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Abstract

Despite the recent popularity of attention-based neural architectures in core AI
fields like natural language processing (NLP) and computer vision (CV), their po-
tential in modeling complex physical systems remains under-explored. Learning
problems in physical systems are often characterized as discovering operators that
map between function spaces based on a few instances of function pairs. This task
frequently presents a severely ill-posed PDE inverse problem. In this work, we
propose a novel neural operator architecture based on the attention mechanism,
which we coin Nonlocal Attention Operator (NAO), and explore its capability to-
wards developing a foundation physical model. In particular, we show that the at-
tention mechanism is equivalent to a double integral operator that enables nonlocal
interactions among spatial tokens, with a data-dependent kernel characterizing the
inverse mapping from data to the hidden parameter field of the underlying operator.
As such, the attention mechanism extracts global prior information from training
data generated by multiple systems, and suggests the exploratory space in the form
of a nonlinear kernel map. Consequently, NAO can address ill-posedness and rank
deficiency in inverse PDE problems by encoding regularization and achieving gen-
eralizability. We empirically demonstrate the advantages of NAO over baseline
neural models in terms of generalizability to unseen data resolutions and system
states. Our work not only suggests a novel neural operator architecture for learning
interpretable foundation models of physical systems, but also offers a new perspec-
tive towards understanding the attention mechanism. Our code and data accompa-
nying this paper are available at https://github.com/fishmoon1234/NAO.

1 Introduction
The interpretability of machine learning (ML) models has become increasingly important from the
security and robustness standpoints [Rudin et al., 2022, Molnar, 2020]. This is particularly true in
physics modeling problems that can affect human lives, where not only the accuracy but also the
transparency of data-driven models are essential in making decisions [Coorey et al., 2022, Ferrari
and Willcox, 2024]. Nevertheless, it remains challenging to discover the underlying physical system
and the governing mechanism from data. Taking the material modeling task for instance, given that
only the deformation field is observable, the goal of discovering the underlying material parame-
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ter field and mechanism presents an ill-posed unsupervised learning task. That means, even if an
ML model can serve as a good surrogate to predict the corresponding loading field from a given
deformation field, its inference of the material parameters can still drastically deteriorate.
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Figure 1: Illustration of NAO’s architecture.

To discover an interpretable mechanism for phys-
ical systems, a major challenge is to infer the
governing laws of these systems that are often
high- or infinite-dimensional, from data that are
comprised of discrete measurements of continu-
ous functions. Therefore, a data-driven surrogate
model needs to learn not only the mapping be-
tween input and output function pairs, but also the
mapping from given function pairs to the hidden
state. From the PDE-based modeling standpoint,
learning a surrogate model corresponds to a for-
ward problem, whereas inferring the underlying
mechanism is an inverse problem. The latter is generally an enduring ill-posed problem, especially
when the measurements are scarce. Unfortunately, such an ill-posedness issue may become even
more severe in neural network models, due to the inherent bias of neural network approximations
[Xu et al., 2019]. To tackle this challenge, many deep learning methods have recently been proposed
as inverse PDE solvers [Fan and Ying, 2023, Molinaro et al., 2023, Jiang et al., 2022, Chen et al.,
2023]. The central idea is to incorporate prior information into the learning scheme, in the form of
governing PDEs [Yang et al., 2021, Li et al., 2021], regularizers [Dittmer et al., 2020, Obmann et al.,
2020, Ding et al., 2022, Chen et al., 2023], or additional operator structures [Uhlmann, 2009, Lai
et al., 2019, Yilmaz, 2001]. However, such prior information is often either unavailable or problem-
specific in complex systems. As a result, these methods can only solve the inverse problem for a
particular system, and one has to start from scratch when the system varies (e.g., when the material
of the specimen undergoes degradation in a material modeling task).

In this work, we propose Nonlocal Attention Operator (NAO), a novel attention-based neural op-
erator architecture to simultaneously solve both forward and inverse modeling problems. Neural
operators (NOs) [Li et al., 2020a,c] learn mappings between infinite-dimensional function spaces in
the form of integral operators, hence they provide promising tools for the discovery of continuum
physical laws by manifesting the mapping between spatial and/or spatiotemporal data; see You et al.
[2022], Liu et al. [2024a,b, 2023], Ong et al. [2022], Cao [2021], Lu et al. [2019, 2021], Goswami
et al. [2022], Gupta et al. [2021] and references therein. However, most NOs focus on providing
an efficient surrogate for the underlying physical system as a forward solver. They are often em-
ployed as black-box universal approximators but lack interpretability of the underlying physical
laws. In contrast, the key innovation of NAO is that it introduces a kernel map based on the atten-
tion mechanism for simultaneous learning of the operator and the kernel map. As such, the kernel
map automatically infers the context of the underlying physical system in an unsupervised manner.
Intuitively, the attention mechanism extracts hidden knowledge from multiple systems by providing
a function space of identifiability for the kernels, which acts as an automatic data-driven regularizer
and endows the learned model’s generalizability to new and unseen system states.

In this context, NAO learns a kernel map using the attention mechanism and simultaneously solves
both the forward and inverse problems. The kernel map, whose parameters extract the global infor-
mation about the kernel from multiple systems, efficiently infers resolution-invariant kernels from
new datasets. As a consequence, NAO can achieve interpretability of the nonlocal operator and
enable the discovery of hidden physical laws. Our key contributions include:

• We bridge the divide between inverse PDE modeling and physics discovery tasks, and
present a method to simultaneously perform physics modeling (forward PDE) and mecha-
nism discovery (inverse PDE).

• We propose a novel neural operator architecture NAO, based on the principle of contextual
discovery from input/output function pairs through a kernel map constructed from multiple
physical systems. As such, NAO is generalizable to new and unseen physical systems, and
offers meaningful physical interpretation through the discovered kernel.

• We provide theoretical analysis to show that the attention mechanism in NAO acts to pro-
vide the space of identifiability for the kernels from the training data, which reveals its
ability to resolve ill-posed inverse PDE problems.
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• We conduct experiments on zero-shot learning to new and unseen physical systems, demon-
strating the generalizability of NAO in both forward and inverse PDE problems.

2 Background and related work
Our work resides at the intersection of operator learning, attention-based models, and forward and
inverse problems of PDEs. The ultimate goal is to model multiple physical systems from data while
simultaneously discovering the hidden mechanism.

Neural operator for hidden physics. Learning complex physical systems directly from data is ubiq-
uitous in scientific and engineering applications [Ghaboussi et al., 1998, Liu et al., 2024c, Ghaboussi
et al., 1991, Carleo et al., 2019, Karniadakis et al., 2021, Zhang et al., 2018, Cai et al., 2022, Pfau
et al., 2020, He et al., 2021, Besnard et al., 2006]. In many applications, the underlying govern-
ing laws are unknown, hidden in data to be revealed by physical models. Ideally, these models
should be interpretable for domain experts, who can then use these models to make further predic-
tions and expand the understanding of the target physical system. Also, these models should be
resolution-invariant. Neural operators are designed to learn mappings between infinite-dimensional
function spaces [Li et al., 2020a,b,c, You et al., 2022, Ong et al., 2022, Cao, 2021, Lu et al., 2019,
2021, Goswami et al., 2022, Gupta et al., 2021]. As a result, NOs provide a promising tool for the
discovery of physical laws by manifesting the mapping between spatial and/or spatio-temporal data.

Forward and inverse PDE problems. Most current NOs focus on providing an efficient surrogate
for the underlying physical system as a forward PDE solver. They are often employed as black-
box universal approximators without interpretability of the underlying physical laws. Conversely,
several deep learning methods have been proposed as inverse PDE solvers [Fan and Ying, 2023,
Molinaro et al., 2023, Jiang et al., 2022, Chen et al., 2023], aiming to reconstruct the parameters
in the PDE from solution data. Compared to the forward problem, the inverse problem is typically
more challenging due to its ill-posed nature. To tackle the ill-posedness, many NOs incorporate
prior information, in the form of governing PDEs [Yang et al., 2021, Li et al., 2021], regularizers
[Dittmer et al., 2020, Obmann et al., 2020, Ding et al., 2022, Chen et al., 2023], or additional operator
structures [Uhlmann, 2009, Lai et al., 2019, Yilmaz, 2001]. To our knowledge, our NO architecture
is the first that solves both the forward (prediction) and inverse (discovery) problems simultaneously.

Attention mechanism. Since 2017, the attention mechanism has become the backbone of state-of-
the-art deep learning models on many core AI tasks like NLP and CV. By calculating the similarity
among tokens, the attention mechanism captures long-range dependencies between tokens [Vaswani
et al., 2017]. Then, the tokens are spatially mixed to obtain the layer output. Based on the choice of
mixers, attention-based models can be divided into three main categories: discrete graph-based atten-
tions [Child et al., 2019, Ho et al., 2019, Wang et al., 2020, Katharopoulos et al., 2020], MLP-based
attentions [Tolstikhin et al., 2021, Touvron et al., 2022, Liu et al., 2021], and convolution-based atten-
tions [Lee-Thorp et al., 2021, Rao et al., 2021, Guibas et al., 2021, Nekoozadeh et al., 2023]. While
most attention models focus on discrete mixers, it is proposed in Guibas et al. [2021], Nekoozadeh
et al. [2023], Tsai et al. [2019], Cao [2021], Wei and Zhang [2023] to frame token mixing as a kernel
integration, with the goal of obtaining predictions independent of the input resolution.

Along the line of PDE-solving tasks, various attention mechanisms have been used to enlarge model
capacity. To improve the accuracy of forward PDE solvers, Cao [2021] removes the softmax nor-
malization in the attention mechanism and employs linear attention as a learnable kernel in NOs.
Further developments include the Galerkin-type linear attention in an encoder-decoder architecture
in OFormer [Li et al., 2022], a hierarchical transformer for learning multiscale problems [Liu et al.,
2022], and a heterogeneous normalized attention with a geometric gating mechanism [Hao et al.,
2023] to handle multiple input features. In particular, going beyond solving a single PDE, the foun-
dation model feature of attention mechanisms has been applied towards solving multiple types of
PDEs within a specified context in Yang and Osher [2024], Ye et al. [2024], Sun et al. [2024], Zhang
[2024]. However, none of the existing work discovers hidden physics from data, nor do they discuss
the connections between the attention mechanism and the inverse PDE problem.
3 Nonlocal Attention Operator
Consider multiple physical systems that are described by a class of operators mapping from input
functions u ∈ X to output functions f ∈ Y. Our goal is to learn the common physical law, in the
form of operators LK : X → Y with system-dependent kernels K:

LK [u] + ϵ = f. (1)
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Here X and Y are Banach spaces, ϵ denotes an additive noise describing the discrepancy between the
ground-truth operator and the optimal surrogate operator, and K is a kernel function representing
the nonlocal spatial interaction. As such, the kernel provides the knowledge of its corresponding
system, while (1) offers a zero-shot prediction model for new and unseen systems.

To formulate the learning, we consider ntrain training datasets from different systems, with each
dataset containing du function pairs (u, f):

Dtr = {{(uη
i (x), f

η
i (x))}

du
i=1}

ntrain
η=1 . (2)

In practice, the data of the input and output functions are on a spatial mesh {xk}nx

k=1 ⊂ Ω ⊂ Rdx .
The ntrain models with kernels {Kη}ntrain

η=1 correspond to different material micro-structures or
different parametric settings. As a demonstration, we consider models for heterogeneous materials
with operators in the form

LK [u](x) =

∫
Ω

K(x, y)g[u](y)dy, x ∈ Ω, (3)

where g[u](y) is a functional of u determined by the operator; for example g[u](y) = u(y) in
Section 5.3. Our approach extends naturally to other forms of operators, such as those with ra-
dial interaction kernels in Section 5.1 and heterogeneous interaction in the form of LK [u](x) =∫
Ω
K(x, y)g[u](x, y)dy. Additionally, for simplicity, we consider scalar-valued functions u and f

and note that the extension to vector-valued functions is trivial.

Remark: Such an operator learning problem arises in many applications in forward and inverse
PDE-solving problems. The inference of the kernel K is an inverse problem, and the learning of the
nonlocal operator is a forward problem. When considering a single physical system and taking K in
(3) as an input-independent kernel, classical NOs can be obtained for forward PDE-solving tasks [Li
et al., 2020c, Guibas et al., 2021] and governing law learning tasks [You et al., 2021, Jafarzadeh et al.,
2024]. Different from existing work, we consider the operator learning across multiple systems.

3.1 Kernel map with attention mechanism
The key ingredient in NAO is a kernel map constructed using the attention mechanism. It maps from
data pairs to an estimation of the underlying kernel. The kernel map

{(ui, fi)}du
i=1 → K[u1:d, f1:d; θ] (4)

has parameters θ estimated from the training dataset (2). As such, it maps from the token (u1:d, f1:d)

of the dataset {(ui, fi)}du
i=1 to a kernel estimator, acting as an inverse PDE solver.

A major innovation of this kernel map is its dependence on both u and f through their tokens. Thus,
our approach distinguishes itself from the forward problem-solving NOs in the related work section,
where the attention depends only on u.

We first transfer the data {(ui, fi)}du
i=1 to tokens (u1:d, f1:d) according to the operator in (3) by

u1:d = (u1, . . . ,ud) =
(
g[uj ](yk)

)
1≤j≤d,1≤k≤N

∈ RN×d,

f1:d = (fj(xk))1≤j≤d,1≤k≤N ∈ RN×d,
(5)

where d = du and N = nx, assuming that g[u] has a spatial mesh {yk = xk}Nk=1.

Then, our discrete (L+ 1)-layer attention model for the inverse PDE problem writes:

Xin = X(0) = (U (0),F (0)) := (u1:d; f1:d) ∈ R2N×d,

X(l) = Attn[X(l−1); θl]X
(l−1) +X(l−1) =: (U (l),F (l)) ∈ R2N×d, 1 ≤ l < L,

Xout = XL = K[u1:d, f1:d; θ]u1:d ≈ f1:d ∈ RN×d.

(6)

Here, θl = (WQ
l ∈ Rd×dk ,WK

l ∈ Rd×dk) and the attention function is

Attn[X; θl] = σ

(
1√
dk

XWQ
l WK

l

⊤
X⊤

)
∈ R2N×2N .

The kernel map is defined as

K[u1:d, f1:d; θ] = WP,uσ

(
1√
dk

(U (L−1))⊤WQ
L (WK

L )⊤U (L−1)

)
+WP,fσ

(
1√
dk

(F (L−1))⊤WQ
L (WK

L )⊤U (L−1)

)
,

(7)

4
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where θ := {WP,u ∈ RN×N ,WP,f ∈ RN×N , {WQ
l ,WK

l }Ll=1} are learnable parameters. Here,
we note that dk only controls the rank bound when lifting each point-wise feature via WQ

l (WK
l )⊤.

In the following, we denote WQK
l := 1√

dk
WQ

l (WK
l )⊤, which characterizes the (trainable) inter-

action of d input function pair instances.

3.2 Nonlocal Attention Operator in continuum limit
As suggested by Cao [2021], we take the activation function σ as a linear operator. Then, noting that
the matrix multiplication in (6) is a Riemann sum approximation of an integral (with a full derivation
in Appendix A), we propose the nonlocal attention operator as the continuum limit of (6):

g
(0)
j (x) := g[uj ](x), f

(0)
j (x) := fj(x),(

g
(l)
j (x)

f
(l)
j (x)

)
=

∫
Ω

K(l)(x, y)

(
g
(l−1)
j (y)

f
(l−1)
j (y)

)
dy +

(
g
(l−1)
j (x)

f
(l−1)
j (x)

)
, 1 ≤ l < L,

LK[u1:d,f1:d;θ][u](x) =

∫
Ω

K[u1:d, f1:d; θ](x, y)g[u](y)dy, (8)

in which the integration is approximated by the Riemann sum in our implementation. Here,

K(l)(x, y) :=

 ∑d
ω,ν=1

(
g
(l−1)
ω (x)WQK

l [ω, ν]g
(l−1)
ν (y)

) ∑d
ω,ν=1

(
g
(l−1)
ω (x)WQK

l [ω, ν]f
(l−1)
ν (y)

)
∑d

ω,ν=1

(
f
(l−1)
ω (x)WQK

l [ω, ν]g
(l−1)
ν (y)

) ∑d
ω,ν=1

(
f
(l−1)
ω (x)WQK

l [ω, ν]f
(l−1)
ν (y)

) 
K[u1:d, f1:d; θ](x, y) :=

d∑
ω,ν=1

∫
Ω

WP,u(x, z)
(
g(L−1)
ω (z)WQK

L [ω, ν]g(L−1)
ν (y)

)
dz

+

d∑
ω,ν=1

∫
Ω

WP,f (x, z)
(
f (L−1)
ω (z)WQK

L [ω, ν]g(L−1)
ν (y)

)
dz.

We learn the parameters θ by minimizing the following mean squared error loss function:

E(θ) := 1

ntrain

ntrain∑
η=1

d∑
i=1

∫
Ω

∣∣∣LK[u
η
1:d

,f
η
1:d

;θ][u
η
i ](x)− fη

i (x)
∣∣∣2dx. (9)

The performance of the model is evaluated on test tasks with new and unseen kernels Dtest =
{(utest

i (x), f test
i (x))}di=1 based on the following two criteria:

Operator (forward PDE) Error: Ef :=
1

d

d∑
i=1

∣∣∣∣∣∣LK[utest
1:d

,ftest
1:d

;θ][u
test
i ](x)− f test

i (x)
∣∣∣∣∣∣

L2(Ω)

||f test
i (x))||L2(Ω)

, (10)

Kernel (inverse PDE) Error: EK :=
∣∣K[utest

1:d , f test1:d ; θ]−Ktest

∣∣
L2(ρ)

/|Ktest|L2(ρ). (11)

Here, L2(ρ) is the empirical measure in the kernel space as defined in Lu et al. [2023]. Note that
θ are trained using multiple datasets. Intuitively speaking, the attention mechanism helps encode
the prior information from other tasks for learning the nonlocal kernel, and leads to estimators
significantly better than those using a single dataset. To formally understand this mechanism, we
analyze a shallow 2-layer NAO in the next section.

4 Understanding the attention mechanism
To facilitate further understanding of the attention mechanism, we analyze the limit of the two-
layer attention-parameterized kernel in (7) and the range of the kernel map, which falls in the space
of identifiability for the kernels from the training data. We also connect the kernel map with the
regularized estimators. For simplicity, we consider operators of the form

LK [u](x) =

∫ δ

0

K(r)g[u](r, x)dr, x ∈ Ω, (12)

which is the radial nonlocal kernel in Sec.5.1.

4.1 Limit of the two-layer attention-parameterized kernel
We show that, as the number N and the spatial mesh nx approach infinity, the limit of the two-layer
attention-parameterized kernel is a double integral. Its proof is in Appendix B.1.

5
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For simplicity, we assume that the dataset in (2) has du = 1 and ntrain = 1 with a uniform mesh
{xj}nx

j=1. We define the tokens by

u1:d = (u1, . . . ,ud) = (g[u](rk, xj))1≤j≤d,1≤k≤N ∈ RN×d, f1:d = (f(xj))1≤j≤d ∈ R1×d,

(13)
where d = nx and {rk}Nk=1 is the spatial mesh for K’s independent variable r ∈ [0, δ].
Lemma 4.1. Consider the two-layer attention model in (6)–(7) with bounded parameters. For
each d and N , let {xj}dj=1 and {rk}Nk=1 be uniform meshes of the compact sets Ω and [0, δ], and let
{Aj}dj=1 be the resulting uniform partition of Ω. Assume that g[u] in (12) is continuous on [0, δ]×Ω.
Then,

lim
N→∞

lim
d→∞

N∑
k=1

K[u1:d, f1:d; θ](rk)1[rk−1,rk)(r)(rk − rk−1)

=K[u, f ](r) :=

∫ δ

0

WP,u(|r′|)σ
(∫ ∫ [

g[u](r′, x)WQK(x, y)g[u](r, y)dxdy
])

dr′

+WP,fσ

(∫ ∫ [
f(x)WQK(x, y)g[u](r, y)

]
dxdy

)
,

(14)

where WQK(x, y) = limd→∞
∑d

j,j′=1 W
QK [j, j′]1Aj×Aj′ (x, y) is the scaled L2(Ω × Ω)

limit of the parameter matrix WQK [j′, j] =
∑dk

l=1 W
Q[j, l] · WK [j′, l] and WP,u(r) =

limN→∞
∑N

k=1 W
P,u[k]1[rk−1,rk)(r).

4.2 Space of identifiability for the kernels
For a given training dataset, we show that the function space in which the kernels can be identified
is the closure of a data-adaptive reproducing kernel Hilbert space (RKHS). This space contains the
range of the kernel map and hence provides the ground for analyzing the inverse problem.
Lemma 4.2 (Space of Identifiability). Assume that the training data pairs in (2) are sampled from
continuous functions {uη

i }
du,ntrain

i,η=1 with a compact support. Then, the function space the loss func-
tion in (9) has a unique minimizer K(s) = K[uη

1:d, f
η
1:d; θ](s) is the closure of a data-adaptive

RKHS HG with a reproducing kernel Ḡ determined by the training data:

Ḡ(r, s) = [ρ′(r)ρ′(s)]−1G(r, s),

where ρ′ is the density of the empirical measure ρ defined by

ρ′(r) :=
1

Z

ntrain∑
η=1

du∑
i=1

∫
Ω

|g[uη
i ](r, x)|dx, (15)

and the function G is defined by G(r, s) :=
1

ntraind

∑ntrain

η=1

∑du

i=1

∫
Ω
g[uη

i ](r, x)g[u
η
i ](s, x)dx.

The above space is data-adaptive since the integral kernel Ḡ depends on data. It characterizes the
information in the training data for estimating the nonlocal kernel K(s) = K[uη

1:d, f
η
1:d; θ](s). In

general, the more data, the larger the space is. On the other hand, note that the loss function’s
minimizer with respect to K(s) is not the kernel map. The minimizer is a fixed estimator for the
training dataset and does not provide any information for estimating the kernel from another dataset.

Comparison with regularized estimators. The kernel map solves the ill-posed inverse problem
using prior information from the training dataset of multiple systems, which is not used in classi-
cal inverse problem solvers. To illustrate this mechanism, consider the extreme case of estimating
the kernel in the nonlocal operator from a dataset consisting of only a single function pair (u, f).
This inverse problem is severely ill-posed because of the small dataset and the need for deconvolu-
tion to estimate the kernel. Thus, regularization is necessary, where two main challenges present:
(i) the selection of a proper regularization with limited prior information, and (ii) the prohibitive
computational cost of solving the resulting large linear systems many times.

In contrast, our kernel map K[u1:d, f1:d; θ](s), with the parameter θ estimated from the training
datasets, acts on the token (u1:d, f1:d) of (u, f) to provide an estimator. It passes the prior infor-
mation about the kernel from the training dataset to the estimation for new datasets. Importantly,

6

113802https://doi.org/10.52202/079017-3613



it captures the nonlinear dependence of the estimator on the data (u, f). Computationally, it can
be applied directly to multiple new datasets without solving the linear systems. In Section B.2, we
further show that a regularized estimator depends nonlinearly on the data pair (u, f). In particular,
similar to Lemma 4.1, there is an RKHS determined by the data pair (u, f). The regularized estima-
tor suggests that the kernel map can involve a component quadratic in the feature g[u], similar to the
limit form of the attention model in Lemma 4.1.

5 Experiments
We assess the performance of NAO on a wide range of physics modeling and discovery datasets.
Our evaluation focuses on several key aspects: 1) we demonstrate the merits of the continuous and
linear attention mechanism, compare the performance with the baseline discrete attention model (de-
noted as Discrete-NAO), the softmax attention mechanism (denoted as Softmax-NAO), NAO with
input on u only (denoted as NAO-u), the convolution-based attention mechanism (denoted as AFNO
[Guibas et al., 2021]), and an MLP-based encoder architecture that maps the datum [u1:d,f1:d] di-
rectly to a latent kernel (denoted as Autoencoder); 2) we measure the generalizability, in particular,
the zero-shot prediction performance in modeling a new physical system with unseen governing
equations, and across different resolutions; 3) we evaluate the data efficiency-accuracy trade-off in
ill-posed inverse PDE learning tasks, as well as the interpretability of the learned kernels. In all
experiments, the optimization is performed with the Adam optimizer. To conduct fair comparison
across different methods, we tune the hyperparameters, including the learning rates, the decay rates,
and the regularization parameters, to minimize the training loss. In all examples, we use 3-layer
models, and parameterize the kernel network WP,u and WP,f with a 3-layer MLP with hidden
dimensions (32, 64) and LeakyReLU activation. Experiments are conducted on a single NVIDIA
GeForce RTX 3090 GPU with 24 GB memory. Additional results and details on data generation and
training strategies are provided in Appendix C.

5.1 Radial kernel learning

Table 1: Test errors and the number of trainable parameters for the radial kernel problem, where bold
numbers highlight the best methods. The small operator errors and large kernel errors of discrete-
NAO highlight the ill-posedness of the inverse problem. NAO overcomes the ill-posedness and
yields resolution-invariant estimators.

Case model #param Operator test error Kernel test error
ID OOD1 ID OOD1

Discrete-NAO 16526 1.33% 25.81% 29.02% 28.80%
Softmax-NAO 18843 13.45% 66.06% 67.55% 85.80%

d = 302, dk=10 AFNO 19605 22.62% 68.76% - -
NAO 18843 1.48% 8.10% 5.40% 10.02%

NAO-u 18842 13.68% 66.68% 20.46% 74.03%
Autoencoder 16424 12.97% 1041.49% 22.56% 136.79%

d = 302, dk=5 Discrete-NAO 10465 1.63% 15.80% 33.21% 30.39%
NAO 12783 2.34% 9.23% 6.87% 14.62%

d = 302, dk=20 Discrete-NAO 28645 1.35% 18.70% 35.49% 30.81%
NAO 30963 1.33% 9.12% 4.63% 9.14%

d = 100, dk=10 Discrete-NAO 8446 1.73% 14.92% 34.52% 35.20%
NAO 10763 1.07% 6.35% 7.41% 17.02%

d = 50, dk=10 Discrete-NAO 6446 2.29% 10.31% 41.80% 45.30%
NAO 8763 1.56% 7.19% 15.95% 29.47%

d = 30, dk=10 Discrete-NAO 5646 5.60% 11.31% 58.24% 64.23%
NAO 7963 2.94% 8.04% 22.65% 33.77%

In this example, we consider the learning of nonlocal diffusion operators, in the form:

Lγη [u](x) =

∫
Ω

γη(|y − x|)[u(y)− u(x)]dy = f(x), ∀x ∈ Ω. (16)

Unlike a (local) differential operator, this operator depends on the function u nonlocally through
the convolution of u(y) − u(x), and the operator is characterized by a radial kernel γη . It finds
broad physical applications in describing fracture mechanics [Silling, 2000], anomalous diffusion
behaviors [Bucur et al., 2016], and the homogenization of multiscale systems [Du et al., 2020].
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Figure 2: Results on radial kernel learning, when learning the test kernel from a small (d = 30)
number of data pairs: test on an ID task (left), and test on an OOD task (right).

In this context, our goal is to learn the operator L as well as to discover the hidden mechanism,
namely the kernel K[u1:d,f1:d; θ](x, y) = γη(|y − x|). In the form of the operator in (12), we have
K(r) = γη(r) and g[u](r, x) = u(x+ r) + u(x− r)− 2u(x)for r ∈ [0, δ].

To generate the training data, we consider 7 sine-type kernels

γη(|y − x|) := exp(−η(|y − x|)) sin(6|y − x|)1[0,11](|y − x|), η = 1, 2, 3, 4, 6, 7, 8. (17)

Here, η denotes task index. We generate 4530 data pairs (gη[u], fη) with a fixed resolution ∆x =
0.0125 for each task, where the loading function Lγη

[uη] = fη is computed by the adaptive Gauss-
Kronrod quadrature method. Then, we form a training sample of each task by taking d pairs from
this task. When taking the token size d = 302, each task contains 4530

302 = 15 samples. We consider
two test kernels: one following the same rule of (17) with η = 5 (denoted as the “in-distribution
(ID) test” system), and the other following a different rule (denoted as the “out-of-distribution (OOD)
test1” system):

γood1(|y − x|) := |y − x|(11− |y − x|) exp(−5(|y − x|)) sin(6|y − x|)1[0,11](|y − x|). (18)

Both the operator error (10) and the kernel error (11) are provided in Table 1. While the former
measures the error of the learned forward PDE solver (i.e., learning a physical model), the latter
demonstrates the capability of serving as an inverse PDE solver (i.e., physics discovery).

Ablation study. We first perform an ablation study on NAO, by comparing its performance with its
variants (Discrete-NAO, Softmax-NAO, and NAO-u), AFNO, and Autoencoder, with a fixed token
dimension d = 302, query-key feature size dk = 10, and data resolution ∆x = 0.0125. When
comparing the operator errors, both Discrete-NAO and NAO serve as good surrogate models for
the ID task with relative errors of 1.33% and 1.48%, respectively, while the other three baselines
show > 10% errors. Therefore, we focus more on the comparison between Discrete-NAO and NAO.
This gap becomes more pronounced in the OOD task: only NAO is able to provide a surrogate of
Lγood

with < 10% error, who outperforms its discrete mixer counterpart by 68.62%, indicating that
NAO learns a more generalizable mechanism. This argument is further affirmed when comparing
the kernel errors, where NAO substantially outperforms all baselines by at least 81.39% in the ID
test and 65.21% in the OOD test. This study verifies our analysis in Section 4: NAO learns the
kernel map in the space of identifiability, and hence possesses advantages in solving the challenging
ill-posed inverse problem. Additionally, we vary the query-key feature size from dk = 10 to dk = 5
and dk = 20. Note that dk determines the rank bound of WQK , the matrix that characterizes the
interaction between different data pairs. Discrete-NAO again performs well only in approximating
the operator for the ID test, while NAO achieves consistent results in both tests and criteria, showing
that it has successfully discovered the intrinsic low-dimension in the kernel space.

Alleviating ill-posedness. To further understand NAO’s capability as an inverse PDE solver, we
reduce the number of data pairs for each sample from d = 302 to d = 30, making it more ill-
posed as an inverse PDE problem. NAO again outperforms its discrete mixer counterpart in all
aspects. Interestingly, the errors in NAO increase almost monotonically, showing its robustness. For
Discrete-NAO, the error also increases monotonically in the ID operator test, but there exists no
consistent pattern in other test criteria. Figure 2 shows the learned test kernels in both the ID and
OOD tasks. It shows that Discrete-NAO learns highly oscillatory kernels, while our continuous NAO
only has a discrepancy near |x− y| = 0. Note that when |x− y| = 0, we have u(y)− u(x) = 0 in
the ground-truth operator (16), and hence the kernel value at this point does not change the operator
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Figure 3: Kernel visualization in experiment 2, where the kernels correspond to the inverse of stiff-
ness matrix: ground truth (left), test kernel from Discrete-NAO (middle), kernel from NAO (right).

value. That means, our data provides almost no information at this point. This again verifies our
analysis: continuous NAO learns the kernel map structure from small data based on prior knowledge
from other task datasets.

Cross-resolution. We test the NAO model trained with ∆x = 0.0125 on a dataset corresponding
to ∆x = 0.025, and plot the results in Figure 2 Left. The predicted kernel is very similar to the one
learned from the same resolution, and the error is also on-par (22.65% versus 20.79%).

5.2 Solution operator learning
We consider the modeling of 2D sub-surface flows through a porous medium with a heterogeneous
permeability field. Following the settings in Li et al. [2020a], the high-fidelity synthetic simulation
data for this example are described by the Darcy flow. Here, the physical domain is Ω = [0, 1]2,
b(x) is the permeability field, and the Darcy’s equation has the form:

−∇ · (b(x)∇p(x)) = g(x), x ∈ Ω; p(x) = 0, x ∈ ∂Ω. (19)

In this context, we aim to learn the solution operator of Darcy’s equation and compute the pressure
field p(x). We consider two study scenarios. 1) g → p: each task has a fixed microstructure b(x),
and our goal is to learn the (linear) solution operator mapping from each loading field g to the
corresponding solution field p. In this case, the kernel K acts as the Green’s function of (19), and
can be approximated by the inverse of the stiffness matrix. 2) b → p: each task has a fixed loading
field g(x), and our goal is to learn the (nonlinear) solution operator mapping from the permeability
field b to the corresponding solution field p.

Table 2: Test errors and the number of trainable parameters in solution operator learning.

Case model #param Linear Operator: g → p Nonlinear Operator: b → p
d = 20, dk=20 Discrete-NAO 161991 8.61% 10.84%
900 samples NAO 89778 8.33% 11.40%
d = 50, dk=40 Discrete-NAO 662163 3.28% 5.61%
9000 samples NAO 189234 3.19% 5.28%

We report the operator learning results in Table 2, where NAO slightly outperforms Discrete-NAO
in most cases, using only 1/2 or 1/3 the number of trainable parameters. On the other hand, we also
verify the kernel learning results by comparing the learned kernels in a test case with the ground-
truth inverse of stiffness matrix in Figure 3. Although both Discrete-NAO and NAO capture the
major pattern, the kernel from Discrete-NAO again shows a spurious oscillation in regions where
the ground-truth kernel has zero value. On the other hand, by exploring the kernel map in the
integrated knowledge space, the learned kernel from NAO does not exhibit such spurious modes.

To demonstrate the physical interpretability of the learned kernel, in the first row of Figure 4 we
show the ground-truth microstructure b(x), a test loading field instance g(x), and the corresponding
solution p(x). By taking the summation of the kernel strength on each row, one can discover the
interaction strength of each material point x with its neighbors. As this strength is related to the per-
meability field b(x), the underlying microstructure can be recovered accordingly. In the bottom row
of Figure 4, we demonstrate the discovered microstructure of this test task. We note that the discov-
ered microstructure is smoothed out due to the continuous setting of our learned kernel (as shown
in the bottom left plot), and a thresholding step is performed to discover the two-phase microstruc-
ture. The discovered microstructure (bottom right plot) matches well with the hidden ground-truth
microstructure (left plot), except for regions near the domain boundary. This mismatch is due to
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Figure 4: Demonstration of the generated data and the recovered microstructure from the learned
kernel in Example 2. Top row: the ground-truth two-phase material microstructure from a test task
(left), an exemplar loading field instance (middle), and the corresponding solution field instance
(right). Bottom row: summation of the learned kernel for each line, corresponding to the total
interaction of all material points (left), and the discovered two-phase material microstructure after
thresholding (right).

the applied Dirichlet-type boundary condition (p(x) = 0 on ∂Ω) in all samples, which leads to the
measurement pairs (p(x), g(x)) containing no information near the domain boundary ∂Ω and makes
it impossible to identify the kernel on boundaries.

5.3 Heterogeneous material learning
In this example, we investigate the learning of heterogeneous and nonlinear material responses us-
ing the Mechanical MNIST benchmark [Lejeune, 2020]. For training and testing, we take 500
heterogeneous material specimens, where each specimen is governed by a Neo-Hookean material
with a varying modulus converted from the MNIST bitmap images. On each specimen, 200 load-
ing/response data pairs are provided. Two generalization scenarios are considered. 1) We mix the
data from all numbers and randomly take 10% of specimens for testing. This scenario corresponds
to an ID test. 2) We leave all specimens corresponding to the number ‘9’ for testing, and use the
rest for training. This scenario corresponds to an OOD test. The corresponding results are listed in
Table 3, where NAO again outperforms its discrete counterpart.

Table 3: Test errors and the number of trainable parameters in heterogeneous material learning.

Case model #param ID test OOD test
d = 40, dk=40 Discrete-NAO 5,469,528 7.21% 7.95%
22500 samples NAO 142,534 6.57% 6.26%
d = 100, dk=100 Discrete-NAO 7,353,768 6.34% 6.01%
45000 samples NAO 303,814 4.75% 5.58%

6 Conclusion
We propose Nonlocal Attention Operator (NAO), a novel NO architecture to simultaneously learn
both the forward (modeling) and inverse (discovery) solvers in physical systems from data. In par-
ticular, NAO learns the function-to-function mapping based on an integral NO architecture and pro-
vides a surrogate forward solution predictor. In the meantime, the attention mechanism is crafted in
building a kernel map from input-output function pairs to the system’s function parameters, offering
zero-shot generalizability to new and unseen physical systems. As such, the kernel map explores in
the function space of identifiability, resolving the enduring ill-posedness in inverse PDE problems.
In our empirical demonstrations, NAO outperforms all selected baselines on multiple datasets of
inverse PDE problems and out-of-distribution generalizability tasks.
Broader Impacts: Beyond its merits in forward/inverse PDE modeling, our work represents an
initial exploration in understanding the attention mechanism in physics modeling, and paves a theo-
retical path towards building a foundation model in scientific ML.
Limitations: Due to limited computational resource, our experiments focus on learning from a
small to medium number (< 500) of similar physical systems. It would be beneficial to expand the
coverage and enable learning across different types of physical systems.
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A Riemann sum approximation derivations

In this section, we show that the discrete attention operator (6) can be seen as the Riemann sum
approximation of the nonlocal attention operator in (8), in the continuous limit. Without loss of
generality, we consider a uniform discretization with grid size ∆x. Denoting the l−th layer out-

put as U (l) =
(
g
(l)
j (xk)

)
1≤j≤d,1≤k≤N

, F (l) =
(
f
(l)
j (xk)

)
1≤j≤d,1≤k≤N

, and
1√
dk

WQ
l WK

l as

WQK
l ∈ Rd×d, for the l−th (l < L) layer update in (6) writes:

X(l)[α, β] =

2N∑
γ=1

d∑
ω,ν=1

dk∑
λ=1

(
1√
dk

X(l−1)[α, ω]WQ
l [ω, λ]WK

l [ν, λ]X(l−1)[γ, ν]

)
X(l−1)[γ, β] +X(l−1)[α, β]

=

2N∑
γ=1

d∑
ω,ν=1

(
X(l−1)[α, ω]WQK

l [ω, ν]X(l−1)[γ, ν]
)
X(l−1)[γ, β] +X(l−1)[α, β].

That means, dk only controls the rank bound when lifting each point-wise feature via WQK
l , while

WQK
l characterizes the (trainable) interaction of d input function pair instances. Moreover, when

α ≤ N , X(l)[α, β] = g
(l)
β (xα). When α > N , X(l)[α, β] = f

(l)
β (xα−N ). Then,

g
(l)
β (xα) =

N∑
γ=1

d∑
ω,ν=1

(
X(l−1)[α, ω]WQK

l [ω, ν]X(l−1)[γ, ν]
)
X(l−1)[γ, β]

+

2N∑
γ=N+1

d∑
ω,ν=1

(
X(l−1)[α, ω]WQK

l [ω, ν]X(l−1)[γ, ν]
)
X(l−1)[γ, β] + g

(l−1)
β (xα)

=

N∑
γ=1

d∑
ω,ν=1

(
g(l−1)
ω (xα)W

QK
l [ω, ν]g(l−1)

ν (xγ)
)
g
(l−1)
β (xγ)

+

N∑
γ̃=1

d∑
ω,ν=1

(
g(l−1)
ω (xα)W

QK
l [ω, ν]f (l−1)

ν (xγ̃)
)
f
(l−1)
β (xγ̃) + g

(l−1)
β (xα).

Similarly,

f
(l)
β (xα) =

N∑
γ=1

d∑
ω,ν=1

(
X(l−1)[α, ω]WQK

l [ω, ν]X(l−1)[γ, ν]
)
X(l−1)[γ, β]

+

2N∑
γ=N+1

d∑
ω,ν=1

(
X(l−1)[α, ω]WQK

l [ω, ν]X(l−1)[γ, ν]
)
X(l−1)[γ, β] + f

(l−1)
β (xα)

=

N∑
γ=1

d∑
ω,ν=1

(
f (l−1)
ω (xα)W

QK
l [ω, ν]g(l−1)

ν (xγ)
)
g
(l−1)
β (xγ)

+

N∑
γ̃=1

d∑
ω,ν=1

(
f (l−1)
ω (xα)W

QK
l [ω, ν]f (l−1)

ν (xγ̃)
)
f
(l−1)
β (xγ̃) + f

(l−1)
β (xα).

With the Riemann sum approximation:
∫
Ω
p(x)dx ≈ ∆xD

∑Nx

k=1 p(xk), one can further reformu-
late above derivations as:

g
(l)
β (x) ≈ 1

∆xD

∫
Ω

d∑
ω,ν=1

(
g(l−1)
ω (x)WQK

l [ω, ν]g(l−1)
ν (y)

)
g
(l−1)
β (y)dy

+
1

∆xD

∫
Ω

d∑
ω,ν=1

(
g(l−1)
ω (x)WQK

l [ω, ν]f (l−1)
ν (y)

)
f
(l−1)
β (y)dy + g

(l−1)
β (x),

f
(l)
β (x) ≈ 1

∆xD

∫
Ω

d∑
ω,ν=1

(
f (l−1)
ω (x)WQK

l [ω, ν]g(l−1)
ν (y)

)
g
(l−1)
β (y)dy

+
1

∆xD

∫
Ω

d∑
ω,ν=1

(
f (l−1)
ω (x)WQK

l [ω, ν]f (l−1)
ν (y)

)
f
(l−1)
β (y)dy + f

(l−1)
β (x).
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Therefore, the attention mechanism of each layer is in fact an integral operator after a rescaling:(
g(l)(x)
f (l)(x)

)
=

∫
Ω

K(l)(x, y)

(
g(l−1)(y)
f (l−1)(y)

)
dy +

(
g(l−1)(x)
f (l−1)(x)

)
, (20)

with the kernel K(l)(x, y) defined as: ∑d
ω,ν=1

(
g
(l−1)
ω (x)WQK

l [ω, ν]g
(l−1)
ν (y)

) ∑d
ω,ν=1

(
g
(l−1)
ω (x)WQK

l [ω, ν]f
(l−1)
ν (y)

)
∑d

ω,ν=1

(
f
(l−1)
ω (x)WQK

l [ω, ν]g
(l−1)
ν (y)

) ∑d
ω,ν=1

(
f
(l−1)
ω (x)WQK

l [ω, ν]f
(l−1)
ν (y)

)  . (21)

For the L−th layer update, we denote the approximated value of fβ(xα) as f̃β(xα) := Xout[α, β],
then

f̃β(xα) =

N∑
γ=1

K[u1:d, f1:d; θ][α, γ]g[uβ ](xγ)

=

N∑
λ,γ=1

d∑
ω,ν=1

WP,u[α, λ]
(
U (L−1)[λ, ω]WQK

L [ω, ν]U (L−1)[γ, ν]
)
g[uβ ](xγ)

+
N∑

λ,γ=1

d∑
ω,ν=1

WP,f [α, λ]
(
F (L−1)[λ, ω]WQK

L [ω, ν]U (L−1)[γ, ν]
)
g[uβ ](xγ)

=

N∑
λ,γ=1

d∑
ω,ν=1

WP,u[α, λ]
(
g(L−1)
ω (xλ)W

QK
L [ω, ν]g(L−1)

ν (xγ)
)
g[uβ ](xγ)

+

N∑
λ,γ=1

d∑
ω,ν=1

WP,f [α, λ]
(
f (L−1)
ω (xλ)W

QK
L [ω, ν]g(L−1)

ν (xγ)
)
g[uβ ](xγ)

≈ 1

∆x2D

∫
Ω

∫
Ω

d∑
ω,ν=1

WP,u(xα, z)
(
g(L−1)
ω (z)WQK

L [ω, ν]g(L−1)
ν (y)

)
dz g[uβ ](y)dy

+
1

∆x2D

∫
Ω

∫
Ω

d∑
ω,ν=1

WP,f (xα, z)
(
f (L−1)
ω (z)WQK

L [ω, ν]g(L−1)
ν (y)

)
dz g[uβ ](y)dy.

Hence, a (rescaled) continuous limit of the kernel writes:

K[u1:d, f1:d; θ](x, y) =

∫
Ω

d∑
ω,ν=1

WP,u(x, z)
(
g(L−1)
ω (z)WQK

L [ω, ν]g(L−1)
ν (y)

)
dz

+

∫
Ω

d∑
ω,ν=1

WP,f (x, z)
(
f (L−1)
ω (z)WQK

L [ω, ν]g(L−1)
ν (y)

)
dz.

B Proofs and connection with regularized estimator

B.1 Proofs

Proof of Lemma 4.1. With {rk}Nk=1, we can write the attention-based kernel in (7) as

K[u1:d, f1:d; θ](rk) =

N∑
k′=1

WP,u(rk′)σ

 dk∑
l=1

d∑
j=1

d∑
j=1

uj(rk′)WQ[j, l] ·WK [j′, l]uj′(rk)


+WP,fσ

 dk∑
l=1

d∑
j=1

d∑
j′=1

[
fjW

Q[j, l] ·WK [j′, l]uj′(rk)
] .

(22)

17

113813 https://doi.org/10.52202/079017-3613



Denoting WQK [j′, j] =
∑dk

l=1 W
Q[j, l] ·WK [j′, l], we write the kernel in (22) as

K[u1:d, f1:d; θ](r) =

N∑
r′=1

WP,u(|r′|)σ

 d∑
j=1

d∑
j′=1

[
g[u](r′, xij )W

QK [j, j′]g[u](r, xij′ )
]

+WP,fσ

 d∑
i=1

d∑
j=1

[
f(xij′ )W

QK [j, j′]g[u](r, xij )
] .

Then, as d → ∞ is achieved by refining the spatial mesh, viewing the summation in j as Riemann
sum,

lim
d→∞

d∑
j=1

d∑
j′=1

g[u](r′, xij )W
QK [j, j′]g[u](r, xij′ ) =

∫ ∫
g[u](r, x)WQK(x, y)g[u](s, y)dxdy,

where the integral exists since g[u](r, x)WQK(x, y) is bounded. Sending also the number of tokens,
N , to infinity, we obtain the limit attention model in (14).

Proof of Lemma 4.2. The proof is adapted from Lu et al. [2023, 2022]. Write K(r) =
K[uη

1:d, f
η
1:d](r). Notice that the loss function in (9) can be expanded as

E(K) =
1

ntrain

ntrain∑
η=1

du∑
i=1

∫
Ω

[∫ δ

0

K(r)g[uη
i ](r, x))dr − fη

i (x)

]2

dx

=
1

ntrain

ntrain∑
η=1

du∑
i=1

∫ δ

0

∫ δ

0

K(s)K(r)

∫
Ω

g[uη
i ](s, x))g[u

η
i ](r, x))dxdrds

− 2

ntrain

ntrain∑
η=1

du∑
i=1

∫ δ

0

K(r)

∫
Ω

g[uη
i ](r, x)f

η
i (x)dxdr + Const.

=⟨LḠK,K⟩L2
ρ
− 2⟨K,KD⟩L2

ρ
+ Const.,

where LḠ : L2
ρ → L2

ρ is the integral operator

LḠK(s) :=

∫ δ

0

K(r)Ḡ(r, s)dr

and KD is the Riesz representation of the bounded linear functional

⟨K,KD⟩L2
ρ
=

1

ntrain

ntrain∑
η=1

du∑
i=1

∫ δ

0

K(r)

∫
Ω

g[uη
i ](r, x)f

η
i (x)dxdr.

Thus, the quadratic loss function has a unique minimizer in Null(LḠ)
⊥.

Meanwhile, since the data pairs are continuous with compact support, the function Ḡ is a square-
integrable reproducing kernel. Thus, the operator LḠ is compact and HG = L1/2

Ḡ
L2
ρ. Then,

Null(LḠ)
⊥ = HG, where the closure is with respect to L2

ρ.

B.2 Connection with regularized estimator

Consider the inverse problem of estimating the nonlocal kernel K given a data pair (u, f). In the
classical variational approach, one seeks the minimizer of the following loss function

E(K) =

∫
Ω

[∫ δ

0

K(r)g[u](r, x)dr − f(x)

]2

dx (23)

The inverse problem is ill-posed in the sense that the minimizer can often be non-unique or sensitive
to the noise or measurement error in data (u, f). Thus, regularization is crucial to produce a stable
solution.
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To connect with the attention-based model, we consider regularizing using an RKHS HW with a
square-integrable reproducing kernel W . One seeks an estimator in HW by regularizing the loss
with the ∥K∥2HW

, and minimizes the regularized loss function

Eλ,W (K) =E(K) + λ

∫ ∞

0

∫ ∞

0

K(s)K(r)W (r, s)drds. (24)

The next lemma shows that the regularized estimator is a nonlinear function of the data pair (u, f),
where the nonlinearity comes from the kernel Gu and the parameter λ∗.
Lemma B.1. The regularized loss function in Eλ,W (K) in (24) is

Eλ,W (K) =

∫ ∞

0

∫ ∞

0

K(r)K(s)[Gu(r, s) + λW (r, s)]drds− 2

∫ ∞

0

K(r)Ku,f (r)dr + Const.,

(25)

where Gu is defined in (27). Its minimizer is

K̂ = (LGu
+ λ∗LW )−1Ku,f , (26)

where LGu and LW are integral operators with integral kernels Gu defined in (27) and W ,

LGu
K(s) :=

∫ ∞

0

K(r)Gu(r, s)dr, LWK(s) :=

∫ ∞

0

K(r)W (r, s)dr,

λ∗ is the optimal hyper-parameter controlling the strength of regularization, and Ku,f (r) =∫
Ω
g[u](r, x)f(x)dx is a function determined by the data (u, f).

When there is no prior information on the regularization, which happens often for the learning of
the kernel, one can use the data-adaptive RKHS HGu with the reproducing kernel Gu determined
by data:

Gu(r, s) =

∫
Ω

g[u](r, x)g[u](s, x)dx. (27)

Lu et al. [2023] shows that this regularizer can lead to consistent convergent estimators.
Remark B.2 (Discrete data and discrete inverse problem). In practice, the datasets are discrete. One
can view the discrete inverse problem as a discretization of the continuous inverse problem. Assume
that the integrands are compactly supported and when the integrals are approximated by Riemann
sums, we can write loss function for discrete K = (K(r1), . . . ,K(rN ))⊤ ∈ RN×1 as

Eλ,W (K) ≈
N,N∑

k,k′=1

K(rk)K(rk′)[Gu(rk, rk′) + λW (rk, rk′)](∆r)2 − 2

N∑
k=1

K(rk)K
u,f (rk)∆r + Const..

=K⊤[Gu + λW]K− 2K⊤Ku,f + Const., (28)

where, recalling the definition of the token u1:d in (5),

Gu = (Gu(rk, rk′))1≤k,k′≤K = (

∫
Ω

g[u](x, rk)g[u](x, rk′)dx)1≤k,k′≤K ≈ u1:du
⊤
1:d,

W = (W (rk, rk′))1≤k,k′≤K and Ku,f =
(∫

Ω
g[u](rk, x)f(x)dx

)
1≤k≤N

.

The minimizer of this discrete loss function with the optimal hyper-parameter λ∗ is

K̂ = (Gu + λ∗W)−1Ku,f .

In particular, when taking W = Gu and using the Neumann series (λ−1
∗ G2

u + I)−1 =∑∞
k=0(−1)kλ−k

∗ G2k
u , we have

K̂ = (λ−1
∗ G2

u + I)−1λ−1
∗ GuK

u,f = λ−1
∗ GuK

u,f − λ−2
∗ G3

uK
u,f +

∞∑
k=2

(−1)kλ−k
∗ G2k

u GuK
u,f .

In particular, λ∗ depends on both Gu and Ku,f . Hence, the estimator K̂ is nonlinear in Gu and
Ku,f , and it is important to make the attention depend nonlinearly on the token u1:d, as in (7).
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Proof of Lemma B.1. Since K is radial and noticing that∫
|ξ|=1

(u(x+ rξ)− u(x))dξ = u(x+ r) + u(x− r)− 2u(x) = g[u](r, x)

since ξ ∈ R1, we can write∫ ∞

−∞

∫ ∞

−∞
K(|s|)K(|r|)

∫
Ω

(u(x+ s)− u(x))(u(x+ r)− u(x))dxdrds

=

∫ ∞

0

∫ ∞

0

K(r)K(s)

∫
|ξ′|=1

∫
|ξ|=1

∫
Ω

(u(x+ sξ′)− u(x))(u(x+ rξ)− u(x))dxdξdξ′

=

∫ ∞

0

∫ ∞

0

K(r)K(s)

∫
Ω

g[u](r, x)g[u](s, x)dxdrds

=

∫ ∞

0

∫ ∞

0

K(r)K(s)Gu(r, s)drds.

Meanwhile, by the Riesz representation theorem, there exists a function Ku,f ∈ L2(0,∞) such that∫ ∞

−∞
K(|r|)

∫
Ω

(u(x+ r)− u(x))f(x)dxdr

=

∫ ∞

0

K(r)

∫
|ξ|=1

∫
Ω

(u(x+ r)− u(x))f(x)dxdξdr

=

∫ ∞

0

K(r)

∫
Ω

g[u](r, x)f(x)dxdr =

∫ ∞

0

K(r)Ku,f (r)dr.

Combining these two equations, we can write the loss function as

E(K) =

∫
Ω

[∫ ∞

−∞
K(|s|)(u(x+ s)− u(x))ds− f(x)

]2
dx

=

∫ ∞

−∞

∫ ∞

−∞
K(|s|)K(|r|)

∫
Ω

(u(x+ s)− u(x))(u(x+ r)− u(x))dxdrds

−
∫ ∞

−∞
K(|s|)

∫
Ω

(u(x+ s)− u(x))f(x)dxds+ Const.

=

∫ ∞

0

∫ ∞

0

K(r)K(s)Gu(r, s)drds− 2

∫ ∞

0

K(r)Ku,f (r)dr + Const..

Then, we can write the regularized loss function Eλ,W (K) as

Eλ,W (K) =

∫ ∞

0

∫ ∞

0

K(r)K(s)[Gu(r, s) + λW (r, s)]drds− 2

∫ ∞

0

K(r)Ku,f (r)dr + Const.

=⟨(LGu
+ λLW )K,K⟩L2(0,∞) − 2⟨K,Ku,f ⟩L2(0,∞) + Const.

Selecting the optimal hyper-parameter λ∗, which depends on both (u, f) and W , and setting the
Fréchet derivative of Eλ,W over L2(0,∞) to be zero, we obtain the regularized estimator in (26).

C Data generation and additional discussion

C.1 Example 1: radial kernel learning

In all settings except the “single task” one, all kernels act on the same set of functions {ui}i=1,2

with u1 = cos(x)1[−π,π](x) and u2(x) = sin(2x)1[−π,π](x). In the “single task” setting, to create
more diverse samples, the single kernel acts on a set of 14 functions: uk = cos(kx)1[−π,π](x),
k = 1, · · · , 7 and uk(x) = sin(kx)1[−π,π](x), k = 8, · · · , 14. In the ground-truth model, the
integral Lγη [ui] is computed by the adaptive Gauss-Kronrod quadrature method, which is much
more accurate than the Riemann sum integrator that we use in the learning stage. To create discrete
datasets with different resolutions, for each ∆x ∈ 0.0125 × {1, 2}, we take values {ui, fi}Ni=1 =
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Figure 5: OOD test results on radial kernel learning, with diverse training tasks and d = 302.
OOD1 (left): true kernel γ(r) = r(11 − r) exp(−5r) sin(6r)1[0,11](r); OOD2 (right): true kernel

γ(r) = exp(−0.5r2)√
2π

, a Gaussian kernel which is very different from all training tasks.

{ui(xj), fi(xj) : xj ∈ [−40, 40], j = 1, . . . , J}Ni=1, where xj is the grid point on the uniform mesh
of size ∆x. We form a training sample of each task by taking d pairs from this task. When taking
the token size d and k function pairs, each task contains ⌊ 2265

d ⌋ × k samples.

More diverse tasks. To further evaluate the generalization capability of NAO as a foundation model,
we add another two types of kernels into the training dataset. The training dataset is now constructed
based on 21 kernels of three groups, with 15 samples on each kernel:

• sine-type kernels: γsin
η (r) = exp(−ηr) sin(6r)1[0,11](r), η = 1, 2, 3, 4, 6, 7, 8.

• cosine-type kernels: γcos
η (r) = 10−r

20 cos(ηr)(10− r)1[0,10](r), η = 0, 1, 2, 3, 4, 5, 6.

• polynomial-type kernels: γpoly
η (r) = exp(−0.1r)pη

(
r−10
10

)
1[0,10](r), η =

1, 2, 3, 4, 5, 6, 7, where pη is the degree-η Legendre polynomial.

Based on this enriched dataset, besides the original “sine only” setting, three additional settings
are considered to compare the generalizability across different settings. The results are reported in
Table 4 and Figure 5. In addition to the original setting corresponding to all “sine” kernels, in part
II of Table 4 (denoted as “sine+cosine+polyn”), we consider a “diverse task” setting, where all 315
samples are employed in training. In part III, we consider a “single task” setting, where only the
first sine-type kernel, γ(r) = exp(−r) sin(6r)1[0,11](r), is considered as the training task, with 105
samples on this task. Lastly, in part IV we demonstrate a “fewer samples” setting, where the training
dataset still consists of all 21 tasks but with only 5 samples on each task. For testing, besides the ID
and OOD tasks in the ablation study, we add an additional OOD task with a Gaussian-type kernel
γood2(r) =

exp(−0.5r2)√
2π

, which is substantially different from all training tasks.

As shown in Table 4, considering diverse datasets helps in both OOD tests (the kernel error is
reduced from 9.14% to 6.92% in OOD test 1, and from 329.66% to 10.48% in OOD test 2), but
not for the ID test (the kernel error is slightly increased from 4.03% to 5.04%). We also note that
since the “sine only” setting only sees systems with the same kernel frequency in training, it does
not generalize to OOD test 2, where it becomes necessary to include more diverse training tasks. As
the training tasks become more diverse, the intrinsic dimension of kernel space increases, requiring
a larger rank size dk of the weight matrices. When comparing the “fewer samples” setting with the
“sine only” setting, the former exhibits better task diversity but fewer samples per task. One can
see that the performance deteriorates on the ID test but improves on OOD test 2. This observation
emphasizes the balance between the diversity of tasks and the number of training samples per task.

C.2 Example 2: solution operator learning

For one example, we generate the synthetic data based on the Darcy flow in a square domain of size
1× 1 subjected to Dirichlet boundary conditions. The problem setting is: −∇(b(x)∇p(x)) = g(x)
subjected to p(x) = 0 on all boundaries. This equation describes the diffusion in heterogeneous
fields, such as the subsurface flow of underground water in porous media. The heterogeneity is
represented by the location-dependent conductivity b(x). p(x) is the source term, and the hydraulic
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Table 4: Training and test for the radial kernel problem with more diverse tasks with fixed d =
302, where bold numbers highlight the best methods across different data settings. These results
emphasize the balance between task diversity and the number of samples per task.

dk model #param Operator test error Kernel test error
ID OOD1 OOD2 ID OOD1 OOD2

sine only: Train on sine dataset, 105 samples in total
10 Discrete-NAO 16526 1.33% 25.81% 138.00% 29.02% 28.80% 97.14%

NAO 18843 1.48% 8.10% 221.04% 5.40% 10.02% 420.60%
20 Discrete-NAO 28645 1.35% 18.70% 99.50% 35.49% 30.81% 101.08%

NAO 30963 1.33% 9.12% 211.78% 4.63% 9.14% 329.66%
40 Discrete-NAO 52886 1.30% 31.37% 49.83% 38.89% 30.02% 129.84%

NAO 55203 0.67% 7.34% 234.43% 4.03% 12.16% 1062.3%
Autoencoder 16424 12.97% 1041.49% 698.72% 22.56% 136.79% 304.37%

sine+cosine+polyn: Train on diverse (sine, cosine and polynomial) dataset, 315 samples in total
10 Discrete-NAO 16526 2.27% 13.02% 11.50% 10.41% 30.79% 77.80%

NAO 18843 2.34% 14.37% 10.05% 7.26% 28.23% 94.38%
20 Discrete-NAO 28645 1.60% 6.03% 19.73% 21.83% 21.29% 18.97%

NAO 30963 1.64% 3.25% 3.58% 5.45% 8.87% 15.82%
40 Discrete-NAO 52886 1.45% 5.49% 18.26% 20.07% 19.46% 18.44%

NAO 55203 1.54% 3.09% 7.69% 5.04% 6.92% 10.48%
Autoencoder 56486 12.67% 341.96% 211.61% 27.06% 52.43% 128.08%

Single task: Train on a single sine dataset, 105 samples in total
10 NAO 18843 104.49% 104.37% 56.64% 100.31% 100.00% 94.98%
20 NAO 30963 116.89% 105.52% 85.40% 99.02% 99.55% 98.37%
40 NAO 55203 111.33% 104.12% 76.78% 101.61% 100.33% 95.90%

Fewer samples: Train on diverse (sine, cosine and polynomial) dataset, 105 samples in total
10 NAO 18843 4.23% 15.34% 11.13% 10.11% 25.23% 97.63%
20 NAO 30963 4.15% 10.15% 9.59% 8.84% 23.08% 20.05%
40 NAO 55203 3.69% 11.67% 6.08% 9.19% 24.04% 25.58%

height g(x) is the solution. For each data instance, we solve the equation on a 21× 21 grid using an
in-house finite difference code. We consider 500 random microstructures consisting of two distinct
phases. For each microstructure, the square domain is randomly divided into two subdomains with
different conductivity of either 12 or 3. Additionally, we consider 100 different g(x) functions ob-
tained via a Gaussian random field generator. For each microstructure, we solve the Darcy problem
considering all 100 source terms, resulting in a dataset of N = 10, 000 function pairs in the form
of {pi(xj), gi(xj)}Ni=1, and j = 1, 2, · · · , 441 where xj’s are the discretization points on the square
domain.

In operator learning settings, we note that the permutation of function pairs in each sample should
not change the learned kernel, i.e., one should have K[u1:d, f1:d] = K[uσ(1:d), fσ(1:d)], where σ is
the permutation operator. Hence, we augment the training dataset by permuting the function pairs
in each task. Specifically, with 100 microstructures (tasks) and 100 function pairs per task, we
randomly permut the function pairs and take 100 function pairs for 100 times per task. As a result,
we can generate a total of 10000 samples (9000 for training and 1000 for testing) in the form of
{uη

1:100,f
η
1:100}10000η=1 .

C.3 Example 3: heterogeneous material learning

In the Mechanical MNIST dataset, we generate a large set of heterogeneous material responses
subjected to mechanical forces. This is similar to the approach in Lejeune [2020]. The material
property (stiffness) of the heterogeneous medium is constructed assuming a linear scaling between
1 and 100, according to the gray-scale bitmap of the MNIST images, which results in a set of 2D
square domains with properties that vary according to MNIST digit patterns. The problem setting
for this data set is the equilibrium equation:−∇ · P (x) = f(x) subjected to Dirichlet boundary
condition of zero displacement and nonzero variable external forces:f(x). P (x) = P̂ (I +∇u(x))
is the stress tensor and is a nonlinear function of displacement u(x). The choice of material models
determines the stress function, and here we employ the Neo-Hookean material model as in Lejeune
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[2020]. From MNIST, we took 50 samples of each digit resulting in a total of 500 microstructures.
We consider 200 different external forces f(x) obtained via a Gaussian random field, and solve
the problem for each pair of microstructure and external force, resulting in N = 100, 000 samples.
To solve each sample, we use FEniCS finite element package considering a 140 × 140 uniform
mesh. We then downsample from the finite element nodes to get values for the solution u(x) and
external force f(x) on a the coarser 29 × 29 equi-spaced grid. The resulting dataset is of the form:
{ui(xj), fi(xj)}Ni=1, and j = 1, 2, ..., 841 where xj’s are the equi-spaced sampled spatial points.

Similar to Example 2, we perform the permutation trick to augment the training data. In particular,
with 500 microstructures (tasks) and 200 function pairs per task, we randomly permute the function
pairs and take 100 function pairs for 100 times per task. As a result, we can generate a total of 50000
samples, where 45000 are used for training and 5000 for testing.

D Computational complexity

Denote (N, d, dk, L, ntrain) as the size of the spatial mesh, the number of data pairs in each training
model, the column width of the query/key weight matrices WQ and WK , the number of layers, and
the number of training models. The number of trainable parameters in a discrete NAO is of size
O(L× d× dk +N2). For continuous-kernel NAO, taking a three-layer MLP as a dense net of size
(d, h1, h2, 1) for the trainable kernels WP,u and WP,f for example, its the corresponding number of
trainable parameters is O(d × h1 + h1 × h2). Thus, the total number of trainable parameters for a
continuous-kernel NAO is O(L× d× dk + d× h1 + h1 × h2).

The computational complexity of NAO is quadratic in the length of the input and linear in the
data size, with O([d2(3N + dk) + 6N2d]Lntrain) flops in each epoch in the optimization. It is
computed as follows for each layer and the data of each training model: the attention function takes
O(d2dk + 2Nd2 + 4N2d) flops, and the kernel map takes O(d2dk +Nd2 + 2N2d) flops; thus, the
total is O(d2(3N + dk) + 6N2d) flops. In inverse PDE problems, we generally have d ≪ N , and
hence the complexity of NAO is O(N2d) per layer per sample.

Compared with other methods, it is important to note that NAO solves both forward and ill-posed
inverse problems using multi-model data. Thus, we don’t compare it with methods that solve the
problems for a single model data, for instance, the regularized estimator in Appendix B. Methods
solving similar problems are the original attention model [Vaswani et al., 2017], convolution neural
network (CNN), and graph neural network (GNN). As discussed in Vaswani et al. [2017], these
models have a similar computational complexity, if not any higher. In particular, the complexity of
the original attention model is O(N2d), and the complexity of CNN is O(kNd2) with k being the
kernel size, and a full GNN is of complexity O(N2d2).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly stated our claims in the abstract and introduction, includ-
ing the key contributions that our proposed model NAO provides a novel input-dependent
kernel for context extraction, integrates forward and inverse PDE predictions in one frame-
work, and offers the capability in solving ill-posed inverse PDE problems.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work is discussed in the Conclusion section.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have provided the full set of assumptions and corresponding complete
proofs under each proposed Lemma with detailed derivations included in the Appendix A
and B.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have elaborated the detailed architectures of the proposed model in the
main body of the paper as well as data generation details in Appendix C. The code and
accompanying data have been released at https://github.com/fishmoon1234/NAO.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and accompanying data have been released at https://github.
com/fishmoon1234/NAO.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We briefly state the training and test strategies at the beginning of the Experi-
ments section, with the full details provided in Appendix C.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported due to the limited computational resource. Nev-
ertheless, we have tuned the hyperparameters of all the considered models and reported
extensive results in a large variety of settings, and they all support our claim.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computing resources are reported in the first paragraph of the Exper-
iments section. In particular, all the experiments are conducted on a single NVIDIA
GeForce RTX 3090 GPU with 24 GB memory.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of
Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The discussion on the societal impacts can be found in the Conclusion section.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original papers that produced the code package or dataset
where appropriate.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: The code and accompanying data have been released at https://github.
com/fishmoon1234/NAO, with instructions and pretrained models provided.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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