implementation of data
governance principles. For example, Datasheets [40] was adopted for CheXpert in [39], but such
practices remain uncommon, as our study shows. Besides the common CCPs and self-hosting options
discussed above, some MI datasets are also hosted on platforms like grand-challenges, Zenodo [36],
Physionet [44], and Open Science Framework [38]]. Of these platforms, only Physionet consistently
collects detailed documentation for the datasets. These platforms are not integrated into the commonly
used ML libraries and hence tend to be less well-known in the ML community.

3 Findings

Study setup. We aim to promote better practices in the context of MI datasets. For that, we
investigate dataset sharing, documentation, and hosting practices for the 30 most cited CV, NLP, and
MI datasets by selecting top-10 datasets for each field by querying Papers with Code with “Images”,
“Text”, and “Medical” in the Modality field. We include CV and NLP in the comparison because
MI is often inspired by these other ML areas, and is where data governance have recently received
more attention. We were expecting to find MI datasets like BraTs [80], ACDC [13]], etc. in the list,
since we thought they are commonly used, but we decided to leverage Papers with Code to retrieve
datasets in a systematic way. In Table[} we show the original source where each dataset is hosted, the
distribution terms (for use, sharing, or access), the license, and other platforms where the datasets can
be found. In particular, we investigate dataset distribution on CCPs such as Kaggle and HuggingFace
(HF), and regulated platforms (RP) such as Tensorflow (TF), Keras, and PyTorch. Furthermore,
we analyze the Kaggle and HuggingFace datasets by automatically extracting the documentation
elements associated with each dataset using their APIs. We obtain the parameters in data cards as
specified in their dataset creation guides [[1} [3]].

Lack of persistent identifiers, storage, and clear distribution terms. In Table[I} we observe that
CV and NLP datasets are mostly hosted on authors or university websites. This is not aligned with the
FAIR guiding principles. In contrast, MI datasets are hosted on a variety of websites: university, grand-
challenge, or PhysioNet. We find some examples of datasets that follow the FAIR principles [122],
like HAM10000 with a persistent identifier, or MIMIC-CXR stored in PhysioNet [44]], which offers

3FHIR: Fast Health Interoperability Resources
“TRIPOD: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis
>CONSORT: Consolidated Standards of Reporting Trials
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ccp RP
Dataset Original hosting source Distribution ~ terms  License Please o o o 2 =
(use, access, sharing) cite this B T = 5 g
paper V] M =}
&
1 CIFAR-10 [63 cs.toronto.edu/kriz/cifar.html Unspecified Yes v v’ v v N
2 ImageNet [101 image-net.org Terms of access Unspecified Yes v’ N v’ v’
3 CIFAR-100 [63 cs.toronto.edu/kriz/cifar.html Unspecified Yes v’ NG v’ v v’
4 MNIST [70 yann.lecun.com/exdb/mnist/ Unspecified Yes v’ v’ v’ v’ v’
5 SVHN [83 ufldl.stanford.edu/housenumbers/ Unspecified Yes v’ N v’ v’
6 CelebA |75 mmlab.ie.cuhk.edu.hk/projects/CelebA.html Agreement Unspecified Yes v’ N v’ v’
7 Fashion-MNIST [126 github.com/zalandoresearch/fashion-mnist o MIT Yes v’ v’ v’ v’ v’
8 CUB-200-2011 [116: vision.caltech.edu/datasets/cub_200_2011/ Unspecified Yes N N N
9 Places [132 places.csail.mit.edu (C), e CC-BY Yes v’ v’ v’
10 STL-10 |21 cs.stanford.edu/ acoates/st110/ Unspecified Yes v’ v’ v’ v’ v’
1 GLUE [117 gluebenchmark.com/ See original datasets Yes v’ v’ v’ v’
2 SST [108 nlp.stanford.edu/sentiment/ Unspecified Yes v’ v’ v’ v’
3 SquAD [96 rajpurkar.github.io/SQuAD-explorer/ o CC-BY-SA 4.0 No v’ v’ v’ v’
4 MultiNLI [124. cims.nyu.edu/sbowman/multinli/ ® Various CC Yes v’ N v’ v’
5 iMDB reviews |77 ai.stanford.edu/amaas/data/sentiment/ Unspecified Yes v’ v’ v’ v’
6 VQA|[Z visualqa.org/ Terms of use (C),® CC-BY Yes v’ v’ v’
7 SNLI |16/ nlp.stanford.edu/projects/snli/ o CC-BY-SA 4.0 Yes v’ v’ v’ v’
8 Visual Genome |62 homes.cs.washington.edu/[...Jvisualgenome e CC-BY 4.0 Yes N v’ v’
9 QNLI gluebenchmark.com/ - derived from SQUAD Unspecified No N v’ v’ v’
10 Natural Questions [64: ai.google.com/research/NaturalQuestions e CC-SA3.0 No v’ v’ v’
1 CheXpert [52 stanfordmlgroup.github.io/competitions/chexpert/  Research Use Unspecified Yes v’ v’
2 DRIVE [L10 ® drive.grand-challenge.org Unspecified No v’
3 fastMRI [59 fastmri.med.nyu.edu Sharing Agreement Unspecified Yes v’
4 LIDC-IDRI [8 e wiki.cancerimagingarchive.net/[...]pageld=[...] TCIA Data Usage e CC-BY-3.0 Yes v’
5 NIH-CXR14 118 nihcc.app.box.com/v/ChestXray-NTHCC Unspecified Yes v’
6 HAMI10000 113 @ dataverse.harvard.edu/[...|persistentld=doi...] Use Agreem. ® CC-BY-NC-4.0 Yes v’ v’
7 MIMIC-CXR [58 @ physionet.org/content/mimic-cxr/2.0.0/ Phys. Use Ag. 1.5.0 @ PhysioNet 1.5.0 Yes v’ v’
8 Kuvasir-SEG |36 datasets.simula.no/kvasir-seg/ Terms of use Unspecified Yes v’ N
9 STARE |49 cecas.clemson.edu/ ahoover/stare/ Unspecified Yes v’
10 LUNA [105' @ lunal6.grand-challenge.org o CC-BY-4.0-DEED Yes v’

Table 1: Original hosting source, distribution terms, license, and alternative hosting platforms for
the top-10 datasets from Papers with Code for the modality “Images” (top), “Text” (middle), and
“Medical” (bottom). Hosting: 1 author or university website; " open but not permanent access;

@ open and permanent access. License: (1 unspecified; ' copyright; @ MIT, CC or Physionet. CCP:
Community-Contributed Platforms. RP: Regulated Platforms. HF: HuggingFace, TF: TensorFlow.

permanent access to datasets with a Digital Object Identifier (DOI). Without a persistent identifier
and storage, access to the (meta)data is uncertain, which is problematic for reproducibility. Regarding
dataset distribution on other platforms, we observe that CV and NLP datasets are available both on
CCP and RP. This is not the case for MI datasets, which are not commonly accessible on RP, but some
of them are on CCP. A possible reason could be that RPs are mindful of the licensing or distribution
terms of the datasets, or that their infrastructure does not easily accommodate MI datasets.

Licenses or terms of use represent legal agreements between dataset creators and users, yet we
observe in Table [I] (top) that the majority of the most used CV datasets were not released with a clear
license or terms of use. This observation aligns with [76]], who report that over 70% of widely used
dataset hosting sites omit licenses, indicating a significant issue of misattribution. Regarding MI
datasets, we observe in Table[I] (bottom) that less than half of the most used datasets were released
with a license. Even if Papers with Code shows that DRIVE dataset is under a CC-BY-4.0 license,
the dataset creators confirmed to us that they did not specify any license when they released it.

Duplicate datasets and missing metadata on CCPs. We present a case study of “uncontrolled”
spread of skin lesion datasets from the ISIC archive [2], focused on the automated diagnosis of
melanoma from dermoscopic images. These datasets originated from challenges held between 2016
and 2020 at different conferences. Each challenge introduced a new compilation of the archive data,
with potentially overlapping data with previous instances [20]. The ISIC datasets can be downloaded
from their websiteﬂ and depending on the dataset, there are various licenses like CC-0 and CC-BY-
NC, and researchers are requested to cite the challenge paper and/or the original sources of the data
(HAM10000 [113]], BCN20000 [47], MSK [22]).

As of May 2024, there are 27 datasets explicitly related to ISIC on HuggingFace. Some of these
datasets are preprocessed (e.g., cropped images), others provide extra annotations (e.g., segmentation
masks). Kaggle has a whopping 640 datasets explicitly related to ISIC. While the size of the original
ISIC datasets is 38 GB, Kaggle stores 2.35 TB of data (see Figure2). Several highly downloaded ver-
sions (=~13k downloads) lack original sources or license information. This proliferation of duplicate
datasets not only wastes resources but also poses a significant impediment to the reproducibility of

Shttps://challenge.isic-archive.com/data/
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ISIC ISIC on Kaggle

Figure 2: Representation of the storage size for ISIC (skin lesion) datasets. While the ISIC website
hosts a total of 38 GB of data (left), on Kaggle there are a total of 640 datasets related to ISIC (some
preprocessed, other with additional annotations), that sum up to 2.35 TB of data (right). Each block
on the (right) represents a single instance of ISIC-derived dataset on Kaggle. Block size represents
dataset size. Data was retrieved on May 15, 2024.

research outcomes. Besides ISIC, on Kaggle we find other examples of unnecessary duplication of
data, see Table[3]of the Supplementary Material for details.

After this finding about ISIC, we examined several other datasets for duplication. On Kaggle, we find
350 datasets related to BraTS (Brain Tumor Segmentation) [80]], and 24 datasets of INBreast [82]], one
of them with the rephrased description “I’m just uploading here this data as a backup”. Additionally,
there are 10 instances of PAD-UFES-20 (also a skin lesion dataset, one instance actually contains
data from ISIC). The ACDC (Automated Cardiac Diagnosis Challenge) dataset [[13]] consists of MRIs,
while ACDC-LungHP (Automatic Cancer Detection and Classification in Lung Histopathology)
dataset [73] contains histopathological images. On Kaggle, we find an example of a dataset titled
“ACDC lung” that contains cardiac images.

The lack of documentation for all ML, not just MI datasets, hampers tracking their usage, potentially
violates sharing agreements or licenses, and hinders reproducibility. Additionally, due to the charac-
teristics of MI datasets, models trained on datasets missing metadata could result into overoptimistic
performance due to data splits mixing patient data, or bias [68] or shortcuts [86] [125]]. We therefore
reviewed the documentation on the original websites and related papers for the MI datasets, and
found that patient data splits were clearly reported for 6 out of 10 datasets — “clearly reported” means
that a field like “patient_id” was provided for each case. However, tracking whether data splits are
defined at the subject level for duplicates on CCPs is challenging, as the relevant information is not
always in the same location. One must examine the file contents (often requiring downloading the
entire dataset) of each duplicated dataset to determine if a field like “patient_id” is available.

Limited implementation of structured summaries. We find that overall HuggingFace follows a
much more structured and complete documentation than Kaggle, as reflected in their guides [T} 3].
From our list of MI datasets, on HF we find an instance of MIMIC-CXR with no documentation or
reference at all, and other medical datasets (e.g. Alzheimer’s disease or skin cancer classification)
without source citation. We find the lack of source citations for patient-related data deeply concerning.
Kaggle automatically computes usability score, which is associated with the tag “well-documented”
and used for ranking results when searching for a dataset. This score is based on completeness,
credibility, and compatibility, we show detailed information about these parameters in Section [A-T] of
the Supplementary Material. However, we find that even datasets with 100% usability present some
issues. For example, based on our observations, the parameter update frequency from maintenance is
rarely used. However, an option for this parameter is to set it as “never” while still achieving a high
usability score. Details about provenance might be filled in on the data card but may be vague, such
as “uses internet sources”.

We compare the categories analyzed in Kaggle and HuggingFace’s data cards with those in Datasheets
[40]. Despite making various efforts to integrate dataset documentation, such as the recent inclusion
of Croissant [5]], a metadata format designed for ML-ready datasets, we have noticed a prevalent issue:
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many of the documentation fields remain empty. While these platforms strive to provide structured
summaries, the practical outcome often falls short. Overall, we find composition and collection
process are the two fields most represented; motivation of the creation of the dataset is rarely included
in the general description of the dataset; information about preprocessing/cleaning/labeling or about
uses is usually missing. Only for HuggingFace the field task_categories can point to some possible
uses, potentially enabling systematic analysis of a specific task or tag. Kaggle provides a parameter
for maintenance of the dataset, although we have already mentioned its limitations. HuggingFace
does not provide a specific parameter for maintenance but it is possible to track on their website the
history of files and versions. We detail the parameter categorization in Table [2| (Suppl. Material).

4 Discussion

Asymmetry between open data and proprietary datasets. Commercial Al systems in clinical
settings are unlikely to rely solely on open MI datasets for training. They ensure data quality through
agreements or obtaining high-quality medical images [95]. Companies providing proprietary MI
datasets or labeling services handle challenges such as licensing, documentation, and data quality,
offering greater customization and flexibility. Such proprietary datasets remain unaffected by the
mentioned challenges [95[130]. Similarly, [130] have shown how regulatory compliance and internal
organizational requirements, transverse and often define dataset quality.

This asymmetry between the issues of open data and the value offered by proprietary datasets
highlights the shortcomings of publicly available MI data. While open data initiatives like CCPs offer
the potential to redistribute data value for the common good and public interest, the current status of
MI datasets falls short in reliably training high-performing, equitable, and responsible AI models.
Due to these limitations, we suggest rethinking and evaluating open datasets within CCPs through the
concepts of access, quality, and documentation drawing upon the FAIR principles [122]]. We argue
that these concerns need to be accounted for if the MI datasets are to live up to the ideals of open data.

Access to open datasets should be predictable, compliant with open licensing, and persistent.
In this paper, we show that a proper dataset infrastructure (both legal and technical) is crucial for
their effective utilization. Open datasets must be properly licensed to prevent harm to end-users by
models trained on legally ambiguous open data with the potential for bias and unfairness [[104,69].
Moreover, vague licensing pushes the users of open datasets into a legal grey zone [41]]. [28] noticed
such a legal gap in the "inappropriate” use of open Al models and pointed out the danger of their
possible unrestricted and unethical use. To ensure the responsible use of Al models, they envisioned
enforceable licensing. Legal clarity should also span persistent and deterministic storage. The most
popular ML datasets are mostly hosted by established academic institutions. However, the CCPs
host a plethora of duplicated or altered MI datasets. Instead of boosting the opportunities for Al
creators, this abundance may become a hindrance when e.g., developers cannot possibly track changes
introduced between different versions of a dataset. We argue that open data has to be predictably and
persistently accessible under clear conditions and for clear purposes.

Open datasets should be evaluated against the context of real-world use. The understanding of
high-quality data for Al training purposes is constantly evolving [120]. After a thorough evaluation
focused on real-world use, MI datasets, once considered high-quality [52,[118}[22}|113]], were revealed
to contain flaws (chest drains, dark corners, ruler markers, etc.) questioning their clinical usefulness
(86,157, [15L [115]]. Maintaining open datasets is often an endeavor that is too costly for their creators,
resulting in the deteriorating quality of available datasets. Moreover, we showed the prevalence of
information about shortcuts and missing metadata in MI datasets hosted on CCPs. These issues
can reduce the clinical usefulness of developed systems and, in extreme scenarios, potentially cause
harm to the intended beneficiaries. We encourage the MI and other ML communities to expand
the understanding of high-quality data by incorporating rich metadata and emphasizing real-world
evaluations, including testing to uncover biases or shortcuts 86} 43]].

Datasets documentation should be complete and up-to-date. Research has shown that access
to large amounts of data does not necessarily warrant the creation of responsible and equitable
Al models [94]. Instead, it is the connection between the dataset’s size and the understanding
of the work that resulted in the creation of a dataset. This connection is the premise behind the
creation of proprietary datasets designed for use in private enterprises. When that direct connection
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is broken, a fairly common scenario in the case of open datasets, the knowledge of the decisions
taken during dataset creation is lost. Critical data and data science scholars are concerned about the
social and technical consequences of using such undocumented data. Thus, a range of documentation
frameworks were proposed [48], [12, 94, 40, |34} [51]]. Each documentation method slightly differs,
focusing on various aspects of dataset quality. However, their overall goal is to introduce greater
transparency and accountability in design choices. These conscious approaches aim to foster greater
reproducibility and contribute to the development of responsible Al. Unfortunately, as shown in this
paper, the real-world implementation of these frameworks is lacking. Even when a CCP provides a
documentation framework, the content rarely aligns with the frameworks’ principles. CCPs could
take inspiration from PhysioNet [44], which implements checks on new contributions. Any new
submissions are first Vettecﬂ by the editors and may require re-submission if the expected metadata is
not provided. When the supplied documentation does not adhere to the frameworks’ principles, it
fails to fulfill its intended purpose, placing users of open datasets at a disadvantage compared to users
of proprietary datasets. We note that while we talk about completeness of documentation and the
frameworks provide guidelines on what kind of information that might entail, it is not clear how one
would quantify that the documentation is 86% complete in a way that reflects the data stakeholders’
needs and is not merely a box-ticking exercise.

CCPs could benefit from commons-based governance. Data governance can help mitigate the
issues of accountability, fairness, discrimination, and trust. Inspired by the Wikipedia model [37]], we
recommend that CCPs implement norms and principles derived from this commons-based governance
model. We suggest incorporating at least the roles of data administrator, and data steward. We define
the role of data administrator as the first-level of data stewardship, a sanctioning mechanism that
ensures proper (1) licensing, (2) persistent identifiers, and (3) completeness of metadata for open MI
datasets that enter the platform. We define as the second-level of data stewardship, the role of data
steward, who will be responsible for the ongoing monitoring of the (1) maintenance, (2) storage, and
(3) implementation of documentation practices.

Nevertheless, these data stewardship proposals, as a commons-based governance model, need further
exploration within a broader community of CCP practitioners. Recognizing the limited resources
(monetary and/or human labor) in CCP initiatives, we are very careful in suggesting a complex
governance system that would solely rely on the unpaid labor of dataset creators. Instead, we propose
this direction for future applied research to enhance the dataset management and stewardship of MI
datasets on CCP through commons-based approaches. We sincerely hope that more institutions will
support efforts to improve the value of open datasets, which will require additional structural support,
such as permanent and paid roles for data stewards [90].

Initiatives to work on data and improve the data lifecycle. Several fairly recent initiatives aim
to address the overlooked role of datasets like the NeurIPS Datasets and Benchmarks Track or the
Journal of Data-centric Machine Learning Research (DMLR). New develop platforms, like the data
providence explorer [76], help developers track and filter thousands of datasets for legal and ethical
issues, and allow scholars and journalists to examine the composition and origins of popular Al
datasets. Other newly born initiative is Croissant [S]], a metadata format for ML-ready datasets, which
is currently supported by Kaggle, HuggingFace and other platforms. ML and NLP conferences
have started to require ethics statements and various checklists with submissions [14} 18} 98] for
the reviewer use, and even include them in the camera-ready versions of accepted papers [99] to
incentive better documentation. Such checklists typically include questions about data license and
documentation, and they could be extended to help develop the norm of not just sharing, but also
documenting any new data accompanying research papers, or encourage the use of the ‘official’
documented dataset versions.

In the MI context, conferences like MICCAI have incorporated a structured format for challenge
datasets to ensure high-quality data. Initiatives like Project MONAI [[17] introduce a platform to
facilitate collaborative frameworks for medical image analysis and accelerate research and clinical
collaboration. Drawing inspiration from CV, benchmark datasets are now emerging in MI, such as
MedMNIST [127] and MedMNIST v2 [128]. These multi-dataset benchmarks have their pros and
cons. They are hosted on Zenodo, which facilitates version control, provides persistent identifiers,
and ensures proper storage. However, the process of standardizing MI datasets to the CV format
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means they lack details about patient demographics (such as age, gender, and race), information on
the medical acquisition devices used, and other metadata, including patient splits for training and
testing. Recent works have investigated data sharing and citations practices at MICCAI and MIDL
[109], and reproducibility and quality of MIDL public repositories [107].

More insights needed from all people involved. A limitation of our study is that it is primarily
based on our quantitative evidence and our subjective perceptions of the fields and practices we
describe of a limited number of screened datasets, yet the most cited ones. However, a recent study
[129] has quantitatively and qualitatively confirmed our observations about the lack of documentation
for datasets on HuggingFace. However, we did not reach out to Kaggle or HuggingFace. To gain
a better understanding of data curation, maintenance, and re-use practices, it would be valuable
to do a qualitative analysis with MI and ML practitioners to understand their use of datasets. For
example, [[130] is a recent study, based on interviews with researchers from companies and the public
health sector, of how several medical datasets were created. It would be interesting to investigate
how researchers select datasets to work on, looking beyond mere correlations with popularity and
quantitative metrics. We might be able to learn valuable lessons from other communities that we have
not explored in this paper, for example neuroimaging (which might appear to be a subset of medical
imaging, but in terms of people and conferences is a fairly distinct community), where various issues
around open data have been explored [92, 91} 1114} 121,150} [11} |84].

However, we should not forget that understanding research practices around datasets is not just of
relevance to ML and adjacent communities. These datasets have broader importance as these datasets
are affecting people who are not necessarily represented at research conferences, so further research
should involve these most affected groups [[112]. Public participation in data use [42], alternative
data sharing, documenting, and governance models [35] are crucial to addressing power imbalances
and enhancing data’s generation of value as a common good [87, 93| [111]]. Furthermore, neglecting
the importance of recognizing and prioritizing the foundational role of data when working with MI
datasets can lead to downstream harmful effects, such as data cascades [102]. In conclusion, our
observations reveal that the existing CCP governance model falls short of maintaining the necessary
quality standards and recommended practices for sharing, documenting, and evaluating open MI
datasets. Our recommendations aim to promote better data governance in the context of MI datasets
to mitigate these risks and uphold the reliability and fairness of AI models in healthcare.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section[4]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section
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them? [Yes]
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information or offensive content? [Yes] We discuss that medical imaging datasets are
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A Supplementary Material

A.1 Data Cards

Table [2] shows the extracted documentation parameters from Kaggle and HuggingFace, which we
categorized according to Datasheets [40].

On HuggingFace, we find information about the annotation creators (e.g., crowdsource, experts,
ml-generated) or specific task categories (e.g., image-classification, image-to-text, text-to-image).
Such parameters can be used to filter results when searching on HuggingFace, potentially enabling
systematic analysis of a specific task or tag.

On Kaggle, we notice that some important parameters shown in the dataset website such as tempo-
ral and geospatial coverage, data collection methodology, provenance, DOI citation, and update
frequency cannot be automatically extracted with their API, so we manually included them.

Kaggle automatically computes a usability score, which is associated with the tag "well-documented",
and used for ranking results when searching for a dataset. Kaggle’s usability score is based on:

» Completeness: subtitle, tag, description, cover image.
* Credibility: provenance, public noteboook, update frequency.

» Compatibility: license, file format, file description, column description.

The usability score is based on only 4 out of 7 aspects from Datasheets [40].

| Kaggle | HuggingFace
username username
Motivation dataset name dataset name
description description
temporal coverage size categories: n < 1K, 1K <n < 10k, 1M <n < 10M
geospatial coverage language: en, es, hi, ar, ja, zh, ...

dataset info: {image, class_label: bird, cat, deer, frog, ...}
data splits: training, validation

region

version

Composition

data collection method
provenance

source dataset: wikipedia, ...

Collection . .
annotation creators: crowdsourced, found, expert-generated, machine-generated, ...

Preprocessing
cleaning / labeling

Uses task_categories: image-classification, image-to-text, question-answering
task_ids: multi-class-image-classification, extractive-qa, ...
Distribution Iicense.: C‘.:’ gpl, open data commons, ... license: apache-2.0, mit, openrail, cc, ...
DOl citation
Maintenance | update frequency: weekly, never, not specified, ... |
keywords tags
number of views number of likes
Other number of downloads number of downloads in the last month
number of votes arXiv
usability rating

Table 2: Documentation parameters extracted from Kaggle and HuggingFace categorized according
to Datasheets [40], except the last rows (Other). We represent in italic the extracted parameter, and
show examples values for them. We include description in Motivation, although we find that this
parameter can contain any type of dataset information.

A.2 Duplicates on Kaggle

We automatically retrieve all the duplicates for the top-10 listed MI datasets on Kaggle, as well as
some popular datasets (suggested by the reviewers). In Table[3] we show the number of duplicates
on Kaggle, the size of the original dataset, the cumulative size of the duplicates, and information
about the license and description on Kaggle for the duplicates. We query the name of each dataset as
shown in Table 3] except for DRIVE and NIH-CXR14. For NIH-CXR 14, we use “nih chest x-ray”
as query. When querying “DRIVE” (not case-sensitive) we got over 1800 datasets related to cars,
Formula One, and similar topics. To refine results, we applied a case-sensitive filter, retaining only
those with capitalized “DRIVE”. We also queried Kaggle using “drive retina” and found 13 datasets,
of which only 5 were new when compared to our filtered query. Combining the two set of results, we
identified 41 duplicates.
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Dataset Duplicates Size License Description
Original Kaggle (%) types (%)
CheXpert [52] 47 440.0 GB® 342.1GB | 19.1 4 10.6
DRIVE [110] 34 30.1 MB 11.7GB | 265 5 85.3
fastMRI [59] 8 6.3TB 2152GB | 625 3 25.0
LIDC-IDRI [§] 437 69.0GB 539.7GB | 209 6 18.6
NIH-CXR14 [118] 47 420GB 654.6 GB | 59.6 5 97.9
HAM10000 [113] 141 30GB 4684GB | 426 11 26.9
MIMIC-CXR [58]] 13 554.2 GB 62.1 GB | 46.2 4 23.1
Kvasir-SEG [56] 51 66.9 MB 87GB | 41.2 4 15.7
STARE [49] 10 504.4 MB 11.9GB | 30.0 2 40.0
LUNA [105]] 46 66.7GB 585.6 GB | 19.6 3 10.9
BraTs [80] 383 51.5 GBS 73TB | 30.0 9 924
ACDC [13] 28 23GB 127.7GB | 28.6 5 14.3
ADNI [53] 70 N/AY 803.3GB | 57.1 4 40.0
OASIS [611 166, (78] [79] 53 34.5GBY  657.7GB | 56.6 3 15.1

Table 3: Information of the medical imaging dataset duplicates on Kaggle: number of duplicates; size
of the original dataset and the storage on Kaggle; license information of the duplicates, percentage
reported and different types of licenses; percentage of descriptions from duplicates that contain
any text. “CheXpert dataset is 440 GB, however the 11 GB subset is the most commonly used and
reshared. "We do not count LUNA duplicates for LIDC-IDRI. ¥BraTS datasets originated from
challenges (2012-2022). These datasets are hosted at different websites and we couldn’t retrieve their
total size, dataset size is estimated from BraTS 2023. YThe size details of the ADNI dataset were not
readily available. We submitted an “ADNI Use Application” request but did not receive access in
time. TOASIS dataset have 4 series, however, we only had access to the size information of OASIS-1
and OASIS-2, so the size estimation is based on these two series. We highlight in boldface when the
cumulative size on Kaggle is larger than the original size. Data was collected in October, 2024.

We review each list and eliminate duplicates that are not relevant due to ambiguity, such as music
datasets for OASIS. Some datasets were difficult to disambiguate because they contained no descrip-
tions and provided compressed information (e.g., npy files). We also found pretrained models listed
under the dataset category. We decided to keep the examples we could not disambiguate and the
pretrained models, as they were only a few. We keep duplicates that are aggregation of datasets, e.g.
one instance groups together 3 different datasets for Alzheimer’s, Parkinson’s and “normal”’, which
can cause data leakage [100]. LUNA was a challenge dataset created after LIDC-IDRI. We do not
count LUNA-16 duplicates as duplicates of LIDC-IDRI, we only consider them for LUNA.
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