
One-Step Diffusion Distillation through
Score Implicit Matching

Weijian Luo∗

Peking University
luoweijian@stu.pku.edu.cn

Zemin Huang
Westlake University

huangzemin@westlake.edu.cn

Zhengyang Geng
Carnegie Mellon University
zgeng2@cs.cmu.edu

J. Zico Kolter
Carnegie Mellon University
zkolter@cs.cmu.edu

Guo-jun Qi†
Westlake University

guojunq@gmail.com

https://github.com/maple-research-lab/SIM

Abstract

Despite their strong performances on many generative tasks, diffusion models
require a large number of sampling steps in order to generate realistic samples.
This has motivated the community to develop effective methods to distill pre-trained
diffusion models into more efficient models, but these methods still typically require
few-step inference or perform substantially worse than the underlying model. In
this paper, we present Score Implicit Matching (SIM) a new approach to distilling
pre-trained diffusion models into single-step generator models, while maintaining
almost the same sample generation ability as the original model as well as being
data-free with no need of training samples for distillation. The method rests upon
the fact that, although the traditional score-based loss is intractable to minimize
for generator models, under certain conditions we can efficiently compute the
gradients for a wide class of score-based divergences between a diffusion model
and a generator. SIM shows strong empirical performances for one-step generators:
on the CIFAR10 dataset, it achieves an FID of 2.06 for unconditional generation
and 1.96 for class-conditional generation. Moreover, by applying SIM to a leading
transformer-based diffusion model, we distill a single-step generator for text-to-
image (T2I) generation that attains an aesthetic score of 6.42 with no performance
decline over the original multi-step counterpart, clearly outperforming the other
one-step generators including SDXL-TURBO of 5.33, SDXL-LIGHTNING of
5.34 and HYPER-SDXL of 5.85. We will release this industry-ready one-step
transformer-based T2I generator along with this paper.

1 Introduction

Over the past years, diffusion models (DMs) [21, 67, 65] have shown significant advancements across
a broad spectrum of applications, ranging from data synthesis [25, 26, 51, 52, 22, 56, 23, 31], to
density estimation [32, 8], text-to-image generation[54, 60, 2, 80, 7], text-to-3D creation [56, 74, 28,
34], image editing [47, 9, 19, 1, 30, 49], and beyond [83, 79, 5, 85, 18, 59, 14, 73, 89, 72, 42, 78, 44,
84, 13, 11, 46, 16, 71, 55, 10]. From a high level point of view, diffusion models, also framed as
score-based diffusion models, use diffusion processes to corrupt the data distribution. They are then
trained to approximate the score functions of the noisy data distributions across varying noise levels.

∗Alternative email: pkulwj1994@icloud.com.
†Correspondence to Guo-jun Qi. The project was initiated and supported by the MAPLE lab of Westlake

University.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

115377 https://doi.org/10.52202/079017-3664

https://github.com/maple-research-lab/SIM

Figure 1: Time for a Human Preference Study! Could you please tell us which one is better? Hint:
the rightmost column is the one-step Latent Consistency Model of PixelArt-α; The left two columns
are randomly placed, with one generated from our one-step SIM-DiT-600M model, and another
generated from the 14-step PixelArt-α teacher diffusion model. We put the answer in Appendix B.1.

Diffusion models have multiple advantages, such as training flexibility, scalability, and the ability
to produce high-quality samples, making them a favored choice for modern AIGC models. After
training, the learned score functions can be used to reverse the data corruption process, which can
be implemented by numerically solving the associated stochastic differential equation. Such a data
generation mechanism usually requires many neural network evaluations, which leads to a significant
limitation of DMs: the generation performance of DMs degrades substantially when the number of
sampling steps is reduced. This shortcoming restricts the practical deployment of DMs, particularly
where quick inference is crucial, such as on devices with limited computational capacities like mobile
phones and edge devices, or in applications requiring rapid response times.

This challenge has spurred a variety of approaches aimed at expediting the sampling process of
diffusion models while preserving their robust generative capabilities. Distillation approaches, in
particular, focus on applying distillation algorithms to transition the knowledge from pre-trained,
teacher diffusion models to efficient student-generative models which are capable of producing
high-quality samples within a few generation steps.

2

115378https://doi.org/10.52202/079017-3664

Some works have studied the diffusion distillation algorithm through the lens of probability divergence
minimization. For instance, Luo et al. [43], Yin et al. [82] have studied the algorithms that minimize
the KL divergence between teacher and one-step student models. Zhou et al. [93] have explored
distilling with Fisher divergences, resulting in impressive empirical performances. Though these
studies have contributed to the community in both theoretical and empirical aspects with applicable
single-step generator models, their theories are built upon specific divergences, namely the Kullback-
Leibler divergence and the Fisher divergence, which potentially restrict the distillation performances.
A more general framework for understanding and improving diffusion distillation is still lacking.

In this work, we introduce Score Implicit Matching (SIM), a novel framework for distilling pre-trained
diffusion models into one-step generator networks while maintaining high-quality generations. To
do so, we propose a wide and flexible class of score-based divergences between the (intractable)
score function of the generator model and that of the original diffusion model, for arbitrary distance
functions between the two score functions. The key technical insight of this work is that although
such divergences cannot be computed explicitly, the gradient of these divergences can be computed
exactly using a result we call the score-gradient theorem, leading to an implicit minimization of the
divergence. This lets us efficiently train models based on such divergences.

We evaluate the performance of SIM compared to previous approaches, using different choices of
distance functions to define the divergence. Most relatedly, we compare SIM with the Diff-Instruct
(DI) [43] method, which uses a KL-based divergence term, and the Score Identity Distillation (SiD)
method [93], which we show to be a special case of our approach when the distance function is
simply chosen to be the squared L2 distance (though derived in an entirely different fashion). We also
show empirically that SIM with a specially-designed Pseudo-Huber distance function shows faster
convergences and stronger robustness to hyper-parameters than L2 distance, making the resulting
method substantially strong than previous approaches.

Finally, we show that SIM obtains very strong empirical performance in absolute terms relative to
past work in the field on CIFAR10 image generation and text-to-image generation. On the CIFAR10
dataset, SIM shows a one-step generative performance with a Frechet Inception Distance (FID)
of 2.06 for unconditional generation and 1.96 for class-conditional generation. More qualitatively,
distilling a leading diffusion-transformer-based [53] text-to-image diffusion model results in an
extremely capable one-step text-to-image generator which we show is almost lossless in terms of
generative performances as teacher diffusion model. Particularly, by applying SIM to PixelArt-α
[7], a single-step generator is distilled that reaches an outstanding aesthetic score of 6.42 with no
performance decline over the original multi-step diffusion model. This remarkably outperforms the
other one-step text-to-image generators including SDXL-TURBO [64] of 5.33, SDXL-LIGHTNING
[35] of 5.34 and HYPER-SDXL [57] of 5.85. Such a result not only marks a new direction for one-step
text-to-image generation but also motivates further studies of distilling diffusion-transformer-based
AIGC models in other domains such as video generation.

2 Diffusion Models

In this section, we introduce preliminary knowledge and notations about diffusion models and
diffusion distillation. Assume we observe data from the underlying distribution qd(x). The goal of
generative modeling is to train models to generate new samples x ∼ qd(x). The forward diffusion
process of DM transforms any initial distribution q0 = qd towards some simple noise distribution,

dxt = F (xt, t)dt+G(t)dwt, (2.1)

where F is a pre-defined drift function,G(t) is a pre-defined scalar-value diffusion coefficient, and wt

denotes an independent Wiener process. A continuous-indexed score network sφ(x, t) is employed
to approximate marginal score functions of the forward diffusion process (2.1). The learning of score
networks is achieved by minimizing a weighted denoising score matching objective [70, 67],

LDSM (φ) =

∫ T

t=0

λ(t)Ex0∼q0,xt|x0∼qt(xt|x0)∥sφ(xt, t)−∇xt log qt(xt|x0)∥22dt. (2.2)

Here the weighting function λ(t) controls the importance of the learning at different time levels and
qt(xt|x0) denotes the conditional transition of the forward diffusion (2.1). After training, the score
network sφ(xt, t) ≈ ∇xt log qt(xt) is a good approximation of the marginal score function of the
diffused data distribution. High-quality samples from a DM can be drawn by simulating SDE which

3

115379 https://doi.org/10.52202/079017-3664

is implemented by the learned score network [67]. However, the simulation of an SDE is significantly
slower than that of other models such as one-step generator models.

3 Score Implicit Matching

In this section, we introduce Score Implicit Matching which is a general method tailored for the
one-step distillation of score-based diffusion models. We first introduce the problem setup and
notations, then introduce a general family of score-based probability divergences and show how
SIM can be used to minimize the mentioned divergences. We finally discuss specific choices of the
method, such as the choice of distance function, and explore the effect this has on the distillation.

Problem setup. Our starting point is a pre-trained diffusion model specified by the score function

sqt(xt) := ∇xt log qt(xt) (3.1)

where qt(xt)’s are the underlying distribution diffused at time t according to (2.1). We assume that
the pre-trained diffusion model provides a sufficiently good approximation of data distribution, and
thus will be the only item of consideration for our approach.

The student model of interest is a single-step generator network gθ, which can transform an initial
random noise z ∼ pz to obtain a sample x = gθ(z); this network is parameterized by network
parameters θ. Let pθ,0 denote the data distribution of the student model, and pθ,t denote the marginal
diffused data distribution of the student model with the same diffusion process (2.1). The student
distribution implicitly induces a score function

spθ,t(xt) := ∇xt log pθ,t(xt), (3.2)

and evaluating it is generally performed by training an alternative score network as elaborated later.

3.1 General Score-based Divergences

The goal of one-step diffusion distillation is to let the student distribution pθ,0 match the data
distribution q0. To do so, we propose to match the diffused marginal distribution pθ,t and qt at
all diffusion time levels. We can define such an objective via the following general score-based
divergence. Assume d : Rd → R is a scalar-valued proper distance function (i.e., a function that
obeys ∀x,d(x) ≥ 0 and d(x) = 0 if and only if x = 0). Given a sampling distribution πt that has
larger distribution support than pt and qt, we can formally define a time-integral score divergence as

D[0,T](p, q) :=

∫ T

t=0

w(t)Ext∼πt

{
d(spt(xt)− sqt(xt))

}
dt, (3.3)

where pt and qt denote the marginal densities of the diffusion process (2.1) at time t initialized with
q and p respectively. w(t) is an integral weighting function. Clearly, we have D[0,T](p, q) = 0 if and
only if all marginal score functions agree, which implies that p0(xt) = q0(xt), a.s. π0.

3.2 Score Implicit Matching

Based upon this motivation, we would like to minimize the integral score-based divergence between
pθ and q in order to train the student model, i.e.,

L(θ) = D[0,T](pθ, q) =

∫ T

t=0

w(t)Ext∼πt
[
d(spθ,t(xt)− sqt(xt))

]
dt, (3.4)

where we assume that the distribution πt has no parameter dependence of θ, such as ψt(xt) =
psg[θ](xt). Taking the gradient with respect to θ, we have

∂

∂θ
L(θ) =

∫ T

t=0

w(t)Ext∼πt

[
d′(spθ,t(xt)− sqt(xt))

∂

∂θ
spθ,t(xt)

]
dt, (3.5)

where d′ denotes the derivative of d wrt. its inputs, i.e. ∇yd(y). Unfortunately, because the score
function is not tractable, it is impossible to compute ∂

∂θspθ,t(xt) directly, rendering such a direct
approach impractical.

4

115380https://doi.org/10.52202/079017-3664

Algorithm 1: Score Implicit Matching for Diffusion Distillation. (Pseudo-code in Appendix A.2)
Input: pre-trained DM sqt(.), generator gθ, prior distribution pz , online DM sψ(.);

differentiable distance function d(.), and forward diffusion (2.1).
while not converge do

with frozen θ, update ψ using SGD with gradient

Grad(ψ) =
∂

∂ψ

∫ T

t=0

λ(t)E z∼pz,x0=gθ(z),

xt|x0∼qt(xt|x0)

∥sψ(xt, t)−∇xt log qt(xt|x0)∥22dt.

with frozen ψ, update θ using SGD with the gradient

Grad(θ) =
∂

∂θ

∫ T

t=0

w(t)E z∼pz,x0=gθ(z),

xt|x0∼qt(xt|x0)

{
−d′(yt)

}T{
sψ(xt, t)−∇xt log qt(xt|x0)

}
dt,

where yt := sψ(xt, t)− sqt(xt).
end
return θ, ψ.

Fortunately, a key finding of our paper is if we choose the sampling distribution to the diffused
implicit distribution, i.e. πt = psg[θ],t where the notation sg[θ] denotes the stop gradient operator
that cuts off the parameter dependence of θ, the loss function (3.4) along with its intractable gradient
(3.5) can be minimized efficiently via an gradient-equivalent loss. This relies on our Theorem 3.1.
Theorem 3.1 (Score-divergence gradient Theorem). If distribution pθ,t satisfies some mild regularity
conditions, we have for any score function sqt(.), the following equation holds for all parameter θ:

Ext∼psg[θ],t

[
d′(spθ,t(xt)− sqt(xt))

∂

∂θ
spθ,t(xt)

]
(3.6)

= − ∂

∂θ
E x0∼pθ,0,

xt|x0∼qt(xt|x0)

[{
d′(spsg[θ],t(xt)− sqt(xt))

}T{
spsg[θ],t(xt)−∇xt log qt(xt|x0)

}]
.

The key observation here is that we replace the intractable gradient of the score function on the
left-hand side of (3.6) with a much affordable evaluation of the score function on the right-hand side,
the latter of which can be accomplished much more easily using a separate approximation network.
This theorem can be proved by using score-projection identity [70, 93] which was first introduced to
bridge denoising score matching with denoising auto-encoders. However, the key in proving Theorem
3.1 is a proper choice of θ-parameter (in)dependence by appropriately stopping the gradients shown
in this theorem. We provide the detailed proof in Appendix A.1.

Now it is ready to reveal the objective we will use to train the implicit generator gθ. A direct result of
(3.6) is the gradient (3.5) can be realized via minimizing a tractable loss function

LSIM (θ) =

∫ T

t=0

w(t)E z∼pz,x0=gθ(z),

xt|x0∼qt(xt|x0)

{
−d′(yt)

}T{
spsg[θ],t(xt)−∇xt log qt(xt|x0)

}
dt (3.7)

with yt := spsg[θ],t(xt)− sqt(xt). By Theorem 3.1, this alternative loss has an identical gradient to
that of the original loss without the need to access the gradient of the score network.

In practice, we can use another online diffusion model sψ(xt, t) to approximate the generator model’s
score function spsg[θ],t(xt) pointwise, which was also done in previous works such as Luo et al. [43],
Zhou et al. [93], and Yin et al. [82]. We name the distillation method that minimizes the objective
LSIM (θ) in (3.7) the Score Implicit Matching (SIM) because the learning process implicitly matches
the intractable marginal score function spθ,t(.) of the implicit student model with the explicit score
function of the pre-trained diffusion model sqt(.).

The complete algorithm for SIM is shown in Algorithm 1, which trains the student model through two
alternative phases between learning the marginal score function sψ , and updating the generator model
with gradient (3.7). The former phase follows the standard DM learning procedure, i.e., minimizing
the denoising score matching loss function (2.2), with a slight change that the sample is generated
from the generator. The resulting sψ(xt, t) provides a good pointwise estimation of spsg[θ],t(xt).

5

115381 https://doi.org/10.52202/079017-3664

The latter phase updates the generator’s parameter θ by minimizing the loss function (3.7), where
two needed functions are provided by pretrained DM sqt(xt) and learned DM sψ(xt, t).

3.3 Instances of Score Implicit Matching.

The previous section introduced the SIM algorithm without choosing a specific distance function
d(.). Here we discuss different choices and their influence on the distillation process. We also show
that in the SIM framework, the SiD can be viewed as a special case.

The Design Choice of Distance Function d(.). Clearly, various choices of distance function
d(.) result in different distillation algorithms. Perhaps the most natural choice of the distance
function is a simple squared distance, i.e. d(yt) = ∥yt∥22. The corresponding derivative term writes
d′(yt) = 2yt. In fact, such a loss function recovers the delta loss studied in SiD [93], in which the
authors empirically find that such a loss function works satisfactorily (though through a very different
derivation). Thus, SiD is in fact a special case of SIM, though the derivation of SiD there does not
suggest how alternative losses may be employed. A direct generalization of the quadratic form is
the α-power of the α-norm where α > 1 and α is even. In this case, the distance function writes
d(yt) = αy

(α−1)
t and the resulting loss function is summarized in Table 4 in Appendix A.3.

The Pseudo-Huber distance function. Different from powered norms, we introduce SIM with
the Pseudo-Huber distance function, which is defined with d(y) :=

√
∥yt∥22 + c2 − c, where c is a

pre-defined positive constant. The corresponding distillation objective writes

LSIM (θ) = −
{

yt√
∥yt∥22 + c2

}T{
sψ(xt, t)−∇xt log qt(xt|x0)

}
. (3.8)

In the rest of this paper, we will use the Pseudo-Huber distance as the default choice of the distance,
unless specified otherwise. Due to the limited space, we summarize different choices of distance
function and the corresponding loss functions in Table 4 as well as their derivations, along with more
discussions in Appendix A.3.

Particularly, unlike SiD (the L2 case in Table 4), with the Pseudo-Huber distance in the SIM, we
observe that the vector yt is naturally normalized adaptively by dividing by a squared root of the
vector. Such a normalization can stabilize the training loss, resulting in a robust and fast-converging
distillation process. In section 4.1, we conduct empirical experiments to show three advantages:
robustness to large-learning rate, fast convergence, and improved performances.

3.4 Related Works

Diffusion distillation [41] is a research area that aims to reduce generation costs using teacher
diffusion models. It involves three primary distillation methods: 1) Trajectory Distillation: This
method trains a student model to mimic the generation process of diffusion models with fewer steps.
Direct distillation ([39, 15]) and progressive distillation ([61, 48]) variants predict less noisy data
from noisy inputs. Consistency-based methods ([68, 29, 66, 36, 17]) minimize the self-consistency
metric. These require true data samples for training. 2) Distributional Matching: It focuses on
aligning the student’s generation distribution with that of a teacher diffusion model. Among them are
adversarial training methods ([76, 77]) requiring real data for distilling diffusion models. Another
important line of methods attempts to minimize divergences like KL ([82]) such as Diff-Instruct
(DI) [45, 82] and Fisher divergence such as Score identity Distillation (SiD) ([93]), often without
needing real data. Though SIM has gotten inspiration from SiD and DI, the gap between SIM and
SiD and DI is significant. SIM not only offers solid mathematical foundations which may lead to a
deep understanding of diffusion distillation, but also provides substantial flexibility in using different
distance functions, resulting in strong empirical performances when using specific Pseudo-Huber
distance. 3) Other Methods: Methods like operator learning ([86]), ReFlow ([37]), and FMM [3]
provide alternative insights into distillation. Moreover, many works made outstanding efforts to scale
up diffusion distillation to one-step text-to-image generation and beyond[40, 50, 69, 82, 92]

6

115382https://doi.org/10.52202/079017-3664

Table 1: Unconditional sample quality on CIFAR-
10. † means method we reproduced.

METHOD NFE (↓) FID (↓)

DIFFERENT ARCHITECTURE AS EDM MODEL

DDPM [21] 1000 3.17
DD-GAN(T=2) [76] 2 4.08
KD [39] 1 9.36
TDPM [90] 1 8.91
DFNO [88] 1 4.12
3-REFLOW (+DISTILL) [37] 1 5.21
STYLEGAN2-ADA [24] 1 2.92
STYLEGAN2-ADA+DI [43] 1 2.71

SAME ARCHITECTURE AS EDM[26] MODEL

EDM [26] 35 1.97
EDM [26] 15 5.62
PD [61] 2 5.13
CD [68] 2 2.93
GET [15] 1 6.91
CT [68] 1 8.70
ICT-DEEP [66] 2 2.24
DIFF-INSTRUCT [43] 1 4.53
DMD [82] 1 3.77
CTM [29] 1 1.98
CTM[29] 2 1.87
SID (α = 1.0) [93] 1 1.92
SID (α = 1.2)[93] 1 2.02
DI† 1 3.70
SIM (OURS) 1 2.06

Table 2: Class-conditional sample quality on CI-
FAR10 dataset. † means method we reproduced.

METHOD NFE (↓) FID (↓)

DIFFERENT ARCHITECTURE AS EDM MODEL

BIGGAN [4] 1 14.73
BIGGAN+TUNE[4] 1 8.47
STYLEGAN2 [25] 1 6.96
MULTIHINGE [27] 1 6.40
FQ-GAN [87] 1 5.59
STYLEGAN2-ADA [24] 1 2.42
STYLEGAN2-ADA+DI [43] 1 2.27
STYLEGAN2 + SMART [75] 1 2.06
STYLEGAN-XL [63] 1 1.85

SAME ARCHITECTURE AS EDM[26] MODEL

EDM [26] 35 1.82
EDM [26] 20 2.54
EDM [26] 10 15.56
EDM [26] 1 314.81
GET [15] 1 6.25
DIFF-INSTRUCT [43] 1 4.19
DMD (W.O. REG) [82] 1 5.58
DMD (W.O. KL) [82] 1 3.82
DMD [82] 1 2.66
CTM [29] 1 1.73
CTM[29] 2 1.63
SID (α = 1.0) [93] 1 1.93
SID (α = 1.2)[93] 1 1.71
SIM (OURS) 1 1.96

4 Experiments

4.1 One-step CIFAR10 Generation

Experiment Settings. In this experiment, we apply SIM to distill the pre-trained EDM [26]
diffusion models into one-step generator models on the CIFAR10 [33] dataset. We follow the same
setting as DI [43] and SiD [93] to distill the diffusion model into a one-step generator. Details can be
found in Appendix B.2. We refer to the high-quality codebase of SiD [93]3 to reproduce its results by
closely referring to its configurations on our devices. We also re-implement the DI under the same
experiment settings.

Performances. We evaluate the performance of the trained generator via Frechet Inception Distance
(FID) [20], which is the lower the better. We refer to the evaluation protocols in [43] for comparison
4. Table 1 and 2 summarize the FID of generative models on CIFAR10 datasets. We reproduce
the SiD and the DI with the same computing environments and evaluation protocol as SIM for
a fair comparison. Models in the upper part of the table have different architectures or diffusion
models from the EDM model, while the models in the lower part of the tables share exactly the same
architecture and the teacher EDM diffusion models, which thus are directly comparable.

As shown in Table 1, for the CIFAR10 unconditional generation task, the proposed SIM achieves a
decent FID of 2.06 with only one generation step, outperforming SiD and DI with the same training
compute. It is on par with the CTM and the SiD’s official implementation which are trained to fully
converge with training costs of hundreds of GPU days. For the class-conditional generation in Table
2, the SIM achieves an FID of 1.96, acting among top-performing models.

The CIFAR-10 generation tasks are much toyish as merely performed with diffusion models of
limited capacities on a simple dataset. We will perform experiments to distill from top-performing
transformer-based diffusion models for text-to-image generation tasks. We will show that the one-step
T2I generator distilled by SIM demonstrates state-of-the-art results over other industry-level models.

3https://github.com/mingyuanzhou/SiD
4https://github.com/pkulwj1994/diff_instruct

7

115383 https://doi.org/10.52202/079017-3664

https://github.com/mingyuanzhou/SiD
https://github.com/pkulwj1994/diff_instruct

Figure 2: Left Two: Comparison of distillation methods with a batch size of 256 and a learning rate
of 1e−4. (Left): the FID value. (Right): the Inception Scores. Right Two: Comparison of distillation
methods with a batch size of 256 and a learning rate of 1e− 5. (Left): the FID value. (Right): the
Inception Scores. All methods are constrained to the same settings except for the distillation methods.

Before that let us further look into some advantages of SIM – robustness to large learning rate and
faster convergences – over SiD and DI on CIFAR-10, which will shed some light on how distillation
methods scale up to more complex tasks with much larger neural networks.

Robustness to large learning rate. We apply SIM, SiD, and DI under the same settings to distill
from EDM (details in Appendix) on the CIFAR10 unconditional generation task, with a learning rate
of 1e− 4, and plot the Fretchet Inception Distance (FID) [20] and the Inception Score [62] in Figure
2. Both the DI and the SiD are unstable even in the early training phase, while the SIM can steadily
converge even with a large learning rate. The potential reason is that SIM naturally normalizes the
loss objective to keep its scale from changing abruptly along the training process. This distinguishes
SIM from SiD in practice for training large models, because training modern large models is so
expensive that researchers often have few chances to adjust the hyperparameters within budget.

Fast convergence. The second advantage of SIM is its faster convergence than SiD 5. To show
this, we follow the same setting as SiD on CIFAR10 unconditional generation. As shown in Figure 2
and Figure ??, under all configurations, the SIM consistently shows better FID and Inception Scores
under the same training iterations. Due to page limitations, we put more details in Appendix B.2.

Experiments on CIFAR10 generation show that SIM is a strong, robust, yet fast converging one-step
diffusion distillation algorithm. However, the power of SIM is not restricted to a toy CIFAR-10
benchmark. In section 4.2, we apply the SIM to distill a 0.6B DiT [53]) based text-to-image diffusion
model and obtain the state-of-the-art transformer-based one-step generator.

4.2 Transformer-based One-step Text-to-Image Generator

Experiment Settings. In recent years, transformer-based text-to-X generation models have gained
great attention across image generations such as Stable Diffusion V3 [12] and video generation such
as Sora [6]. In this section, we apply SIM to distill one of the leading open-sourced DiT-based
diffusion models that have gained lots of attention recently: the 0.6B PixelArt-α model [7], which is
built upon with DiT model [53], resulting in the state-of-the-art one-step generator in terms of both
quantitative evaluation metric and subjective user studies.
Experiment Settings and Evaluation Metrics. The goal of one-step distillation is to accelerate
the diffusion model into one-generation steps while maintaining or even outperforming the teacher
diffusion model’s performances. To verify the performance gap between our one-step model and the
diffusion model, we compare four quantitative values: the aesthetic score, the PickScore, the Image
Reward, and our user-studied comparison score. On the SAM-LLaVA-Caption10M, which is one
of the datasets the original PixelArt-α model is trained on, we compare the SIM one-step model,
which we called the SIM-DiT-600M, with the PixelArt-α model with a 14-step DPM-Solver[38]
to evaluate the in-data performance gap. We also compare the SIM-DiT-600M and PixelArt-α with
other few-step models, such as LCM [40], TCD [91], PeReflow [81], and Hyper-SD [57] series on
the widely used COCO-2017 validation dataset. We refer to Hyper-SD’s evaluation protocols to
compute evaluation metrics. Table 3 summarizes the evaluation performances of all models. For
the human preference study against PixArt-α and SIM-DiT-600M, we randomly select 17 prompts
from the SAM Caption dataset and generate images with both PixArt-α and SIM-DiT-600M, then

5We find that the DI converges fast but suffers from mode-collapse issues. So we do not compare with it.

8

115384https://doi.org/10.52202/079017-3664

Figure 3: Qualitative comparison of SIM-DiT-600M against other few-step text-to-image models.
Please zoom in to check details, lighting, and aesthetic performances. Prompts in Appendix B.7.

Figure 4: Visualization of bad generation cases of one-step SIM-DiT model.

ask the studied user to choose their preference according to image quality and alignments with the
prompts. Figure 1 shows a visualization of our user study cases, in which it is difficult to distinguish
the images from PixArt-α and SIM-DiT-600M.
Almost lossless one-step distillation. It is surprising that SIM-DiT-600M achieves almost no
performance loss compared to teacher diffusion models. For instance, on the SAM Caption dataset
in Table 3, SIM-DiT-600M recovers 99.6% aesthetic score of PixArt-α model and 100% PickScore.
However, the SIM-DiT-600M shows a slightly smaller Image Reward, which can be potentially
optimized with more training computes. When compared with leading few-step text-to-image models
such as SDXL-Turbo, SDXL-lightning, and Hyper-SDXL, the SIM-DiT-600M shows a dominant
aesthetic score with a significant margin, together with a decent Image Reward and Pick Score.

Besides the top performance, the training cost of SIM-DiT-600M is surprisingly cheap. Our best
model is trained (data-freely) with 4 A100-80G GPUs for 2 days, while other models in Table 3
require hundreds of A100 GPU days. We summarize the distillation costs in Table 3, marking that
SIM is a super efficient distillation method with astonishing scaling ability. We believe such efficiency
comes from two properties of SIM. First, the SIM is data-free, making the distillation process not
need ground truth image data. Second, the use of the Pseudo-Huber distance function (3.3) adaptively
normalizes the loss function, resulting in robustness to hyper-parameters and training stability.
Qualitative comparison. Figure 3 qualitatively compares SIM-DiT-600M against other leading
few-step text-to-image generative models. It is obvious that SIM-DiT-600M generates images with
higher aesthetic performances than other models. This reflects the quantitative results in Table 3
where the SIM-DiT-600M reaches a high aesthetic score. Both the quantitative and qualitative results
showcase the SIM-DiT-600M as the top-performing one-step text-to-image generator. Please check
our supplementary materials for more qualitative evaluations.

9

115385 https://doi.org/10.52202/079017-3664

MODEL STEPS TYPE PARAMS AES
SCORE

IMAGE
REWARD

PICK
SCORE

USER
PREF

DISTILL
COST

SD15-BASE [58] 25 UNET 860 M 5.26 0.18 0.217
SD15-LCM [40] 4 UNET 860 M 5.66 -0.37 0.212 8 A100× 4 DAYS
SD15-TCD [91] 4 UNET 860 M 5.45 -0.15 0.214 8 A800× 5.8 DAYS
PERFLOW [81] 4 UNET 860 M 5.64 -0.35 0.208 M GPU× N DAYS

HYPER-SD15[57] 1 UNET 860 M 5.79 0.29 0.215 32 A100× N DAYS

SDXL-BASE [58] 25 UNET 2.6 B 5.54 0.87 0.229
SDXL-LCM [40] 4 UNET 2.6 B 5.42 0.48 0.224 8 A100× 4 DAYS
SDXL-TCD [91] 4 UNET 2.6 B 5.42 0.67 0.226 8 A800× 5.8 DAYS

SDXL-LIGHTNING [35] 4 UNET 2.6 B 5.63 0.72 0.229 64 A100× N DAYS
HYPER-SDXL[57] 4 UNET 2.6 B 5.74 0.93 0.232 32 A100× N DAYS
SDXL-TURBO [64] 1 UNET 2.6 B 5.33 0.78 0.228 M GPU× N DAYS

SDXL-LIGHTNING [35] 1 UNET 2.6 B 5.34 0.54 0.223 64 A100× N DAYS
HYPER-SDXL[57] 1 UNET 2.6 B 5.85 1.19 0.231 32 A100× N DAYS

PIXART-α[7] 30 DIT 610 M 5.97 0.82 0.226
SIM-DIT-600M 1 DIT 610 M 6.42 0.67 0.223 4 A100× 2 DAYS

PIXART-α∗ [7] 30 DIT 610 M 5.93 0.53 0.223 54.88%
SIM-DIT-600M∗ 1 DIT 610 M 5.91 0.44 0.223 45.12% 4 A100× 2 DAYS

Table 3: Quantitative comparisons with frontier text-to-image models on COCO-2017 validation
dataset. The user preference is the winning rate of our user study on SIM-DiT-600M against 20-step
PixelArt-α. ∗ means the results evaluated on the SAM-LLaVA-Caption10M dataset, and SIM-DiT-
600M means the SIM generator distilled from PixelArt-α-600M, excluding those in the T5 text
encoder. The distillation cost M GPU× N Days means the model did not report the cost.

Failure Cases of One-step SIM-DiT Model. Though the SIM-DiT one-step model shows impres-
sive performances, it inevitably has limitations. For instance, we find that the 0.6B SIM-DiT one-step
model sometimes fails to generate high-quality tiny human faces and proper human arms and fingers.
Besides, the model sometimes generates a wrong number of objects and contents that do not strictly
follow the prompts. We believe that scaling up the model size and teacher diffusion models will help
to address these issues. Please refer to Figure 4 for visualization of failure cases.

5 Conclusion and Future Works

This paper presents a novel diffusion distillation method, the score implicit matching (SIM), which
enables to transform pre-trained multi-step diffusion models into one-step generators in a data-free
fashion. The theoretical foundations and practical algorithms introduced in this paper can enable
more affordable deployment of single-step generators across various domains and applications at
scale without compromising the performance of underlying generative models.

Nonetheless, SIM has its limitations that call for further research. First, with the abundance of other
powerful pre-trained generative models such as flow-matching models, it is worth exploring to reveal
if it is possible to generalize the application of SIM to such a broader family of generative models.
Second, even though data-free is an important feature of SIM, incorporating new data in the SIM can
further boost the quality of generated images failed by the teacher model. This potential benefit has
yet to be explored. We hope this could ease the training of large generative models.

Acknowledgement

Zhengyang Geng is supported by funding from the Bosch Center for AI. Zico Kolter gratefully
acknowledges Bosch’s funding for the lab.

We would like to acknowledge constructive suggestions from reviewers and ACs/SACs/PCs of
NeurIPS 2024. We acknowledge Dr. Mingyuan Zhou for his constructive suggestions on the
representation of our theoretical results. We also acknowledge the authors of Diff-Instruct and
Score-identity Distillation for their great contributions to high-quality diffusion distillation Python
code. We appreciate the authors of PixelArt-α for making their DiT-based diffusion model public.

10

115386https://doi.org/10.52202/079017-3664

References
[1] Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. ACM Transactions

on Graphics (TOG), 42(4):1–11, 2023.

[2] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika
Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu Liu. ediff-i: Text-
to-image diffusion models with ensemble of expert denoisers. arXiv preprint arXiv:2211.01324,
2022.

[3] Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. Flow map matching. arXiv
preprint arXiv:2406.07507, 2024.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=B1xsqj09Fm.

[5] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18392–18402, 2023.

[6] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

[7] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James T. Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion
transformer for photorealistic text-to-image synthesis. ArXiv, abs/2310.00426, 2023. URL
https://api.semanticscholar.org/CorpusID:263334265.

[8] Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows
for invertible generative modeling. In Advances in Neural Information Processing Systems,
pages 9916–9926, 2019.

[9] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
based semantic image editing with mask guidance. ArXiv, abs/2210.11427, 2022.

[10] Wei Deng, Weijian Luo, Yixin Tan, Marin Biloš, Yu Chen, Yuriy Nevmyvaka, and Ricky TQ
Chen. Variational schr\" odinger diffusion models. arXiv preprint arXiv:2405.04795, 2024.

[11] Wei Deng, Weijian Luo, Yixin Tan, Marin Biloš, Yu Chen, Yuriy Nevmyvaka, and Ricky TQ
Chen. Variational schrödinger diffusion models. In Forty-first International Conference on
Machine Learning, 2024.

[12] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transform-
ers for high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

[13] Yasong Feng, Weijian Luo, Yimin Huang, and Tianyu Wang. A lipschitz bandits approach for
continuous hyperparameter optimization. arXiv preprint arXiv:2302.01539, 2023.

[14] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and
Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. arXiv preprint arXiv:2208.01618, 2022.

[15] Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep
equilibrium models. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=b6XvK2de99.

[16] Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency
models made easy. arXiv preprint arXiv:2406.14548, 2024.

11

115387 https://doi.org/10.52202/079017-3664

https://openreview.net/forum?id=B1xsqj09Fm
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://api.semanticscholar.org/CorpusID:263334265
https://openreview.net/forum?id=b6XvK2de99

[17] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Josh Susskind. Boot: Data-free
distillation of denoising diffusion models with bootstrapping. arXiv preprint arXiv:2306.05544,
2023.

[18] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

[19] Amir Hertz, Kfir Aberman, and Daniel Cohen-Or. Delta denoising score. arXiv preprint
arXiv:2304.07090, 2023.

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Advances
in Neural Information Processing Systems, pages 6626–6637, 2017.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[22] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

[23] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International Conference on Machine Learning,
pages 8867–8887. PMLR, 2022.

[24] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data. Advances in Neural Information
Processing Systems, 33, 2020.

[25] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 8110–8119, 2020.

[26] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Proc. NeurIPS, 2022.

[27] Ilya Kavalerov, Wojciech Czaja, and Rama Chellappa. A multi-class hinge loss for conditional
gans. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pages 1290–1299, 2021.

[28] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri,
and Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6007–6017,
2023.

[29] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu
Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models:
Learning probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

[30] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion
models for robust image manipulation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2426–2435, 2022.

[31] Heeseung Kim, Sungwon Kim, and Sungroh Yoon. Guided-tts: A diffusion model for text-
to-speech via classifier guidance. In International Conference on Machine Learning, pages
11119–11133. PMLR, 2022.

[32] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 10215–10224. 2018.

[33] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 Dataset. online: http://www.
cs. toronto. edu/kriz/cifar. html, 55, 2014.

12

115388https://doi.org/10.52202/079017-3664

[34] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d
content creation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 300–309, 2023.

[35] Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024.

[36] Hongjian Liu, Qingsong Xie, Zhijie Deng, Chen Chen, Shixiang Tang, Fueyang Fu, Zheng-
jun Zha, and Haonan Lu. Scott: Accelerating diffusion models with stochastic consistency
distillation. arXiv preprint arXiv:2403.01505, 2024.

[37] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[38] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

[39] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[40] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

[41] Weijian Luo. A comprehensive survey on knowledge distillation of diffusion models. arXiv
preprint arXiv:2304.04262, 2023.

[42] Weijian Luo and Zhihua Zhang. Data prediction denoising models: The pupil outdoes the
master, 2024. URL https://openreview.net/forum?id=wYmcfur889.

[43] Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang.
Diff-instruct: A universal approach for transferring knowledge from pre-trained diffusion
models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=MLIs5iRq4w.

[44] Weijian Luo, Hao Jiang, Tianyang Hu, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Training
energy-based models with diffusion contrastive divergences. arXiv preprint arXiv:2307.01668,
2023.

[45] Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

[46] Weijian Luo, Boya Zhang, and Zhihua Zhang. Entropy-based training methods for scalable
neural implicit samplers. Advances in Neural Information Processing Systems, 36, 2024.

[47] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

[48] Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. arXiv preprint arXiv:2210.03142, 2022.

[49] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion
for editing real images using guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6038–6047, 2023.

[50] Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. arXiv preprint arXiv:2312.05239, 2023.

[51] Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. arXiv
preprint arXiv:2102.09672, 2021.

13

115389 https://doi.org/10.52202/079017-3664

https://openreview.net/forum?id=wYmcfur889
https://openreview.net/forum?id=MLIs5iRq4w

[52] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[53] William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

[54] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

[55] Ashwini Pokle, Zhengyang Geng, and J Zico Kolter. Deep equilibrium approaches to diffusion
models. Advances in Neural Information Processing Systems, 35:37975–37990, 2022.

[56] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. In The Eleventh International Conference on Learning Representations, 2022.

[57] Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xuefeng
Xiao. Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. arXiv
preprint arXiv:2404.13686, 2024.

[58] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[59] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
22500–22510, 2023.

[60] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

[61] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI.

[62] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pages 2234–2242, 2016.

[63] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. ACM SIGGRAPH 2022 Conference Proceedings, 2022.

[64] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

[65] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015.

[66] Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

[67] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[68] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv
preprint arXiv:2303.01469, 2023.

[69] Yuda Song, Zehao Sun, and Xuanwu Yin. Sdxs: Real-time one-step latent diffusion models
with image conditions. arXiv preprint arXiv:2403.16627, 2024.

14

115390https://doi.org/10.52202/079017-3664

https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI

[70] Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Computation, 23(7):1661–1674, 2011.

[71] Yifei Wang, Weimin Bai, Weijian Luo, Wenzheng Chen, and He Sun. Integrating amortized
inference with diffusion models for learning clean distribution from corrupted images. arXiv
preprint arXiv:2407.11162, 2024.

[72] Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou.
Diffusion-gan: Training gans with diffusion. arXiv preprint arXiv:2206.02262, 2022.

[73] Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He, Zhangyang "At-
las" Wang, Weizhu Chen, and Mingyuan Zhou. Patch diffusion: Faster and more
data-efficient training of diffusion models. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information
Processing Systems, volume 36, pages 72137–72154. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
e4667dd0a5a54b74019b72b677ed8ec1-Paper-Conference.pdf.

[74] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
arXiv preprint arXiv:2305.16213, 2023.

[75] Mengfei Xia, Yujun Shen, Ceyuan Yang, Ran Yi, Wenping Wang, and Yong-jin Liu. Smart:
Improving gans with score matching regularity. arXiv preprint arXiv:2311.18208, 2023.

[76] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma
with denoising diffusion gans. In International Conference on Learning Representations, 2021.

[77] Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans. arXiv preprint arXiv:2311.09257, 2023.

[78] Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and
Zhi-Ming Ma. Sa-solver: Stochastic adams solver for fast sampling of diffusion models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[79] Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and
Zhi-Ming Ma. SA-solver: Stochastic adams solver for fast sampling of diffusion models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=f6a9XVFYIo.

[80] Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu, Zhuofan Zong, Yu Liu, and Ping Luo.
Raphael: Text-to-image generation via large mixture of diffusion paths. ArXiv, abs/2305.18295,
2023. URL https://api.semanticscholar.org/CorpusID:258959002.

[81] Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
Piecewise rectified flow as universal plug-and-play accelerator. arXiv preprint arXiv:2405.07510,
2024.

[82] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T
Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. arXiv
preprint arXiv:2311.18828, 2023.

[83] Boya Zhang, Weijian Luo, and Zhihua Zhang. Enhancing adversarial robustness via score-based
optimization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=MOAHXRzHhm.

[84] Boya Zhang, Weijian Luo, and Zhihua Zhang. Purify++: Improving diffusion-purification with
advanced diffusion models and control of randomness. arXiv preprint arXiv:2310.18762, 2023.

[85] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 3836–3847, 2023.

15

115391 https://doi.org/10.52202/079017-3664

https://proceedings.neurips.cc/paper_files/paper/2023/file/e4667dd0a5a54b74019b72b677ed8ec1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e4667dd0a5a54b74019b72b677ed8ec1-Paper-Conference.pdf
https://openreview.net/forum?id=f6a9XVFYIo
https://openreview.net/forum?id=f6a9XVFYIo
https://api.semanticscholar.org/CorpusID:258959002
https://openreview.net/forum?id=MOAHXRzHhm

[86] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. arXiv preprint arXiv:2204.13902, 2022.

[87] Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, and Changyou Chen. Feature quantization
improves gan training. arXiv preprint arXiv:2004.02088, 2020.

[88] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar.
Fast sampling of diffusion models via operator learning. arXiv preprint arXiv:2211.13449,
2022.

[89] Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion proba-
bilistic models and diffusion-based adversarial auto-encoders. arXiv preprint arXiv:2202.09671,
2022.

[90] Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion
probabilistic models and diffusion-based adversarial auto-encoders. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=HDxgaKk956l.

[91] Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao, and
Tat-Jen Cham. Trajectory consistency distillation. arXiv preprint arXiv:2402.19159, 2024.

[92] Mingyuan Zhou, Zhendong Wang, Huangjie Zheng, and Hai Huang. Long and short guidance
in score identity distillation for one-step text-to-image generation. ArXiv 2406.01561, 2024.
URL https://arxiv.org/abs/2406.01561.

[93] Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score
identity distillation: Exponentially fast distillation of pretrained diffusion models for one-step
generation. arXiv preprint arXiv:2404.04057, 2024.

16

115392https://doi.org/10.52202/079017-3664

https://openreview.net/forum?id=HDxgaKk956l
https://openreview.net/forum?id=HDxgaKk956l
https://arxiv.org/abs/2406.01561

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is that we propose a method, Score Implicit Matching (SIM),
that can distill a pre-trained diffusion model into a one-step generator with very strong
performances compared to the other SoTA models. We have highlighted important contri-
butions of our method in 3.2 and have provided sufficient evidence to support our central
claims in the experiments section 4.1 and 4.2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

17

115393 https://doi.org/10.52202/079017-3664

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have explcitly stated the limitations of our method in conclusion, and have
suggested some potential future work to mitigate these limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Though this paper is more an empirically strong paper, we also provide clear
assumptions or detailed supporting references for the theoretical statements of the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]

18

115394https://doi.org/10.52202/079017-3664

Justification: We have included details of experimental settings and hyperparameters in B.2.
We also plan to release our code to ensure transparency and reproducibility of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No] ,

Justification: Since our code has a business policy, we can not release the code at this time.
But we plan to release the code once the acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

19

115395 https://doi.org/10.52202/079017-3664

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included all relevant experimental details, including details of datasets,
hyperparameters, optimizer, etc. both in the main paper, as well as in B.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the statistical significance test for the scaling results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of computing workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

20

115396https://doi.org/10.52202/079017-3664

Justification: We have stated GPU requirements for training our models in 3. We have also
included other relevant details of computational requirements in B.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute worker CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the Code of Ethics from all the perspectives stated.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper presents a diffusion distillation approach to strengthen the efficiency
of diffusion models. We do not see social impacts within our subject.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

21

115397 https://doi.org/10.52202/079017-3664

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We use the pre-trained PixelArt-α text-to-image model as a teacher distillation
model, along with its open-sourced training datasets. We have described the details in
section 4.2. Since currently we don’t plan to open source our text-to-image model, so there
is no concern for use to release unsafe contents.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Major assets in our work are:

• Datasets CIFAR-10 and SAM-recaptioned: we have cited the original paper that
proposed these datasets.

• Models PixelArt-α: we have cited the original paper that proposed these datasets.
• Our codebase is adapted by modifying code available on github by the authors of

EDM [26] and Diff-Instruct [43]. The relevant license is Attribution-NonCommercial-
ShareAlike 4.0 International. Our code includes and correctly attributes the relevant
copyright information.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

22

115398https://doi.org/10.52202/079017-3664

paperswithcode.com/datasets

Justification: We do not release new assets in the submission phase.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We have one experiment including human preference studies. We describe the
detailed instructions for conducting such a user study in section B.4.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We have one experiment including human preference studies. We have
acquired the approval of users under study to help fill our forms. No potential threats to
human subjects were detected, and all results were anonymized to prevent any potential
exposure of human identities. All human subjects were properly paid. B.4.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

115399 https://doi.org/10.52202/079017-3664

A Theory Parts

A.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the so-called Score-projection identity which was first found
in Vincent [70] to bridge denoising score matching and denoising auto-encoders. Later the identity
is applied by Zhou et al. [93] for deriving distillation methods based on Fisher divergences. We
appreciate the efforts of Zhou et al. [93] and re-write the score-projection identity here without proof.
Readers can check Zhou et al. [93] for a complete proof of score-projection identity.

Theorem A.1 (Score-projection identity). Let u(·, θ) be a vector-valued function, using the notations
of Theorem 3.1, under mild conditions, the identity holds:

E x0∼pθ,0
xt|x0∼qt(xt|x0)

u(xt, θ)
T

{
spθ,t(xt)−∇xt log qt(xt|x0)

}
= 0, ∀θ.

Next, we turn to prove the Theorem 3.1.

Proof. We prove a more general result. Let u(·) be a vector-valued function, the so-called score-
projection identity [93, 70] holds,

E x0∼pθ,0
xt|x0∼qt(xt|x0)

u(xt, θ)
T

{
spθ,t(xt)−∇xt log qt(xt|x0)

}
= 0, ∀θ. (A.1)

Taking θ gradient on both sides of identity (A.1), we have

0 = E x0∼pθ,0
xt|x0∼qt(xt|x0)

∂

∂xt

{
u(xt, θ)

T
{
spθ,t(xt)−∇xt log qt(xt|x0)

}}∂xt
∂θ

+ E x0∼pθ,0
xt|x0∼qt(xt|x0)

∂

∂x0

{
u(xt, θ)

T
{
−∇xt log qt(xt|x0)

}}∂x0

∂θ
(A.2)

+ E x0∼pθ,0
xt|x0∼qt(xt|x0)

u(xt, θ)
T ∂

∂θ

{
spθ,t(xt)

}
+

∂

∂θ
u(xt, θ)

Tsθ(xt) (A.3)

= E x0∼pθ,0
xt|x0∼qt(xt|x0)

u(xt, θ)
T ∂

∂θ

{
spθ,t(xt)

}
(A.4)

+ E x0∼pθ,0
xt|x0∼qt(xt|x0)

{
∂

∂xt

{
u(xt, θ)

T
{
spθ,t(xt)−∇xt log qt(xt|x0)

}}∂xt
∂θ

(A.5)

+
∂

∂x0

{
u(xt, θ)

T
{
−∇xt log qt(xt|x0)

}}∂x0

∂θ
(A.6)

+
∂

∂θ
u(xt, θ)

Tsθ(xt)

}
(A.7)

= Ext∼pθ,tu(xt, θ)
T ∂

∂θ

{
spθ,t(xt)

}
(A.8)

+
∂

∂θ
E x0∼pθ,0

xt|x0∼qt(xt|x0)

u(xt, θ)
T

{
sp[θ],t(xt)−∇xt log qt(xt|x0)

}
(A.9)

Therefore we have the following identity:

Ext∼pθ,tu(xt, θ)
T ∂

∂θ

{
spθ,t(xt)

}
= − ∂

∂θ
E x0∼pθ,0

xt|x0∼qt(xt|x0)

u(xt, θ)
T

{
sp[θ],t(xt)−∇xt log qt(xt|x0)

}
(A.10)

which holds for arbitrary function u(·, θ) and parameter θ. If we set

u(xt, θ) = d′(yt)

yt = spsg[θ],t(xt)− sqt(xt)

24

115400https://doi.org/10.52202/079017-3664

Then we formally have

∂

∂θ
Ext∼psg[θ],t

{
d′(yt)

}T{
spθ,t(xt)

}
=

∂

∂θ
E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
− d′(yt)

}T{
spθ,t(xt)−∇xt log qt(xt|x0)

}
(A.11)

A.2 Pytorch style pseudo-code of Score Implicit Matching

In this section, we give a PyTorch style pseudo-code for algorithm 1, with the Pseudo-Huber distance
function. For a detailed algorithm on CIFAR10 with EDM model, please check Algorithm 2.

1 import torch
2 import torch.nn as nn
3 import torch.optim as optim
4

5 # Initialize generator G
6 G = Generator()
7

8 ## load teacher DM
9 Sd = DiffusionModel().load(’/path_to_ckpt’).eval().requires_grad_(False)

10 Sg = copy.deepcopy(Sd) ## initialize online DM with teacher DM
11

12 # Define optimizers
13 opt_G = optim.Adam(G.parameters(), lr=0.001, betas=(0.0, 0.999))
14 opt_Sg = optim.Adam(Sg.parameters(), lr=0.001, betas=(0.0, 0.999))
15

16 # Training loop
17 while True:
18 ## update Sg
19 Sg.train().requires_grad_(True)
20 G.eval().requires_grad_(False)
21

22 # loop for 2 times to update Sg
23 for _ in range(2):
24 z = torch.randn((2000, 2)).to(device)
25 with torch.no_grad():
26 fake_x = G(z)
27

28 t = torch.from_numpy(np.random.choice(np.arange(1,Sd.T), size=
fake_x.shape[0], replace=True)).to(device).long()

29 fake_xt, t, noise, sigma_t, g2_t = Sd(fake_x, t=t, return_t=True)
30 sigma_t = sigma_t.view(-1,1).to(device)
31 g2_t = g2_t.to(device)
32 score = Sg(torch.cat([fake_xt,t.view(-1,1)/Sd.T],-1))/sigma_t
33

34 batch_sg_loss = score + noise/sigma_t
35 batch_sg_loss = (g2_t*batch_sg_loss.square().sum(-1)).mean()*Sd.T
36

37 optimizer_Sg.zero_grad()
38 batch_sg_loss.backward()
39 optimizer_Sg.step()
40

41

42 ## update G
43 Sg.eval().requires_grad_(False)
44 G.train().requires_grad_(True)
45

46 z = torch.randn((2000, 2)).to(device)
47 fake_x = G(z)
48

25

115401 https://doi.org/10.52202/079017-3664

49 t = torch.from_numpy(np.random.choice(np.arange(1,diffusion.T), size=
fake_x.shape[0], replace=True)).to(device).long()

50 fake_xt, t, noise, sigma_t, g2_t = diffusion(fake_x, t=t, return_t=
True)

51 sigma_t = sigma_t.view(-1,1).to(device)
52 g2_t = g2_t.to(device)
53

54 score_true = Sd(torch.cat([fake_xt,t.view(-1,1)/diffusion.T],-1))/
sigma_t

55 score_fake = Sg(torch.cat([fake_xt,t.view(-1,1)/diffusion.T],-1))/
sigma_t

56

57 score_diff = score_true - score_fake
58

59 offset_coeff = denoise_diff / torch.sqrt(denoise_diff.square().sum
([1,2,3], keepdims=True) + self.phuber_c**2)

60 weight = 1.0
61

62 batch_g_loss = weight * offset_coeff * (fake_denoise - images)
63 batch_g_loss = batch_g_loss.sum([1,2,3]).mean()
64

65 optimizer_G.zero_grad()
66 batch_g_loss.backward()
67 optimizer_G.step()

Listing 1: Pytorch Style Pseudo-code of SIM

A.3 Instances of SIM with different distance functions

In section 3.3, we have discussed the powered normed as distance functions. Other choices, such as
the Huber distance, which is defined as

∀1 ≤ d ≤ D, Lδ(y)d :=

{
y2d/2 for yd ≥ δ

δ(|yd| − δ/2) otherwise

For other choices of distance functions, such as L1 norm and exponential with powered norms, we
put them in Table 4.

Table 4: Instances of Score Implicit Matching loss with different distance functions. The notations
are aligned with the Algorithm 1.

CHOICE OF d(.) d′(yt) LOSS FUNCTION

∥yt∥2
2 2yt −2yTt

{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
∥yt∥αα, α≥1,

α even αy
(α−1)
t −α

{
y
(α−1)
t

}T{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
exp(β∥yt∥αα)−1,

α≥1, α even
α exp(β∥yt∥αα)y

(α−1)
t −α exp(β∥yt∥αα)

{
y
(α−1)
t

}{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
∥yt∥1 sign(yt) − sign(yt)

T

{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
Lδ(yt),

Lδ(.) HUBER LOSS
∂
∂yt

Lδ(yt) − ∂
∂yt

Lδ(yt)
T

{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
√

∥yt∥2
2 + c2 − c 2

yt√
∥yt∥22+c2

−2

{
2

yt√
∥yt∥22+c2

}T{
sψ(xt, t) − ∇xt log qt(xt|x0)

}

B Empirical Parts

B.1 Answer for the human preference study

The answer to the human preference study in Figure 1 is

• the middle image of the first row is generated by one-step SIM-DiT-600M;

26

115402https://doi.org/10.52202/079017-3664

• the leftmost image of the second row is generated by one step SIM-DiT-600M;
• the leftmost image of the third row is generated by one-step SIM-DiT-600M.

B.2 Experiment details on CIFAR10 dataset

We follow the experiment setting of SiD and DI on CIFAR10. We start with a brief introduction to
the EDM model [26].

The EDM model depends on the diffusion process

dxt = tdwt, t ∈ [0, T]. (B.1)

Samples from the forward process (B.1) can be generated by adding random noise to the output of
the generator function, i.e., xt = x0 + tϵ where ϵ ∼ N (0, I) is a Gaussian vector. The EDM model
also reformulates the diffusion model’s score matching objective as a denoising regression objective,
which writes,

L(ψ) =
∫ T

t=0

λ(t)Ex0∼p0,xt|x0∼pt(xt|x0)∥dψ(xt, t)− x0∥22dt. (B.2)

Where dψ(·) is a denoiser network that tries to predict the clean sample by taking noisy samples
as inputs. Minimizing the loss (B.2) leads to a trained denoiser, which has a simple relation to the
marginal score functions as:

sψ(xt, t) =
dψ(xt, t)− xt

t2
(B.3)

Under such a formulation, we actually have pre-trained denoiser models for experiments. Therefore,
we use the EDM notations in later parts.

Construction of the one-step generator. Let dθ(·) be pretrained EDM denoiser models. Owing to
the denoiser formulation of the EDM model, we construct the generator to have the same architecture
as the pre-trained EDM denoiser with a pre-selected index t∗, which writes

x0 = gθ(z) := d(z, t∗), z ∼ N (0, (t∗)2I). (B.4)

We initialize the generator with the same parameter as the teacher EDM denoiser model.

Time index distribution. When training both the EDM diffusion model and the generator, we need
to randomly select a time t in order to approximate the integral of the loss function (B.2). The EDM
model has a default choice of t distribution as log-normal when training the diffusion (denoiser)
model, i.e.

t ∼ pEDM (t) : t = exp(s) (B.5)

s ∼ N (Pmean, P
2
std), Pmean = −1.2, Pstd = 1.2. (B.6)

And a weighting function

λEDM (t) =
(t2 + σ2

data)

(t× σdata)2
. (B.7)

In our algorithm, we follow the same setting as the EDM model when updating the online diffusion
(denoiser) model.

In SiD, they propose to use a special discrete time distribution, which writes

σk = (σ
1
ρ
max

i

K − 1
(σ

1
ρ

min − σ
1
ρ
max))

ρ,

σmax = 80.0, σmin = 0.002, ρ = 7.0,K = 1000

They proposed to choose t uniformly from

t ∼ pSiD(t) : k ∼ Unif [0, 800], t = σk; (B.8)

We name such a time distribution the Karr distribution in Figure 2 because such a schedule was
originally proposed in Karras’ EDM work for sampling.

27

115403 https://doi.org/10.52202/079017-3664

Table 5: Hyperparameters used for SIM on CIFAR10 EDM Distillation
Hyperparameter CIFAR-10 (Uncond) CIFAR-10 (Cond)

DM sψ Generator gθ DM sψ Generator gθ
Learning rate 1e-5 1e-5 1e-5 1e-5
Batch size 256 256 256 256
σ(t∗) 2.5 2.5 2.5 2.5
Adam β0 0.0 0.0 0.0 0.0
Adam β1 0.999 0.999 0.999 0.999
Time Distribution pEDM (t)(B.5) pSIM (t)(B.9) pEDM (t)(B.5) pSIM (t)(B.9)
Weighting λEDM (t)(B.7) 1 λEDM (t)(B.7) 1
Loss function (B.2) (B.13) (B.2) (B.13)
Number of GPUs 4×A100-40G 4×A100-40G 4×A100-40G 4×A100-40G

However, in practice, we find that Karr distribution (B.8) empirically does not work well. Instead,
we find that a modified log-normal time distribution when updating the generation with SIM works
better than Karr distribution. Our SIM time distribution writes:

t ∼ pSIM (t) : t = exp(s) (B.9)

s ∼ N (Pmean, P
2
std), Pmean = −3.5, Pstd = 2.5. (B.10)

Weighting function. As we have said, we use the same λEDM (t) (B.7) weighting function as
EDM when updating the denoiser model. When updating the generator, SiD uses a specially designed
weighting function, which writes:

wSiD(t) =
C × t4

∥x0 − dqt(xt)∥1,sg
(B.11)

xt = x0 + tϵ, ϵ ∼ N (0, I) (B.12)
The notation sg means stop-gradient, and C is the data dimensions. They claim such a weighting
function helps to stabilize the training. However, in our experiments, since the SIM itself has
normalized the loss (see section 4), we do not use such ad-hoc weighting functions. Instead, we just
set the weighting function to be 1 for all time. We call the SiD’s weighting function the sidwgt in
Figure 2, and our weighting the nowgt in Figure 2.

In Figure 2, we compare the SiD and SIM with different time distribution and weighting functions.
We find that SIM+nowgt+lognormal time distribution gives the best performances significantly,
therefore our final experiment tasks such a configuration. Table 5 records the detailed configurations
we use for SIM on CIFAR10 EDM distillation.

With the optimal setting and EDM formulation, we can rewrite our algorithm in an EDM style in
Algorithm 2.

B.3 Experiment details on Text-to-Image Distillation

In the Text-to-Image distillation part, in order to align our experiment with that on CIFAR10, we
rewrite the PixArt-α model in EDM formulation:

d(x; t) = x− tFθ (B.14)

Here, following the iDDPM+DDIM preconditioning in EDM, PixArt-α is denoted by Fθ, x is the
image data plus noise with a standard deviation of t, for the remaining parameters such as C1 and
C2, we kept them unchanged to match those defined in EDM. Unlike the original model, we only
retained the image channels for the output of this model. Since we employed the preconditioning of
iDDPM+DDIM in the EDM, each σ value is rounded to the nearest 1000 bins after being passed into
the model. For the actual values used in PixArt-α, beta_start is set to 0.0001, and beta_end is set to
0.02. Therefore, according to the formulation of EDM, the range of our noise distribution is [0.01,
156.6155], which will be used to truncate our sampled t. For our one-step generator, it is formulated
as:

gθ(z) = d(z, t∗) = z − t∗Fθ (B.15)
Here following SiD t∗ = 2.5 and z ∼ N (0, (t∗)2I), we observed in practice that larger values of t∗
lead to faster convergence of the model, but the difference in convergence speed is negligible for the
complete model training process and has minimal impact on the final results.

28

115404https://doi.org/10.52202/079017-3664

Algorithm 2: SIM with Pseudo-Huber distance for distilling EDM teacher [Pytorch Style].
Input: pre-trained EDM denoiser dqt(.), generator gθ, prior distribution pz , online EDM

denoiser dψ(.); differentiable distance function d(.), and forward diffusion (2.1).
while not converge do

// freeze θ, update ψ:
x0 = gθ(z).detach(), z ∼ pz
t ∼ pEDM (t), xt = x0 + tϵ, ϵ ∼ N (0, I)
L(ψ) = λEDM (t)× ∥dψ(xt, t)− x0∥22
L(ψ).backward(); update ψ
// freeze ψ, update θ:
x0 = gθ(z), z ∼ pz
t ∼ pSIM (t), xt = x0 + tϵ, ϵ ∼ N (0, I)

L(θ) = −
{

yt√
∥yt∥22 + c2

}T{
dψ(xt, t)− x0

}
, where yt := dψ(xt, t)− dqt(xt)

(B.13)

L(θ).backward(); update θ
end
return θ, ψ.

We utilized the SAM-LLaVA-Caption10M dataset, which comprises prompts generated by the LLaVA
model on the SAM dataset. These prompts provide detailed descriptions for the images, thereby
offering us a challenging set of samples for our distillation experiments.

All experiments in this section were conducted on 4 A100-40G GPUs with bfloat16 precision, using
the PixArt-XL-2-512x512 model version, employing the same hyperparameters. For both optimizers,
we utilized Adam with a learning rate of 5e-6 and betas=[0, 0.999]. Additionally, to enable a batch
size of 1024, we employed gradient checkpointing and set the gradient accumulation to 8. Finally,
regarding the training noise distribution, instead of adhering to the original iDDPM schedule, we
sample the σ from a log-normal distribution with a mean of -2.0 and a standard deviation of 2.0, we
use the same noise distribution for both optimization steps and set the two loss weighting to constant
1. Our best model was trained on the SAM Caption dataset for approximately 16k iterations, which is
equivalent to less than 2 epochs. This training process took about 2 days on 4 A100-40G GPUs.

We also tested the impact of different noise distributions on the distillation process. When the noise
distribution is highly concentrated around smaller values, we observed a phenomenon where the
generated samples appear excessively dark. On the other hand, when we used slightly larger noise
distributions, we found that the structure of the generated samples tended to be unstable.

B.4 Instruction for Human Preference Study

Our user study primarily focuses on comparing the outputs of the distilled model and the teacher
model. Each image has undergone rigorous manual review to ensure the safety of survey participants.
We conducted the study using questionnaires, where users were presented with two randomly ordered
images generated by the distilled model and teacher model and asked to select the sample that best
matched the text description and had higher image quality. Finally, we used the collected votes for
the distilled model and the teacher model as indicators of user preference. The questionnaire website
used for conducting these evaluations are shown in Figure 5.

To be more specific, we randomly selected 17 prompt words and generated images of resolution
512x512 using both the student model and the teacher model. To facilitate comparison, we presented
the two images side by side in random order. In the questionnaire, we provided the complete prompt
words for reference in addition to the generated images. In the end, we collected approximately 30
survey responses in total.

29

115405 https://doi.org/10.52202/079017-3664

Figure 5: Demonstration of our human preference user study interface.

Figure 6: One-step SIM model on CIFAR10-conditional. FID=1.96.

30

115406https://doi.org/10.52202/079017-3664

Figure 7: One-step SIM model on CIFAR10-unconditional. FID=2.06.

Figure 8: The comparison of FID convergence between SIM and SiD.

B.5 Generated Samples on CIFAR10

B.6 FID Convergence on CIFAR10 Unconditional Generation

B.7 Prompts for Figure 3

• prompt for first row of Figure 3: A small cactus with a happy face in the Sahara desert.

• prompt for second row of Figure 3: An image of a jade green and gold coloured Fabergé
egg, 16k resolution, highly detailed, product photography, trending on artstation, sharp

31

115407 https://doi.org/10.52202/079017-3664

focus, studio photo, intricate details, fairly dark background, perfect lighting, perfect com-
position, sharp features, Miki Asai Macro photography, close-up, hyper detailed, trending
on artstation, sharp focus, studio photo, intricate details, highly detailed, by greg rutkowski.

• prompt for third row of Figure 3: Baby playing with toys in the snow.

32

115408https://doi.org/10.52202/079017-3664

