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Abstract

Recent insights have revealed that rate-coding is a primary form of information
representation captured by surrogate-gradient-based Backpropagation Through
Time (BPTT) in training deep Spiking Neural Networks (SNNs). Motivated by
these findings, we propose rate-based backpropagation, a training strategy specif-
ically designed to exploit rate-based representations to reduce the complexity of
BPTT. Our method minimizes reliance on detailed temporal derivatives by fo-
cusing on averaged dynamics, streamlining the computational graph to reduce
memory and computational demands of SNNs training. We substantiate the ra-
tionality of the gradient approximation between BPTT and the proposed method
through both theoretical analysis and empirical observations. Comprehensive
experiments on CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-DVS validate
that our method achieves comparable performance to BPTT counterparts, and
surpasses state-of-the-art efficient training techniques. By leveraging the inherent
benefits of rate-coding, this work sets the stage for more scalable and efficient
SNNs training within resource-constrained environments. Our code is available at
https://github.com/Tab-ct/rate-based-backpropagation.

1 Introduction

Spiking Neural Networks (SNNs) are conceptualized as biologically inspired neural systems, incor-
porating spiking neurons that closely mimic biological neural dynamics [46, 56]. Unlike Artificial
Neural Networks (ANNs) based on continuous data representations, SNNs adopt spike-coding strate-
gies to facilitate data transmission through discrete binary spike trains [52]. The intrinsic binary
mechanism eliminates the need for the extensive multiply-accumulate operations typically required for
synaptic connectivity [56], thereby enhancing energy efficiency and inference speed when deployed
on neuromorphic hardware systems [1, 10, 54].

The mainstream training methods for SNNs primarily utilize Backpropagation Through Time (BPTT)
with surrogate gradients to overcome non-differentiable spike events, allowing SNNs to achieve
comparable results with ANNs counterparts [51, 62, 74]. However, the direct training method
necessitates the storage of all temporal activations for backward propagation across the network’s
depth and duration, leading to high training costs in terms of both computational time and memory
demands [43, 86, 35, 77, 76, 47, 13]. To alleviate memory burdens, online training techniques have
been developed that partially decouple the time dependencies of backward computations in BPTT
[2, 4, 76, 48, 89]. However, online methods still require iterative computations based on the time
dimension, increasing training time complexity as the number of timesteps grows.
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Observed across most biological sensory systems, rate coding is a phenomenon where information
is encoded through the rate of neuronal spikes, regardless of precise spike timing [52, 64, 23].
Recent explorations into spike representation have demonstrated the significant role of rate coding
in enhancing the robustness of SNNs, further confirming its dominant position as the encoding
representation in networks [38, 60, 18]. A significant observation has shown that BPTT-trained
SNNs on static benchmark exhibit spike representation primarily following the rate-coding manner
by highlighting strong similarities in representation between SNNs and their ANN counterparts [44].
A similar conclusion resonated with findings in fields of adversarial attacks, where recent methods
significantly benefit from rate-based representations to enhance attack effectiveness [6, 29, 50].

Motivated by rate coding’s status as the most effective and predominant form of representation
in SNNs, we posit that targeted training based on rate-based information could offer a high cost-
effectiveness ratio. We propose to decouple BPTT based on rate-coding approximation and simplify
rate-based derivative computations to a single spatial backpropagation. We further provide theoretical
analysis and empirical evidence to reveal the rationality of the gradient approximation between
BPTT and the proposed method. Experimental results demonstrate that the proposed method
achieves performance comparable to BPTT counterparts while significantly reducing memory and
computational demands. Comparison results also indicate that the proposed method outperforms
state-of-the-art efficient training methods on benchmarks. We expect our work to facilitate more
efficient and scalable training for SNNs in resource-constrained environments. Our main contributions
are as follows:

• We propose rate-based backpropagation that leverages rate-coded information for efficient
training of deep SNNs. This method simplifies the computational graph by decoupling and
compressing temporal dependencies, reducing training time and memory requirements.

• Alongside the proposed method, we conduct theoretical analysis and empirical validation
to demonstrate its effectiveness in approximating the gradient computations performed by
BPTT-based SNNs training.

• We conduct experiments on CIFAR-10, CIFAR-100, CIFAR10-DVS, and ImageNet, demon-
strating that our proposed method matches the comparable performance of the BPTT
counterpart and achieves state-of-the-art results among efficient SNN training methods.

2 Related Work
Training Methods for Deep SNNs. Deep SNNs are trained primarily through two principal strategies:
(1) conversion methods that establish links between SNNs and ANNs through equivalent closed-form
mappings, and (2) direct training from scratch utilizing Backpropagation Through Time (BPTT).
Conversion methods develop closed-form formulations for spike representations [39, 67, 72, 88,
73, 47], enabling seamless transitions of pre-trained ANNs into SNNs and facilitating comparable
performance on large-scale datasets [8, 15, 27, 59, 57, 12, 42, 16]. However, the precision of these
mappings under ultra-low latency conditions is not consistently reliable, often necessitating extensive
time steps to accumulate spikes, which may compromise performance [7, 40, 31, 28, 34]. Direct
training methods permit SNNs’ performance with extremely low time steps by employing BPTT
along with surrogate gradients to compute derivatives of discrete spiking events [51, 62, 74, 22,
81, 87, 85, 43, 66, 69, 13]. The strategy fosters innovation in SNN-specific modules, including
optimized neurons, synapses, and network architectures, thereby enhancing performance [25, 21, 20,
17, 79, 83, 24, 80, 61]. Despite the advantages of low latency, direct training imposes substantial
memory and time burdens to maintain the backward computational graph [43, 86, 35, 77, 76, 47, 13].
To mitigate training costs associated with direct methods, light training strategies have attracted
considerable attention [49, 35, 86, 55, 70]. Several studies have explored the concept of decoupling
the forward and backward passes in SNNs, which generally assumes that neuronal dynamics follow
deterministic processes and aims to establish closed-form fixed-point equivalences between spike
representations and corresponding rate-based activations [72, 73, 77, 47, 68]. Drawing on online
training techniques from recurrent neural networks, several studies have adapted the principles of
Real-time Recurrent Learning (RTRL) [71] to streamline the online training process for SNNs,
aiming to decrease memory demands while preserving biologically plausible online properties of the
networks [84, 2, 4, 82, 55, 76, 47, 89]. The online methodologies have proven effective in large-scale
tasks [76, 47, 89]. Nevertheless, the significant time costs associated with training methods continue
to challenge SNNs’ broader application.
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Figure 1: Illustration of the forward and backward procedures of different training methods.

Spike Coding in SNNs. SNNs transmit information through spike trains [52], with encoding
mechanisms classified into temporal and rate coding. Temporal coding is defined on firing times,
employed by several direct trainings [49, 75, 88] and ANN-to-SNN conversions [26, 65], is noted for
its low energy consumption due to sparse spiking. However, temporal coding schemes often require
specialized neuron configurations and are generally effective only on simpler datasets [26, 65, 88].
Conversely, rate coding is widely adopted across both conversion [12, 15, 16, 27, 36, 57, 59, 78] and
direct training approaches [73, 77, 47], consistently achieving superior performance and facilitating
low-latency operations [77, 47]. Moreover, rate coding has demonstrated significant potential in
enhancing the robustness of SNNs against adversarial attacks [38, 60, 18], with attack methods
specifically designed to exploit rate-based representations showing promise in surpassing benchmarks
for SNNs defense against attacks [6, 30, 50]. By employing representation similarity analysis to
compare BPTT-trained SNNs with their ANN counterparts, Li et al. [44] has indicated that rate
coding serves as the primary mode of information representation [44]. Inspired by previous findings,
we consider that rate-coded information represents the most effective and predominant form of
signal expression in SNNs, and the targeted training based on rate-based spike representations may
offer a high cost-effectiveness ratio. Therefore, we propose to decouple BPTT towards rate-based
backpropagation with the purpose of enhancing the efficiency of SNNs training.

3 Preliminaries
3.1 Spiking Neural Networks
Inspired by the brain’s ability to transmit information through discrete spikes, the Leaky Integrate-
and-Fire (LIF) model serves as the basic building block of SNNs due to its simplicity. For practical
implementation of SNNs based on connected spiking neurons, the dynamics of the LIF model are
typically rendered in a discrete iterative format:

ul
t = λ(ul

t−1 − Vths
l
t−1) +W lsl−1

t , slt = H(ul
t − Vth) (1)

where ul
t and slt represent the membrane potential and output spike of neurons in layer l at time t,

respectively. W l denotes the linear synaptic connections between layers l − 1 and l, and λ acts as
the decay term for the membrane potential. The Heaviside step function, H(·), determines spike
generation, ensuring slt in binary forms. Noting that H(·) is not differentiable, SNNs’ direct training
employs surrogate gradients to achieve error propagation by creating various pseudo-derivatives
[51, 74, 19], following the basic idea of Straight-Through Estimator (STE) [3].

3.2 Training SNNs with BPTT
The network outputs at each timestep t are given by ot = WLsLt , where WL denotes the classifier’s
weights. Classification is based on the average of these outputs across all timesteps, computed as
ypred = 1

T

∑T
t=1 ot. The loss function L is defined over averaged outputs and is typically formulated

as L = ℓ
(

1
T

∑T
t=1 ot,y

)
, where y represents the true labels and ℓ could be the cross-entropy

function, as noted in various studies [87, 48, 19, 69]. BPTT unfolds the iterations described in Eq.
(1), and propagates gradients back along the computational graphs across both temporal and spatial
dimensions, as illustrated in Fig. 1a. The gradients of the membrane potential u incorporate elements
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Figure 2: The implementation of rate-based backpropagation across layers. A rate-coding approxima-
tion is utilized for the forward procedure to connect average inputs with rate outputs, enabling fast
rate-based error backpropagation throughout the training process.

from both (spatial) spike generation and (temporal) potential accumulation, expressed as:
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Subsequently, the weight update for layer l is determined among all timesteps T , i.e. ∇W lL =∑T
t=1

∂L
∂ul

t

∂ul
t

∂W l =
∑T

t=1
∂L
∂ul

t
sl−1
t

⊤
, and the gradient is further propagated to previous layers through

the linear part by ∂L
∂sl−1

t

= ∂L
∂ul

t
W l⊤.

4 Rate-based Backpropagation for SNNs Training
4.1 Derivation of Rate-based Backpropagation
Incorporating rate-based representation. Under the rate coding assumption, essential information
is effectively encapsulated within the spike frequency averages. We start by defining the rate-based
representation as an approximation for the forward procedure in SNNs, as shown in Figure 2. The
average firing rate at each layer l, denoted as rl, is calculated as the expected value of the spike
outputs slt over the temporal dimension rl = E[slt] = 1

T

∑
t≤T slt.

Considering the forward propagation through linear operators with weights W l that compute the
inputs as I l

t = W lsl−1
t , instead of transmitting distinct spikes over multiple timesteps, we transform

the average rates into average inputs cl in the approximate representation:

cl = E[I l
t] = E[W lsl−1

t ] = W lE[sl−1
t ] = W lrl−1.

Supposing input representations are well captured within cl, we approximate the exact inputs with
the average inputs for all timesteps, I l

t ≈ cl, and follow the neuronal dynamics in Eq. (1) to derive
the output rates rl = E[slt]. With the rate-coding approximation in place, we can derive the gradients
with respect to the weights in the linear part based on the error propagated through the average inputs:

(
∇W lL

)
rate ≡

∂L
∂cl

∂cl

∂W l
=

∂L
∂cl

rl−1⊤ (3)

Handling temporal dependency during backward. For back-propagating the error, the linear parts
operate smoothly as ∂cl

∂rl−1 = W l⊤ . The next step is to define the correlation between the averages
of inputs and output spike rates, ∂rl

∂cl , within the neurons of layer l. Since there is no deterministic
relationship between rl and cl, we first look into the influence of separated inputs following the exact

4

115789https://doi.org/10.52202/079017-3677



gradients in Eq. (2):

∂slτ
∂I l

t

=
∂slτ
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(4)

By accumulating the intricate dynamics over time, we can derive the gradients of the overall spikes
with respect to the inputs at time t:

κκκl
t =

∑
τ

∂slτ
∂I l

t

=

(
∂slt
∂ul
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+
∑
τ>t
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(
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(5)

Here, with rate-coding approximating I l
t ≈ cl, we follow the idea of Straight-Through Estimator [3]

and define the backward gradients as ∂Il
t

∂cl = Id, with Id representing the identity matrix. Then, we
can derive the surrogate gradients of neural dynamics through the mean estimator:

(∂rl
∂cl
)

rate ≡
∑
τ

(∂(E [slt])
∂I l

τ

∂I l
τ

∂cl

)
=

1

T

∑
t

∑
τ

( ∂slt
∂I l

τ

)
= E

[
κκκl

t

]
(6)

With the compressed gradients of neuron parts, the error backpropagation of the rate-based represen-
tation is then determined, dependent only on the spatial domain:( ∂L

∂cl
)

rate =

(
∂L
∂cL

l∏
i=L−1

(
∂ci+1

∂ri
(∂ri
∂ci
)

rate

))
=

(
∂L
∂cL
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(
W i⊤E

[
κκκl

t

]))
(7)

where we define the objective L = 1
T ℓ(E[ot], y) =

1
T ℓ(c

L,y). Note that the rate-based representa-
tion, while instrumental in constructing the backward computational graph for learning, does not
necessitate actual implementation during the forward pass.

4.2 Rate-based Gradient Computation for Memory and Time Efficiency
As previously discussed, rate-based backpropagation can be executed on spatial-dimension com-
putation by decoupling BPTT. We now show how rate-based backpropagation can be efficiently
implemented within the overall learning framework. As depicted in Figure 2b, online schemes
apply eligibility traces elt locally within neurons to store historical information, effectively block-
ing backward access to past gradients. The gradient computation is optimized by compressing all
past temporal dependencies into elt. Similarly, we utilize iterative variables {gl

t}l≤L and {elt}l≤L

as the accumulated post- and pre-synaptic dependencies, synchronously recorded during the neu-
ral dynamics computations. The iteration of {elt}l≤L dynamically records the firing rates, where
elt =

1
t ((t − 1)elt−1 + slt), and it is straightforward to derive rl = elT . Considering the surrogate

gradients of neural dynamics, ∂rl

∂cl , to estimate future-dependent terms outlined in Eq. 5, we first
construct equivalent eligibility trace forms, {ρl

t}t≤T , with iterative expressions starting at ρl
1 = 1:

ρl
t = 1 + ρl

t−1

(
∂ul
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)
(8)

with the equivalence that:∑
t

κκκl
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=
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t

(
∂slt
∂ul

t

ρl
t

) (9)

By iteratively accumulating gl
t =

1
t ((t−1)gl

t−1+
∂sl

t

∂ul
t
ρt), we obtain gl

T = E[ ∂s
l
t

∂ul
t
ρl
t] = E[κκκl

t]. Now,
we have collapsed the required computation graph through the iterative calculation to complexity
O(L). The rate-based propagation is then conducted in one go, relying only on the intermediate
variables elT , gl

T , and W l, within one-time spatial-dimension backpropagation.
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4.3 Connecting Error Backward of Rate-based Backpropagation to BPTT
Having derived the fundamental form of rate-based backpropagation through the rate-encoding
approximation, we now explore potential divergences with BPTT during error propagation. Although
rate-based backpropagation is derived from the approximated forward pass, it still provides valid
gradients for the original network parameters.

The primary divergence between rate-back and BPTT in backward computation primarily arises from
the assumptions regarding the approximation of rate-based representation through mean estimators,
as outlined in Eq.(3) and Eq.(6). The rate-coding motivations establish equivalence with BPTT by
assuming temporal components are independent, which is formalized in Theorem 1.

Theorem 1. Given δ
(sl)
t = ∂L

∂sl
t

that refers to gradients computed following the chain rule of BPTT in

Eq. (2), and κl
t =

∑
τ

∂sl
t

∂Il
τ

(where E
[
κl
t

]
= E

[
κκκl

t

]
in Eq.(6-7)) , if E

[
δ
(sl)
t κl

t

]
= E

[
δ
(sl)
t

]
E
[
κl
t

]
holds for ∀l, we have E

[
δ
(sl)
t

]
=
(
∂L
∂rl

)
rate . Furthermore, given δ

(Il)
t = ∂L

∂Il
t
, if E

[
δ
(Il)
t sl−1

t

]
=

E
[
δ
(Il)
t

]
E[sl−1

t ] for ∀l, we then obtain (∇W lL)rate =
1
T (∇W lL). Here, E [xt] =

1
T

∑
t xt refers

the mean value of tensor xt over temporal dimension T .

To confirm our hypotheses, we carried out empirical experiments, the results of which are detailed in
the experimental section. Our empirical findings support the core assumptions outlined in Theorem
1, demonstrating the relative independence between δ

(sl)
t and κl

t (Figure 3a,b), as well as between

δ
(Il)
t and slt (Figure 3c). For minor discrepancies that may arise, we introduced Theorem 2, which

tolerates small deviations and confirms that approximation errors in rate-based backpropagation can
be effectively bounded, ensuring the robustness of training under practical conditions.

Theorem 2. For gradients δ(s
l)

t = ∂L
∂sl

t
and κl

t =
∑

τ
∂sl

t

∂Il
τ

, given the approximation error bound

ϵ > 0 s.t.
∥∥∥E [δ(sl)

t κl
t

]
−E

[
δ
(sl)
t

]
E
[
κl
t

] ∥∥∥ ≤ ϵ(1+
∥∥∥E [δ(sl)

t

] ∥∥∥) for ∀l. Denote the stacked tensor

I l = [I l
1, ..., I

l
T ] and sl = [sl1, ..., s

l
T ]. Assuming the backward procedure follows non-expansivity s.t.

∂Il+1

∂Il = W l+1⊤ ∂sl

∂Il is 1-lipschitz continuous without loss of generality and the biases are bounded

uniformly by B, i.e.
∥∥∥x∂Il+1

∂Il − x̂∂Il+1

∂Il

∥∥∥ ≤
∥∥∥x − x̂

∥∥∥ for ∀x, x̂. Define δlrate =
(
∂L
∂cl

)
rate as the

error propagated through Eq. (7), and δ
(Il)
t = ∂L

∂Il
t

as the error propagated through BPTT, with

δLrate = E[δ(I
L)

t ]. We have the gradient difference bounded by
∥∥∥δL−k

rate − E[δ(I
L−k)

t ]
∥∥∥ = O(k2ϵ).

Theorem 2 elucidates the stability of rate-based backpropagation relative to BPTT, showing that the
proposed method can provide a bound on the overall objective solution. The bounded error could
further be interpreted as a form of randomness suitable for stochastic optimization. The similarity
measurement of the descent directions between the two methods provides empirical evidence for the
effectiveness of the proposed method (Figure 3d). Detailed proof is provided in Appendix A.

4.4 Implementation Details
For implementations of direct training, two distinct training modes are recognized: (multi-step)
activation-based and (single-step) time-based [19], differing fundamentally in handling the timesteps
loop. We implement our rate-based propagation in both modes: rateM denotes the multi-step training
mode where T loops are embedded within layers, and rateS refers to the single-step training mode
with T loops outside the layers. A detailed discussion of training modes is included in Appendix B.

Another aspect of our implementation concerns handling batch normalization (BN), especially given
its critical role in BPTT, which adjusts mean and variance statistics during the forward pass. The
application of BN varies depending on the training mode. In the multi-step mode, BN benefits from
access to information across all timesteps and can normalize based on statistics aggregated over
temporal dimensions. We employed tdBN [87] in rateM since it has been widely adopted in direct
training on various benchmarks. In contrast, the single-step mode limits BN to current timestep
inputs, necessitating normalization across spatial dimensions only. In line with online schemes, SLTT
[48] demonstrates the feasibility of implementing spatial BN iteratively across timesteps, an approach
we adopt for rateS . Further details on the BN implementation are provided in Appendix B.
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Figure 3: Empirical measurements conducted on the training procedure of BPTT. The experiments
are carried out on the CIFAR-100 dataset using ResNet-18. Each subplot is labeled according to the
naming convention “A{test#}-T{timesteps#}-{target}-L{layer#}B{block#}N{LIF#}/C{conv#}.”

5 Experiments
In this section, we conduct experiments on CIFAR-10 [37], CIFAR-100 [37], ImageNet [11], and
CIFAR10-DVS [41] to evaluate the proposed training method. We implement SNNs training on
the Pytorch [53] and SpikingJelly [19] frameworks. We set Vth = 1, λ = 0.2, and employ the
sigmoid-based surrogate function [19] for LIF neurons. Detailed setups are provided in Appendix C.

5.1 Empirical Validation
Empirical experiments are conducted to support the preconditions of theorems discussed in Sec-
tion 4.3. These preconditions assert the independence of paired variables across the temporal
dimension: E

[
δ
(sl)
t κl

t

]
= E

[
δ
(sl)
t

]
E
[
κl
t

]
(A1) and E

[
δ
(Il)
t sl−1

t

]
= E

[
δ
(Il)
t

]
E[sl−1

t ] (A2). To
explore these relationships, we conducted experiments training ResNet-18 on CIFAR-100 using
BPTT. Cosine similarity measures were employed to compare the empirical expectation products,
cos⟨E

[
δ
(sl)
t κl

t

]
,E
[
δ
(sl)
t

]
E
[
κl
t

]
⟩ as shown in Figure 3a, where values approaching 1 indicate a high

degree of alignment, suggesting that the variables’ directions are similar. Additionally, the correlation

coefficient, ρ was measured to further assess the independence of these variables ρ =
COV(κt,δ

(sl)
t )√

var(κt)var(δ(sl)
t )

where COV(κt, δ
(sl)
t ) = E

[
δ
(sl)
t κl

t

]
− E

[
δ
(sl)
t

]
E
[
κl
t

]
It is clear that ρ equals the cosine distance

between the variables after centering by their means, ρ = cos⟨δ(s
l)

t − E[δ(s
l)

t ],κl
t − E

[
κl
t

]
⟩. Re-

sults, shown in Figure 3b, reveal that the correlation coefficients are constrained within a very
small range, typically around the magnitude of ∼ 10−5, supporting the hypothesis of their rela-
tive independence. We also conducted cosine similarity measurements to validate the assumption
E
[
δ
(Il)
t sl−1

t

]
= E

[
δ
(Il)
t

]
E[sl−1

t ], as shown in Figure 3c. Additionally, we implement both BPTT
and the proposed method simultaneously within the same training iteration, allowing direct observa-
tion of the gradient descent directions. The relation (∇W lL)rate =

1
T (∇W lL) (A3) was visualized

in Figure 3d, which revealed that the convergence directions for rate-based backpropagation and
BPTT are closely aligned. Remarkably, all tests consistently demonstrate that configurations with
T=6 better adhere to the theoretical assumptions than T=4, suggesting that the proposed method can
more closely mimic BPTT computations as the timestep increases. This observation also highlights
the intrinsic link between our method and rate-coding, suggesting that a larger temporal window may
facilitate more stable manifestations of rate-coding.

5.2 Comparison with the State-of-the-Art
We present comparison results in Table 1. In single-step mode, rateS offers fair comparisons with
online schemes, while rateM in multi-step mode competes fairly with other methods employing
one-step backpropagation. Unlike online methods such as OTTT[76], SLTT[48], and OS[89], which
necessitate spatial backpropagation at every timestep, our proposed method conducts this process
only once at the final timestep. Although methods of DSR [47] and SSF[68] delay decoupled
backpropagation until the final timestep, allowing for parallel processing across all timesteps to
enhance computational speed, they still require each timestep’s backpropagation to be managed
independently within the backward computation graph. In contrast, our method fully compresses
the temporal dimension, achieving one-step time-independent spatial backpropagation. As shown
in Table 1, our method yields comparable performance with BPTT counterparts on benchmarks,
showcasing promising capabilities compared to other efficient training methods. While our theoretical
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Table 1: Performance on CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-DVS. Results are averaged
over three runs of experiments, except for single crop evaluations on ImageNet. Models marked with
(∗) employ scaled weight standardization, adapting to normalizer-free architectures.

Training Method Model Timesteps Top-1 Acc (%)

C
IF

A
R

10

QCFS [7] ANN2SNN ResNet-18 8 94.82

DSR [47] one-step PreAct-ResNet-18 20 95.10±0.15

SSF [68] one-step PreAct-ResNet-18 20 94.90

BPTTM BPTT ResNet-18 4 95.64

rateM (ours) one-step ResNet-18 4 95.61±0.02(95.64)

OTTT [76] online VGG-11∗ 6 93.52±0.06

SLTT [48] online ResNet-18 6 94.44±0.21

OS [89] online VGG-11 4 94.35
ResNet-19 4 95.20

BPTTS BPTT ResNet-18 4 95.53

VGG-11 4 95.61

rateS (ours) one-step ResNet-18 4 95.42±0.11(95.56)

VGG-11 4 95.57±0.08(95.68)

C
IF

A
R

10
0

DSR [47] one-step PreAct-ResNet-18 20 78.50±0.12

SSF [68] one-step PreAct-ResNet-18 20 75.48

BPTTM BPTT ResNet-18 4 77.93

rateM (ours) one-step ResNet-18 4 78.26±0.12(78.38)

OTTT [76] online VGG-11∗ 6 71.05±0.04

SLTT [48] online ResNet-18 6 74.38±0.30

OS [89] online VGG-11 4 76.48
ResNet-19 4 77.86

BPTTS BPTT ResNet-18 4 77.72

VGG-11 4 77.82

rateS (ours) one-step ResNet-18 4 77.73±0.28(77.93)

VGG-11 4 77.87±0.35(78.13)

Im
ag

eN
et

OTTT [76] online PreAct-ResNet-34* 6 65.15

SLTT [48] online PreAct-ResNet-34* 6 66.19

OS [89] online SEW-ResNet-34 4 64.14
PreAct-ResNet-34 4 67.54

SEW-ResNet [20] BPTT SEW-ResNet-34 4 67.04

rateS (ours) one-step SEW-ResNet-34 4 65.66
PreAct-ResNet-34 4 69.58

rateM (ours) one-step SEW-ResNet-34 4 65.84
PreAct-ResNet-34 4 70.01

C
IF

A
R

10
-D

V
S

DSR [47] one-step VGG-11 20 77.27±0.24
SSF [68] VGG-11 20 78.0

OTTT [76] online VGG-11∗ 10 76.63±0.34
SLTT [48] VGG-11 10 77.17±0.23

BPTTS BPTT VGG-11 10 76.73
BPTTM VGG-11 10 76.86

rateS (ours) one-step VGG-11 10 76.48±0.23(76.71)
rateM (ours) VGG-11 10 76.96±0.13(77.13)

analysis and motivation primarily adhere to rate-coding approximations, the performance on static
datasets aligns with expectations. The results on the dynamic dataset CIFAR10-DVS also achieve
comparable levels, implying a significant presence of rate-based representation within CIFAR10-DVS.
More results regarding the performance comparisons between the proposed method and BPTT across
various architectures and settings have been detailed in Appendix D.

5.3 Impact of Time Expansion

we assess the impact of extending timesteps on both accuracy and training efficiency. Figure 4a
validates that our method capably manages increased timesteps, thereby confirming the scalability of
the proposed method for larger T values. Figure 4b displays the computational and memory expenses
incurred during the backward phase, which, as anticipated, do not escalate with increasing T .
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Figure 4: Results of BPTT and rateM across various timesteps.
Table 2: Performance w/o and w/ temporal shuffle for models trained by rateM

Dataset Model Timesteps Accuracy Shuffled

CIFAR-10

ResNet-18
2 94.77 94.63±0.04
4 95.51 95.50±0.04
6 95.97 95.95±0.09

VGG-11
2 95.13 95.10±0.05
4 95.37 95.37±0.03
6 95.77 95.79±0.05

CIFAR-100

ResNet-18
2 76.27 75.59±0.11
4 78.32 77.72±0.15
6 79.10 79.10±0.14

VGG-11
2 77.46 77.21±0.12
4 77.88 77.78±0.16
6 77.97 78.02±0.09

ImageNet SEW-ResNet-34 4 65.84 65.11±0.11
PreAct-ResNet-34 4 70.01 69.78±0.10

CIFAR10-DVS VGG-11 10 76.50 74.69±0.17

5.4 Analysis of Rate Statistics
Our method, derived from the principles of rate-based representation, necessitates examining the
impact of rate coding on model behavior. Following an insightful approach from [6], we assess the
robustness of our models by shuffling the temporal order of spike sequences while maintaining their
rate consistency. This experiment, designed to disrupt temporal information without changing the
firing rate, was applied to models trained using rate-based backpropagation. During inference on the
test dataset, we introduced perturbations by randomly shuffling the temporal dimensions of input
tensors across all neurons, as reported in Table 2. Notably, models mostly resisted these changes to
some degree, which suggests that they follow the basic rules of rate coding, where the reordering of
timesteps does not significantly impact overall accuracy. Furthermore, we tracked the average firing
rates across each layer over time, presented in Figure 5. As layers increase, the average spike rates per
layer are closely aligned with the temporal mean, validating the idea of rate-coding approximation.
Those two experiments support the notion that rate-based backpropagation proficiently captures
rate-based representations during training.

Figure 5: Firing rates statistics for models trained by rateM .

6 Conclusion
In this work, we propose rate-based backpropagation, utilizing rate-coding approximation to stream-
line the gradient computational graph, significantly reducing both memory usage and training time.
Through theoretical analyses and empirical validation, we show the method’s feasibility in approxi-
mating the optimization direction of BPTT. Experimental results across benchmarks reveal that our
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method achieves comparable performance with BPTT and surpasses other state-of-the-art efficient
training methods. We expect our work to pave the way for more scalable and resource-efficient
training of SNNs.
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A Proof of Theorems
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]
= E

[
δ
(sl)
t

]
E
[
κl
t

]
holds for ∀l, we have E

[
δ
(sl)
t

]
=
(
∂L
∂rl

)
rate . Furthermore, given δ

(Il)
t = ∂L

∂Il
t
, if E

[
δ
(Il)
t sl−1

t

]
=

E
[
δ
(Il)
t

]
E[sl−1

t ] for ∀l, we then obtain (∇W lL)rate =
1
T (∇W lL). Here, E [xt] =

1
T

∑
t xt refers

the mean value of tensor xt over temporal dimension T .

Proof. Given δ
(sl)
t = ∂L

∂sl
t

and κl
t =

∑
τ

∂sl
t

∂Il
τ

, we establish the mean gradients through neural
dynamics based on the chain rule:

E
[
∂L
∂I l

t

]
= E

[∑
τ

∂L
∂slτ

∂slτ
∂I l

t

]
=

1

T

∑
t

∑
τ

∂L
∂slτ

∂slτ
∂I l

t

= E[δ(s
l)

t κl
t], (10)

Considering the output layer l = L, the objective for BPTT can be expressed as L = ℓ(E[ot],y) =
ℓ(E[WLsLt ],y) = ℓ(WLE[sLt ],y) = ℓ(WLrL,y). Under the rate-based objective L =
1
T ℓ(c

L,y) = 1
T ℓ(W

LrL−1,y), it is clear that E[δ(s
L−1)

t ] =
(

∂L
∂rL−1

)
rate. Applying the precon-

dition E[δ(s
L−1)

t κL
t ] = E[δ(s

L−1)
t ]E[κL−1

t ], we obtain:(
∂L

∂rL−1

∂rL−1

∂cL−2

∂cL−2

∂rL−2

)
rate

=

(
∂L

∂rL−1

)
rate

E[κL−1
t ]W (L−1)⊤

=E[δ(s
L−1)

t ]E[κL−1
t ]W (L−1)⊤ = E[δ(s

L−1)
t κL−1

t ]W (L−1)⊤

=E
[

∂L
∂IL−1

t

]
W (L−1)⊤ = E

[
∂L

∂IL−1
t

W (L−1)⊤
]

=E
[

∂L
∂sL−2

t

]
= E[δ(s

L−2)
t ],

(11)

Continuing this induction process, we can derive that E[δ(s
l)

t ] =
(
∂L
∂rl

)
rate for all layers l. Further,

given δ
(Il)
t = ∂L

∂Il
t
, the gradient for the weight matrix under BPTT: ∇W lL =

∑
t

(
∂L
∂Il

t

∂Il
t

∂W l

)
=∑

t δ
(Il)
t sl−1

t . The gradients passing through the linear parts maintain the equivalence:(
∂L
∂cl

)
rate

=

(
∂L

∂rl+1

∂rl+1

∂cl

)
rate

=

(
∂L

∂rl+1
W l+1⊤

)
rate

=

(
∂L

∂rl+1

)
rate

W l+1⊤ = E[δ(s
l+1)

t W l+1⊤ ] = E[δ(I
l)

t ].

(12)

With the precondition that E[δ(I
l)

t sl−1
t ] = E[δ(I

l)
t ]E[sl−1

t ] holds for ∀l, we obtain:

(∇W lL)rate =

(
∂L
∂cl

∂cl

∂W l

)
rate

=

(
∂L
∂cl

)
rate

rl−1

= E[δ(I
l)

t ]E[sl−1
t ] = E[δ(I

l)
t sl−1

t ] =
1

T
∇W lL.

(13)

Theorem 2. For gradients δ(s
l)

t = ∂L
∂sl

t
and κl

t =
∑

τ
∂sl

t

∂Il
τ

, given the approximation error bound

ϵ > 0 s.t.
∥∥∥E [δ(sl)

t κl
t

]
−E

[
δ
(sl)
t

]
E
[
κl
t

] ∥∥∥ ≤ ϵ(1+
∥∥∥E [δ(sl)

t

] ∥∥∥) for ∀l. Denote the stacked tensor

I l = [I l
1, ..., I

l
T ] and sl = [sl1, ..., s

l
T ]. Assuming the backward procedure follows non-expansivity s.t.

∂Il+1

∂Il = W l+1⊤ ∂sl

∂Il is 1-lipschitz continuous without loss of generality and the biases are bounded

uniformly by B, i.e.
∥∥∥x∂Il+1

∂Il − x̂∂Il+1

∂Il

∥∥∥ ≤
∥∥∥x − x̂

∥∥∥ for ∀x, x̂. Define δlrate =
(
∂L
∂cl

)
rate as the
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error propagated through Eq. (7), and δ
(Il)
t = ∂L

∂Il
t

as the error propagated through BPTT, with

δLrate = E[δ(I
L)

t ]. We have the gradient difference bounded by
∥∥∥δL−k

rate − E[δ(I
L−k)

t ]
∥∥∥ = O(k2ϵ).

Proof. Given that the error backpropagation ∂Il+1

∂Il follows a 1-Lipschitz condition with biases

bounded by B for all l, we can derive
∥∥∥E[δ(Il)

t ]
∥∥∥ =

∥∥∥E[δ(Il+1)
t

∂Il+1

∂Il ]
∥∥∥ ≤

∥∥∥E[δ(Il+1)
t ]

∥∥∥ + B by
non-expansivity. Then, by induction, we obtain the gradient bound between the intermediate layers
and the final layer: ∥∥∥(E[δ(Il)

t ])
∥∥∥ ≤ (L− l)B +

∥∥∥E[δ(IL)
t ]

∥∥∥.
Since ∂Il+1

∂Il
t

= W l+1⊤κl
t is also 1-Lipschitz continuous without loss of generality, given the

approximated approximated error ϵ > 0 s.t.∥∥∥E[δ(Il+1)
t W l+1⊤E[κl

t]− E[δ(I
l+1)

t W l+1⊤κl
t]
∥∥∥ =

∥∥∥E[δ(sl)
t E[κl

t]− E[δ(s
l)

t κl
t]
∥∥∥

≤ ϵ(1 +
∥∥∥E[δ(sl)

t κl
t]
∥∥∥) = ϵ(1 +

∥∥∥E[δ(Il+1)
t W l+1⊤κl

t]
∥∥∥) (14)

we have ∥∥∥δlrate − E[δ(I
l)

t ]
∥∥∥ =

∥∥∥δl+1
rate W

l+1⊤E[κl
t]− E[δ(I

l+1)
t ]W l+1⊤κl

t]
∥∥∥

=
∥∥∥(δl+1

rate W
l+1⊤E[κl

t]− E[δ(I
l+1)

t ]W l+1⊤E[κl
t]
)

+
(
E[δ(I

l+1)
t W l+1⊤E[κl

t]− E[δ(I
l+1)

t W l+1⊤κl
t]
)∥∥∥

≤
∥∥∥δl+1

rate − E[δ(I
l+1)

t ]
∥∥∥+ ϵ(1 +

∥∥∥E[δ(Il+1)
t W l+1⊤κl

t]
∥∥∥)

≤
∥∥∥δl+1

rate − E[δ(I
l+1)

t ]
∥∥∥+ ϵ(1 + (L− l)B +

∥∥∥E[δ(IL)
t ]

∥∥∥)
(15)

By induction, we obtain∥∥∥δlrate−E[δ(I
l)

t ]
∥∥∥ ≤ ϵ

(
(L−l)+

(L− l + 1)(L− l)

2
B+(L−l)

∥∥∥E[δ(IL)
t ]

∥∥∥) = O
(
(L−l)2ϵ

)
(16)

B Implementation Details

B.1 Pseudocode of the Rate-based Backpropagation

The pseudocode for rate-based backpropagation, illustrating the implementations for both rateM and
rateS , is provided in Algorithm 1.

B.2 About Training Modes in Rate-based Backpropagation

In direct training, two distinct implementation modes are recognized, activation-based and time-based
[19], differing fundamentally in their handling of the simulation timestep T . The activation-based,
also known as multi-step mode, processes the T loop separately within each layer, transmitting
inter-layer tensors within dimensions [T,B, S], where B and S refer to batch and spatial dimensions,
respectively. The configuration enables the multi-step mode to enhance computational efficiency by
reformatting the tensor dimensions as [T ×B,S] to optimize parallelism in linear parts. However,
the coupled processing with temporal calculations embedded within the layers increases memory
retention on GPUs, potentially obscuring the benefits of memory cost optimization in both online
training and our proposed methods. In contrast, the time-based mode externalizes the T loop,
facilitating single-step forward computations at each timestep. This single-step mode aligns well
with the dynamic modeling of temporal dimensions and facilitates memory optimization strategies
more effectively. However, its restriction on parallel computation in linear components compared
to multi-step mode necessitates increased forward time on GPUs, albeit with enhanced support for
memory optimization. Our proposed method has been adapted to operate effectively within both
frameworks to ensure comprehensiveness, as shown in Algorithm 1.
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Algorithm 1: Single Training Iteration of the Rate-based Backpropagation

Input: Timesteps T ; Network depth L; Trainable parameters {W l}l≤L; Training Mini-batch
{(x0

t ,y)}; Training Mode rateS or rateM .
Output: Updated parameters {W l}l≤L

1 Initialize input spikes s0t = x0
t for all t ∈ [1, T ].

2 if rateM then
3 for l = 1 to L do
4 Compute input currents through linear operators I l

t = W lsl−1
t for all t ∈ [1, T ];

5 Initialize ρl
0 = 0, gl

0 = 0, el0 = 0.
6 for t = 1 to T do
7 Compute output spikes slt from I l

t following neural dynamics in Eq. (1);

8 Compute the eligibility trace ρl
t = 1 + ρl

t−1

(
∂ul

t

∂ul
t−1

+
∂ul

t

∂sl
t−1

∂sl
t−1

∂ul
t−1

)
in Eq. (8);

9 Accumulate elt =
1
t ((t− 1)elt−1 + slt);

10 Accumulate gl
t =

1
t ((t− 1)gl

t−1 +
∂sl

t

∂ul
t
ρt).

11 end
12 Save elT , gl

T and W l for backwards, and free intermediate variables.
13 end
14 else
15 Initialize ρl

0 = 0, gl
0 = 0, el0 = 0 for all l ∈ [1, L].

16 for t = 1 to T do
17 for l = 1 to L do
18 Compute input currents through linear operators I l

t = W lsl−1
t ;

19 Initialize ρl
0 = 0, gl

0 = 0, el0 = 0;
20 Compute output spikes slt from I l

t following neural dynamics in Eq. (1);

21 Compute the eligibility trace ρl
t = 1 + ρl

t−1

(
∂ul

t

∂ul
t−1

+
∂ul

t

∂sl
t−1

∂sl
t−1

∂ul
t−1

)
in Eq. (8);

22 Accumulate elt =
1
t ((t− 1)elt−1 + slt);

23 Accumulate gl
t =

1
t ((t− 1)gl

t−1 +
∂sl

t

∂ul
t
ρt);

24 Save ul
t, s

l
t for neuron states;

25 Save gl
t, e

l
t, ρ

l
t as eligibility traces.

26 end
27 end
28 end
29 Compute the outputs gradient ∂L

∂cL from the objective function.
30 for l = L− 1 to 1 do
31 Compute error backpropagated through the linear part ∂L

∂rl = ∂L
∂cl+1W

l+1⊤ ;
32 Compute error backpropagated through the neuron part ∂L

∂cl = ∂L
∂rl g

l
T ;

33 Compute the weight gradients ∇W lL = ∂L
∂cl (e

l−1
T )⊤;

34 Update parameters {W l}l≤L based on the gradient-based optimizer.
35 end

B.3 Implementation of Batch Normalization in Rate-based Backpropagation

In the forward pass, batch normalization (BN) precedes neuron activation, scaling inputs I l
t and

introduces a bias in the average inputs c = E[It]. We denote c̃ to represent the biased average inputs
as c̃ = E[Ĩt] = E[BN(It)] instead of c. Note that BN acts as a linear operation during inference,
where c̃ = E[Ĩt] = E[BN(It)] = BN(E[It]) = BN(c). Implementing rate-based propagation
requires considering how gradients pass through the BN layers and affect their intrinsic parameters
during training. Initially, we explore the spatial BN [48] design for the single-step mode, which
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computes mean and variance statistics independently at each time step t:

Ĩt = BN(It) = γ

(
It − µt√
σ2
t + ϵ

)
+β, where µt =

1

B

∑
b

I
(b)
t and σ2

t =
1

B

∑
b

(I
(b)
t −µt)

2. (17)

Defining χ
(I)
t = ∂Ĩt

∂It
,χ

(γ)
t = ∂Ĩt

∂γ ,χ
(β)
t = ∂Ĩt

∂β , the following expressions are obtained:

χ
(I)
t = γ

1√
σ2
t + ϵ

+
∂Ĩ l

t

∂σ2
t

∂σ2
t

∂I l
t

+
∂Ĩ l

t

∂µt

∂µt

∂I l
t

, χ
(γ)
t =

I l
t − µt√
σ2
t + ϵ

, χ
(β)
t = Id. (18)

For the backward derivation of BN in a rate-based setting based on mean estimations through
time, we implement ∂L

∂c = ∂L
∂c̃E[χ

(I)
t ], ∂L

∂γ = ∂L
∂c̃E[χ

(γ)
t ], ∂L

∂β = ∂L
∂c̃E[χ

(β)
t ] = ∂L

∂c̃ . Since gradient

computation at each timestep is independent, the dynamic estimations of E[χ(I)
t ] and E[χ(γ)

t ] are
performed in the same manner of {elt}t≤T and {gl

t}t≤T .

In the multi-step mode, tdBN [87] accounts for mean and variance statistics over the entire time
horizon:

Ĩt = BN(It) = γ

(
It − µ√
σ2 + ϵ

)
+ β,where µ =

1

BT

∑
t

∑
b

I
(b)
t ,σ2 =

1

BT

∑
t

∑
b

(I
(b)
t − µ)2.

(19)
The rate-based representation integrates the input across the time dimension, with the mean µc =∑

b c
(b), and variance σ2

c = 1
B

∑
b(c

(b) − µc)
2. Since c is the temporal mean of inputs, it is clear

that µc = µ and σ2
c ≤ σ2. Note that ∂σ2

∂It
= 1

BT

∑
t

∑
b(I

(b)
t − µ) = 1

B

∑
b(c

(b) − µc) =
∂σ2

c

∂c .
Assuming ∂It

∂c = Id, we derive ∂µ
∂It

= ∂µc

∂c . For the forward approximation specifically tailored for
tdBN in rate-based backpropagation, we define:

c̃ = B̂N(c) = γ

(
c− µ√
σ̂2
c + ϵ

)
+ β, (20)

where γ and β refer to the same intrinsic parameters shared with BN(It), and σ̂2
c is defined distinctly

in forward and backward passes: σ̂2
c = σ2 in forward and ∂σ̂2

c

∂σ2
c
= Id in backward. The implementa-

tion utilizes gradient replacement with the detach operation in PyTorch: σ̂2
c = detach(σ2−σ2

c )+σ2
c .

Thus, in the forward phase, c̃ = B̂N(c) = E[BN(It)], and in the backward phase, ∂c̃
∂c = E[ ∂c̃∂It

],
aligning perfectly with the foundational principles of rate-based backpropagation.

C Experimental Settings

C.1 Datasets

CIFAR-10 and CIFAR-100. The CIFAR-10 and CIFAR-100 [37] datasets contain 32x32 color
images across different classes, licensed under MIT. CIFAR-10 includes 60,000 images across 10
classes, with 50,000 for training and 10,000 for testing, whereas CIFAR-100 is spread over 100 classes.
Both datasets have been normalized for zero mean and unit variance. Image data augmentation is
applied using AutoAugment [9] and Cutout [14] strategies, similar to the implementations in recent
studies [42, 7, 24, 69, 13]. The pixel values are directly fed into the input layer at each timestep as
direct encoding [55].

ImageNet. The ImageNet-1K dataset [11] comprises 1,281,167 training images and 50,000 validation
images distributed across 1,000 classes, licensed for non-commercial use. ImageNet-1K images are
normalized for zero mean and unit variance. Training images undergo random resized cropping to
224x224 pixels and horizontal flipping, while validation images are resized to 256x256 and then
center-cropped to 224x224. The images are transformed into time sequences through direct encoding
[55], following the approach used for CIFAR datasets.

CIFAR10-DVS. The CIFAR10-DVS dataset [41] is a neuromorphic version of CIFAR-10, which
includes 10,000 event-based images captured by the DVS camera with pixel dimensions expanded to
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Figure 6: Empirical measurements conducted on the CIFAR10-DVS dataset.

128×128, licensed under CC BY 4.0. We split the whole dataset into 9000 training images and 1000
testing images. Data preprocessing involves integrating events into frames [21, 19] and reducing the
spatial resolution to 48x48 through interpolation. Additional data augmentation includes random
horizontal flips and random rolls within a 5-pixel range, mirroring previous methods [76, 48].

C.2 Training Setup

Network Architectures. For the CIFAR-10, CIFAR-100, and CIFAR10-DVS datasets, our method
is tested on standard network architectures, including ResNet-18, ResNet-19, and VGG-11 [63, 32,
87, 76, 19, 69]. On the ImageNet dataset, we adapt two variations on ResNet architecture [32],
SEW-ResNet-34 [87] specially proposed for SNNs, and ResNet-34 with pre-activation residual
blocks [33], aligning with previous works [76, 48, 89]. While OTTT [76] and SLTT [48] frameworks
utilize normalization-free techniques under the ResNet-34 framework [5], Zhu et al. [89] substitute
these with their custom-designed batch normalization. We directly employ tdBN [87] instead of
normalization-free methods in our experiments.

Training Details. This work utilizes the widely adopted sigmoid-based surrogate gradient [19]
to approximate the Heaviside step function using h(x, α) = 1

1+eαx and sets α = 4 to ensure
the maximum derivative of the surrogate function is 1 for preventing gradient explosion. All
implementations are based on the PyTorch [53] and SpikingJelly [19] frameworks. The experiments
on CIFAR-10, CIFAR-100, and CIFAR10-DVS datasets run on one NVIDIA GeForce RTX 3090
GPU. For ImageNet, distributed data parallel processing is utilized across eight NVIDIA GeForce
RTX 4090 GPUs. We use the SGD optimizer [58] with a momentum of 0.9 for all tasks, integrating
a cosine annealing strategy [45] for the learning rate schedule. Other hyperparameters are listed in
Table 3.

Table 3: Training hyperparameters.

CIFAR-10 CIFAR-100 ImageNet CIFAR10-DVS

Epoch 300 300 100 300
Learning rate 0.1 0.1 0.2 0.1

Batch size 128 128 512 128
Weight decay 5e-4 5e-4 2e-5 5e-4

D More Results

D.1 Empirical Validation on CIFAR10-DVS

As shown in Figure 6, we extend conduct empirical experiments on CIFAR10-DVS as avalidation in
the case of dynamic datasets. The observations confirm that, even in data with a degree of temporal
information, the empirical validation of the assumptions remains consistent with expectations. This
alignment emphasizes that the approximate relationship between rate-based backpropagation and
BPTT remains substantially consistent. As a result, this stability ensures that our approach continues
to effectively extract rate-based representations from neuromorphic datasets with a degree of temporal
dynamics, thereby maintaining robust performance across diverse data scenarios.

D.2 Extended Performance Comparisons with BPTT

We conduct additional experiments to illustrate the comparative performance of rate-based back-
propagation versus BPTT, as presented in Table 4 for CIFAR-10 and Table 5 for CIFAR-100. These
experiments span various configurations, including different network architectures—ResNet-18,
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Table 4: Performance comparison of rate-based backpropagation and BPTT on CIFAR-10.

Training Model Timesteps Top-1 Acc (%)

BPTTS

ResNet-18
2 95.02
4 95.53
6 95.68

ResNet-19
2 96.12
4 96.38
6 96.57

VGG-11
2 95.27
4 95.61
6 95.63

rateS

ResNet-18
2 94.82±0.07(94.89)
4 95.42±0.11(95.56)
6 95.73±0.03(95.78)

ResNet-19
2 96.11±0.05(96.18)
4 96.32±0.04(96.38)
6 96.38±0.06(96.45)

VGG-11
2 95.44±0.02(95.46)
4 95.57±0.08(95.68)
6 95.64±0.12(95.76)

BPTTM

ResNet-18
2 94.93
4 95.64
6 96.03

ResNet-19
2 96.16
4 96.49
6 96.70

VGG-11
2 95.31
4 95.67
6 95.64

rateM

ResNet-18
2 94.75±0.05(94.82)
4 95.61±0.02(95.64)
6 95.90±0.07(96.01)

ResNet-19
2 96.23±0.10(96.33)
4 96.26±0.03(96.29)
6 96.38±0.02(96.40)

VGG-11
2 95.17±0.12(95.35)
4 95.30±0.06(95.37)
6 95.23±0.06(95.32)
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Table 5: Performance comparison of rate-based backpropagation and BPTT on CIFAR-100.

Training Model Timesteps Top-1 Acc (%)

BPTTS

ResNet-18
2 76.24
4 77.72
6 78.65

ResNet-19
2 79.33
4 80.12
6 80.77

VGG-11
2 77.37
4 77.82
6 78.13

rateS

ResNet-18
2 75.89±0.11(75.97)
4 77.73±0.28(77.93)
6 78.86±0.08(78.94)

ResNet-19
2 79.71±0.02(79.74)
4 80.41±0.14(80.54)
6 80.75±0.05(80.79)

VGG-11
2 77.34±0.04(77.37)
4 77.87±0.35(78.13)
6 78.23±0.03(78.27)

BPTTM

ResNet-18
2 77.09
4 77.93
6 78.35

ResNet-19
2 80.01
4 81.07
6 81.12

VGG-11
2 77.42
4 77.96
6 78.25

rateM

ResNet-18
2 75.97±0.20(76.27)
4 78.26±0.12(78.38)
6 79.02±0.11(79.16)

ResNet-19
2 79.87±0.03(79.90)
4 80.71±0.12(80.84)
6 80.83±0.07(80.94)

VGG-11
2 77.40±0.05(77.46)
4 77.86±0.03(77.89)
6 77.99±0.11(78.11)
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Table 6: Comparison results of performance and training costs across various timesteps. All units
for time measurements are in seconds per batch. Experiments were conducted on NVIDIA GeForce
RTX 4090, with training settings consistent with other experiments.

Datasets Network Method
Timesteps

T=1 T=2 T=4 T=8 T=16

CIFAR100

ResNet-18

rateM

Time of Eligibility Track 0.003 0.004 0.007 0.015 0.027

Time of Backward 0.034 0.035 0.036 0.034 0.036

Time of both 0.037 0.039 0.043 0.049 0.063

Memory Allocated 1.8492 1.8488 1.8473 1.8496 1.8483

Top-1 Acc [%] 74.60 76.04 78.24 79.24 79.37

BPTTM

Time of Backward 0.023 0.044 0.098 0.199 0.564

Memory Allocated 1.4272 2.4454 4.4804 8.0460 15.685

Top-1 Acc [%] 74.38 76.65 78.49 78.35

ResNet-19

rateM

Time of Eligibility Track 0.006 0.012 0.020 0.041

Time of Backward 0.083 0.083 0.082 0.083

Time of both 0.089 0.095 0.102 0.124

Memory Allocated [GB] 4.4787 4.4798 4.4788 4.4784

Top-1 Acc [%] 78.3 80.00 80.65 81.31

BPTTM

Time of Backward 0.046 0.111 0.285 0.552

Memory Allocated [GB] 3.2556 5.6636 10.8978 20.3862

Top-1 Acc [%] 78.39 80.06 81.11 81.13

VGG11

rateM

Time of Eligibility Track 0.003 0.003 0.006 0.011 0.020

Time of Backward 0.017 0.017 0.017 0.017 0.018

Time of both 0.020 0.020 0.023 0.028 0.038

Memory Allocated [GB] 1.3624 1.3607 1.3619 1.3613 1.3601

Top-1 Acc [%] 76.13 77.59 77.75 78.34 78.65

BPTTM

Time of Backward 0.010 0.021 0.054 0.135 0.384

Memory Allocated [GB] 0.9911 1.6784 3.7363 6.6141 12.3768

Top-1 Acc [%] 76.34 77.20 77.98 78.26 78.37

ImageNet

SEW-ResNet-34

rateM

Time of Eligibility Track 0.012 0.014 0.023

Time of Backward 0.074 0.074 0.074

Time of both 0.086 0.088 0.097

Memory Allocated [GB] 5.7887 5.7898 5.7883

BPTTM

Time of Backward 0.046 0.095 0.233

Memory Allocated [GB] 3.9858 6.8654 12.5597

PreAct-ResNet-34

rateM

Time of Eligibility Track 0.007 0.009 0.020

Time of Backward 0.072 0.071 0.072

Time of both 0.079 0.080 0.092

Memory Allocated [GB] 5.4995 5.4982 5.4942

BPTTM

Time of Backward 0.046 0.088 0.211

Memory Allocated [GB] 3.7017 6.4778 11.969

ResNet-19, and VGG-11—and timesteps (T=2, 4, 6). The results demonstrate that rate-based back-
propagation maintains competitive accuracy with BPTT across different architectures and timestep
settings on benchmark datasets.

D.3 Comprehensive Evaluation of Training Costs

To enhance the understanding of the scalability of the proposed method, we extended our analysis
to include training costs across the CIFAR-100 and ImageNet datasets, utilizing additional network
architectures as detailed in Table 6. This comprehensive evaluation aimed to assess the impact
of varying time steps on performance, memory, and time costs. We integrated the computation
of eligibility traces during the forward process, ensuring a fair comparison by incorporating these
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iterative computations into the overall cost assessment. The results reveal that the total cost of
rate-based backpropagation demonstrates a clear advantage over BPTT when timesteps T ≥ 2, which
underscores the efficiency of the proposed method approach in managing computational resources
while maintaining comparative performance across various datasets and network architectures.

E Social Impacts and Limitations

There is no direct negative societal impact since this work centers on enhancing the training efficiency
of SNNs. SNNs inherently require less energy for inference compared to ANNs, helping reduce
carbon dioxide emissions. The methods developed in this work further optimize SNNs training by
improving both memory and time efficiency, potentially reducing the overall resource consumption
and environmental footprint of training processes. Regarding limitations, this work primarily com-
pares with BPTT baselines, and there is potential for incorporating strategies from state-of-the-art
techniques in future work. Moreover, the proposed method is tailored for tasks that utilize rate-coding,
designed to efficiently capture spatial rate-based feature representations to enhance training; therefore,
it necessitates further adaptation to effectively manage sequential tasks. Future efforts may need
to delve deeper into adapting the dynamic characteristics of spikes and robustly designing training
hyperparameters, ensuring compatibility with rate-based backpropagation and extending applicability
to a wider range of applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section 4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4.4, Appendix B and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26

115811https://doi.org/10.52202/079017-3677



Answer: [Yes]
Justification: See Supplementary Materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: We do not use new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We use the existing common datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We use the existing common datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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