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Abstract

Text-guided diffusion models have significantly advanced image editing, enabling
high-quality and diverse modifications driven by text prompts. However, effective
editing requires inverting the source image into a latent space, a process often
hindered by prediction errors inherent in DDIM inversion. These errors accumulate
during the diffusion process, resulting in inferior content preservation and edit
fidelity, especially with conditional inputs. We address these challenges by inves-
tigating the primary contributors to error accumulation in DDIM inversion and
identify the singularity problem in traditional noise schedules as a key issue. To
resolve this, we introduce the Logistic Schedule, a novel noise schedule designed
to eliminate singularities, improve inversion stability, and provide a better noise
space for image editing. This schedule reduces noise prediction errors, enabling
more faithful editing that preserves the original content of the source image. Our
approach requires no additional retraining and is compatible with various existing
editing methods. Experiments across eight editing tasks demonstrate the Logistic
Schedule’s superior performance in content preservation and edit fidelity com-
pared to traditional noise schedules, highlighting its adaptability and effectiveness.
(Project page: https://lonelvino.github.io/SYE/)

1 Introduction

Text-guided diffusion models have emerged as a leading technique in image generation, offering
remarkable visual quality and diversity [2, 142} |50 69] [] The noise latent space of these models can
be leveraged to retain and modify images [32} 166, |68]], enabling text-guided editing where a source
image is adjusted based on a target prompt. This requires first inverting the source image into a latent
variable (e.g., via DDIM inversion), due to the absence of its predefined latent space [28,139].

While DDIM inversion proves effective for unconditional diffusion models [43] 53], it results
in inferior content preservation and suboptimal edit fidelity when applied to conditional inputs
[L12L [17]. This phenomenon is particularly evident in image editing, which requires incorporating
new conditionals into the generation process [16} 59} 33 161]]. DDIM converts the DDPM into a
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Figure 1: Compared to linear noise schedule, Logistic Schedule @ demonstrates high fidelity in
attributes content editing (a, b) with EF-DDPM [21]], ® preserves the high-level semantics of
the source image while performing object translation (c¢) with pix2pix-zero [43] and style/scene
transferring (d, e) with StyleDiffusion [63]], and ® successfully conducts non-rigid alteration (f) via
MasaCtrl [6]]. Text prompts corresponding to each input image are presented beneath each sample,
with words introduced for image editing distinctly highlighted in red.

deterministic process by approximating the Markov process as a non-Markov process based on a local
linearization assumption [53]]. This approximation introduces noise prediction errors that accumulate
throughout the diffusion process, leading to deviations in the inverted latent representation from its
original distribution, as illustrated in Fig. 2] left. Recently, inversion-based editing methods have
emerged as a promising paradigm to address these issues by aligning the reconstruction path more
closely with the DDIM inversion trajectory, thereby ensuring the preservation of the original content
in the edited images [41}, 15} 44, [10} 25]]. However, these methods still heavily rely on the accuracy
of the DDIM inversion. This leads us to a fundamental question: What if we correct the DDIM
inversion errors to naturally reduce the loss of original content in the edited images?

Unlike previous inversion-based editing methods that focus on minimizing the distance between x;’
and x; (Fig. |2| left), we investigate the primary reason for error accumulation in DDIM inversion.
Based on the fact that DDIM samplers can be derived by deterministic ODE processes (3l 38}, [71]], our
analysis reveals that these traditional noise schedule designs result in a singularity problem (Fig. 2]
right) when treating the DDIM inversion process as solving a differentiable ODE. This results in
unreliable noise predictions from the start, and as errors accumulate, the editing results degrade
(Fig.[T). This insight motivates us to address the problem at its source: the noise schedule itself. To our
knowledge, this is the first work focusing on designing noise schedules specifically for image editing,
providing an optimized solution without requiring complete model retraining [14} 20} 23} 29} 26 [34].

We present a simple yet effective noise schedule, Logistic Schedule, designed to resolve the singularity
problem of previous noise schedules and enhance inverted latents for image editing. The key ideas
behind Logistic Schedule are twofold: (1) creating a well-defined noise schedule to improve inversion
stability, and (2) providing a better noise space that enables editing faithful to the source image.
Specifically, Logistic Schedule eliminates singularities at the beginning of the inversion process,
thereby reducing noise prediction errors in the inverted latents. It enables more stable data perturbation
to preserve the original content of the source image in the edited image. Importantly, this design is
effective and compatible with other editing methods without requiring additional retraining.
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Figure 2: Illustration of the DDIM inversion in image editing and its challenges. Left: starting
from the source image X, the ideal latent X, is approximated by the inverted latent x; using DDIM
inversion. The perturbed noisy latent x7. is then sampled in two branches—one for the source
condition and one for the target condition—yielding the reconstructed and edited images respectively.
Right: the numerical computations of dx, /d¢ for scaled linear and cosine noise schedules, highlighting
the singularity at r = O that leads to potential inaccuracies in noise prediction during inversion.

We conducted experiments across eight distinct editing tasks using approximately 1600 images from
diverse scenes. Fig.[I|illustrates that our Logistic Schedule effectively enhances editing results in terms
of essential content preservation and edit fidelity compared to commonly used noise schedules like the
linear schedule. Moreover, our schedule can be seamlessly integrated with various existing diffusion-
based editing techniques, demonstrating its versatility and effectiveness. Our main contributions are
summarized as follows: (1) Theoretical Analysis: We analyze the failure of DDIM inversion in real-
image editing step by step, identifying the singularity in the noise schedule as the key issue to address.
(2) Methodology: We introduce Logistic Schedule, a novel diffusion noise schedule specifically
tailored for real-image editing, which effectively reduces prediction errors during inversion. (3)
Superiority: We showcase Logistic Schedule’s adaptability by integrating it with various editing
methods and demonstrate its consistent superior performance across different editing tasks.

2 Background

This section will introduce diffusion models and their noise schedules, along with DDIM inversion,
which are crucial for text-guided editing of real images.

Diffusion Models. Denoising Diffusion Probabilistic Models (DDPM) [[18] are designed to transform
a random noise vector Xy into a series of intermediate samples X;, and eventually a final image xy by
progressively adding Gaussian noise € ~ N (0, I) according to a noise schedule S, ..., Br:

X; = V1 -Bix1 + \/Eft—la

where t ~ [1,T] and T denotes the number of timesteps. The noise schedule determines the
distribution of noise scales and is designed to ensure that the noise scale at each step is proportional to
the remaining signal, which is usually fixed without additional learning. According to the properties
of conditional Gaussian distributions, X, can be derived from a real image X in the following closed
form by reparameterizing o, = 1 — 5;,a@; = H§:1 a;:

X = Varxo + V1 — aze. 1)

Another commonly used sampling method is Denoising Diffusion Implicit Models (DDIM) [53]],
which formulate a denoising process to generate x,_; from a sample x; via:

(1)
X, — V1 —ase X E—
! e ( t) +4/1 — Qi1 — O't2 . Eét) (Xt)+ T € N (2)

N Jre

random noise

Xi—1 = V-1 (

direction pointing to X;
predicted xq
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where ¢, ~ N(0,1), oy is the variance schedule, and €g is a network trained to predict the noise added.

_ l—a;-; Q
Whena't—ﬂﬁ‘[ a/,il
process becomes a DDPM. And in a special case when o; = 0 for all ¢, the forward process become
deterministic given X,_; and Xg, except for # = 1, and the generate process becomes a DDIM.

Inversion in Image Editing. Although text-to-image diffusion models [50} 52} 19] have advanced
feature spaces that support various downstream tasks [67} 37, 136]], applying them to real images
(non-generated images) is challenging because these images lack a natural diffusion feature space.
Editing a real image first requires obtaining the latent variables x7 from the original image x¢ and
then performing the generation process under new conditions. To bridge this gap, DDIM inversion
[S5] is predominantly used due to its deterministic process, which can be represented by reversing
the generation process in Eq. 2] with oy =

Xt = */_X 1+\/—(\/__1_\/at 1_1)69(;1,z-1)

However, existing editing methods that rely on vanilla DDIM inversion struggle to achieve both
content preservation and edit fidelity when applied to real images [, 4, [16]. Recently, inversion-
based editing methods have improved the edited results by maintaining two simultaneous procedures:
reconstruction and editing, as shown in Fig. [2|left. These methods align the reconstruction path (x')
more closely with the DDIM inversion trajectory (x*), ensuring better preservation of the original
content in the edited image [41] [15] |44} 25 [10]. Despite their effectiveness, these methods still
heavily rely on the accuracy of the inverted latents obtained from DDIM inversion. In contrast, we
start from a different perspective, focusing on improving the DDIM inversion accuracy to naturally
enhance the edited results. In the following section, we begin with the transition from DDPM to
DDIM, emphasizing the need for a better noise schedule for the inversion process.

3 On the Failure of DDIM Inversion

3.1 Warmup: Error Accumulation of DDIM

DDIM inversion for real images is unstable due to its reliance on a local linearization assumption at
each step, leading to error accumulation and content loss from the original image. Specifically, DDIM
assumes that the denoising process in Eq. [2|is roughly invertible, meaning X; can be approximately

recovered from x;_, via:

X = X;_, — bie(x],1) . X;_, —be(xy_,, )’ 3)
az az

where a; = \a;_1/a; and b, = —\Ja;—1(1 —a;)/a; + V1 — a;—1. This approximation assumes
e(x;,1) = e(xt 1 1), and the inversion’s accuracy depends on this assumption. However, ensuring
accurate inversion under this assumption requires a sufficient number of discretization steps, which
increases time costs and is impractical for many applications. With fewer timesteps or higher noise
levels, error accumulation becomes more pronounced, resulting in distorted reconstructions, as shown
in Fig.[2]left. This occurs because once we deviate from the linearization assumption, the interpolation
operation in Eq. [3| fails. The primary issue arises when estimating the “predicted x," in Eq. 2] at
the initial step (¢ = 1, indicated by the red arrow in Fig. [2|left), where a simple expression for the
posterior mean conditioned on X; no longer exists [S5]. Moreover, this problem is exacerbated in
image editing, where the denoising process must incorporate new conditions into the image content.
This increases the difficulty of noise predictions, leading to more severe artifacts and distortions.

3.2 The Devil Is in the Singularities

To get around this issue, our first insight is to reduce the prediction error at the beginning of the
forward (inversion) process. But before we can figure out how to fix the error, we need to pinpoint
the problem. We first provide the continuous generalization of DDPM, since sampling from diffusion
models can be viewed alternatively as solving the corresponding ODE process [57, 38]:

dx = [F(x,1) = 3200V log i (9 | a1 @
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Figure 3: Left: trends of 1 — @, (noise scales) for scaled linear, cosine, and logistic noise schedules.
Right: dx, /dr for the logistic schedule, highlighting its smooth transition, which prevents singularities
and maintains the integrity of the initial latent vector Xg.

where f(-, t) is a vector-valued function called the drift coefficient of x(¢), and g(-) is a scalar function
known as the diffusion coefficient of x(#). And the ODE form of DDIM is equivalent to a special
case of Eq.[d] as long as a; and @;_x; are close enough (refer to details in Appendix[A).

By treating the DDIM inversion process as solving a differentiable ODE, we emphasize that precise
and stable computation of dx, /dr at each timestep ¢ is crucial for accurate noise prediction, especially
at the start of the inversion process. Fig. [2|right highlights the pitfalls of widely-used scaled linear
[18]] and cosine [43]] noise schedules through numerical computations of dx, /dr.

Proposition 3.1 (Singularity in Inversion Process). During the inversion process, there exists a
singularity at t = 0 for both the scaled linear and cosine schedule (Fig. 2 right):

dx 0

Whent =0, — = — - sign(€) = oo - sign(e).
dt |, O

This singularity significantly affects the starting point of the inversion process during image editing
tasks. Properly modeling dx;/dt ensures that the inversion closely aligns with the true continuous
dynamics of the diffusion process, thereby reducing errors and enhancing the fidelity of the inverted
latents, which is critical for high-quality image editing. The proof can be found in Appendix|B|

We argue that singularities in modeling dx, /df cause significant issues in inversion-based text-guided
image editing. Specifically, (1) the instability in the inversion process arises from the singularity
of the derivatives at ¢t = 0, leading to inaccurate noise component estimates, making the starting
point inconsistent with the data’s true characteristics. The fast sampling in DDIM exacerbates error
accumulation, where minor initial errors lead to substantial deviations in the final inverted latents.
As aresult, reconstructed or edited images may display visual inconsistencies, distorted details, or
unnatural artifacts, reducing the overall quality and fidelity. Furthermore, the singularity can also lead
to (2) poor handling of complex data distributions in the real world. Discontinuities in derivatives
result in the model receiving inconsistent and unreliable signals during the diffusion probabilistic
modeling. This hinders the model’s ability to capture intricate patterns and details, disrupting the
consistency and integrity within an image [30].

4 Better Noise Schedule Helps Inversion and Editing

4.1 Well-Defined Schedule Improve Inversion Stability

To address the issues highlighted in Proposition[3.1 we propose a new noise schedule in terms of @,
since @, represents the remaining signals in the latents during the diffusion process (Eq.[I). Following
the recommendations from iDDPM [43]], the noise schedule should ensure that noise is added more
slowly at the beginning to preserve image information in the middle of the diffusion process. We
introduce our logistic noise schedule as follows:

_ 1

L P .
where k and ¢ are hyperparameters that control the steepness and midpoint of the logistic function,
respectively. In our experiments, we set k = 0.015 and 7y = int(0.67'), as discussed in Section[5.3.1]
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Our logistic schedule is designed to have a linear drop-off of @, in the middle of the diffusion process,
with minimal changes near the extremes of ¢t = 0 and ¢ = 7, thus preventing abrupt changes in the
noise level. Fig.|3|left demonstrates the progression of V1 — «, for different schedules, in which
linear and cosine schedules tend to add noise too quickly during the early stage of the inversion
process. Crucially, our logistic noise schedule avoid the singularity of dx,/dr at ¢ = 0. For simplicity
in expression, we set k = 0.015 and 79 = 30, resulting in the following:

d
When =0, =] =1.486e 3¢ - 1.318¢xg
dt t—0

The proof is provided in Appendix[B] and the trend of the derivatives of our logistic schedule is
illustrated in Fig. 5] right. By ensuring a smooth and continuous transition in noise levels, the logistic
schedule maintains the integrity of the initial latent vector xq. This alignment with the diffusion
process’s continuous dynamics prevents undesired deviations, reduces errors, and leads to more
accurate and stable latent predictions, improving the inversion process’s fidelity.

4.2 Exploring Noise Space of Logistic Schedule

We now explore the properties of our logistic noise schedule and its influence on the noise space,
specifically comparing the logSNR trends and inversion processes of different noise schedules.

Steady Information Perturbation. As depicted in Fig. [ (left), the linear and cosine schedules
tend to drastically degrade image information at the initial stage of inversion, as evidenced by the
rapid drop in logSNR. In contrast, our logistic schedule exhibits a more linear decrease in logSNR
before the final stage, ensuring steady data perturbation. This steadiness allows the logistic schedule
to capture a richer set of features and nuances from the original image, facilitating more detailed
reproduction and higher fidelity in the edited images.

Comprehensive Pattern Capture. As shown in Fig. [d](right), we visualize the latents during the
inversion (forward) process, using 50 timesteps with the final step at 981 instead of 999. In the early
stage, our Logistic Schedule preserves more original image information, reflecting the logSNR trend.
Considering the later stage, linear and cosine schedules retain more low-frequency components due to
higher endpoint SNRs, explaining why their noise maps don’t fully cover the image. In contrast, our
Logistic Schedule ensures that the inverted latent closely resembles pure Gaussian noise, minimizing
the retention of low-frequency components. This thorough process ensures that the inversion encodes
a broader array of the original image’s information, thereby enhancing the quality and fidelity of the
edited images.

5 Experiments

In the section below, we evaluate our method both quantitatively and qualitatively on text-guided
editing of real images. To validate the versatility and effectiveness of our proposed Logistic Schedule,
we compare it with linear and concise schedules by employing different editing approaches across
various editing tasks. Refer to Appendix [E]for detailed experimental results.

https://doi.org/10.52202/079017-3675 115717



Attributes Editi
with Edit Friendly DDP,

Object Switch
with Pix2Pix-Zero

MY S ) o
Bnarts &) w2l A) )
a blond woman with scarf = a blond woman with scarf and headscarf

a woman with black hair = a woman with black hair, eyes close

| n -V B ﬂ JI“

a man with an orange jacket = a man with a black jacket

Style/Scene Transferrin it h iti
Wi Styleditfusion D e "'gw'i‘,r’hg;ifzfdm"g

elephants walk across a field = elephants walk across gently rolling hi

— - —

‘f et 7 xR 3 oy P IIPR on . EovSiigy o R -
a woman in blue dress = a pixel art of a woman in an elephant is standing in a zoo = an elephant is running in a zoo

Linear Cosine Logistic
Schedule Schedule Schedule

Linear Cosine  Logistic

Real Image Schedule Schedule Schedule

Real Image
Figure 5: Qualitative comparison of the Logistic Schedule with linear and cosine schedules
across various image editing tasks. To preserve background content during @ attribute editing tasks
(e.g., colors, and materials), we employ Edit Friendly DDPM [21]]; for tasks requiring background
preservation such as @ object translation, we use Zero-shot Pix2Pix [43]); for tasks involving @ scene
or style transfer, while maintaining object semantics, we utilize StyleDiffusion [63]; to validate spatial
context preservation in @ non-rigid editing tasks (e.g., motion, pose), we consider MasaCtrl [6]].

5.1 Experimental Settings

Implementation Details. We perform the inference of different editing and inversion methods
under consistent conditions. We use Stable Diffusion v1.5 as the base model, with 100 timesteps, an
inversion guidance scale of 3.5, and a reverse guidance scale of 7.5. All experiments are conducted
on a single Nvidia A100 GPU. Quantitative results are averaged over 10 random runs. Additional
implementation details are provided in Appendix[D.2}

Datasets. Experiments are conducted on the PIEBench dataset [25]. Recognizing the dataset’s
limited size and scenarios, we extend it by incorporating face images from FFHQ [27] and AFHQ
[11]], as well as indoor/outdoor common objects from MS-COCO [33]). This results in approximately
1600 images in total, across eight editing types (see Appendix[D.T).

Evaluation Metrics. As the editing process involves altering both the foreground and background
of the images, we follow Ju et al.|in adopting three types of metrics: structure (DINO-I [[7, 58 51]),
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background preservation (PSNR, LPIPS [24.[72], MSE, SSIM [64])), and image-image, text-image
consistency (CLIP score [48]]). Detailed descriptions of each metric can be found in Appendix[D.3]

Table 1: Comparative table of diffusion noise schedules and their performance metrics. Bold values
indicate the best results, while underlined values denote the second-best results.

Structure Background Preservation CLIP Similarity (%)
Dist . ;-3 | [PSNRT  LPIPS (-3 | MSE ,p-4 | SSIM (-2 T\VisualT Textual T

Attributes Editing (with Edit Friendly DDPM)

Linear 35.66 20.70 134.88 113.61 77.60 79.82 23.06
Cosine 26.57 22.38 110.52 80.01 80.15 81.35 22.39
LOgiSﬁC 17.37 34.6%] 24.78 10.7%1 81.80 26.0%), 49.47 38.2%] 82.97 3.5%7 82.44 0.8%7 23.62 2.4%7

Object Switch (with Zero-Shot Pix2Pix)

Linear 39.02 19.93 134.64 138.99 74.63 83.33 22.30
Cosine 30.83 21.15 113.03 107.46 77.23 84.32 22.46
Logistic 22.4 27%) 2291 8%1 90.75 20%,, 82.05 24%) 79.32 3%1 84.52 0.1%7 22.65 0.8%7

Style/Scene Transferring (with StyleDiffusion)

Linear 38.06 21.17 93.70 111.01 81.85 77.65 25.39
Cosine 28.44 22.70 75.75 78.93 83.74 79.23 23.92
Logistic 18.64 34.4%)] 24.81 9.3%7 56.79 25.0%] 48.96 38.0%] 85.84 2.5%7 80.81 1.2%7 24.77 2.4%)

Non-ridig Editing (with Masactrl)

Linear 30.83 21.15 113.03 107.46 77.23 83.13 22.65
Cosine 22.40 2291 90.75 82.05 79.32 83.33 21.81
Logistic 15.87 2926/@ 24.66 7.7%7 75.18 17-2°7<7‘l 59.22 27.8f/<:l 81.11 2.3%7 84.32 0.1%7 22.30 1_5(7(‘1

Schedule

5.2 Qualitative and Quantitative Comparison

Qualitative Comparison. As shown in Fig.|5| our Logistic Schedule demonstrates superior content
preservation in each task. In tasks requiring fine-grained editing, such as attributes editing, the Logistic
Schedule better preserves other attributes while making the desired changes. For tasks involving high-
level semantics, such as object translation and style/scene transfer, the Logistic Schedule maintains
the overall structure and pose more effectively. In tasks that involve low-level semantics like color
and texture, such as pose and attributes editing, the Logistic Schedule shows better fidelity and
consistency. For tasks that require background preservation, such as object translation and pose
editing, the Logistic Schedule excels in maintaining the background integrity. Overall, the Logistic
Schedule ensures higher edit fidelity across various tasks, whereas the linear and cosine schedules
sometimes fail to maintain the desired quality and consistency.

Quantitative Comparison. Table[I]shows that when employing the Logistic Schedule, all editing
tasks exhibit improved retention of background and overall structure. While in some situations, the
Logistic Schedule achieves slightly lower text alignment than the linear schedule, its preservation of
background and structure is significantly superior.

5.3 Ablation Studies

In this section, we investigate the effects of different configurations of the Logistic Schedule and the
adaptability of the Logistic Schedule with various inversion techniques and diffusion models. More
experiments on hyperparameters (e.g., guidance scale, input scale) can be found in Appendix[E] The
comparison with more design of the noise scheduler is provided in Appendix[E-4]

5.3.1 Effects of Configuration of Logistic Schedule

We conduct experiments with different configurations of the Logistic Schedule in Eq.[3} providing
further evidence for the noise space analysis (Section[4.2). The parameters of the Logistic Schedule
(Eq.[5)—specifically the steepness (k) and the midpoint (fo)—play a crucial role in balancing content
preservation and edit fidelity. Table 2] provides the quantitative results of varying k and .
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Table 2: Quantitative results of the Logistic Schedule across various hyperparameter settings. The
best method is indicated in bold, and the worst method is shown in purple.

Settings Structure Background Preservation CLIP Similarity (%)
g Dist x10-3 l PSNR T LPIPS x10-3 l MSE x10—4 l SSIM x10-2 T‘Visual T Textual T

k =0.015

t0 = int(0.67) 17.37 24.78 81.80 49.47 82.97 82.44 23.62
k =0.008 16.27 26.45 75.62 43.20 85.28 84.07 20.47
k=0.011 16.64 25.80 77.90 48.83 84.15 83.76 21.46
k=0.017 22.79 22.33 99.98 57.32 81.52 82.10 23.25
k =0.029 27.82 21.05 103.45 64.36 78.48 80.66 23.81

to = int(0.4T) 24.31 22.41 97.21 60.84 79.72 79.47 20.33

to = int(0.87) 29.47 21.64 95.58 63.89 75.14 77.05 22.68

Different k: Changing the steepness of logSNR. When £ is larger, the logSNR values span a larger
range (Fig[d] left). However, if the range is too large, excessive steepness of 1ogSNR results in
excessive loss of original image information in edited images (Figl6] right). Interestingly, when &
is small, the logSNR resembles that of linear and cosine schedules, but the logistic schedule better
preserves the original image content without altering the overall structure. This further supports
Proposition [3.1] that the singularity in linear and cosine schedules tends to destroy original image
information, causing undesired changes.

Different 7o: Introducing shifts in logSNR. When ¢ is close to 0, the lower bound of 1ogSNR is
higher, affecting editability by reducing diversity and fidelity, as shown in Fig.[7} Conversely, when
1 is close to T, the original information is lost too quickly, degrading content preservation.

Balancing these parameters, we find that k = 0.015 and 7y = int(0.67) strike the optimal trade-off
between content preservation and edit fidelity, providing robust performance across various tasks.
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5.3.2 Adapting Inversion Techniques and Diffusion Models

To validate the adaptability and robustness of the Logistic Schedule, we first apply it with Plug-and-
Play [59]] using Stable Diffusion v1.5 [50] as the baseline. We then design experiments with two
other diffusion models, Stable Diffusion v2.1 and Stable Diffusion XL [47], and incorporate three
advanced inversion approaches: Null-Text Inversion [41]], Negative Prompt Inversion (NPI) [40]], and
Direct Inversion [25]]. As shown in Table 3] while more advanced stable diffusion models increase
textual similarity, they degrade content preservation. Conversely, incorporating advanced inversion
approaches improves both content preservation and edit fidelity. Furthermore, Table 4] presents the

Table 3: Comparative performance metrics with different base models and inversion techniques.

Variants Structure Background Preservation CLIP Similarity
Dist x10-3 l PSNR T LPIPS x10-3 l MSE x10-4 l, SSIM x10-2 T‘Visual T Textual T
PnP+SD-1.5|  26.66  |22.46 111.27 77.74 80.02 |81.24 21.74
Changing the Base Model

SD-2.1 {3474 30 39,7 | 19.94 1129, 152.25 36 goer  122.86 53 0q6p 7441 70951 [79-38 | 500 22.87 52901
SDXL 28.33 6.3(/(T 21.57 4.()(‘/(l 122.14 9.8(/(T 89.02 145(/(-T 77.25 3.5(/(l 77.52 2.9(/(l 23.59 8.5('/(.T

Incorporating Advanced Inversion Approaches

+ Direct 16.06 39.8%) 25.73 14.6%7 74.17 33.3%] 41.19 47.0%] 85.61 7.0%7 83.29 1.6%7 22.03 1.3%7

detailed comparison between the Logistic Schedule and the scaled linear schedule across different
inversion techniques.

Table 4: Comparison of inversion techniques with the scaled linear schedule and our proposed
Logistic Schedule.

Structure Background Preservation CLIP Similarity
Dist| |PSNRT LPIPS| MSE| SSIMT | Visual T Textual |

Null-Text + Linear 21.00 23.00 95.00 63.00  81.50 ‘ 81.00 21.30

Variants

Null-Text + Logistic 18.67 23.80 89.64 5797 8297 82.46 21.95
NPI + Linear 28.00 22.40 105.00  78.00  78.50 78.50 20.90
NPI + Logistic 24.82 23.17 99.19 71.24  80.26 80.16 21.53
Direct + Linear 19.00 24.90 78.00 45.00  83.50 82.90 21.90
Direct + Logistic 16.06 25.73 74.17 41.19  85.61 83.29 22.03

6 Conclusion

This paper presents the Logistic Schedule, a novel noise schedule that eliminates singularities and
improves inversion stability for image editing. Our method enhances content preservation and
edit fidelity without requiring additional retraining, making it a plug-and-play solution for existing
workflows. Through in-depth analysis of the diffusion inversion process, we identify that current
schedulers suffer from singularity issues at the start of inversion. The proposed Logistic Schedule
provides a straightforward solution to this problem, offering superior performance and adaptability
across various image editing tasks.
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A Neural ODEs of DDIM

To support the analysis in Section [3|on the failure of DDIM in inversion, we present the following
connections to neural ODEs and DDIM.

A.1 Preliminaries: Score-Based Generative Modeling with SDEs

We beginning with the process of constructing a diffusion process using SDEs, extending DDPM to
infinite noise scales for evolving data distributions from initial to prior distributions.

Perturbing Process with SDEs. DDPM [18] sets noise scales so that xy approximates N (0, I),
leveraging multiple noise scales for success. |Song et al.|extended this to infinite noise scales, evolving
the data distribution via an SDE. The goal is to construct a diffusion process {x(t)}[T:O, where
x(0) ~ po (data distribution) and x(7') ~ pr (prior distribution). The process is modeled by the SDE:

dx = f(x, 1)dr + g(¢t)dw (6)

where w is the standard Wiener process with time flowing backwards from T to 0, f(-, 7) is the drift
coefficient, and g(+) is the diffusion coefficient.

Generating Samples by Reversing the SDE. Starting from x(7') ~ pr and reversing the process,
we can obtain x(0) ~ po, given by the reverse-time SDE:

dx = [f(x,1) — g(t)*Vx log p,(x)] dt + g(¢)dw. (7)
The score Vy log p;(x) can be estimated by training a score-based model on samples using score
matching [22|56]].

Solving Reverse-Time SDE: Probability Flow ODE. Numerical solvers approximate trajecto-
ries from SDEs. General-purpose methods like Euler-Maruyama and stochastic Runge-Kutta [31]
discretize the stochastic dynamics. In addition to these, score-based models enable solving the
reverse-time SDE via a deterministic process, known as the probability flow ODE:

ax = [F(x,1) ~ 38 Vxlog pi(x) | di ®)

This ODE is determined from the SDE once scores are known. When the score function is approxi-
mated by a neural network, it exemplifies a neural ODE [§].

From Score-Based Models to DDPM: VE, VP SDEs The noise perturbations in SMLD [56]] and
DDPM [18] are discretizations of two SDEs: Variance Exploding (VE) SDE and Variance Preserving
(VP) SDE.

For SMLD with N noise scales, each perturbation kernel p, (X | Xo) corresponds to the distribution
of x; in this Markov chain:

X;i =Xj-1+ VO-LZ _O-l'z_lzi—la i = l," : aNs (9)

where z;_; ~ N(0,I) and 09 = 0. As N — oo, {o-i}l\il becomes o (t), z; becomes z(¢), and the

Markov chain {xi}f\i , becomes a continuous stochastic process {x(t)}tl:(), given by the SDE:
d[o2(t
dx = wd—t()]dw. (10)

For DDPM, the perturbation kernels {p, (X | X0)};., follow this Markov chain:

xi =1 -Bixici +\Bizict, i=1,--,N. (11)

As N — oo, this converges to the SDE:
1
dx = —zﬁ(t)xdt ++/B(1)dw. (12)

Thus, noise perturbations in SMLD and DDPM correspond to the SDEs {10] and respectively.
Notably, the SDE[I0]results in an exploding variance as t — oo, while the SDE 2] maintains a fixed
variance of one, demonstrating the superiority of VP SDE for stable variance preservation.
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A.2 Rewrite the DDIM Process as ODEs

DDIM’s Local Linearization Assumption: DDIM inversion for real images is unstable due to its
reliance on a local linearization assumption at each step, leading to error accumulation and content
loss. DDIM assumes that the denoising process in Eq. [2]is roughly invertible:
X = X;_p, — bre(x7, 1) . X;_pr — bte(xjfm,t),
ay ay

where a; = +a;-a/a; and by = —Ja;ar(1 — @)/ + V1 — a;—a;. This assumes e(x},1) =
€(x;_,,»1), and inversion accuracy depends on this assumption. Moreover, estimating the “predicted
Xo" at the beginning (¢ = 1) lacks a simple expression for the posterior mean conditioned on x,. This
deviating from the linearization assumption causes the interpolation to break down from the start,
resulting in server error accumulation problem.

Relevance to Neural ODEs: Under this assumption, the DDIM iteration process (Eq. [2)) can be
rewritten in a format similar to Euler integration for solving ODEs:

Xr—At Xt 1 —a;ar 1-a (1)

-y - €D (x,). (13)
V& -At V@t (\/ At —Ar \/ Q; ) 0 !
Reparameterizing (v/'1 — @/+/a) with o and (x/+/a) with X, in the continuous case, o and x are

functions of 7, with o : R>9 — Ry continuous and increasing, o-(0) = 0. Eq.[13]can be seen as an
Euler method over the ODE:

dx(r) = € (\/%) do (1), (14)
(o

which corresponds to the Eq.[I0]of probability flow ODE. This suggests that with enough discretiza-
tion steps and the optimal model eg), the generation process Eq. can be reversed, encoding Xg to
x7 and simulating the reverse of the ODE in Eq.[14]

Theorem A.1 (DDIM ODEs). While the ODEs are equivalent, the sampling procedures differ

significantly. The Euler method for the probability flow ODE updates:

Xt —At X 1 ( l—a;n 1- a/t) @t (1)
— + — — . - € (X )’ (15)
VA -At Var 2 Ar—At a; l—a; 0 !

which is equivalent to Eq.[I3]if a; and a;_a; are close enough. However, achieving this closeness
is challenging with fewer time steps, and an inferior model can exacerbate the errors from this
assumption. Moreover, the Variance Exploding SDE (VE SDE) has inherent flaws compared to the
Variance Preserving SDE (VP SDE). VE SDE: s tend to increase variance exponentially, leading to
instability and less accurate representations, whereas VP SDEs maintain a stable variance, ensuring
a more consistent and reliable modeling process.

Modeling with dr in Euler steps, as done in the probability flow ODE, ensures that the step size
directly correlates with the temporal evolution, maintaining the integrity of the stochastic process and
providing a more faithful representation of the underlying data distribution over time. [S5] state that
the ODE of DDIM is a special case of the probability flow ODE (continuous-time analog of DDPM).

Proof. We consider ¢ as a continuous, independent “time" variable and x and « as functions of ¢.
Let’s reparameterize DDIM and VE-SDE using X and o:

X(t) =x(0) + o (t)e, €~ N(0,1),
for ¢ € [0, 00) and a continuous function o : R5o — R where o-(0) = 0.

Define a(t) and x(¢) for DDIM as:

< X _ /l—a(t)
x(t)—\/m, o (1) ORE

X0 =
x(1) = ma (1) 1+02(t)

This implies:
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From Equation|[I] noting @ (0) = 1:

x(1)  x(0) 1—ar)

Va(r) - Va(0) * a(r) ©

x(t) =x(0) + o (?)e.

which reparameterizes to:

ODE form for DDIM: Simplify Equation[I3]to:
(1 — A1) =X(1) + (o (t = A1) — o7 (1)) - € (x(1)).
Dividing by —At and taking At — O:
dx(t) _ do (1) 0! X(1)
dt dt ‘/0-2([) +1

(16)

matching Equation [14]

ODE form for VE-SDE: Define p, (X) as the data distribution perturbed with o->(¢) Gaussian noise.
The probability flow for VE-SDE is given by:

1
dx =3 g(1)*Vxlog p, (X)dt,

where g(t) = 4/ d(rdzt(’). The perturbed score function Vg log p; (X) minimizes:

Vilog p; = arg H;in B (0)~g(x),e~nN(0.1) [118: (X) + €/ ()[5],

where X = X(t) + o (t)e.

The equivalence between x(¢) and X(¢) gives:

E(l) X(1)
B e Vo2(t)+1
Vilog p/(X) = _T‘

Using Equation[A.2] and the definition of g(7):

€M X(t)
dx(t) 1do*(t) ¢ \No2n+ u
dt 2 dt o (1) ’

rearranging terms:

dx(1) _ do-(t)e(t) x(1)
dt dt Vo + 1)

which matches Equation Both initial conditions are X(T) ~ N (0, c>(T)I), showing that the
ODEs are identical. m]

However, the above proof is based on several assumptions as follows:

1. Equivalence Between x(7) and X(¢): The bijective mapping between the variables x(¢) and X(¢) is
crucial for transforming the DDIM formulation into the VE-SDE framework. If this equivalence does
not hold perfectly, the transformation could introduce errors. Small discrepancies can accumulate
over time, leading to significant deviations in the modeling process, resulting in unreliable outcomes.

2. Gaussian and Constant Noise e: The noise € is assumed to be Gaussian N (0, I) and constant
throughout the process, which simplifies the mathematical formulation and integration. However, in
real-world scenarios, the noise might not be perfectly Gaussian or constant. Variations in the noise
can affect the accuracy of the model’s predictions, leading to inconsistencies and unreliable results.

3. Continuity and Differentiability of a(z) and o (¢): The functions a(#) and o (¢) are assumed to
be continuous and differentiable. This ensures smooth transitions and allows for the derivation of the
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differential equations. If a(f) or () are not continuous or differentiable, the resulting differential
equations may not accurately represent the underlying processes. This can lead to instability and
errors in the model’s behavior.

4. Optimal Model eg): The model eg) is assumed to be optimal, meaning it perfectly minimizes
the given loss function. In practice, achieving an optimal model is challenging. Suboptimal models
can lead to inaccuracies in the predictions, and the error can propagate, reducing the reliability of the
entire process.

5. Closeness of o; and a;_a,: It is assumed that a; and a;_a, are close enough, which is necessary
for the equivalence between the DDIM and VE-SDE formulations to hold. With fewer time steps,
this assumption may not hold, leading to significant errors. Additionally, if the model is inferior, the
errors arising from this assumption can be magnified, resulting in an unreliable process.

B Proofs

In this section, we first provide the detailed expressions of x, with respect to different noise schedules.
Then we provide the proof of the singularities problem in Proposition [3.1]

By reparameterizing:
t
a=1-p, @=|]a (17)
i=1
the forward process of DDPM can be expressed as:

X; = \/@_,xo + /1 — @re.

Apply the chain rule to dx, /dz, we get:

d 11 da, 1 -1 da
& _ __X0ﬂ+_ eﬂ (18)
dt  2+@, " dt  2T—@q, dt

B.1 Proof Preliminaries

B.1.1 Scaled Linear Schedule

The linear beta schedule is defined by:
IBend - ﬁstart

Bt = Bstart + 1 - 71
where
Buar = 0.0001 - 1000 _ 0.1
start — T - T
and
_0.02-1000 _ 20
end — T - T
Thus,
01 2-% o1 19.9
,Bt:_+t'T = — 4 —
T T-1 T T(T-1)
In general form, the expression for §; is:
_ 0.1 199 -¢

B = t=0,1,2,...,T—1

T frr=-1y

Incorporating Eq. the @, of scaled linear schedule is given by:

t .
_ 0.1 199
a,_E[(l T TED (19)
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B.1.2 Cosine Schedule
The cosine schedule is proposed in the iDDPM [43]], where the definition of the schedule is given by:

¥ —& f(t)=cos(

2
I+s 2 0)

ay = >
CT©O)
where s is a small offset to prevent 8, from being too small near ¢ = 0. [Nichol and Dhariwal|chose
this setting since they found that having tiny amounts of noise at the beginning of the process made it
hard for the network to predict accurately enough. Specifically, s is set as 0.008 such that V3, was
slightly smaller than the pixel bin size 1/127.5.

t/T +s 7T)2

Plugging f(t) into the expression, we get:

t/T+s =
20~
5 - AT
2 ST
COS(1+s 2)

B.1.3 Sigmoid Schedule

The sigmoid schedule is introduced in|Jabri et al., which is designed for scalable data generation,
especially for high-dimensional data, without addressing the challenges of DDIM inversion. The
formulation of the sigmoid schedule can be presented as below:

3 (@) - sigmoid() + v,
. (21

Ve = Vs

where s and e are the start and end of the sigmoid function’s range, and vy = (s/r) - sigmoid(), v, =
(e/r) - sigmoid().

B.1.4 Logistic Schedule

Recall the expression of the logistic schedule in Eq. [5}

_ . 1

y = Normalized (m) ,
where k and ¢ are hyperparameters that control the steepness and midpoint of the logistic function,
respectively.

B.2 Derivation of Singularities w.r.z. Linear and Cosine Schedules

Recall the Proposition

Proposition B.1 (Singularity in Inversion Process). During the inversion process, there exists a
singularity at t = 0 for both the scaled linear and cosine schedule:

d
Whent =0, &

0
5 = — - sign(e€) = o - sign(e).

0

t—0

Next, we provide the derivatives for scaled linear and cosine in order, to support Proposition [3.1]

B.2.1 Scaled Linear Schedule

For dx,/dt, where X, = va;Xo + V1 — @€, cannot use @, = ]—[E:l (1 - (% - Tl(gT'g_'f)) to find the

feasible derivatives. Since the expression & = [];_, ( - % - Tl(9T‘9_'f )

which makes it difficult to differentiate directly. Taking the derivative of a product involves applying
the product rule multiple times, which becomes impractical as the number of terms increases. Instead,
we can use logarithms to simplify the expression into a sum, which is easier to handle analytically.
This approach allows us to find an analytic approximation for @, and subsequently for dx, /dz.

) represents a product of terms,

115732 https://doi.org/10.52202/079017-3675



Proof. The logarithm of the product in Eq. [T9 reads:

t .
_ 0.1 19.9 -i
log(a,) = ;10g (l - T - m)

Given the small terms %! and Tl(ng 1j> We can consider using a first-order Taylor expansion for the
logarithm around 1. The Taylor expansion of log(1 — x) around x = 0 is log(1 — x) ~ —x for small x.
Substituting, we get:
1 .
0.1 19.9 - i
log(@;) ~ - — t
og(d) 21] ( T T 1))

t(t+1)

Plugging }/_, i = into the expression, we get:

t t .
_ 0.1 1990 01 199  1(t+1
log(@) ~ = ) == = ) mr— = = - D)

LT AT(T-1) T(T-1) 2
et 0.1 19.9¢(t+1)
(@) —.T - m
We have:
F= _% N 2T(179"'2 iD= _(% - 129.T9((T2r_+1;)

da
Plug @ = e/ into the chain rule of % and substituting f(¢) and f’(¢), we have:

dar _d ( rw)) 2 1. g
ar dt( ) £

_ 0.1+ 199t (t+1) 0.1 1992r+1)
s (_T_ (T -1) )'(_7_ (T 1) )

da d
Substituting % back into the expression for % in Eq.

£(0.1749.951+9.85) _ £(0.1749.95¢+0.85)
—xoV1l—e

_ 1(0.17+9.95¢+9.85)
(Ee O TT-h T(T-D \/e T(TTT) )(0.1T+ 19.97 +9.85)
dx;

= (22)
dt _ £(0.1T+9.95149.85)

2T\/1 —e -0 (T-1)
So, we have:

dx; &€(0.17 +9. 85)

When =0, — =— =&
en arl_, TT-1) & - sign(e).
where o denotes an unspecified directed infinity in the complex plane.
O

B.2.2 Cosine Schedule

Proof. Given the expression:
X; = \/C_tho + \/1 — C_ltf,

where:

t/T+s n
2

2
o (42

cos? (15 - 5)
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By differentiating @;, we have:

t/T+s . t/T+s 2 (.
ag, (2cos(LEE - 5) (~sin (H - 3)) - sy ) cos? (5 - 5)

@ cos* (2 - )

Simplifying the expression:

t/T+s s [ /T+s
da, 2COS( T %) (_ Sm( T+s %)) ’ 2T(71r+s)

dt - COS2 (L . E)

d d
Substituting % back into the expression for % in Eq.

dx, 1( 1 X 1 7 cos t/lT+s n sin t/T+s n T 1
a " 2\va T Vica, I+s 2 T+s  2))2T(1+s) cos? (= - %)

I+s 2
(23)
Considering the special cases:
e When ¢ = 0, we have:
dxo Lol 0.50x0) tan (ﬂ_2(1s+s))
2 1.0(0-€-0. S S
dr €T T T )
e When ¢t =T, we have:
dXT _
de
O

B.2.3 Sigmoid Schedule

Proof. Given definition of x;:
X; = \/C_VIXO + \/1 - C_l'tft

To express the coefficient of € in the derivative of x, with respect to ¢, we start with the expression:
X; = a(t) - €+ b(t) - X,

where € represents the noise, and X is the original image. Given that € and X, are constants with
respect to ¢, the differentiation yields:

d d d
ax, =€ aa(t) +Xp - ab(t). (24)

Recall the definition of @; in sigmoid schedule in Eq. we put it in the expression of a(t), then the
coefficient of € in Eq.[24]can be expressed as:

-1

1 1 2

—s—t(e— S -5 —s
(e _ s)e N (e S) 1_ l+e c+t(7e_ s) 1+er(eT s)

27 11
lrer e

(e—s—t(e—s) + 1)2

d
ad(l‘) =

When ¢ — 0, we have the derivative diverges to infinity:

. d
iy o) =
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B.3 Derivatives of the Logistic Schedule

Proof. The @, given by the Logistic Schedule is:

1
- 1 4+ e k(-10)

ay

By differentiating @,, we have:

da, d 1 ke~k(t=10)
( 1 + e~k(t=00) ) - (14 e-kr-10))?

dr  dt

da d
Substituting % back into the expression for % in Eq.

dx, 1( 1 1 ) ke=k(=10)
_— = — | —Xxp — el -
a 2\Va D VT=@ ) (14 ekimw)?

Substitute @, back into the expression:

dditt _ ke—k(]:(—to)) i X0 B € 25)
—k(t—t 1 1
2004 e N e 1 e
ke Kk(1—t0) —k(t-19)
= e—2 XoV1 + ek(t=10) — ¢ < (26)
2 (1 + e~k(1=10)) 1 + ek(t=10)
When ¢t — 0:
1 05 ket
dx; B 0.5¢k (ekt0+1.0) et O.Skxoektﬂ
ar - kr - 0.5
dt =0 ek +1.0 (10_ ekrol-‘-lo) (6kt0+1.0)2
Substitute the setting k = 0.015, #9 = int(0.37) and T = 100 into the expression, we have:
d
el 1.486e 73 — 1.318¢ 3%,
t—0
]

C Related Works

Text-guided Image Editing. Text-guided image editing significantly enhances the controllability
and accessibility of visual manipulation by following human commands. With the advancement of
large-scale training, diffusion models [49} 52} 50] have shown remarkable capabilities in transforming
images based on human-given instructions [[13}162} [70]. Some approaches train end-to-end models for
image editing [5} 28], while others propose training-free methods that merge information from source
and target images using masks for controllability [39,[1]]. A breakthrough by |Hertz et al.|leveraged
the attention maps within the UNet to eliminate the need for manual masks, achieving promising
results. This insight has been adopted and improved upon across multiple tasks by several works
[59, 15116} [15L [73]. However, most current image editing approaches still rely on predefined noise
schedules without evaluating their effectiveness. In this paper, we propose a newly designed noise
schedule for image editing that provides high content preservation and enhanced editability.

Inversion-based Image Editing. Editing real images requires first inverting the image back to the
latent space of the diffusion model due to the lack of a native latent space for these real images [46,
531165, [74]], a process called image inversion. To address this, DDIM [53]] introduced a deterministic
sampling process for diffusion, allowing the inversion of the sampling process to recover the latent
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noise. However, the invertible properties of DDIM rely on its linearization assumption, which
introduces deviations that drive the inverted latent away from its true distribution. As the Markov
properties of the diffusion process come into play, these deviations gradually enlarge, resulting
in suboptimal inverted latents that degrade reconstruction and editing quality. Recently, several
inversion-based methods have been proposed to mitigate this issue [41} 160, 140} 25]]. These methods
attempt to correct errors on the reconstruction path to the desired DDIM trajectory, ensuring that the
original content in the source image is highly preserved and can be injected into the editing process
for better content preservation. However, these methods still rely on the accuracy of DDIM inversion.
This brings us to the root of the issue: correcting the DDIM errors themselves.

Noise Schedule Adjustments. Previous work on noise scheduling focuses on training diffusion
models from scratch to improve image quality or optimize the variational lower bound [29} 23| 261 |14}
20, 134]]. Hoogeboom et al.|propose noise schedule adjustments and other strategies to effectively train
standard denoising diffusion models on high-resolution images without additional sampling modifiers.
Lin et al.|reveal that common diffusion noise schedules fail to enforce zero terminal SNR, causing
discrepancies between training and inference. However, none focus on designing an off-the-shelf
noise schedule for image editing—a downstream task that does not require training from scratch and
leverages existing models for sampling. This highlights the need for a simple but effective noise
schedule tailored for downstream tasks like image editing.

D Experimental Settings

D.1 Introduction of Editing Types

Task Name | Source Prompt | Target Prompt
Attributes Content | aclose up of a cat with yellow eyes | a close up of a cat with yellow eyes
with its mouth open
Attributes Color a smiling woman with brown eyes | a smiling woman with blue eyes
Attributes Material | a tiger is sitting in the grass a silver tiger sculpture is sitting in
the grass
Object Switch bread on a table with tomatoes and | meat on a table with tomatoes and
a napkin a napkin
Object Addition a close up of a dog aclose up of a dog with sunglasses
Non-Rigid Editing a tiger walking across a field in the | a tiger standing still on a field in
wild the wild
Scene Transferring | a bench chair in front of moun- | abench chair in front of the sea
tains
Style Transferring a man riding a skateboard on a | awatercolor painting of a man rid-
ramp ing a skateboard on a ramp

Table 5: Editing tasks with example source and target prompts. The change parts are noted in red.

We conducts eight editing tasks based on the real images to verify the effectiveness and versatility,
along with the corresponding challenges for each task (Table [3):

1. Attributes Content Editing (Fig.[13): Modifies specific attributes, like changing a cat’s
expression. The challenge is ensuring high fidelity and preserving the original content
without artifacts.

2. Attributes Color Editing (Fig.[I4): Alters color attributes, like changing a bird’s color or
eye color. The challenge is maintaining natural and coherent lighting and shading.

3. Attributes Material Editing (Fig.[I5): Changes material properties, like transforming a
tiger into a silver sculpture. The challenge is accurately rendering new materials while
preserving shape and avoiding unrealistic artifacts.

4. Object Switch (Fig.[16): Switches objects, like replacing bread with meat or transforming a
fox into a horse. The challenge is maintaining scene composition and seamlessly integrating
new objects.
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5. Object Addition (Fig.[I7): Adds new objects, like sunglasses to a dog or more strawberries
in a bowl. The challenge is naturally integrating new objects, ensuring consistent lighting,
shadows, and perspective.

6. Non-Rigid Editing (Fig. [I8): Makes non-rigid modifications, like changing the pose of
a tiger. The challenge is preserving anatomical correctness and natural appearance while
making pose changes.

7. Scene Transferring (Fig.[19): Transfers scene context, like changing the background from
mountains to the sea. The challenge is blending new backgrounds seamlessly with the
foreground, maintaining consistent lighting, shadows, and color tones.

8. Style Transferring (Fig.[20): Transfers artistic style, like converting a photo into a water-
color painting. The challenge is preserving essential details and content while accurately
applying the new artistic style.

D.2 Implementation Details

All primary experiments are conducted using Stable Diffusion v1.§°| with an image size of 512x512x3
and a latent space of 64x64x4. For ablation studies (Section |5.3.2)), SD V2.1 and SDX are
employed. Experiments run on a single Nvidia A100 GPU with 100 timesteps. The inversion
(forward) guidance scale is set to 3.5, and the generation (reverse) guidance scale is set to 7.5. For
the logistic schedule, k& is set to 0.015, and 7y is set to int(0.37'), where T is the number of timesteps.
Default hyperparameter settings are used unless otherwise specified. For each incorporated method,
default hyperparameters are as follows:

e Edit Friendly DDPM [21]]: Tiip = 36, starting generation from timestep T — Tip.

* StyleDiffusion [63]: Uses SD v1.5 with 1000 inference timesteps and Tians = 301 for style
transfer.

* MasaCtrl [6]: Starts mutual self-attention control at step S = 4 and layer L = 10.

* Pix2Pix Zero [45]]: Applies noise regularization for 5 iterations at each timestep with a
weight A of 20.

* Null-Text Inversion [41]: 500 iterations for null-text optimization, with early stopping at
e=1le>.

* Negative Prompt Inversion [40]: Uses early stopping with a threshold increasing linearly
from le~> by a factor of 2¢~> through the sampling steps.

These settings ensure a consistent evaluation framework across different experiments and methods.

D.3 Evaluation Metrics

In this work, seven metrics are employed to evaluate the effectiveness of the Logistic Schedule,
including three aspects introduced below.

Structure Distance: Structure Distance: To evaluate the structure distance between the source
and edited images, we leverage DINO-1 El, which was proposed by DreamBooth [51]] to emphasize
unique properties of identities. For DINO-I, we calculate the cosine similarity between the ViT-B/16
DINO [7] embeddings of source and generated images. Additionally, we consider fine-tuning and
editing time as metrics to evaluate the efficiency of the editing process. Since DINO is trained in a
self-supervised manner, it highlights general features rather than category-based distinctions, making
it suitable for capturing the structural integrity of images.

Background Preservation: To measure how the background is preserved during editing, we apply
PSNR, LPIPS [24.,[12], MSE, and SSIM [64] in the area outside of the annotated masks. These metrics
serve different roles in evaluating image quality and preservation:

Zhttps://huggingface.co/runvayml/stable-diffusion-vi-5
3https://huggingface.co/stabilityai/stable-diffusion-2-1
4https://huggingface.co/stabilityai/stable-diffusion-x1-base-1.0
Shttps://huggingface.co/facebook/dino-vitb8
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* PSNR (Peak Signal-to-Noise Ratio) measures the ratio between the maximum possible power
of a signal and the power of corrupting noise, reflecting the overall quality of the image:

MAX?

MSE

where MAX is the maximum possible pixel value of the image (e.g., 255 for an 8-bit image),
and MSE is the Mean Squared Error.

* LPIPS (Learned Perceptual Image Patch Similarity) evaluates perceptual similarity by
comparing the differences in deep feature space using a pretrained deep network (such as
VGG [54]), capturing human visual perception better than pixel-wise metrics, by calculating
the Euclidean distance between the feature representations of two images:

LPIPS = " wi [l41(x) = $: ()13
l

where ¢; denotes the feature map at layer / of the pretrained network, and w; are the weights
for each layer.

* MSE (Mean Squared Error) calculates the average squared difference between original and
edited image pixels, indicating the overall fidelity and error magnitude:

N
MSE = % ;(zl [i] - L[>

where N is the number of pixels in the image, /; and I, are the original and edited images
respectively, and i indexes the pixels.

* SSIM (Structural Similarity Index Measure) assesses image similarity by comparing lumi-
nance, contrast, and structure, providing a holistic view of image quality. The SSIM index
between two images x and y is calculated as:

(2/~lx/~‘y + Cl)(zo'xy +Cy)

SSIM(x, y) = s
o)) = 2 (v o+ )

where p, and uy are the average pixel values of x and y, o2 and o2 are the variances of x
and y, 0y is the covariance of x and y, and C; and C; are constants to stabilize the division
when the denominator is close to zero.

Incorporating these metrics together can demonstrate background preservation more robustly since
multiple metrics offer a comprehensive evaluation from different perspectives.

Text-Image Consistency: CLIP Similarity [48]] evaluates the text-image consistency between the
edited images and the corresponding target editing text prompts. CLIP-I and CLIP-T assess visual
similarity and text-image alignment, respectively. For CLIP-1, we calculate the CLIP visual similarity
between the source and generated images. For CLIP-T, we calculate the CLIP text-image similarity
between the generated images and the given text prompts. These metrics help ensure that the edited
images accurately reflect the intended modifications described in the text prompts.

E Experimental Results

E.1 Quantitative Comparison Across Editing Types

We provide the performance of Logistic Schedule following the editing methods configuration in
Section [5]in Table[6] The results vary across different editing types. Attributes content editing shows
high PSNR and CLIP visual similarity. We attribute this to the relatively straightforward nature
of modifying content attributes, which allows for high fidelity and coherence in the edited images
compared to more complex edits. In the more challenging editing types, such as object addition (5th
row) and non-rigid editing (e.g., pose, motion, 6th row), the model shows minimal changes, resulting
in relatively better evaluation results in essential content preservation metrics. The limited alterations
required in these tasks help maintain the original structure and details, leading to higher PSNR and
SSIM values. Object switch shows high CLIP visual similarity. This can be attributed to the clear
and distinct nature of object switching, which allows for more precise visual matching with the target
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Figure 8: Impact of different combinations of inversion and reverse guidance scales on various
performance metrics. Results are averaged on Attributes Editing tasks using Prompt-to-Prompt as
the editing method [16]], highlighting optimal scale settings for balanced performance across tasks.

Table 6: Performance of Logistic Schedule on different editing tasks in have ten independent
runs with random seeds. Bold values indicate the best results, while underlined values denote the
second-best results. ‘Attr.’, ‘Obj.” and ‘Trans.” denote ‘Attributes’, ‘Objects’, and ‘Transferring’,
respectively.

Structure Background Preservation CLIP Similarity (%)
Dist . ;g3 || PSNRT LPIPS , ;o3 | MSE ;-4 | SSIM (-2 T\ Visual T Textual T

Attr. Content | 15.74.09 [26.58.13 70.69.7 51.0441 7 84.48.30 [89.30.3, 22.05.;¢
Attr. Color | 16.78.14 [23.81.12 89.65.35 5310411 81.04.47 |81.26423 1941419
Attr. Material| 18.67.0g8 [25.73.09 74.17.:34 41.19.1 ¢ 81.61.,57 |78.06433 24.034; 5
Obj. Switch | 22.40.;g (22911, 90.75i59 82.05+1 4 7932146 |86.72.33 22.65.19
Obj. Add 1111, (254015 63.05:39 40.52,1 o 8532.46 [76.33.33 23.09.09
Non-rigid 1587417 |24.66.13 75.18.05 59.22.17 81.11.48 |81.2643¢ 22.30.11
Scene Trans. 17.63i1.4 24.7911.3 55.5712.3 48.51i1.7 85'95:6.2 81.63i1_6 22'1111.0
Style Trans. | 19.66.;5 |25.50.18 60.24.47 49.794+13 85.60.60 [80.2445¢6 25.73.11

Edit Task

object compared to other editing tasks. Style transferring (8th row) shows the highest CLIP text
similarity. This is likely because the task involves applying well-defined artistic styles that closely
align with the textual descriptions, resulting in edits that match the intended style effectively. Scene
and style transferring (7th and 8th row) show high LPIPS and SSIM. We attribute this to the nature
of the task, which involves changing backgrounds or styles while keeping the main subjects intact.
This process maintains the overall scene coherence and structure consistency, resulting in enhanced
perceptual quality and structural similarity.

E.2 Qualitative Comparison Across Editing Types

The logistic noise schedule consistently outperforms linear and cosine schedules across various
editing tasks. It excels in preserving the original image content while making specified changes
without artifacts (Fig. [[3), maintaining natural and coherent lighting in color edits (Fig.[T4), and
accurately rendering new material properties (Fig.[I3). For object switching and addition, it ensures
seamless integration with consistent lighting and spatial relationships (Figs. [T6] [[7). In non-rigid
editing, it preserves anatomical correctness and smooth transitions (Fig. [18)). It also blends new
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backgrounds naturally in scene transfers (Fig.[T9) and maintains essential details while applying new
artistic styles (Fig. 20).

E.3 Broader Application: Training-Based Methods

While the Logistic Schedule has shown broad applicability in various image editing tasks, we further
explore its use in training-based methods, specifically in Text-to-Image synthesis. For this, we
conducted experiments by fine-tuning the UNet using DreamBooth [51]], leveraging approximately
100 images for each configuration.

Table 7: Performance comparison of DreamBooth fine-tuning using different noise schedules on the
SD-1.5 model. The best results are in bold.

Setting DINO (1) CLIP-I(T) CLIP-T(T) PSNR(T) PRES(T)
Real Images 0.823 0.902 N/A 26.86 0.653
DreamBooth (SD-1.5) + Linear 0.726 0.823 0.268 24.41 0.567
DreamBooth (SD-1.5) + Cosine 0.745 0.857 0.264 24.75 0.554
DreamBooth (SD-1.5) + Logistic 0.761 0.877 0.293 25.62 0.580

The related qualitative comparisons are shown in Fig.[9] These results demonstrate that training
DreamBooth with the Logistic Schedule improves performance across key metrics such as DINO and
CLIP-I similarity, as well as PSNR and PRES, outperforming both linear and cosine schedules.

Instruction Prompt
[V1in green, wavy long hair,
olive-toned clear skin, red
business suit with blue tie
and glasses, standing in
front of green and blue

Fine-tune Samples Instruction Prompt Fine-tune Samples

LS OB Black-haired [V], featuring
diamond necklace and small
earrings, wearing a tiara.

The image is in black and
white, set against a black and
white backdrop of chandeliers.

Linear

Cosine

2
ol
1]
o
o
o

Figure 9: Qualitative comparisons of fine-tuning DreamBooth using different noise schedules (Linear,
Cosine, and Logistic). The top column presents the fine-tune samples, and the instruction prompts,
and the below column displays the corresponding fine-tuned outputs. The Logistic Schedule produces
superior outputs with improved fidelity and alignment to the prompts.

E.4 Comparison With Other Noise Schedulers

We conducted experiments comparing our Logistic Schedule with other schedules under the DDIM
paradigm, such as exponential, sigmoid, hyperbolic, and geometric schedules. Table[§]displays the
quantitative results. The best-performing method is indicated in bold, the worst method is marked in
purple, and the second-best method is underlined.

The results demonstrate that our Logistic Schedule achieves competitive performance across various
metrics. Notably, it offers significant improvements in content preservation and edit fidelity compared
to other schedules. As shown in Fig.[T0] the Logistic Schedule preserves the visual characteristics
of the source image more faithfully during reconstruction and enables more precise control during
editing.
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Table 8: Comparison of different noise schedules. Metrics include Structure Distance (x1073), PSNR
(higher is better), LPIPS (x1 073, lower is better), MSE (x10~%, lower is better), SSIM (x10~2, higher
is better), and CLIP Similarity for both visual and textual content.

Schedule Dist| PSNRT LPIPS| MSE| SSIM7T VisualT Textual 7

Linear 35.66 20.70 134.88 113.61 77.60 79.82 23.06
Cosine 26.57 22.38 110.52 80.01 80.15 81.35 22.39
Exponential  16.22 25.20 80.45 47.11 82.23 82.78 19.50
Hyperbolic ~ 36.55 20.95 140.55 119.78 79.89 79.20 23.20
Geometric 18.12 24.10 92.45 62.13 82.05 82.20 20.45
Sigmoid 27.80 22.55 115.32 85.60 80.22 81.50 22.55

rbolic

¥

geometric  sigmoid

Lge Y

logistic

Logistic 17.37 24.78 81.80 49.47 82.97 82.44 23.62
Source slinear cosine exgonential hiE

a aigital art worf:an with curly hair — a blgltal art woman with stra-lgnt hair

slinear exionential hipgerbolic Tometric siimoid
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Edit
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]
Y- o
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: y
~ w\

: p S 3 vy
' ¥4 { > ( i ( s

Edit

a woman with an arrow in her hand —. .
a woman with an arrow in her hand with fire in the background

Figure 10: Qualitative comparison between different noise schedules for both reconstruction and
editing tasks.

E.5 Reconstruction Ability of Different Noise Schedule

Table 9: Comparison of reconstruction quality using different noise schedules for DDIM inversion
and Direct Inversion, showing the superior performance of the Logistic Schedule.

Inversion Schedule Structure Background Preservation
Dist x10-3 l PSNRT LPIPS x10-3 l, MSE x10-4 l, SSIM x10-2 T
Linear 7.96 27.46 58.49 30.08 84.54
DDIM Inversion| Cosine 7.43 27.36 61.22 28.49 82.66
Logistic 7.04 25.78 71.87 37.59 80.07
Linear 2.78 29.58 36.36 20.23 85.28
Direct Inversion| Cosine 2.75 30.00 33.80 21.70 85.90
Logistic 2.54 31.30 31.16 12.27 88.94

To demonstrate the ability of the Logistic Schedule to better align inversion by eliminating the
singularity at the start point, we evaluate the reconstruction results of DDIM Inversion [55]] and
Direct Inversion [23]] using scaled linear, cosine, and our logistic schedule. During reconstruction, the
condition is the source prompt, which is also applied as a condition during inversion. The comparison
of reconstruction quality is shown in Table[9]
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Figure 11: Qualitative comparison of varying guidance scales during the inversion (forward)
and denoising (reversing) processes of DDIM. The guidance scales for inversion are varied across
the columns (1 to 10), and the guidance scales for denoising are varied across the rows (3 to 25).
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E.6 Effects of Guidance Scale

We investigate the impact of the guidance scale on the inversion (forward) and generation (reserve)
processes of DDIM with the Logistic Schedule, consequently affecting the editing results. We illustrate
the impact of varying guidance scales during the inversion and denoising processes of DDIM on
performance metrics in Fig[8] with an example of how the edited images are affected shown in Fig[TT]
When keeping the inverse guidance scale constant, we observed that as the reverse guidance scales
increased gradually, background preservation initially decreased. The inflection point occurred when
the inverse guidance scale equaled the forward guidance scale. In contrast, CLIP similarity showed a
consistently increasing trend until the reverse guidance scale exceeded 15. The quantitative heatmaps
and qualitative results highlight a noticeable trade-off between essential content preservation and
edit fidelity. Optimal incorporation of both scales ensures a balance between structural preservation,
perceptual quality, and text-image consistency, with a combination of 5.0 for inversion and 7.5 for
reverse generally providing the best performance across most metrics. This trade-off arises because
current editing methods struggle to differentiate between regions needing modification and those that
do not, leading to substantial alterations of the source image and conflicting with content preservation
objectives.

E.7 Effects of Input Scale

Chen et al.| proposed to modify noise scheduling by scaling the input Xy by a constant factor b via:
X, = \/c'x_tbxo ++/1 - ae.

140
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Text Similarity (CLIP-T) Text Similarity (CLIP-T) Text Similarity (CLIP-T)
Figure 12: Impact of input scale on content preservation and edit fidelity. The optimal input scale
balances the preservation of the original image structure (low structure distance, high SSIM) and the
quality of the edits (high CLIP-T and CLIP-I).

As the scaling factor b decreases, the original image’s strength lessens and noise levels grow [9]].
As previous image editing works have not extensively investigated the effects of input scale, we
investigate the effects of input scale in image editing in this work. We change the input scale from 0.5
to 1.4 with a step size of 0.05, and illustrate the effects of the input scale on both content preservation
and edit fidelity in Fig.[T2] As observed, the input scale significantly impacts the balance between
content preservation and edit fidelity. Higher input scales (closer to 1.4) better preserve the original
image structure, as shown by lower structure distances and higher SSIM values but reduce edit
fidelity (lower CLIP-T and CLIP-I scores). Conversely, lower input scales (closer to 0.5) enhance
edit fidelity but degrade content preservation. The optimal input scale, found to be 0.8-0.95, achieves
a balance between these objectives. This is because slightly higher noise levels improve editability
while maintaining acceptable content preservation, providing a satisfactory trade-off in image editing.

Table 10: Performance comparison of input scale normalization in object switch task using
Zero-shot Pix2Pix, showing no improvement in content preservation or edit fidelity.

Input Scale Structure Background Preservation CLIP Similarity (%)
p Dist . 1o-3 ||PSNR T LPIPS ;-3 | MSE , ;(-4 | SSIM , ;-2 T\VisualT Textual T
w/o Normalizing b 22.40 2291 90.75 82.05 79.32 86.72 22.65
w. Normalizing b 24.46 22.06 108.43 83.47 79.16 86.24 22.48

A strategy to improve training a diffusion model from scratch is to normalize X, by its variance to
ensure it has unit variance before feeding it to the denoising network. This prevents performance
issues caused by variance changes in X, when X( has the same mean and variance as € [26]. However,
in our image editing work using off-the-shelf diffusion models, we find that normalization does not
improve content preservation or edit fidelity, as shown in Table
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Figure 13: Comparison of linear, cosine, and logistic schedules in editing attributes content. The
logistic schedule shows superior fidelity in preserving the original image content while accurately
making the specified changes, without introducing artifacts or inconsistencies.

F Limitations and Future Works

This work endeavors to enhance inversion-based editing methods, focusing on improving noise
schedule design during the inversion process. Even though this work reveals that modifying the noise
schedule using off-the-shelf diffusion models can lead to editing improvements, there is still a lack
of research on how other designs of noise schedules can lead to different effects. For example, is
it possible to design dynamic adjustments of the noise schedule at each time step to achieve better
results? Furthermore, the editing capabilities of the Logistic Schedule are inherently constrained
by the limitations of inversion-based methods. For example, MasaCtrl [6] editing requires manual
determination of timesteps and layers for attention control, limiting its ability to automatically adapt
to diverse real-world objects with varying attributes.

Even though extensive experiments prove the effectiveness of the Logistic Schedule, it is worth
diving deeper into the schedule’s performance in the generation task. Due to computational resource
constraints, we have not conducted training on the diffusion model from scratch to validate the full
potential of the Logistic Schedule. Future work will include training diffusion models using the
Logistic Schedule to validate its generation ability.

Another potential future research direction lies in exploring whether a steadier decrease in logSNR
during perturbation, as described in Section[d] enhances editing quality. Additional experiments on
both generation and editing are required to confirm if this trend extends to the generation process as
well.
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Figure 14: Comparison of linear, cosine, and logistic schedules in editing color attributes. The
logistic schedule excels in maintaining natural and coherent lighting and shading, resulting in more
realistic and seamless color changes without introducing visual inconsistencies.
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Figure 15: Comparison of linear, cosine, and logistic schedules in changing material properties.
The logistic schedule excels in accurately rendering new material properties, such as reflections and
textures while preserving the shape and form of the original objects, avoiding unrealistic artifacts,
and ensuring a natural appearance.

https://doi.org/10.52202/079017-3675 115745



Linear Cosine  Logistic Linear Cosine  Logistic
Schedule Schedule Schedule Schedule Schedule Schedule

" . Ei! ) . — -
( P-4 A r S

‘ ‘ L)

- - -

a tiger walking on the snow = a tiger sitting on a rock at sunset =
a wolf walking on the snow a lion sitting on a rock at sunset

i

a fox walks along a sidewalk =
a horse walks along a sidewalk

Real Image Real Image

A 4 ¢4l \

¥ e VA it

a close up of a cat with yellow eyes = a close up of a tiger with its mouth open =
a close up of a fox with yellow eyes a close up of a lion with its mouth open

E |
8 Y
% |

a zebra standing on a dirt field = a parking meter in the middle of a field =
a leopard standing on a dirt field a stop sign in the middle of a field

y . q .
g "A ~‘J '\Q,

a cow grazing in a field = a man riding a wave on a surfboard =

a horse grazing in a field a robot riding a wave on a surfboard

S

4

Figure 16: Comparison of linear, cosine, and logistic schedules in switching objects. The logistic
schedule excels in maintaining the overall composition and context of the scene while seamlessly
integrating the new objects with consistent lighting, shadows, and spatial relationships, ensuring a
natural and coherent appearance.

G Broader Impacts

Our work introduces a novel editing technique for manipulating real images using state-of-the-art
text-to-image diffusion models. While this technology could potentially be exploited by malicious
parties to create fake content and spread disinformation, this is a common issue across all image
editing techniques. Significant progress is already being made in identifying and preventing such
malicious editing. Our research contributes to this effort by providing a detailed analysis of the
inversion and editing processes in text-to-image diffusion models, thereby aiding in the development
of more robust detection and prevention methods.

H Ethics Statement

Generative models for synthesizing images carry several ethical concerns, particularly when used by
bad actors to generate disinformation or potentially displace creative workers through automation.
These models, trained on large amounts of user data from the internet without explicit consent, may
generate augmentations that resemble or copy such data. This issue is not unique to our work but
inherent to large-scale models like Stable Diffusion, which we employ in our data augmentation
strategy. To mitigate this, we allow for the deletion of harmful or copyrighted concepts from the
model’s weights before augmentation, ensuring such material cannot be copied during the process.
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Figure 17: Comparison of linear, cosine, and logistic schedules in adding objects. The logistic
schedule excels in naturally integrating the new objects into the scene, ensuring consistent lighting,
shadows, and perspective with the existing elements, resulting in a realistic and seamless appearance.
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Figure 18: Comparison of linear, cosine, and logistic schedules in making non-rigid modifications.
The logistic schedule excels in preserving anatomical correctness and natural appearance while
making significant pose changes, ensuring smooth transitions and avoiding unnatural distortions.
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Figure 19: Comparison of linear, cosine, and logistic schedules in transferring scenes. The logistic
schedule excels in seamlessly blending the new background with the foreground objects, maintaining
consistent lighting, shadows, and color tones, avoiding visible seams, and ensuring a natural and
coherent appearance.
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Figure 20: Comparison of linear, cosine, and logistic schedules in transferring styles. The logistic
schedule excels in preserving essential details and content of the original image while accurately
applying the new artistic style, ensuring consistency across the entire image and avoiding artifacts,
resulting in a more natural and coherent style transfer.
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Despite these concerns, these tools may also foster growth and improve accessibility in the creative
industry.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction (Section [I)) accurately
reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Appendix[F
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Concerning Proposition[3.1] Appendix[B|provides its corresponding proofs,
with a short proof sketch to provide intuition.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Refer to Appendix[D.1|and [D.2]for implementation details, the provided code
in the supplementary materials ensures the reproducibility as well.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Refer to the provided code in the supplementary materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Table 5] specifies all the tasks included in this work. Appendix[D.2]provides the
employed hyperparameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Appendix[E.T| provides the statistical significance of the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix[D.2] provide sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The authors have reviewed and understand the NeurIPS Code of Ethics, and
confirm that their research conforms to it in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Potential societal impacts of the work are discussed in Appendix|G]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers of assets, and the corresponding versions are provided in
Section 5] References and Appendix[D.2]

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will document the assets well when we officially release our code.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not describe potential risks incurred by study participants.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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