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Abstract

This work presents a modification of the self-attention dynamics proposed
by Geshkovski et al. (2023b) to better reflect the practically relevant, causally
masked attention used in transformer architectures for generative AI. This modifi-
cation translates into an interacting particle system that cannot be interpreted as a
mean-field gradient flow. Despite this loss of structure, we significantly strengthen
the results of Geshkovski et al. (2023b) in this context: While previous rigorous
results focused on cases where all three matrices (Key, Query, and Value) were
scaled identities, we prove asymptotic convergence to a single cluster for arbitrary
key-query matrices and a value matrix equal to the identity. Additionally, we
establish a connection to the classical Rényi parking problem from combinatorial
geometry to make initial theoretical steps towards demonstrating the existence of
meta-stable states.

1 Introduction

The introduction of the Transformer architecture Vaswani et al. (2017) has markedly impacted the
landscape of natural language processing (NLP), signaling the advent of large language models.
Central to the Transformer architecture is the self-attention mechanism, a special kind of layer that
distinguishes it from preceding models such as ResNets. This innovation has yielded unprecedented
performance not only in machine translation and text summarization but also in areas beyond
NLP, including computer vision, speech recognition, and robotics. The flexibility and efficiency of
Transformers underscore their integral role in the progression of artificial intelligence. Despite their
widespread use, the theoretical foundations underlying their success remain underexplored.

Following Sander et al. (2022), recent studies by Geshkovski et al. (2023a) and Geshkovski et al.
(2023b) have proposed a mathematical framework to analyze Transformers as interacting particle
systems, demonstrating that tokens, when modeled as particles, exhibit clustering under certain
conditions on the Key, Query, and Value matrices. These works primarily focus on full (mean-field)
attention mechanisms, where each token can interact with every other token. Building upon this
foundation, our research extends the analysis to causal attention mechanisms, wherein each token
is restricted to interact only with preceding tokens. This distinction is crucial, as causal attention is
prevalent in Transformer models employed in generative AI and known as decoder architectures.

Causal attention is crucial for sequence generation tasks, ensuring that each token only attends to
previous tokens and not future ones, thereby preserving the correct temporal order. This mechanism,
also known as autoregressive attention, masks future tokens during attention computation to prevent
the model from accessing information it hasn’t generated yet. At inference time, causal attention
allows the model to generate text one token at a time, using previously generated tokens to inform the
next, ensuring coherent and contextually accurate sequences. This step-by-step generation process
is computationally efficient, as each token is produced in a forward pass without needing to revisit
previous steps. In contrast to full attention, which considers all tokens simultaneously and is suitable
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Table 1: Possible Final Configurations of Particles
Largest Eigenvalue Multiplicity Final Configuration Figure

λmax > 0 d First particle x0 1a
λmax > 0 ≥ 2 One point in L 1b
λmax > 0 1 Two points ξ and −ξ 1c
λmax < 0 ≥ 2 Point cloud around L 1d
λmax < 0 1 Two point clouds around ξ and −ξ 1e

for tasks like machine translation where the entire sequence is known, causal attention is essential for
tasks requiring real-time, sequential output. This computational advantage explains the pervasiveness
of causal attention not only in natural language processing but also in image generation with tools
like DALL-E (Ramesh et al., 2021), VQGAN (Esser et al., 2021), or Parti (Yu et al., 2022) and
multimodal foundation models, notably Chameleon (Team, 2024). More generally, the use of masked
attention where tokens pay attention to a subset of other tokens has been driving recent scaling efforts
and has led to state-of-the-art models such as MUSE (Chang et al., 2023) or Alphafold 3 (Abramson
et al., 2024). Causal attention can also be recast as an interacting particle system but it requires
different analytical techniques. This is the goal of our paper.

Our contributions. Our main theoretical result establishes asymptotic clustering of tokens for causal
self-attention transformer modeled as an interacting particles system on the sphere (Theorem 4.1).
While mathematically accurate, this asymptotic collapse to a single cluster is seldom observed
numerically. Instead, particles collapse to multiple clusters and stay in this configuration for a
very long time (see Fig. 2 for a representative example) — such meta-stable states were already
alluded to in Geshkovski et al. (2023b) and their study was recently initiated in Koubbi et al. (2024).
In Section 5 we describe such meta-stable states using analogy with the Rényi parking process
(Lemma 2, Theorem 5.1). Additionally, Theorem 5.1 covers asymptotic clustering of tokens for
causal self-attention with additional cross-attention component. Moreover, we predict that, akin
to linear dynamical systems, the most important factors that qualitatively describe final particles
configuration both in causal and full-attention cases are the eigenvalue of the Value matrix V with the
largest real part λmax and its eigenspace L, while Query and Key matrices Q,K and temperature
parameter β do not matter. Our conjectured atlas of possible meta-stable configurations is listed in
Table 1. We prove the result stated as the first line of this table, namely that particles eventually
collapse into a point when V = Id in Theorem 4.1. We remark that assumptions of Theorem 4.1
are much weaker than for the similar results in the full-attention case Geshkovski et al. (2023b), in
particular we put no constraints on K,Q or β. This work is a combination of rigorous mathematical
results and non-trivial predictions based on analytical insights and numerical simulations. We
summarize all limitations in Section 6.

Related work. Our work builds upon the framework of Geshkovski et al. (2023b,a) where clus-
tering properties of transformers are analyzed as systems of particles interacting on the sphere.
Specifically, Geshkovski et al. (2023b) proved that encoder-only (i.e. unmasked) self-attention with
(post) LayerNorm leads to tokens clustering to a single point, in the limit of number of layers going
to infinity. This phenomenon is also known as consensus in the related literature of multi-agent
systems Markdahl et al. (2017); Criscitiello et al. (2024) and Kuramoto oscillators Strogatz (2000);
Abdalla et al. (2022). Work Geshkovski et al. (2023b) in turn expands on the original perspective
brought forward by Sander et al. (2022) that identify the self-attention layer as a measure-to-measure
map, see also Vuckovic et al. (2021). More recently, Castin et al. (2024) studied the smoothness of
this map in a framework that also covers causal attention. This work introduces a clever reparametriza-
tion that allows them to recast causal attention as mean-field dynamics, akin to their full attention
counterpart. Using various approximations, Cowsik et al. (2024) were able to study a more realistic
architecture that also includes MLP layers and produce accurate predictions for the final configuration
of particles. This setup was further investigated by Agrachev and Letrouit (2024) from a geometric
control perspective. We note also that clustering in the absence of a residual connection (replace
ẋk(t) with xk(t+ 1) in (SA)) was established in Wu et al. (2023). Additional effects of the residual
connection are studied in Dong et al. (2021) and Zhang et al. (2024).
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(a) V = diag(1, 1, 1) (b) V = diag(1, 1, 0) (c) V = diag(1, 0, 0)

(d) V = diag(-1, -1, -3) (e) V = diag(-1, -3, -3)

Figure 1: Particle trajectories for different Value matrices. In all cases we take simple Query and Key
matrices K = Q = Id, temperature β = 9 and final time T = 5000 for n = 32 particles initialized
uniformly at random on the sphere. Positions of particles at time T are indicated by a red dot.

2 Causal attention

Before describing our model of causal attention dynamics, we review the idea of Geshkovski et al.
(2023b) for modeling the full attention dynamics. In that work, the evolution of representations
of tokens through the layers is modeled as a system of n coupled Ordinary Differential Equations
(ODEs) describing dynamics of a system of particles x1(t), . . . , xn(t). A brief part of their derivation
of the dynamics from the transformers architecture is written in Section A.1. The particle position
xk(t) corresponds to representation of the k-th token at layer t (where for convenience, t is allowed
to take non-integer values) and due to RMSNorm the particles are forced to live on a unit sphere Sd−1.
(RMSNorm layer usually also includes a multiplication by a trainable diagonal matrix D, but the
effect of this step can be equivalently achieved by multiplying K,Q, V matrices by D.) These ODEs
are parametrized by three matrices, known as the query Q, the key K and the value V , respectively,
and that are assumed to be square d× d matrices. More specifically, token k evolves according to

ẋk(t) = Pxk(t)

( 1

Zk(t)

n∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩V xj(t)
)
, (SA)

where Pxy = y − ⟨x,y⟩x
|x|2 is the projection onto the tangent space of Sd−1 at x, and

Zk(t) =

n∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩

is a normalizing factor. Note that the dynamics of the k-th token depend on the positions of all
tokens j ∈ [n], which is a landmark characteristic of full attention leading to the so-called mean-field
dynamics studied in Geshkovski et al. (2023b); see also Geshkovski et al. (2023a); Castin et al.
(2024); Paul and Trélat (2024).

In this work we focus on causal attention, where the dynamics of token k depend only on the position
of tokens j ≤ k. As described in the introduction, this modification is by now the dominant type of
transformer architecture in generative AI. To reflect causal masking, we modify the ODE governing
the dynamics of token k as follows:

ẋk(t) = Pxk(t)

( 1

Zk(t)

k∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩V xj(t)
)
, (CSA)
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where the normalizing factor Zk(t) is naturally updated to

Zk(t) =

k∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩.

3 Single token dynamics

Note that in (CSA) dynamics, the first token is evolving fully autonomously without the influence of
others. Thus, we start from the description of its evolution. It will also guide our understanding of the
dynamics of subsequent tokens. The first token moves according to the equation

ẋ(t) = Px(t)(V x(t)).

To state its behavior for any matrix V , we need a few definitions. Denote λmax as the largest real
part of all the eigenvalues of V . Let L′ be the span of all generalized eigenvectors of V associated
to eigenvalues(potentially different) with their real part equal to λmax. Let L ⊂ L′ be the subspace
generated by only the eigenvectors in L′ with the largest corresponding Jordan block (the vectors
might correspond to different blocks and even to different eigenvalues).
Lemma 1. Let x(t) be a solution of an ODE ẋ(t) = Px(t)(V x(t)) defined on the unit sphere Sd−1.
Then, for almost every initial value x(0) ∈ Sd−1, there exists C, c > 0 such that the following
convergence rates for the geodesic distance dist hold:

(i) Exponential convergence to L′: dist(x(t), L′ ∩ Sd−1) ≤ Ce−ct, and

(ii) linear convergence to L: dist(x(t), L ∩ Sd−1) ≤ ct−1

This result can be derived from standard results on the theory of linear ODEs (proof in Section B.1).
We note that this result is important for other tokens as well. Indeed, for every token xk, the
contribution to ẋk in (CSA) from the term with j = k often has the biggest weight, an effect
amplified by large β.

In general, eigenvectors corresponding to a real eigenvalue λ = λmax create a fixed set in L ∩ Sd−1,
while the complex eigenvalues with the largest real part produce a limit torus in L ∩ Sd−1. In what
follows, we only consider the case where the eigenvalue with the largest real part is real itself and it
only has Jordan blocks of size 1. Then, L = L′ and convergence to L is exponentially fast. Note
also that when dimL = 1, we have L ∩ S1 = {±ξ} for some unit vector ξ. In this case, x(t) → ±ξ
as t→ ∞, again with exponential speed. These observations will be important for the next section,
when we describe asymptotic configurations of tokens.

4 Final Configuration

The system of n tokens that we are studying is far more complicated than for a single token. Even
establishing convergence to some point as t → ∞ is challenging. In Geshkovski et al. (2023b),
similar models were analyzed analytically by noticing that the dynamical system has the structure of
the gradient flow of some potential function:

ẋ(t) = ∇H(x) .

For such systems, groundbreaking results of Łojasiewicz (1962, 1965, 1984) (see Haraux (2012) for
a self-contained overview) guarantee convergence to a critical point of H assuming it is real-analytic.

However, our system (CSA) does not have a gradient-flow structure and thus techniques of Ło-
jasiewicz are not applicable. On the other hand, we have a significant advantage in the hierarchical
structure of our system, allowing us to study tokens sequentially.

We have already understood the evolution of the first token. In this section, we do two things.
First, we describe, based on our analytical and numerical insights, conjectures about the asymptotic
configuration x(t) for t→ ∞. The surprising result here is that only the spectral properties of V (and
not K or Q) affect asymptotics. Second, we rigorously prove convergence to a single point for the
special case of V = Id. We note that unlike the proof in Geshkovski et al. (2023b) (see also Markdahl
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et al. (2017); Criscitiello et al. (2024)), our result works for all K and Q matrices, while the proof
in Geshkovski et al. (2023b) works only for Q⊤K = V and Markdahl et al. (2017); Criscitiello et al.
(2024) is restricted to Q⊤K = Id.

Our main insight is that there are two major forces that drive each token: its internal force which is
described by Lemma 1, and the external force induced by all the particles preceding it, which is either
attractive or repulsive depending on the sign of the top eigenvalue(s) of V . The balance between the
two forces is defined via attention.

To get a better grasp of how the external force works, we consider the case where the first (internal)
force vanishes, that is, V = Id. In this case, the tokens collapse asymptotically to a single point.
Theorem 4.1. Let V = Id and Q,K be arbitrary matrices. Then, for almost any starting point
(x1(0), . . . , xn(0)) with respect to the volume measure on (Sd−1)n, the causal transformer dynam-
ics (CSA) converge to a single cluster:

∀ k ∈ [n], lim
t→∞

xk(t) = x1(0).

We prove this result in Section B.2. In the proof, weight functions are only required to be positive
and continuously differentiable (C1). This ambiguity suggests that incorporating time-dependence of
Q and K might not alter the theorem’s validity, but it significantly adds complexity to the proof in
dealing with non-autonomous systems.

Steps similar to our proof of Theorem 4.1 can be followed to study the more general case of the matrix
V ̸= Id. Unfortunately, one runs into multiple technical issues with application of the stable-manifold
theorem from dynamical systems due to the emergence of critical manifolds (as opposed to critical
points in the V = Id) case. Thus, we leave the general case at the status of conjectures, which we
describe next.

In what follows, we denote the eigenvalue of V with the largest real part as λmax and assume that it
is real. If it is not, the limiting configuration is additionally rotating with a constant speed, which
complicates the discussion and so is omitted.

Let L denote the eigenspace of λmax. If λmax has multiplicity 1, then we denote the corresponding
unit eigenvectors as ±ξ. For simplicity we assume that λmax has all of the corresponding Jordan
blocks of size 1.

First of all, if dimL = 1 then, according to Lemma 1, every token is driven towards ξ or −ξ by their
own force. Moreover, for λmax > 0 the force of other tokens is attractive, while for λmax < 0 it is
repulsive.

Thus, for λmax > 0 all the particles collapse into ξ and −ξ, whereas for λmax < 0 the repulsion
force prevents the particles from going all the way to ±ξ and instead the particles stabilize at two
clouds around ξ and −ξ. This behavior is captured in Figures 1c and 1e4. For the case λmax > 0 we
formally express it as:
Conjecture 1. Let Q,K be arbitrary matrices and V be diagonalizable with d different positive
real eigenvalues. Denote the largest eigenvalue as λmax and unit vector ξ : V ξ = λmaxξ. Then, for
almost any starting point (x1(0), . . . , xn(0)) with respect to the volume measure on (Sd−1)n, the
causal transformer dynamics (CSA) converge to two clusters

∀ k ∈ [n], lim
t→∞

xk(t) ∈ {ξ,−ξ}.

If λmax has multiplicity at least 2, then from Lemma 1 each token internally gets attracted by the
eigenspace L. When tokens are close to L, the action of V becomes close to λmaxId, which for
λmax > 0 according to Theorem 4.1 forces tokens to collapse to a singleton, while for λmax < 0
other tokens exude a repelling force, causing particles to spread out around L. This behavior is
captured in Figures 1b and 1d. For the case λmax > 0 we formalize it as follows:
Conjecture 2. Let Q,K be arbitrary matrices and V be any matrix such that its largest eigenvalue
λmax > 0 is real and has an eigenspace L of dimension dimL ≥ 2, while for any z ∈ L⊥ one

4The spread of the clouds depends on the relative importance of each token’s own attention, that differs with
various K,Q. There are choices of K and Q that result in complex interactions without structure. For example,
when Q⊤K = [[0,−1, 0], [1, 0, 0], [0, 0, 1]], V = −I3
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(a) Time 0 (b) Time 5 (c) Time 10

(d) Time 75 (e) Time 150 (f) Time 500

Figure 2: Evolution of the system (CSA) with K = Q = V = I2 with n = 200, d = 2, β = 64,
strong Rényi centers (red) and Rényi centers (black) with δ = 4β−1/2. Note that strong Rényi centers
are visually stationary (as per Lemma 2) but do not explain all clusters. In turn, Rényi centers are
moving and merging (one disappears between t = 75 and t = 150), but capture more meta-stable
clusters.

has V z ∈ L⊥ with ⟨V z, z⟩ < λmax|z|2. Then, for almost any initialization (x1(0), . . . , xn(0)), the
causal attention dynamics (CSA) converge to one cluster. More specifically, if we define ξ as the
normalized L-component of x1(0), i.e., for y1 := PL⊥(x1(0)), ξ := y1/|y1|, then

∀ k ∈ [n], lim
t→∞

xk(t) = ξ.

(Note that ξ is undefined when x1(0) ⊥ L, but this happens with probability zero.)

An important practical observation is that these conjectures explain that V performs dimensionality
reduction in the following way. Tokens converge to L ∩ Sd−1 and, in that space, they move as if
acted upon by the λId matrix on a sphere SdimL−1. For the pre-trained Lan et al. (2020) the spectra
of value matrices is depicted in Figure 4. Interestingly, there are heads with negative λmax. Future
work will be concerned with studying real-world matrices V and connecting their top eigenspaces to
semantic meaning of layers and tokens.

5 Meta-stable clustering

As we discussed earlier, perhaps the most fascinating discovery of Geshkovski et al. (2023b) is the
existence of meta-stable clusters in the full-attention dynamics. It turns out that the same phenomenon
persists in the causal-attention dynamics that we study here.

The dynamical evolution of the system is illustrated in Fig. 2. At t = 150, the initially uniform
distribution of 200 particles consolidates into seven distinct clusters. While Theorem 4.1 establishes
the eventual collapse into a single cluster, these intermediate clusters exhibit remarkable metastability,
persisting with negligible movement over extended time periods—at least until t = 500 according to
Fig. 2—before sequential merging occurs. We define these meta-stable configurations as meta-stable
clusters, with three-dimensional analogues shown in Fig. 1a and 1b.

Given that the time parameter in our dynamics corresponds to network depth in transformer archi-
tectures, the meta-stable configurations, rather than final states (achieved at t = exp(Ω(

√
β))), hold

greater practical significance. The emergence of meta-stable clustering and its associated dimension-
ality reduction may provide fundamental insights into transformers’ capacity for generating efficient
context-dependent representations.
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From a theoretical perspective, understanding meta-stable clustering presents significant challenges,
as traditional techniques for asymptotic analysis—such as those used in our Theorem 4.1—prove
insufficient. Recent work on full attention transformers has made partial progress in this direction.
Koubbi et al. (2024) demonstrated that when self-attention dynamics approach a nearly clustered state,
they will converge to a tightly clustered configuration and remain stable for an exponential time period.
Complementing this, Bruno et al. (2024) proved that tokens initialized near a uniform distribution on
the sphere will spontaneously organize into a loosely clustered state. However, the bounds on the
clustering tightness in this second line of work are not sufficient to trigger the convergence conditions
required by Koubbi et al. (2024)’s theorem.

This Section presents a fundamental discovery regarding the identification of cluster centers in
causal-attention dynamics. We establish three key claims: First, we demonstrate that initialization
irregularities generate distinctive tokens, termed Rényi parking centers, which evolve into meta-stable
cluster nuclei. While this phenomenon is primarily supported by numerical evidence (Fig. 3), it
provides crucial insight into the clustering mechanism. Second, we prove that a subset of these
special tokens, called strong Rényi centers, maintains near-stationarity over extended time periods
(Lemma 2). Both Rényi and strong Rényi centers occur with frequency Θ(β

d−1
2 ), confirming the

√
β

scaling predicted for d = 2 by Geshkovski et al. (2023b); see also Koubbi et al. (2024); Bruno et al.
(2024). Third, we establish in Theorem 5.1 that as t→ ∞, all remaining tokens will converge to the
vicinity of one of these stationary tokens, completing the meta-stable clustering process.

This section restricts our analysis to the case where V = Id. For general matrices V , our empirical
observations suggest that particles rapidly converge to a lower-dimensional subspace spanned by
d1 ≪ d principal eigenvectors. Consequently, we conjecture that the number of meta-stable clusters
should rather be β

d1−1
2 , where the ambient dimension d is replaced by the effective dimension d1.

While a rigorous proof of this dimension-reduction remains an open problem for future investigation,
this phenomenon motivates our focus on low-dimensional cases (specifically d = 2) throughout this
section.

For convenience, we also fix Q = K = Id, though this condition could be easily relaxed (e.g. to
Q⊤K = K⊤Q = V ). Under these assumptions, the system can be rewritten in polar coordinates
xk = [cos(φk), sin(φk)]

⊤ as

φ̇k =
1

Zk

k∑
j=1

eβ(cos(φk−φj)−1) sin(φj − φk) =
1

Zk

k−1∑
j=1

h(φj − φk), (CSA-2d)

with interaction potential given by

h(x) := eβ(cos(x)−1) sinx, and Zk =

k∑
j=1

eβ(cos(φk−φj)−1). (IntPot)

5.1 Rényi Parking

The prediction of meta-stable clustering center locations exhibits a notable connection to the Rényi
parking problem.

Consider a sequence of tokens (xj)j≥1 on the sphere Sd−1 equipped with geodesic distance dist. For
a fixed separation parameter δ > 0, we define:

• Rényi centers as the subsequence (xsj )j≥1, where (sj)j≥1 is strictly increasing and satisfies:

dist(xsj , xsi) > δ for all i < j

• Strong Rényi centers as the subsequence (xsj )j≥1 satisfying:

dist(xsj , xi) > δ for all i < sj

By construction, the set of Strong Rényi centers forms a subset of Rényi centers.

As demonstrated in Section A.2, particles in our system exert maximal attractive force at distances
of order at most β−1/2, with rapid decay beyond this scale. For strong Rényi centers defined
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Figure 3: Total percentage of particles consumed by Rényi and strong Rényi centers over time. Here
we have plotted average, 0.1 and 0.9 quantiles over 5000 experiments with n = 200, d = 2, β = 64,
δ = 4β−1/2.

with separation parameter δ = cβ−1/2 (where c is sufficiently large), this decay ensures negligible
influence from preceding particles and thus remain stable for a long time—a phenomenon formally
established in Lemma 2. This metastability, coupled with rapid particle aggregation tokens, indicates
that strong Rényi centers serve as primary attractors for subsequent tokens.

Rényi centers are unaffected by previous particles but only by previous Rényi centers, thereby
generating new clustering centers. For fixed δ, there are more Rényi centers than strong Rényi centers
(see Section C.4 for exact cardinality analysis). While Rényi centers better capture the meta-stable
clustering effect, as illustrated in Figures 3 and 2, they lack positional stability and may converge to
other centers over time. Although Rényi centers rapidly aggregate a large fraction of particles, some
of these particles continue to migrate and eventually converge to strong Rényi centers.

The next result shows that strong Rényi centers remain nearly fixed for a long time.
Lemma 2. Let d = 2 and Q = K = V = I2. Consider a subsequence of strong Rényi centers
xs1 , . . . , xsm satisfying the separation condition with constants ε, c > 0

min
i<sj

|xsj − xi| > c(1 + 2ε)β−1/2.

Assume that
c > β1/2 arccos((−1 +

√
4β2 + 1)/(2β)). (1)

Then for any time Tj such that
Tjsjh(cβ

−1/2) < εcβ−1/2, (2)
where the interaction potential h is defined in (IntPot), the displacement of each center is bounded by

max
t∈[0,Tj ]

|xsj (t)− xsj (0)| < εcβ−1/2.

The key observation driving this result is that strong Rényi centers are weakly affected by all previous
particles. However, though this is correct on short time scales, it should be checked for all times in
[0, T ]. A complete proof can be found in Section C.1.
Remark 1. Using the properties of h derived in Section A.2 it can be shown that

• For β > 1 a sufficient condition for (1) to hold is simply c > 1,

• a sufficient condition for (2) to hold is

Tjsj < ec
2/2−c4/(24β)ε.

Moreover, it is easy to prove that indexes sj are mostly small. Thus, we see that early strong Rényi
centers are almost stationary for a time that is exponential with the square of separation magnitude.
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Rényi centers and strong Rényi centers play a fundamental role in meta-stable clustering, warranting
analysis of their properties as extreme points in a sequence. While defined here using geodesic
distance on a sphere, the definition extends naturally to distances induced by ⟨Qx,Ky⟩ under
appropriate conditions. This generalization aligns with our observation that meta-stable clustering
occurs in the subspace L where V sends tokens and acts as the identity on L.

The distribution of these centers under various initialization schemes presents a key analytical
challenge. Section C.4 addresses the uniform i.i.d. case, where Rényi’s classical result characterizes
the expected number of centers. Extensions to general distributions and Markov processes—more
relevant to language processing applications—remain open for Rényi centers due to their structural
complexity, particularly in higher dimensions (d > 2). In contrast, strong Rényi centers are much
easier to handle: even our computation of the average number of centers in Section C.4 works for any
distribution regardless of the dimension.

5.2 Fixed Meta-stable Clustering Centers

Having established the existence of O(
√
β) quasi-stationary tokens for d = 2 and n ≫ 1, we

next examine their role as cluster centers. While Figures 3 and 2 provide substantial numerical
evidence that these tokens attract and aggregate nearby particles, a rigorous proof remains elusive.
We establish instead a weaker result: when quasi-stationary tokens are artificially frozen (analogous
to cross-attention in encoder-decoder architectures), all other tokens converge to these frozen centers.
This simplified model, while instructive, differs from true meta-stable clustering in important aspects
detailed in Section 6.

We only state our result for d = 2 and identity parameter matrices as in (CSA-2d).
Theorem 5.1 (Clustering to frozen tokens for K = Q = V = I2). Let θ1, . . . , θm be fixed tokens
that are well-separated, namely |θi − θj | > cβ−1/2. Let µ0 be an absolutely continuous probability
measure on (S1)n and let φ1(0), . . . , φn(0) ∼ µ0. Consider causal attention dynamics (CSA-2d),
with additional influence from the fixed tokens θj , which enter evolution with additional weights
aj ≥ 1. Specifically, we have

φ̇k =
1

Zk

( k∑
j=1

eβ(cos(φk−φj)−1) sin(φj − φk) +

m∑
j=1

aje
β(cos(φk−θj)−1) sin(θj − φk)

)
,

with

Zk =

k∑
j=1

eβ(cos(φk−φj)−1) +

m∑
j=1

aje
β(cos(φk−θj)−1).

Define N = n+
∑m

j=1 aj and g = h′ where h is the interaction potential of (IntPot).

If N, β, ε > 0, and c > 2 + 2ε satisfy:

Nh((c− 1− 2ε)β−1/2) < h(εβ−1/2)

Ng((c− 2ε)β−1/2) < g(εβ−1/2),

then with probability one, φ(t) converges to an asymptotically stable critical point φ∗ ∈ (S1)n
satisfying:

∀k ∈ [n], ∃j ∈ [m] : |φ∗
k − θj | < εβ−1/2.

Since our dynamical system is not a gradient flow, the classical Łojasiewicz convergence theorem
does not apply. Instead, we establish convergence by observing that the causal dynamics (both with
and without frozen tokens) is, in fact, a sequential gradient flow, where each particle minimizes a
slightly different energy potential. For such systems on S1, we demonstrate convergence through an
alternative approach that circumvents the Łojasiewicz framework.
Lemma 3. Consider a system of n particles on S1 with angular coordinates φ1, . . . , φn ∈ 2πR/Z
evolving according to

φ̇k = − 1

Zk(φ1, . . . , φk)

∂

∂φk
Ek(φ1, . . . , φk),

where E1, . . . , En are C1 energy functions and Zk are C1 normalization factors bounded by 0 <
c < Zk(φ) < C. Assume:
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1. Each Ek has isolated critical points in φk for fixed φj , j ̸= k (satisfied by analyticity),

2. For any k ∈ [n], critical points restricted to the first k particles are either strongly stable
(the Jacobian has only eigenvalues with strictly negative real parts) or strongly unstable
(there is an eigenvalue with a strictly positive real part).

Then for almost every initial condition φ(0) with respect to Lebesgue measure, φ(t) converges to a
strongly stable critical point φ∗.

The proof is deferred to Section C.2.
Remark 2. The conditions of Theorem 5.1 are satisfied under the following explicit bounds:

ε < 0.1, c ≥ 5.5 + 2ε, β ≥ (c− 1− 2ε)2/2, N ≤ ε

c− 1
exp(3(c− 1− 2ε)2/8).

Note that this result requires only β ≳ logN . For example, taking ε = 0.1 and c = 6.5 yields β ≥ 14
and N ≤ 700 is sufficient. See Lemma 5 for the proof.

6 Limitations

Our analysis presents both theoretical and practical limitations. From a theoretical perspective,
we establish two key results: (1) strong Rényi centers maintain quasi-stationarity for time scales
of order exp(c2/2) per Lemma 2, and (2) exactly stationary centers attract all remaining particles
(Theorem 5.1). However, this falls short of proving meta-stable clustering, as Theorem 5.1 provides
no bounds on the convergence time. Consequently, we cannot guarantee that strong Rényi centers
remain sufficiently stationary during particle aggregation. A complete meta-stability theory would
require demonstrating that each Rényi center captures Ω(n) particles in O(1) time as n → ∞.
Currently, even the weaker claim of capturing ω(1) particles remains unproven, presenting a crucial
direction for future research.

The practical limitations stem from two model simplifications: the use of tied weights across layers
(though supported by successful implementations, see Lan et al. (2020)), and the omission of the
MLP layer central to Transformer architectures. Incorporating the MLP dynamics into our theoretical
framework remains a significant open challenge.
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A Supplementary Material

A.1 From Transformers to ODEs

The derivation of the equation (SA) was thoroughly described in Geshkovski et al. (2023b), but for
completeness, we briefly repeat it here to explain how the problem arises.

In general, a typical Transformer architecture consists of repeated layers of multi-head attention,
multi-layer perceptrons (MLP), normalization, and residual connections Vaswani et al. (2017). In this
work, we simplify this setting by focusing only on the geometric behavior of a single-head attention
layer with normalization and residual connections, omitting the MLP for brevity.

One head of a standard attention layer is defined as follows. Given an input sequence represented by
the token embeddings X ∈ Rn×d, where n is the number of tokens and d is the dimension of the
embedding space, and matrices WQ, WK , WV to compute queries, keys, and values, the attention
mechanism computes a weighted sum of values based on their relevance to a query in the following
form

Attention(X) = softmax
(
XWQW

⊤
KX

⊤
√
d

)
XWV .

By adding an RMS normalization from Zhang and Sennrich (2019) and a residual connection, the
transformation from layer t to layer t+ 1 is given by:

Xt+1 = Xt + RMSNorm(Attention(Xt)). (3)

Here, different tokens are represented as rows of the matrix X for computational reasons. For
consistency with the convention that vectors are represented as columns, we transpose everything
and denote a sequence of tokens encoded as particles in the d-dimensional embedding space Rd as
(x1, . . . , xn), corresponding to the columns of X⊤. Additionally, to simplify the notation we denote
V :=W⊤

V , Q :=W⊤
Q , and K :=W⊤

K , and introduce an arbitrary temperature parameter β instead
of the fixed scaling factor 1/

√
d. With these notational adjustments, one term of attention added to

the k-th token can be written explicitly as:

attn(x1, . . . , xn)k =
1

Zk

n∑
j=1

eβ⟨Qxk,Kxj⟩V xj ,

where

Zk =

n∑
j=1

eβ⟨Qxk,Kxj⟩.

The equation (3) can be interpreted as a discrete derivative, with Xt+1 − Xt representing the
difference between layers. Therefore, the trajectory Xt can be viewed as a discretization of a
continuous flow. RMS normalization ensures that tokens remain on the scaled unit sphere, but
from properly rescaling Q,K, V we can assume that they stay on the standard unit sphere Sd−1.
Combining all these observations, the dynamics of token propagation through layers can be expressed
as:

ẋk(t) =
1

Zk(t)
Pxk(t)

 n∑
j=1

eβ⟨Q(t)xk(t),K(t)xj(t)⟩V (t)xj(t)

 ,

with

Zk(t) =

n∑
j=1

eβ⟨Q(t)xk(t),K(t)xj(t)⟩,

and the projector Px(y) := y − ⟨x, y⟩x/|x|2 ensuring that xk remains on the sphere. This leads to
the equation (SA), and applying a causal constraint, where each token attends only to the previous
ones, transforms it into the causal attention equation (CSA) studied in this work.

A.2 Interaction Potential

For completeness, here we describe the key properties of the interaction potential h(x) =
eβ(cos(x)−1) sin(x) from (IntPot), which defines the interactions between particles, and its derivative
g(x) = h′(x).
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Lemma 4 (Properties of Interaction Functions). Let h(x) = eβ(cos x−1) sinx and g(x) = h′(x).
Then:

1. h(x) is odd and g(x) is even.

2. h(x) is increasing on [0, τ∗β ] and decreasing on [τ∗β ,∞), where

cos τ∗β =
−1 +

√
4β2 + 1

2β

and for β ≥ 1,
(β + 1/2)−1/2 < τ∗β < β−1/2

3. For x > 0, h(x) is bounded by

e−βx2/2(x− x3/6) < h(x) < e−βx2/2+βx4/24x

4. For g(x), the following bounds hold:

g(x) > e−βx2/2(1− x2/2− βx2) for 0 < x < (β + 1/2)−1/2

g(x) > −e−βx2/2+βx4/24βx2 for x > 0

Proof. 1. The oddness of h and evenness of g follow directly from their definitions.

2. Computing g(x) explicitly:

g(x) = eβ(cos(x)−1)(−β sin2(x) + cos(x)) = eβ(cos(x)−1)(β cos(x)2 + cos(x)− β)

The sign of g(x) changes at τ∗β , where

cos τ∗β =
−1 +

√
4β2 + 1

2β

establishing that h(x) increases on [0, τ∗β ] and decreases on [τ∗β ,∞).

For the the lower bound on τ∗β : For x < (β + 1/2)−1/2, we have

cosx > 1− x2/2 > βx2 > β sin2 x

implying g(x) > 0 in this region.

For the upper bound on τ∗β , fix z = β−1/2 and observe that it suffices to show

cos τβ∗ =
−1 +

√
4β2 + 1

2β
> cosβ−1/2 = cos z

Using cos z < 1− z2/2 + z4/24, this reduces to verifying

−z2/2 +
√
1 + z4/4 > 1− z2/2 + z4/24

which holds for z < 3.13, satisfied when β = z−2 ≥ 1.

3. and 4. The bounds on h and g follow from the standard inequalities

x− x3/6 < sinx < x, and − x2/2 < cosx < −x2/2 + x4/24

combined with our characterization of g’s sign via τ∗β .

We now turn to the proof of Remark 2.
Lemma 5. Let N , c, ε, and β satisfy:

c ≥ 5.5 + 2ε

β ≥ (c− 1− 2ε)2/2

N < e3(c−1−2ε)2/8 ε

c− 1

Then:

Nh((c− 1− 2ε)β−1/2) < h(εβ−1/2) and −Ng((c− 2ε)β−1/2) < g(εβ−1/2)
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Proof. Let r := c− 1− 2ε. From the assumptions, we have r ≥ 4.5, β ≥ r2/2 > 10, and ε < 0.1.
We must verify:

N <
h(εβ−1/2)

h(rβ−1/2)

N <
g(εβ−1/2)

−g((r + 1)β−1/2)

Using the bounds from Lemma 4, these inequalities reduce to:

N <
exp(−ε2/2)εβ−1/2(1− ε2/(6β))

exp(−r2/2 + r4/(24β))rβ−1/2

and

N <
exp(−ε2/2)(1− ε2/(2β)− ε2)

exp(−(r + 1)2/2 + (r + 1)4/(24β))(r + 1)2

Given N < exp(3r2/8)ε/r, it suffices to verify:

1. First inequality: Taking logarithms and using ε < 0.1, β > 10, we need:

−r
2

8
+

r4

24β
+
ε2

2
< − 3

200

Since β ≥ r2/2, this follows from:

−r
2

8
+
r2

12
< − 1

50
which holds for r ≥ 4.5.

2. Second inequality: After simplification using β ≥ r2/2, β ≥ 10, ε < 0.1, we need:

f(r) =
3r2

8
− (r + 1)2

2
+

(r + 1)4

12r2
+

1

200
+ 2 ln(r + 1)− ln(9.8r) < 0

The derivative

f ′(r) =
1

3
r − 1 +

6r3

(r + 1)3(r − 1)
+

2

r + 1
− 1

r
> 0

for r > 4.5, as r > 3 and 2r > r + 1. Therefore, it suffices to verify f(4.5) ≈ −4.14 < 0.

B Final configuration

B.1 Proof of Lemma 1

Let us show that trajectories x(t) of our system can be characterized as normalized solutions of a
linear homogeneous ODE in Rd. Consider a solution y(t) of:

ẏ(t) = V y(t), y(0) = x(0) (4)

For s(t) := y(t)/∥y(t)∥, we derive:

ṡ(t) =
ẏ(t)

∥y(t)∥
− y(t)

∥y(t)∥2

〈
y(t)

∥y(t)∥
, ẏ(t)

〉
= V s(t)− ⟨s(t), V s(t)⟩s(t) = Ps(t)(V s(t))

Thus x(t) ≡ s(t) = y(t)/∥y(t)∥.

The solution to (4) has the following explicit form. Let {Jk} denote the Jordan blocks of V with:
sizes nk, eigenvalues λk, and generalized eigenvectors {ξk1 , . . . , ξknk

}.

Then:

y(t) =
∑
k

eλkt
nk∑
j=1

ckj

j∑
i=1

tj−i

(j − i)!
ξki (5)
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where the coefficients {ckj } satisfy:

∑
k

nk∑
j=1

ckj ξ
k
j = x(0)

For almost all initial conditions x(0) with respect to the surface measure on the sphere, all coefficients
ckj are non-zero. For complex eigenvalues λk, we combine conjugate terms to obtain real-valued
solutions involving trigonometric functions.

The asymptotic behavior follows from two observations: (i) Terms with largest ℜ(λk) dominate as
t→ ∞, corresponding to convergence to L′ ∩ Sd−1 at exponential rate, and (ii) Among these terms,
those with highest power of t (i.e., tnk−1ξk1 terms) determine the slower convergence to L ∩ Sd−1

B.2 Proof of Theorem 4.1

We begin with a simple geometric lemma.

Lemma 6. Let x, y, z ∈ Rd with ∥x∥ = ∥y∥ = 1. If |⟨y, z⟩| ≤ ⟨x, z⟩, then:

⟨x, z⟩ ≥ ⟨x, y⟩⟨y, z⟩

with equality if and only if either: (i) ⟨x, z⟩ = 0, or (ii) |⟨y, z⟩| = ⟨x, z⟩ and ⟨x, y⟩ = sign(⟨y, z⟩).

Proof. By the Cauchy-Schwarz inequality and the hypothesis:

⟨x, y⟩⟨y, z⟩ ≤ |⟨x, y⟩||⟨y, z⟩| ≤ |⟨x, y⟩|⟨x, z⟩ ≤ ⟨x, z⟩

where the last inequality follows since |⟨x, y⟩| ≤ 1 for unit vectors.

The equality conditions follow from examining when each inequality becomes equality in the chain
above.

We continue with the proof of Theorem 4.1.

Proof. The system of particles is governed by equations

ẋk =
1

Zk

k∑
j=1

eβ⟨Qxk,Kxj⟩(xj − ⟨xj , xk⟩xk),

where we omit t from the notation for simplicity.

This system is autonomous, so we first explore its critical points and their stability. For autonomous
systems with established convergence, it is well-known that for any absolutely continuous initializa-
tion, the limiting point is strongly unstable with probability zero (see (Shub, 2013, Thm. III.7, Ex.
III.3) and (Geshkovski et al., 2023b, Lemma B.1)). Note that the proof in Geshkovski et al. (2023b)
is stated for gradient ascent dynamics but it readily extends to any smooth autonomous dynamics on
a compact Riemannian manifold.

Define:

fk(x) :=
1∑k

j=1 e
β⟨Qxk,Kxj⟩

·
k∑

j=1

eβ⟨Qxk,Kxj⟩(xj − ⟨xj , xk⟩xk)

We aim to (i) find stationary points x where all fk(x) = 0 and (ii) analyze eigenvalues of the Jacobian
(∂fk∂xj

) at said stationary points.

Any critical point must satisfy one of the following:

• x1 = . . . = xn = ξ for some ξ ∈ Sd−1

• There exists s ∈ {2, . . . , n} such that x1 = . . . = xs−1 = ξ and xs = −ξ
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Indeed, if the first condition fails, consider the first token xs where xs ̸= x1. Then fs(x) = 0 implies
xs − ⟨xs, ξ⟩ξ = 0, forcing xs = ±ξ so that xs = −ξ since we required xs ̸= x1.

Our goal is to show that stationary points of the second kind are limiting points with probability zero
with respect to the initialization distribution. Observe that since the system formed by the first s
particles is independent of subsequent ones, it suffices to show:

P((x1, . . . , xs−1, xs) → (ξ, . . . , ξ,−ξ)) = 0

Since x1(t) = x1(0), this reduces to:

P(x1 = ξ, (x2, . . . , xs−1, xs) → (ξ, . . . , ξ,−ξ)) = 0

By the law of total probability, it suffices to show that for almost all ξ ∈ Sd−1:

Px2,...,xs|x1=ξ((x2, . . . , xs−1, xs) → (ξ, . . . , ξ,−ξ)) = 0

We are left to the function fs around (x1, . . . , xs−1, xs) = (ξ, . . . , ξ,−ξ). Observe that

fs(ξ, . . . , ξ, xs) = w(ξ, xs)(ξ − ⟨ξ, xs⟩xs)

where

w(ξ, xs) =
(s− 1)eβ⟨Qxs,Kξ⟩

(s− 1)eβ⟨Qxs,Kξ⟩ + eβ⟨Qxs,Kxs⟩
> 0.

Observe that the Jacobian (∂fk∂xj
) is block lower triangular, with blocks given by ∂fk

∂xk
. We show below

that ∂fs
∂xs

has an eigenvalue with positive real part, which is sufficient to establish strong instability.

At x2 = . . . = xs−1 = ξ and xs = −ξ:

fs(ξ, . . . , ξ, xs) = w(ξ, xs)(ξ − ⟨ξ, xs⟩xs)

where

w(ξ, xs) =
(s− 1)eβ⟨Qxs,Kξ⟩

(s− 1)eβ⟨Qxs,Kξ⟩ + eβ⟨Qxs,Kxs⟩
> 0.

The classical Jacobian in Rd is:

∂

∂xs
fs(ξ, . . . , ξ, xs) =

(
∂

∂xs
w(ξ, xs)

)
(ξ − ⟨ξ, xs⟩xs)⊤ + w(ξ, xs)

∂

∂xs
(ξ − ⟨ξ, xs⟩xs)

Hence
∂

∂xs
fs(ξ, . . . , ξ, xs)

∣∣
xs=−ξ

= w(ξ, xs)
∂

∂xs
(ξ − ⟨ξ, xs⟩xs)

The spherical Jacobian is obtained by projecting onto ξ⊥ and given by

(I− ξξ⊤)
∂

∂xs
fs(ξ, . . . , ξ, xs)

∣∣
xs=−ξ

= w(ξ,−ξ) · (I− ξξ⊤)

This linear operator acts on ξ⊥ and has eigenvalues w(ξ,−ξ) with multiplicity d− 1, which are all
real positive, confirming strong instability.

By the center-stable manifold theorem (Shub, 2013, Thm. III.7, Ex. III.3), if a point has at least one
eigenvalue with positive real part, then: (i) The center-stable manifoldW cs

loc has positive co-dimension
and (ii) Points converging to this equilibrium must enter W cs

loc at some finite time and (iii) the set of
such points has measure zero.

More precisely, if a trajectory (x2, . . . , xs) converges to (ξ, . . . , ξ,−ξ), then:

∃m ∈ Z≥0 : (x2(m), . . . , xs(m)) ∈W cs
loc.

Since our flow is a diffeomorphism, the pre-image of W cs
loc is also a manifold of positive codimension.

Therefore, the set of initial conditions leading to convergence to (ξ, . . . , ξ,−ξ) is contained in a
countable union of measure-zero sets, making it a measure-zero set itself.
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We continue with an induction on the number of particles to show that with probability one, x2, . . . , xn
all converge to ξ.

For the base case k = 2, observe that x2 converges to ξ except when initialized unstable equilibrium
x2(0) = −ξ.

Assume next that x2, . . . , xk−1 → ξ with probability one so that for any ε > 0, there exists a time T0
after which

min
j<k

⟨xj , ξ⟩ > 1− ε a.s.

Consider:

d⟨xk(t), ξ⟩
dt

=

〈
Pxk(t)

 1

Zk(t)

k−1∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩xj(t)

 , ξ

〉

=
1

Zk(t)

k−1∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩(⟨xj(t), ξ⟩ − ⟨xj(t), xk(t)⟩⟨xk(t), ξ⟩)

 .

From Lemma 6 we get that ⟨xj(t), ξ⟩ − ⟨xj(t), xk(t)⟩⟨xk(t), ξ⟩ > 0 if ⟨xj , ξ⟩ > 0 and |⟨xk, ξ⟩| <
⟨xj , ξ⟩. In particular, we get that the time derivative above is positive after time T0 whenever
−1 + ε < ⟨xk, ξ⟩ < 1− ε since we are guaranteed that ∀j < k, ⟨xj , ξ⟩ > 1− ε > 0 after that time.
But from the center-stable theorem argument, we know that ⟨xk, ξ⟩ does not converge to −1 so there
exists a time T1 > T0 at which ⟨xk, ξ⟩ > −1 + ε. After this time, either xk gets closer to ξ (positive
derivative) until ⟨xk, ξ⟩ = 1− ε after which time, ⟨xk, ξ⟩ ≥ 1 − ε forever. Since this argument is
valid, for all ε > 0, we get that xk → ξ.

By induction, all points converge to ξ with probability one.

B.3 Spectra of V

Here we include a figure showing the spectra of value matrices of different heads of a pre-trained
transformer. Notice that most of them have real eigenvalue corresponding to λmax, justifying our
focus on the real case. Interestingly, there are heads with negative λmax, even though starting
spectrum of a Gaussian matrix is far from the left half-plane. This could indicate that some properties
of λmax < 0 are desirable in practice, suggesting to consider other ways to initialise of V for training.

Figure 4: Eigenvalues of different heads of pre-trained albert-xlarge-v2 model in the complex plane.
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C Meta-stable clustering

C.1 Proof of Lemma 2

We prove the lemma for d = 2.

Proof. For d = 2, written in polar coordinates xk = exp(iφk), the system is

φ̇k =
1

Zk

k−1∑
j=1

eβ(cos(φk−φj)−1) sin(φj − φk), (6)

with

Zk =

k∑
j=1

eβ(cos(φk−φj)−1).

Because of the j = k term one has Zk ≥ 1, which implies

|φ̇sk | ≤
sk−1∑
j=1

eβ(cos(φsk
−φj)−1)| sin(φj − φsk)| =

sk−1∑
j=1

h(|φj − φsk |).

Consider φr∗ to be the closest particle to φsk among previous ones, here r∗ depends on sk and t.
Wlog, let us assume that φr∗ ∈ [φsk , φsk + π] and denote ∆ = φr∗ − φsk . We are going to show
that ∆ cannot decrease fast. At any time one has

−∆̇ = φ̇sk − φ̇r∗ =
1

Zsk

sk−1∑
j=1

h(φj − φsk)−
1

Zr∗

r∗−1∑
j=1

h(φj − φr∗).

Let us bound both terms separately. Due to the definition of ∆, and as long as ∆ > τ∗β (from
Lemma 4) we can bound the first term

|φ̇sk | ≤ skh(∆). (7)

For the second one, we only leave the terms with φj ∈ [φr∗ − π, φr∗ ], because the other ones are
negative

−φ̇r∗ ≤
∑̇r∗−1

j=1
|h(φj − φr∗)|1φj∈[φr∗−π,φr∗ ].

In other words, the only particles that drive φr∗ towards φsk are the ones that are in the same direction.
However, there are no particles closer to φsk than φr∗ . Therefore, being in the same direction implies
being at least 2∆-far away from φr∗ .

If h(2∆) < 0, there are no particles φj ∈ [φr∗ − π, φr∗ ] and the sum is zero, otherwise we use
Lemma 4 to upper bound each term with h(2∆). Thus,

−φ̇r∗ ≤ sk max(h(2∆), 0) ≤ skh(∆).

The last inequality follows from the fact that h(∆) > 0 and monotonicity of h when ∆ > τβ∗ .
Combining the estimates, we obtain that for ∆ > τ∗β one has

−∆̇ ≤ 2skh(∆).

To prove that for t ∈ [0, Tk] we have ∆(t) > cβ−1/2, we just need to verify that cβ−1/2 > τβ∗ and
that initially

∆(0) > cβ−1/2 + 2skTkh(cβ
−1/2),

which is true by definition of Rényi centers, and bounds on c (1) and Tk (2). Then, from (7) one has

max
t∈[0,Tk]

|φsk(t)− φsk(0)| < skTkh(cβ
−1/2) < εcβ−1/2.
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C.2 Proof of Lemma 3

Proof. We prove that the particles converge exponentially fast to some strongly stable critical point
φ∗ via induction on their number.

Induction base. In this proof the induction base for n = 1 follows from the induction step proof
applied to the first particle φ1.

Induction step. Consider φ1(t), . . . , φn−1(t). They do not depend on φn and from induction hypoth-
esis converge exponentially fast to some asymptotically stable point φ∗

1, . . . , φ
∗
n−1. In particular, one

has φ̇k ∈ L1([0,∞)), k ∈ [n− 1].

Consider full derivative

dEn(φ(t))

dt
=

n−1∑
j=1

∂En

∂φj
φ̇j(t) +

∂En

∂φn
φ̇n(t) =

n−1∑
j=1

∂En

∂φj
φ̇j(t)− Zn(t)|φ̇n(t)|2.

Since all partial derivatives ∂En/∂φj are bounded on the compact manifold and all derivatives
φ̇j , j < n are in L1([0,∞)), one has

g(t) :=

n−1∑
j=1

∂En

∂φj
φ̇j(t) ∈ L1([0,∞)).

For the base case, i.e. n = 1, one simply has g(t) ≡ 0. Let us show that f(t) := dEn(φ(t))
dt is also in

L1([0,∞)). Notice how f(t) has a finite integral on any interval∫ b

a

f(t)dt = En(φ(a))− En(φ(b)) < C <∞ (8)

and is upper bounded
f(t) ≤ g(t) ∈ L1([0,∞)).

Consider f+ = f(t)1f(t)>0, f = f+ − f−. Clearly f+ ∈ L1([0,∞)) as it is upper bounded by
|g| ∈ L1([0,∞)). Moreover, the bound (8) shows that for all T > 0 one has∫ T

0

f−(s)ds ≤
∫ T

0

f+(s)ds+ C < ∥f+∥L1([0,∞)) + C.

From this we get that f− ∈ L1([0,∞)). Consequently, f ∈ L1([0,∞)). Since

Zn(t)|φ̇n|2 = g(t)− f(t) ∈ L1([0,∞)),

and Zn(t) has a uniform lower bound, we obtain φ̇n ∈ L2([0,∞)).

Let us show that φ̇n is absolutely continuous. The trajectory of all particles φ(t) is absolutely
continuous, because φ̇(t) is bounded as a continuous vector field on a compact manifold. Then, φ̇n(t)
is absolutely continuous, because it is a composition of absolutely continuous vector field and an
absolute continuous trajectory φ(t).

Because φ̇ ∈ L2([0,∞)) and φ̇n is absolutely continuous, it satisfies

lim sup
t→∞

|φ̇n(t)| = 0.

In other words, because of the upper bound Zn(t) < C, one has

lim
t→∞

∣∣∣∣ ∂

∂φn
En(φ1(t), . . . , φn(t))

∣∣∣∣ = 0. (9)

Finally, we are going to prove that φn converges to some critical point φ∗
n with

∂

∂φn
En(φ

∗
1, . . . , φ

∗
n) = 0.

Consider the set E = {ψ : ∂
∂φn

E(φ∗
1, . . . , φ

∗
n−1, ψ) = 0}. By assumption, the energy function

En(φ
∗
1, . . . , φ

∗
n−1, ψ) has isolated critical points w.r.t. ψ, thus the set of zeroes E is a finite collection

of points E = {ψ1, . . . , ψm}.
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When φ1, . . . , φn−1 converge to φ∗
1, . . . , φ

∗
n−1 the set{

φn :

∣∣∣∣ ∂

∂φn
E(φ1, . . . , φn)

∣∣∣∣ < ε

}
is inside a collection of distinct intervals around ψ1, . . . , ψm for small enough ε. Therefore, due
to (9), from some moment φn(t) stays only in one of those intervals. They collapse into points as
we take ε → 0 and t → ∞, proving that φn converges to some φ∗

n ∈ E . It remains to prove that
observed convergence is to a strongly stable point.

We know that the limiting point is critical and for almost any initialisation it is not strongly unstable.
This is a well-known fact that for autonomous systems convergence to a strongly unstable point
happens with probability zero, that we used in Section B.2. One could find it in (Geshkovski et al.,
2023b, Lemma B.1), based on the center manifold theorem (Shub, 2013, Thm. III.7, Ex. III.3).
Therefore, from the assumption on critical points, the limiting point is strongly stable. Then, the
convergence happens exponentially fast, because locally the whole neighbourhood of a strongly
stable point is its stable manifold W s

loc, see (Shub, 2013, Thm. III.7, Ex. III.3).

C.3 Proof of Theorem 5.1

Proof. Our prove consists of two parts. In order to obtain convergence we are going to apply
Lemma 3. The system has exactly gradient-like form for energy functionals

Ek(φ1, . . . , φk) = −

k−1∑
j=1

eβ(cos(φk−φj)−1) +

m∑
j=1

aje
β(cos(φk−θj)−1)


and bounded normalization factors

Zk(φ1, . . . , φk) =

k∑
j=1

eβ(cos(φk−φj)−1) +

m∑
j=1

aje
β(cos(φk−θj)−1).

Therefore, if conditions of Lemma 3 are satisfied, we have convergence to a strongly stable critical
point. In that case, it is sufficient to prove that for any strongly stable critical point φ∗, all particles
φ∗
k are εβ−1/2-close to one of the centers θj . We show this via induction on k, because new particles

do not affect the movement of the previous ones.

To justify our use of Lemma 3, we need to check that all critical points are either strongly stable
or strongly unstable, i.e. that the Jacobian at any critical point with only non-positive eigenvalues
actually has no zero eigenvalues. Moreover, for our conclusion, we need to check that if all the
eigenvalues are negative, then the critical point is clustered around θ. Let us start with that.

In what follows we repeatedly use properties of h and g from Lemma 4.

The system is of the form

φ̇k = − 1

Zk

k−1∑
j=1

h(φk − φj) +

m∑
j=1

ajh(φk − θj)

 =: fk(φ, θ).

Since fk does not depend on φk+1, . . . , φn, the Jacobian ( ∂fk∂φj
) is lower-triangular. Therefore, its

eigenvalues are ∂fk
∂φk

. Let us assume that all of the eigenvalues are non-positive. Since at a critical
point fk(φ∗, θ) itself is zero, one has

∂fk
∂φk

(φ∗, θ) = − 1

Zk

k−1∑
j=1

g(φ∗
k − φ∗

j ) +

m∑
j=1

ajg(φ
∗
k − θj)

 ≤ 0.

This implies that one of the terms g(φ∗
k − φ∗

j ) or g(φ∗
k − θj) is positive. From properties of g in

Section A.2, we obtain that φ∗
k is τ∗β -close to either one of the centers θj or one of the previous

particles φ∗
j . By induction hypothesis, all previous particles are εβ−1/2-close to the centers, i.e. φ∗

k

is in τ∗β + εβ−1/2-neighbourhood of some center, wlog θ1.
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Let us assume that φ∗
k is εβ−1/2-far from θ1. From criticality of the point, it is true that

k−1∑
j=1

h(φ∗
k − φ∗

j ) +

m∑
j=1

ajh(φ
∗
k − θj) = 0,

By induction hypothesis, all previous particles are εβ−1/2-close to some center. Denote the set of
particles that are close to θ1 as S. Then the criticality can be written as

a1h(φ
∗
k − θ1) +

∑
j∈S

h(φ∗
k − φ∗

j ) = −
∑
j /∈S

h(φ∗
k − φ∗

j )−
m∑
j=2

ajh(φ
∗
k − θj).

All of the terms on the left hand side have the same sign, because φ∗
j , j ∈ S are εβ−1/2-close to θ1

and φ∗
k is (τ∗β +εβ

−1/2)-close to θ1. Any other particle/center is at least (c−2ε)β−1/2− τ∗β far from
φ∗
k, because centers are cβ−1/2-separated. The absolute value of the l.h.s. can be lower bounded

|a1h(φ∗
k) +

∑
j∈S

h(φ∗
k − φ∗

j )| ≥ h(εβ−1/2).

The absolute value of the r.h.s. can be upper bounded

|
∑
j /∈S

h(φ∗
k − φ∗

j ) +

m∑
j=2

ajh(φ
∗
k − θj)| ≤ Nh((c− 2ε)β−1/2 − τ∗β ) < Nh((c− 1− 2ε)β−1/2),

where in the last part we used the fact from Section A.2 that τ∗β < β−1/2.

Therefore, one has
Nh((c− 1− 2ε)β−1/2) ≥ h(εβ−1/2),

which contradicts our assumption on system parameters.

It remains to check that when the eigenvalues of the Jacobian are not positive, they are actually strictly
negative. We already know that in that case all the particles are clustered around centers θj . Let us
assume that

∂fk
∂φk

(φ∗, θ) = 0.

We know that φ∗
k is εβ−1/2-close to some center, wlog θ1. Therefore,

g(φ∗
k − θ1) ≥ g(εβ−1/2).

On the other hand, the only negative terms in the sum

k−1∑
j=1

g(φ∗
k − φ∗

j ) +

m∑
j=1

ajg(φ
∗
k − θj) = 0

are from particles that are not in the neighbourhood of θ1, so they are at least (c− 2ε)β−1/2-far from
φk. Therefore, for the negative terms to balance the positive g(φ∗

k − θ1), it should be true that

g(εβ−1/2) < −Ng((c− 2ε)β−1/2).

This contradicts the parameters choice.

C.4 Rényi centers vs strong Rényi centers

In this section we estimate the number of clusters our approach predicts. As a reminder, for a
sequence of particles Xi on a unit sphere, and geodesic distance dist, we consider two subsequences

• Rényi centers is Xsj , j ≥ 1 such that ∀jmini<j dist(Xsj , Xsi) > δ,

• strong Rényi centers is Xsj , j ≥ 1 such that ∀jmini<sj dist(Xsj , Xi) > δ.
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Estimating the number of elements in the first sub-sequence is well-known as famous Rényi parking
problem Renyi (1958). In the case d = 2, the result from Dvoretzky and Robbins (1964) implies that
as δ → 0, the average number of elements in the sequence approaches c2π/δ superexponentially fast,
where c ≈ 0.75 is the Rényi constant. However, this problem becomes significantly harder in higher
dimensions. In contrast, it is easy to compute the average number of elements in the second sequence
in any dimension and even for a wider class of distributions.
Lemma 7. In an infinitely long sequence Xi the average number of variables Xsj chosen by strong
Rényi parking is the inverse spherical cap surface area 1/σd−1(Bδ). In particular, it grows as
1/δd−1 with dimension and can be computed directly in lower dimensions

1/σd−1(Bδ) =

{
πδ−1, d = 2

(3 sin2(δ/2))−1, d = 3

Proof. Consider a sequence of i.i.d. points Xi being sampled on a d-dimensional sphere Sd−1

according to some distribution µ. Let us find the probability that k-th particle Xk is chosen by strong
Rényi parking with distance δ. This event can be written as

P[∩k−1
j=1{dist(Xk, Xj) > δ}] =

∫
Sd−1

P[∩k−1
j=1{dist(x,Xj) > δ}]dµ(x),

where we used total probability formula. Then, since Xj are i.i.d., we can write it as∫
Sd−1

P(dist(x,X1) > δ)k−1dµ(x) =

∫
Sd−1

(1− µ(Bδ(x)))
k−1dµ(x).

From this we obtain that the average number of chosen points is equal to∫
Sd−1

∞∑
k=1

P(dist(x,X1) > δ)k−1dµ(x) =

∫
Sd−1

1

µ(Bδ(x))
dµ(x) =

1

σd−1(Bδ)
,

where the last equality is correct for any spherically harmonic distribution µ, in particular for a
uniform measure.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The work is dedicated to causal self-attention from interacting particles point
of view. Asymptotic convergence for arbitrary key-query matrices is proven in Theorem 4.1,
final configuration for non-identity Value matrices is presented in Table 1 and Figure 1.
Connection with Rényi parking is shown in Section 5 and properties of meta-stable clusters
are proven in Lemma 2 and Theorem 5.1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Significant limitations are discussed in Section 6. As mentioned in Section 4,
provided approach to asymptotical convergence is generally close, but insufficient to prove
all results listed in Table 1, that is why those results are only conjectured.
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• The answer NA means that the paper has no limitation while the answer No means that
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Justification: The proofs of all claimed results can be found in appendix. When stated, every
result refers to the section that is dedicated to its proof. All proofs are well-structured, rely
on known results and have all the assumptions clearly stated.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The only experiments are numerical models of considered dynamics presented
in Figures 1, 3 and 2. Their main purpose is to support what is claimed visually. These
calculations can be easily reproduced, as all the parameters used are listed and the system is
not computationally complicated.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not include experiments.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Conducted research conforms with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: The paper is focused on theoretical research and does not provide any direct
improvement of existing models, thus it has no way of deployment that could somehow have
harmful societal impact. In general, this work aims to improve our theoretical understanding
of Transformers, that are prevalent in modern state-of-the-art AI models. In this regard, it
could lead to improved long-term development of the field, that we see to be beneficial for
the society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical and does not have any model to release.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not utilize any existing code. Every existing idea or intellectual
result is properly referenced upon its introduction.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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