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Abstract

Machine learning catalyzes a revolution in chemical and biological science. How-
ever, its efficacy heavily depends on the availability of labeled data, and annotating
biochemical data is extremely laborious. To surmount this data sparsity challenge,
we present an instructive learning algorithm named InstructMol to measure pseudo-
labels’ reliability and help the target model leverage large-scale unlabeled data.
InstructMol does not require transferring knowledge between multiple domains,
which avoids the potential gap between the pretraining and fine-tuning stages. We
demonstrated the high accuracy of InstructMol on several real-world molecular
datasets and out-of-distribution (OOD) benchmarks.

1 Introduction

An enduring obstacle in applied chemical and biological sciences is identifying and making chemical
compounds or materials that have optimal properties for a given purpose [1, 2]. However, the vast
majority of progress in these areas is still achieved primarily through time-consuming and costly
trial-and-error experiments. Machine learning (ML) has undergone an unparalleled technological
advancement, opening up a myriad of applications across various domains. Its potential is particularly
notable in expediting the discovery and development of novel materials, pharmaceuticals, and
chemical processes [3–5]. However, ML models’ efficacy heavily relies on the availability of labeled
data and the consistency of prediction targets. Meanwhile, the cost of generating new data labels
through wet experiments is prohibitively high. Consequently, the size of labeled data in this field is
several orders of magnitude lower than the one that can inspire breakthroughs in other ML fields [6].
This data scarcity severely hampers ML in addressing scientific challenges within this realm, impeding
its ability to generalize to new molecules [7].

Biochemists have noticed this problem and propose several strategies to overcome the low data
limitation (view Fig. 1). Firstly, inspired by the remarkable success of self-supervised learning
from NLP [8] and CV [9, 10], researchers apply the pretrain and finetune paradigm [11–14] to
molecule modeling. They boost the performance of various molecular models by pretraining them
on massive unlabeled data. However, this benefit can be negligible when a large gap exists between
the sample distributions of pretraining and downstream tasks [15]. An alternative option is to use
active learning [16], which iteratively selects new data points to annotate according to the current
model’s predictions. However, auxiliary labor is still required to enrich the original database. Thirdly,
domain knowledge is incorporated to enhance molecular representations, such as providing more
high-quality hand-crafted features [17], constructing motif-based hierarchical molecular graphs [18],
and leveraging knowledge graphs [19]. However, domain knowledge can be biased and is difficult to
integrate into different training techniques universally.

∗Corresponding Author, email: fangwu97@stanford.edu.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

116202 https://doi.org/10.52202/079017-3690



Masked Component Prediction 

Contrastive Learning 

Maximize Agreement 

Pretraining Stage 

3D Coordinate Denoising

Auto-encoding

-3.548

-9.589

-7.898

-6.584

Fine-tune Stage

A. Pretraining B. Active Learning  

C. Domain Knowledge D. Semi-supervised Learning 

0.783

Labeling

Labeled Data 

Unlabeled Data 

Experiments

Drug Knowledge Graph

Antagonism

Supplement

Duplicate 

Harmless
Pseudo-labeling 

-5.185

0.832

Mixup-based Method

Augmentation

Mean Teacher 

Teacher

Student Consistency Cost

-7.877

Figure 1: Four mainstream paradigms to ameliorate the scarcity of labeled biochemical data. (A)
Self-supervised pretraining tasks include masked component modeling, contrastive learning, and
auto-encoding. (B) Active learning involves the iterative selection of the most informative data, in
which the molecular models are the most uncertain. These samples are then subjected to laboratory
testing to determine their labels. This process is repeated with newly labeled data added to the
training set. (C) Knowledge graphs are introduced to provide structured relations among multiple
drugs and unstructured semantic relations associated with different drug molecules. (D) In SSL, the
unlabeled data is used to create a smooth decision boundary between different classes or to estimate
the distribution of the input data, while the labeled data is used to provide specific examples of the
correct output.

In this study, we develop InstructMol, a flexible semi-supervised learning (SSL) approach to excavate
the abundant unlabeled biochemical data for robust molecular property prediction. It differs from
prior studies in two aspects: (1) it utilizes an additional instructor model to predict the confidence of
the predicted label, measure its reliability, and generate pseudo-label information for unannotated
data; (2) with the help of pseudo-label information guiding the model, the target molecular model
can reliably utilize unlabeled data without the need to transfer knowledge between multiple domains,
which perfectly avoids the potential gap between pre-training and fine-tuning stages. We demonstrate
that InstructMol outpasses existing SSL approaches and achieves state-of-the-art performance in
MoleculeNet and several OOD benchmark datasets. Besides, via InstructMol, we accurately predict
the properties of all 9 newly discovered drug molecules in the latest patent (ZA202303678A).
Extensive experiments showcase the effectiveness of our model in surmounting the challenge of data
scarcity, propelling advancements in the chemistry and biology domains.

2 Related Work

How to exploit large-scale unlabeled molecular data becomes an essential topic in the ML community
to alleviate the scarcity of labeled data and improve OOD generalization, where pretraining and SSL
are the two major fast-growing lines. The former traditionally employ unsupervised techniques to
pretrain ML models, such as autoencoder [20], autoregressive modeling [13, 21], masked component
modeling [22, 23], context-prediction [24], contrastive learning [25], and multi-modality [26]. Despite
several progress claims, the benefits of self-supervised pretraining can be negligible in many cases [15].
Recent years have witnessed a rising interest in developing SSL to reduce the amount of required
labeled data [27]. Several hypotheses have been discussed in the literature to support specific SSL
design decisions [28], such as the smoothness and manifold assumptions. Existing SSL algorithms
can be roughly separated into three sorts: consistency regularization, proxy-label methods, and
generative models. The consistency regularization is based on the simple concept that randomness
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Figure 2: The outline of InstructMol. We utilize a pre-trained target molecular model to forecast the
properties of unlabeled examples as pseudo-labels. Then, an instructor model predicts the confidence
of those pseudo-annotations, which are leveraged to guide the target molecular model to distribute
different attention in inferring different data points.

within the neural network (NNs) such as dropout) or data augmentation transformations should not
modify model predictions given the same input and impose an auxiliary loss. This line of research
includes π-model [29], temporal ensembling [29], and mean teachers [30] The proxy-label methods
regard proxy labels on unlabeled data as targets and consist of two groups: self-training [31], where
the model itself produces the proxy labels, and multi-view learning [32], where proxy labels are
produced by models trained on different views of the data. The generative models rely on VAE [33]
and GAN [34] to capture the joint distribution more accurately.

3 Preliminaries and Background

Task formulation. Suppose we have access to some labeled molecular data D = {(xi, yi)}Ni=1. xi

can be in any kind of formats such as 1D sequences, 2D graphs, and 3D structures. yi can be any
discrete (e.g., toxicity, and drug reaction) or continuous properties (e.g., water solubility, and free
energy). Here we consider continuous property for simple illustration, but our approach can be easily
extended to binary-class or multi-label circumstances. The target molecular model f : X → Y can
be any category of architectures, including Transformers, GNNs, and geometric NNs. There are also
some unseen data Dtest to evaluate the performance of the learned model. Traditionally, D is divided
into the train and validation sets as Dtrain =

{(
xtrain
i , ytraini

)}N1

i=1
and Dval =

{(
xval
i , yvali

)}N2

i=1
.

Besides, we can obtain some unlabeled data points, denoted as D⋆ = {x⋆
i }

M
i=1, where the number of

unlabeled data M is usually orders of magnitude larger than that of labeled data N .

Challenge of proxy-labeling. Labeled data D and unlabeled data D⋆ sometimes follow significantly
different data distributions, i.e., P(xi, yi) ̸= P(x⋆

i , y
⋆
i ). However, many SSL algorithms [29, 35, 36]

assume no distributional shift between D and D⋆. They are likely only to reinforce the consistent
information in the labeled data D to unlabeled examples D⋆ instead of mining auxiliary information
from D⋆, without exception for proxy labeling [37]. More importantly, despite the versatility and
modality-agnostic of proxy labeling, it achieves relatively poor performance compared to recent SSL
approaches [38]. This arises because some pseudo-labels ŷ⋆i can be severely incorrect during training
due to the poor generalization ability of classic DL models [39, 40]. If we directly utilize pseudo-
labels from a previously learned model for subsequent training, the conformance-biased information
in the proceeding epochs could increase confidence in erroneous predictions and eventually lead to
a vicious circle of error accumulation [41, 42]. The situation can be even worse when labeled data
D contain noises because of unavoidable experimental errors. Accordingly, it becomes essential to
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grasp the quality and dependability of pseudo-annotations and intelligently select a subset of them to
reduce the hidden noise.

Motivation of InstructMol. Though confidence is crucial for pseudo-label selection and this selection
reduces pseudo-label error rates, NNs’ poor calibration renders this solution insufficient. Explicitly,
incorrect predictions in poorly calibrated NNs can also have high confidence (i.e., ŷ⋆i → 0 or
ŷ⋆i → 1) [38]. More importantly, prior studies such as UPS [38] resort to the target model’s output ŷi
as the confidence indicator and produce hard labels by y⋆i = 1 [ŷ⋆i ≥ γ1] or y⋆i = 1 [ŷ⋆i ≤ γ2], where
γ1 and γ2 are pre-defined thresholds. Nonetheless, this selection mechanism becomes inapplicable if
Y is a continuous label space, as networks no longer output class probabilities. For regression tasks,
ŷ⋆i discloses no confidential information, and numerous biochemical problems are regression-based,
including molecular property prediction [43–45], 3D structure prediction [46], and binding affinity
prediction [47]. This brings a challenge for probabilistic output-based proxy-labeling algorithms [38].
Thus, instead of depending on ŷ⋆i to judge proxy labels’ reliability, we accompany the target molecular
model f with an additional instructor model g, which plays the role of a critic and predicts label
observability, i.e., whether the label is true or fake. g disentangles the confidence prediction and the
property prediction, reducing the noise introduced by the pseudo-labeling process.

4 Method

The Overall Instructive Learning Framework. We separate the integral workflow of InstructMol
into two phases. In the first step, we retain pseudo-labels {ŷ⋆i }

M
i=1 = f

(
{x̂⋆

i }
M
i=1

)
. There are several

approaches to creating proxy labels, such as label propagation via neighborhood graphs [48]. Here,
we require the molecular model f to directly annotate samples in the unlabeled dataset D⋆. Then,
in the following step, we construct a new dataset with both labeled and pseudo-labeled samples as
D′ = D ∪ {(x⋆

i , ŷ
⋆
i )}

M
i=1 and proceed training both the target molecular model f and the instructor

model g based on this new set. These two procedures are iteratively repeated until f reaches the
optimal performance on the validation set Dval.

To be specific, the instructor model g : (X × Y × Hf ) → P forecasts the confidence measure
pi (0 ≤ p ≤ 1) of whether the given label y′i belongs to the ground-truth label set {yi}Ni=1 or the
pseudo-label set {y⋆i }

M
i=1. It digests three items: the data sample with its label (x′

i, y
′
i) ∈ D′ and an

additional loss termHf (f(x
′
i), y

′
i), whereHf is traditionally selected as a root-mean-squared-error

(RMSE) loss or a mean-absolute-error (MAE) loss for regression tasks and cross-entropy (CE) loss
for classification problems. Here we regard Hf (.) as the ingredient of g’s input to provide more
information about the main molecular property prediction task. At last, the instructor model g is
supervised via a binary CE loss (BCE) as:

Lg

(
D′, {ŷ′i}N+M

i=1

)
=

∑
(x′

i,y
′
i)∈D′

BCE(p′i, ci) =
∑

(x′
i,y

′
i)∈D′

BCE
(
g
(
x′
i, y

′
i,Hf (ŷ

′
i, y

′
i)
)
, ci

)
, (1)

where ci ∈ [0, 1] is an integer and represents the observability mask. It indicates whether yi is
pseudo-labeled (ci = 0) or not (ci = 1). However, since the number of unlabeled data M is much
larger than the number of labeled data N , it is proper to shift the loss function from BCE to a
focal loss [49] (FL) for unbalanced classes as: Lg

(
D′, {ŷ′i}

N+M
i=1

)
=

∑
(x′

i,y
′
i)∈D′ FL(p′i, ci) =∑

(x′
i,y

′
i)∈D′ −(1− p′i)

γ log(p′i), where γ ≥ 0 is a tunable focusing parameter.

Meanwhile, the target molecular model f receives the discriminative information {pi}N+M
i=1 from the

instructor model g and uses it to reweight the importance of different samples in backpropagating
its gradient. In other words, the instructor model g guides the target model f to deliver different
attention to different labels so that correct labels are attached more importance while erroneous labels
are ignored. This can be realized by specially designing the loss of the target model f as:

Lf

(
D′, {pi}N+M

i=1

)
= α

∑
(xi,yi)∈D

Hf (f(xi), yi) +
∑

(x⋆
j ,ŷ

⋆
j )∈D⋆

(2pj − 1) · Hf

(
f
(
x⋆
j

)
, ŷ⋆j

)
, (2)

where 0 ≤ α ≤ 1 is a hyper-parameter to balance the dominance of labeled and unlabeled data
sets. Lf (.) transforms the original main task into a cost-sensitive learning problem [50] by imposing
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Algorithm 1 InstructMol Algorithm

1: Input: target model f , instructor model g, labeled data D, unlabeled data D⋆, pseudo-label
update frequency k, loss weight α

2: Initialize and pretrain a target model f0 and an instructor model g0
3: for epochs n = 0, 1, 2, ... do
4: if n mod k == 0 then
5: With no gradient:
6: ŷ⋆i ← f(x⋆

i ), ∀x⋆
i ∈ D⋆ ▷ Iteratively assign pseudo-labels every k epochs

7: end if
8: D′ ← D ∪ {(x⋆

i , ŷ
⋆
i )}

M
i=1 ▷ Construct the hybrid database

9: ŷ′i ← f(x′
i) ∀x′

i ∈ D′

10: pi ← g(x′
i, y

′
i,Hf (.)), ∀(x′

i, y
′
i) ∈ D′ ▷ Predict the confidence scores

11: Lg

(
D′, {ŷ′i}

N+M
i=1

)
← Equation 1

12: Lf

(
D′, {pi}N+M

i=1

)
← Equation 2

13: Update the parameters of f and g based on Lg(.) and Lf (.)
14: end for

a group of soft-labeling weights based on the predicted confidence of data labels. That is, for
pseudo-labeled samples (i.e., x′

j ∈ D⋆), the soft-labeling weight becomes 2pj − 1.

This loss format in Equation 2 induces different behaviors on the lossHf (.) of labeled and pseudo-
labeled instances, where the judgment {pi}N+M

i=1 produced by the instructor model g is leveraged to
differentiate their informativeness. Notably, if the instructor model g regards a pseudo-label ŷ⋆j to
be unreliable (i.e., 0.5 > pj > 0), the loss Lf (.) chooses to enlarge the gap with the pseudo-label
ŷ⋆j . Meanwhile, once the instructor g fully trusts the pseudo-label ŷ⋆j , InstructMol forces the target
molecular model f to give more effort to inferring this proxy-labeled sample. Generally, the more
likely a pseudo-label ŷ⋆j is considered reliable by the instructor model g (i.e., pj → 1), the stronger it
drives the target molecular model f to make further improvement on inferring this label ŷ⋆j . Otherwise,
InstructMol will push f to overturn its previous belief if pj → 0. Noticeably, we can also impose
a soft-labeling weight for samples with true labels (i.e., x′

i ∈ D). For instance, a weight factor of
α ≥ 1 can navigate f to concentrate more on samples that are more trusted by g. But we practically
discover no significant refinement with this design on labeled data and leave it for future exploration.
The whole pseudo-code of InstructMol is depicted in Algorithm 1.

Loss Selection for InstructMol. We compare some relevant methods from the literature under
the proxy-labeling SSL algorithms in Appendix Tab. 6, containing the vanilla proxy-labeling (PL),
curriculum learning for PL (CPL) [51], UPS, and self-interested coalitional learning (SCL) [52]. It is
structured in three main columns that describe the selection for unlabeled samples, loss function, and
fitness for regression problems. Except for SCL and InstructMol, all approaches adopt a subset of
unannotated instances for training rather than utilizing the entire unlabeled datasets. SCL can take
advantage of all data points from D⋆, but its main limitation is its improper or even severely wrong
loss function design. As the confidence score is close to 1, SCL assigns a strong negative multiplier
factor as 1 − α

1−pj
→ −∞ and forces the target model f to disregard this label, which is actually

reliable. On the contrary, when the instructor model g doubts the reliability of ŷ⋆j , the ratio 1− α
1−pj

becomes 1− α, driving the target model f to move towards it.

Guidelines for InstructMol. Before executing InstructMol, it is natural to first obtain a well-trained
molecular target model f0 through regular supervised learning on D and then initialize an instructor
g0 by discriminating pseudo-labels that are generated by f0. This is empirically proven to achieve
higher training stability and robustness. Moreover, pseudo-labels are assigned every k epoch and a
proper setting of k is critical to the success of InstructMol. If pseudo-labels are updated too frequently,
the training procedure will be volatile at the very beginning. While a too-large k would significantly
increase the training complexity. Here we adopt an adaptive decay strategy: with an initial value k0,
the update frequency decreases by a factor of 0.5 until it reaches the minimum threshold kmin = 3.

Analysis of InstructMol. After the curation of D′, there are two distinct learning tasks during the
second stage of InstructMol. Specifically, the target model follows the regular routine to predict
the molecular properties. Meanwhile, the instructor model strives to differentiate whether the label
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Table 1: Performance of three distinct ML models with different SSL methods on nine molecular
property prediction tasks. For classification tasks, we calculate the ROC-AUC, while for regression
tasks, we use RMSE as the evaluation metric. The number in the bracket is the standard deviation of
three runs.

Classification (ROC-AUC %, higher is better ↑ ) Regression (RMSE, lower is better ↓)
Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER ESOL FreeSolv Lipo
# Molecules 2039 1513 1478 7831 8575 1427 1128 642 4200
# Tasks 1 1 2 12 617 27 1 1 1

GIN 65.6(0.2) 76.2(0.5) 76.1(0.5) 74.2(0.4) 61.1(0.1) 59.0(0.8) 1.955(0.023) 0.897(0.010) 0.740(0.018)
+ Semi-GAN [34] 66.1(0.3) 76.8(0.8) 76.4(0.7) 74.5(0.6) 62.0(0.2) 59.7(1.1) 1.907(0.038) 0.884(0.011) 0.725(0.026)
+ π-model [29] 66.3(0.3) 76.7(0.7) 76.5(0.7) 74.7(0.6) 62.3(0.2) 59.8(1.0) 1.895(0.040) 0.881(0.013) 0.710(0.024)
+ UPS [38] 67.0(0.4) 78.1(0.8) 77.3(0.6) 75.2(0.7) 66.1(0.8) 62.4(1.6) – – –
+ InstructMol 70.5(0.5) 83.3(0.8) 86.2(0.6) 76.6(0.3) 67.0(1.1) 64.2(1.2) 1.771(0.015) 0.839(0.018) 0.652(0.040)

GAT 64.8(0.1) 77.9(0.3) 69.3(0.3) 72.2(0.4) 61.7(0.1) 55.9(0.6) 2.069(0.011) 0.866(0.009) 0.813(0.022)
+ Semi-GAN [34] 64.9(0.2) 78.1(0.5) 69.6(0.4) 72.3(0.4) 61.9(0.3) 56.2(0.7) 2.017(0.034) 0.852(0.017) 0.802(0.025)
+ π-model [29] 65.3(0.2) 78.5(0.4) 69.7(0.6) 72.6(0.3) 62.2(0.4) 56.5(0.8) 1.959(0.046) 0.847(0.021) 0.780(0.029)
+ UPS [38] 67.2(0.6) 80.4(0.5) 74.9(1.2) 74.1(1.0) 65.7(1.5) 59.3(1.4) – – –
+ InstructMol 68.1(0.4) 82.5(1.1) 77.3(1.0) 74.8(0.8) 66.4(1.7) 60.8(1.5) 1.862(0.017) 0.825(0.013) 0.738(0.028)

GCN 62.4(0.1) 73.8(0.4) 76.3(0.2) 73.6(0.1) 64.5(0.7) 61.2(0.6) 2.245(0.014) 0.842(0.011) 0.756(0.015)
+ Semi-GAN [34] 62.6(0.2) 74.0(0.6) 76.6(0.3) 74.0(0.2) 64.8(0.9) 61.5(0.9) 2.198(0.015) 0.835(0.019) 0.744(0.018)
+ π-model [29] 62.7(0.2) 74.4(0.5) 76.6(0.4) 74.3(0.1) 65.0(1.0) 61.4(0.8) 2.146(0.020) 0.833(0.023) 0.737(0.022)
+ UPS [38] 65.8(0.4) 79.0(0.8) 82.2(0.8) 75.1(1.1) 66.5(1.9) 63.2(2.1) – – –
+ InstructMol 67.6(0.3) 80.1(1.0) 84.0(0.6) 75.7(0.9) 67.3(1.5) 64.7(1.9) 1.975(0.018) 0.811(0.020) 0.701(0.017)

Table 2: In-domain and OOD performance on the GOOD benchmark All numerical results are
averages across 3 random runs.

GOOD-HIV ↑ GOOD-PCBA ↑
scaffold size scaffold size

ID OOD ID OOD ID OOD ID OOD

ERM 82.79 69.58 83.72 59.94 33.45 16.89 34.31 17.86
IRM [57] 81.35 67.97 81.33 59.00 33.56 16.90 34.28 18.05

VREx [58] 82.11 70.77 83.47 58.53 33.88 16.98 34.09 17.79
GroupDRO [59] 82.60 70.64 83.79 58.98 33.81 16.98 33.95 17.59

DANN [60] 81.18 70.63 83.90 58.68 33.63 16.90 34.17 17.86
Deep Coral [61] 82.53 68.61 84.70 60.11 33.47 16.93 34.49 17.94

Q-SAVI [62] 82.73 70.66 84.58 59.92 33.90 16.88 34.76 17.99
Mixup [63] 82.29 68.88 83.16 59.03 30.22 16.59 30.63 17.06
DIR [64] 82.54 67.47 80.46 57.11 32.55 14.98 32.89 16.61

InstructMol 84.16 72.10 85.44 63.97 36.02 18.55 35.91 19.20

is real. Notably, some prior works embody a similar idea of jointly learning multiple tasks. For
instance, the multi-objective optimization (MOO) methods [53] exploit the shared information and
the underlying commonalities between two tasks and solve the problem by minimizing an augmented
loss. In addition, GAN [54] makes a generator and a discriminator constantly compete against each
other. Nevertheless, MOO cannot handle possible contradictions among different tasks in certain
settings, where jointly minimizing the augmented loss may impede both tasks from attaining the
global optimal [55]. While GAN has been praised for generating high-quality data, it is notoriously
difficult to train and requires a large amount of training data. More essentially, making predictions in
an adversarial manner for unlabeled data deviates from our primary goal of pseudo-labeling but is a
mature technology for domain adaptation [56].

5 Experiments

We carry out a wide scope of experiments in all contexts. Section 5.1 shows the benefits of InstructMol
in predicting molecular properties compared with various SSL learning algorithms. Section 5.2 veri-
fies the superiority of InstructMol in lowering the predictive error over existing OOD generalization
algorithms. Section 5.3 investigates the possibility of marring InstructMol with cutting-edge pretrain-
ing methods and demonstrates its potency by setting a state-of-the-art performance on MoleculeNet.
Section 5.4 analyzes pseudo-labels’ accuracy, the instructor’s behavior, and ablation studies.

5.1 Molecular Property Prediciton

Data and Setups. We first investigate the effectiveness of InstructMol on three sorts of backbone
including GCN [65], GAT [66], and GIN [67], and report their performance on the standard Molecu-
leNet [43]. Datasets are divided using scaffold splitting into training, validation, and test sets with a
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Table 3: Performance on molecular property prediction tasks, where GEM+InstructMol achieves
the best result.

Classification (ROC-AUC %, higher is better ↑ ) Regression (RMSE, lower is better ↓)
Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER ESOL FreeSolv Lipo
# Molecules 2039 1513 1478 7831 8575 1427 1128 642 4200
# Tasks 1 1 2 12 617 27 1 1 1

w.o. pretraining
D-MPNN [68] 71.0(0.3) 80.9(0.6) 90.6(0.6) 75.9(0.7) 65.5(0.3) 57.0(0.7) 1.050(0.008) 2.082(0.082) 0.683(0.016)
Attentive FP [69] 64.3(1.8) 78.4(0.02) 84.7(0.3) 76.1(0.5) 63.7(0.2) 60.6(3.2) 0.877(0.029) 2.073(0.183) 0.721(0.001)
MGCN [70] 65.0(0.5) 73.4(0.8) 90.5(0.4) 74.1(0.6) – 58.7(1.9) – – –

w. pretraining
N-GramRF [71] 69.7(0.6) 77.9(1.5) 77.5(4.0) 74.3(0.4) – 66.8(0.7) 1.074(0.107) 2.688(0.085) 0.812(0.028)
N-GramXGB [71] 69.1(0.8) 79.1(1.3) 87.5(2.7) 75.8(0.9) – 65.5(0.7) 1.083(0.082) 5.061(0.744) 2.072(0.030)
PretrainGNN [72] 68.7(1.3) 84.5(0.7) 72.6(1.5) 78.1(0.6) 65.7(0.6) 62.7(0.8) 1.100(0.006) 2.764(0.002) 0.739(0.003)
InfoGraph [73] 69.2(0.8) 73.9(2.5) 75.1(5.0) 73.0(0.7) 62.0(0.3) 59.2(0.2) – – –
GPT-GNN [22] 64.5(1.1) 77.6(0.5) 57.8(3.1) 75.3(0.5) 62.2(0.1) 57.5(4.2) – – –
GROVERbase [74] 70.0(0.1) 82.6(0.7) 81.2(3.0) 74.3(0.1) 65.4(0.4) 64.8(0.6) 0.983(0.090) 2.176(0.052) 0.817(0.008)
GROVERlarge [74] 69.5(0.1) 81.0(1.4) 76.2(3.7) 73.5(0.1) 65.3(0.5) 65.4(0.1) 0.895(0.017) 2.272(0.051) 0.823(0.010)
3D-Infomax [75] 69.1(1.1) 79.4(1.9) 59.4(3.2) 74.5(0.7) 64.41(0.9) 53.37(3.4) 0.894(0.028) 2.337(0.227) 0.739(0.009)
GraphMVP [26] 72.4(1.6) 81.2(0.9) 79.1(2.8) 75.9(0.5) 63.1(0.4) 63.9(1.2) 1.029(0.033) – 0.681(0.010)
MolCLR [25] 72.2(2.1) 82.4(0.9) 91.2(3.5) 75.0(0.2) – 58.9(1.4) 1.271(0.040) 2.594(0.249) 0.691(0.004)
Uni-Mol [76] 72.9(0.6) 85.7(0.2) 91.9(1.8) 79.6(0.5) 69.6(0.1) 65.9(1.3) 0.788(0.029) 1.620(0.035) 0.603(0.010)

GEM [24] 72.4(0.4) 85.6(1.1) 90.1(1.3) 78.1(0.1) 69.2(0.4) 67.2(0.4) 0.798(0.029) 1.877(0.094) 0.660(0.008)
GEM + InstructMol 73.3(0.8) 85.9(1.3) 92.5(2.1) 79.9(0.6) 70.8(0.4) 67.4(0.9) 0.761(0.043) 1.604(0.043) 0.582(0.010)

ratio of 8:1:1. We report the mean and standard deviation of the results for three random seeds. More
experimental details are put in Appendix A.2.

Baselines. Several SSL baselines are chosen including consistency regularization, proxy-label
methods, and generative models. π-model [29] applies different stochastic transformations (i.e.,
dropout) to the networks instead of the input graphs. Semi-GAN [34] introduces a discriminator to
classify whether the input is labeled or not. Uncertainty-aware pseudo-label selection (UPS) [38]
leverages the prediction uncertainty to guide the pseudo-label selection procedure but is merely
applicable to classification problems.

Results. Tab. 1 shows that InstructMol significantly improves various ML architectures and outper-
forms all SSL baselines. For GIN, GAT, and GCN, it leads to an average increase in ROC-AUC of
8.6%, 7.1%, and 6.6%, respectively, for six classification tasks and an average decrease in RMSE of
9.3%, 8.0%, and 7.7% separately for three regression tasks. These statistics demonstrate our approach
effectively boosts existing ML models in low-data circumstances for molecular scaffold property
prediction, as most datasets in MoleculeNet have only thousands of labeled samples. Besides that,
more up-to-date ML models like GIN enjoy stronger benefits of our InstructMol than primitive ones
like GCN. It is also worth mentioning that InstructMol overcomes UPS’s drawbacks and can be
utilized for regression tasks. All evidence clarifies that InstructMol is a more advanced proxy labeling
algorithm than the existing SSL mechanisms with stronger virtual screening capacity and broader
applications.

5.2 OOD Generalization

Data and Setsups. Measuring OOD generalization is particularly relevant in molecular property
prediction, where distributional shifts can be large and difficult to handle for ML models. Different
molecular datasets obtained by distinct pharmaceutical companies and research groups often contain
compounds from vastly different areas of chemical space that exhibit high structural heterogeneity.
Towards this goal, we leverage the Graph Out-of-Distributio (GOOD) benchmark [77], where GOOD-
HIV is a small-scale dataset for HIV replication inhibition and GOOD-PCBA includes 128 bioassays
and forms 128 binary classification tasks. They are divided into a training set, an in-domain (ID)
validation set, an ID test set, and OOD test sets by covariate and concept shift splits.

Baselines. The empirical risk minimization (ERM) and several OOD algorithms are considered.
IRM [57] searches for data representations that perform well across all environments by penalizing
feature distributions with different optimal linear classifiers for each environment. VREx [58] targets
both covariate robustness and the invariant prediction. GroupDRO [59] tackles the problem that the
distribution minority lacks sufficient training. DANN [60] adversarially trains the regular classifier
and a domain classifier to make features indistinguishable. Deep Coral [61] encourages features
in different domains to be similar by minimizing the deviation of covariant matrices from different
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Figure 3: The scatter plot of the distributions of LogP predictions for unlabeled data with and without
InstructMol. The first row includes predictions before instructive learning, and the second row
includes predictions after instructive learning.

domains. Q-SAVI [62] encodes explicit prior knowledge of the data-generating process into a prior
distribution over functions. DIR [64] and Mixup [63] are two graph-specific OOD methods.

Results. Tab. 2 documents the statistics, where most OOD algorithms have comparable performance
with ERM. The risk interpolation methods like GroupDRO and the risk extrapolation mechanisms like
VREx perform favorably against others on multiple shift splits. In contrast, InstructMol significantly
exceeds ERM and other OOD baselines in all circumstances. Specifically, InstructMol brings
improvements of 2.40%, 2.05%, 7.68%, and 4.69% for GOOD-HIV and GOOD-PCBA’s different ID
splits, and 3.62%, 6.72%, 9.83%, and 7.51% for GOOD-HIV and GOOD-PCBA’s different OOD
splits. It can be seen that gains for OOD are greater than benefits for ID, indicating the promise of
pseudo-labeling to tackle OOD generalization.

5.3 SSL with Self-supervised Learning

Setups and Background. Pretraining and SSL are not mutually exclusive but can collaborate for
more robust scientific investigations [78]. So we design a two-step workflow: (1) In the pretraining
stages, unlabeled data is first used in a task-agnostic way, and we attain more general molecular
representations. Then, those general representations are adapted for a specific task for fine-tuning. (2)
In the instructive learning stage, unlabeled data is used again in a task-specific way via InstructMol.
We combine GEM [24] and InstructMol and examine their joint effectiveness on MoleculeNet.

Baselines. Multiple baselines are selected for a thorough comparison. D-MPNN [68], MGCN [70]
and AttentiveFP [69] are supervised GNN methods. N-gram [71], PretrainGNN [72], InfoGraph [73],
GPT-GNN [22], GROVER [74], 3D-Infomax [75], GraphMVP [26], MolCLR [25], and Uni-Mol [76]
are pretraining methods. We adopt the same scaffold splitting strategy as GEM and Uni-Mol with
three repeated runs.

Results. The overall performance of InstructMol based on GEM and other baseline methods is
summarized in Tab. 3. InstructMol achieves new SOTA results on all MoleculeNet tasks and brings
an average improvement of 4.35%. Notably, its benefits are much stronger for regression tasks with a
mean decrease of 9.98% in RMSE. Another set of results on MoleculeNet with a different splitting
method is in Appendix Tab. 5, where InstructMol also outperforms all baselines. This highlights
the necessity and importance of leveraging unlabeled examples to refine and transfer task-specific
knowledge after pretraining through instructive learning. It also implies that InstructMol is not
incompatible with existing pre-training ML models but can effectively supplement them with an
additional instructor model.
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Figure 5: The distributions of confidence scores given by the instructor model during the training
process.

5.4 Discussion, Ablation, and Other Applications

Empirical evidence of pseudo-labels’ accuracy. Pseudo-labels’ accuracy is crucial, as it reflects
InstructMol’s ability to generalize to unseen molecules. However, no ground-truth annotations exist
for unlabeled data across the mentioned tasks. To address this issue, we adopt partition-coefficient
values (LogP) as the target. A key predictor of drug-likeness featured in the famous "Lipinski’s rule
of five," LogP can quickly screen large libraries of potential therapeutics using computational tools
like XLogP. We utilize a public Kaggle dataset of 14.6k molecules with associated LogP values for
training and evaluate the predictions on the much larger ZINC15, whose LogP is computed using
RDKit. Furthermore, measurements often number in the tens rather than thousands in the low-data
regime of drug discovery. To assess InstructMol’s limits, we significantly reduce the training size
and investigate its efficacy with only 0.1%, 0.5%, 1%, 5%, and 10% of the entire training samples,
resulting in scaffold-split training sets of 14, 73, 146, 730, and 1,326 molecules, respectively.

Fig. 3 compares the LogP prediction distributions before and after instructive learning. It can
be observed that DL models trained solely on labeled data perform poorly in estimating unseen
molecules’ LogP with an average RMSE of 5.63. Contrarily, InstructMol enables a pretty accurate
prediction of LogP with an average RMSE of 0.63 even with a very limited number of training
examples, verifying the robustness of pseudo-labels.

Figure 4: The influence of unlabeled
data size on four tasks.

Ablation Studies. We further investigate the effects of
the number of unannotated molecules on the performance
of InstructMol. As shown in Figure 4, the enrichment
of unlabeled data consistently brings benefits to various
downstream tasks.

Real-world Drug Discovery. We retrieved the lat-
est patent ZA202303678A targeting the 5-HT1A recep-
tor to examine IntructMol in real-world applications.
ZA202303678A is published after 2023, and the prop-
erty test standards of new compounds in ZA202303678A
are consistent with those recorded in the CHEMBL214_Ki
dataset [79]. All 9 new small molecule drugs are
marked as good binders by InstructMol. Since the patent
ZA202303678A provides accurate ground truth values of
Ki through wet experiments, we compare the predicted
values with the real ones as shown in Appendix 7. It can
be observed that the errors are, at most, within four times, and most predicted results are close to real
values. Among them, predicted Ki of (S)-5-FPT (Ground truth: Ki = 4, Prediction: Ki = 3.71),
(S)-5-NaT (Ground truth: Ki = 64, Prediction: Ki = 61.86), (S)-5-CPPT (Ground truth: Ki = 0.6,
Prediction: Ki = 0.93), and (S)-5-FPyT (Ground truth: Ki = 1.3, Prediction:Ki = 1.29) is almost
equal to actual Ki obtained from biological experiments.
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Figure 6: The distribution of the predictions of labeled data and unlabeled data generated by the
target model during different training stages.

Instructor model’s Behavior. The instructor estimates the target model’s uncertainty. Therefore,
thoroughly evaluating its judgment and contribution is beneficial. Here, we analyze its output value
distribution on labeled and unlabeled data in different training stages of an activity cliff estimation task
(CHEMBL214_Ki). The plots in Fig. 5 demonstrate the transition of an instructor model. Notably,
since we pretrain the instructor before SSL, it performs well in distinguishing fake labels but remains
confused with real ones. From the first iterations to 10K iterations, the instructor gradually gains
a stronger capacity to discriminate true labels (confidence score→ 1.0) and fake ones (confidence
score→ 0.0). Taking a step further, we draw the distribution of the target model’s output in Fig. 6
and show a significant overlap between predictions of labeled and unlabeled data. This undoubtedly
excludes the hypothesis that the instructor discriminates labeled and unlabeled data simply based
on distinct distributions of their predictions. Even though predictions of labeled and unlabeled data
are highly similar, the instructor still succeeds in comprehending their uncertainty and guides the
target model to leverage pseudo-labels more cautiously. The instructor model’s interpretability is a
byproduct of our InstructMol and can be useful for many real-world biochemical problems. Here we
give the relevant appendix figures cited in the manuscript.

6 Conlcusion

This paper presents InstructMol, a novel instructive learning framework, to alleviate the difficulty of
experimentally obtaining the ground truth properties of molecular data and to overcome the limitation
of the small number of labeled biochemical data points. InstructMol sufficiently cutting-edge
pretraining methods for molecular representation, and addresses essential real-world problems.

Limitations. Despite the great progress of InstructMol in achieving enhanced molecular learning
capacity, there are still minor limitations that require future exploration. For instance, our combination
of InstructMol with self-supervised mechanisms is based on existing methodologies such as GEM,
Uni-Mol, and GROVE. It is interesting to develop a more suitable self-supervised learning algorithm
that can be better aligned with InstructMol.
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(No.62402351), the Hubei Provincial Natural Science Foundation of China (No.2024AFB275), and
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Appendices
Appendix A Experimental Setups

A.1 Unlabeled Data

We use the ZINC15 [80] database to collect unlabeled molecular data, which can be downloaded
from DeepChem [81]. There are four different data sizes supported by ZINC15: 250K, 1M, 10M,
and 270M. For MoleculeNet, we utilize the 1M molecules as the unlabeled dataset. Those unlabeled
SMILES are then converted by RDKit [82] into 2D graphs. We expect future work to enrich the
unlabeled corpus by leveraging other resources such as ChemBL [83], Chembridge, and Chemdiv.

A.2 Molecular Property Predictions

Dataset Description. We conduct experiments on the MoleculeNet [43] to examine the effica-
ciousness of our algorithm for molecular property prediction. It is a widely used benchmark and we
include 9 datasets in the main text, which are described as follows:

• BBBP. The blood-brain barrier penetration (BBBP) dataset contains binary labels of blood-
brain barrier penetration (permeability).

• BACE. The BACE dataset provides quantitative (IC50) and qualitative (binary label) binding
results for a set of inhibitors of human β-secretase 1 (BACE-1).

• ClinTox. The ClinTox dataset compares drugs approved by the FDA and those that have
failed clinical trials for toxicity reasons.

• Tox21. The “Toxicology in the 21st Century” (Tox21) initiative created a public database,
which contains qualitative toxicity measurements on 12 biological targets, including nuclear
receptors and stress response pathways.

• Toxcast. ToxCast is another data collection (from the same initiative as Tox21) providing
toxicology data for a large library of compounds based on in vitro high-throughput screening,
including experiments on over 600 tasks.

• SIDER. The Side Effect Resource (SIDER) is a database of marketed drugs and adverse
drug reactions (ADR), grouped into 27 system organ classes.

• ESOL. ESOL is a small dataset consisting of water solubility data (log solubility in mols
per liter) for common organic small molecules.

• FreeSolv. The Free Solvation Database (FreeSolv) provides experimental and calculated
hydration-free energy of small molecules in water.

• Lipo. Lipophilicity is an important feature of drug molecules, which affects both membrane
permeability and solubility. This dataset provides experimental results of octanol/water
distribution coefficient The Free Solvation Database (FreeSolv) provides(logD at pH 7.4).

Data Split. In our experiment, we follow the previous work GEM [24] and Uni-Mol [76] and adopt
the scaffold splitting to divide different datasets into training, validation, and test sets with a ratio of
80%, 10%, and 10%. It has been widely acknowledged that scaffold splitting is more challenging
than random splitting because the scaffold sets of molecules in different subsets do not intersect [76].
This splitting tests the model’s generalization ability and reflects the realistic cases [43], and [76] find
that whether or not chirality is considered when generating the scaffold using RDKit has a significant
impact on the division results. The performance of different methods in Table 1 all follows the same
scaffold splitting, where MolCLR is reproduced. In all experiments, we choose the checkpoint with
the best validation loss and document the results on the test set run by that checkpoint.

Implementation Details. In our experiments for molecular property prediction, we utilize 4 A100
GPUs and an Adam Optimizer [84] with a weight decay of 1e-16 for all GNN models, i.e., GCN,
GAT, and GIN. A ReduceLROnPlateau scheduler is employed to automatically adjust the learning
rate with a patience of 10 epochs. Before the SSL stage, we first pretrain the target molecular model
via supervised learning for 100 epochs and then pretrain the instructor model for 50 epochs, where an
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early stopping mechanism is utilized with a patience of 5 epochs. Similar to GEM [24], we normalize
the property label by subtracting the mean and dividing the standard deviation of the training set. As
for the performance of baselines, we copy all available results from GEM [24], Uni-Mol [76] and
3D-Infomax [75].

As for the reproduction of three SSL methods, Semi-GAN is modified from https://github.com/
opetrova/SemiSupervisedPytorchGAN. π-model is transformed from a simple Tensorflow-based
version at https://github.com/geosada/PI. UPS is directly modified from its official GitHub
at https://github.com/nayeemrizve/ups.

Hyperparameter Search Space. Referring to prior studies, we adopt a grid search to find the
best combination of hyperparameters for the molecular property prediction task. To reduce the time
cost, we set a smaller search space for the large datasets (e.g., ToxCast). We report the details of the
hyperparameter setup of InstructMol in Table 4.

Table 4: Hyperparameters setup for InstructMol in molecular property prediction.
Hyperparameters Search Space Symbol Value

Training Setup
Epochs – [100, 200, 300]
Batch size – [32, 64, 128]
Learning rate – [1e-4, 5e-5, 1e-6, 5e-6]
Warmup ratio – [0.0, 0.05, 0.1]
The initial update frequency k0 [5, 10, 20]
Unlabeled data size – [1K, 10K, 100K, 250K]
Balance weight for Uulabeled data and labeled data α [0.01, 0.05, 0.1, 0.2, 0.3, 0.5]
GNN Architecture
Dropout rate – [0.2, 0.4]
Number of GNN layers – [2, 3, 4, 5, 6]
The hidden dimension of node representations – [32, 64, 128, 256, 512]
The hidden dimension of edge representations – [64, 128, 256]
Number of heads in GMT – [4, 8 ,12]
Hidden dimension in GMT – [64, 128, 256, 512]
Number of fully-connected layers – [1, 2]

A.3 LogP Value Prediction

The Kaggle dataset for LogP prediction is downloaded from https://www.kaggle.com/
datasets/matthewmasters/chemical-structure-and-logp?resource=download.

Appendix B Additional Experiments

B.1 Performance for Random Scaffold Splitting

We additionally execute experiments using the random scaffold splitting on the classification datasets
following the same experimental setting used in GROVE [74], which is much easier than the standard
scaffold splitting used in our main text. As shown in Table 5, our findings notice that GEM blended
with InstructMol also achieves stronger results than all baselines. The baseline results are copied
from GROVE and GEM.

Appendix C Comparison among Proxy-labeling Algorithms

Here we provide a clear and simple comparison between InstructMol and existing proxy-labeling
approaches in Table 6.
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Table 5: Comparison of performance on the molecular property prediction tasks, where a random
scaffold splitting is adopted.

Classification (ROC-AUC %, higher is better ↑ )

Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER Avg.
# Molecules 2039 1513 1478 7831 8575 1427 –
# Tasks 1 1 2 12 617 27 –

w.o. pretraining
D-MPNN 91.9(3.0) 85.2(5.3) 89.7(4.0) 82.6(2.3) 71.8(1.1) 63.2(2.3) 80.7
Attentive FP 90.8(5.0) 86.3(1.5) 93.3(2.0) 80.7(2.0) 57.9(0.1) 60.5(6.0) 78.3

w. pretraining
N-GramXGB 91.2(1.3) 87.6(3.5) 85.5(3.7) 76.9(2.7) – 63.2(0.5) –
PretrainGNN 91.5(4.0) 85.1(2.7) 76.2(5.8) 81.1(1.5) 71.4(1.9) 61.4(0.6) 77.8
GROVERbase 93.6(0.8) 87.8(1.6) 92.5(1.3) 81.1(1.5) 72.3(1.0) 65.6(0.6) 82.3
GROVERlarge 94.0(1.9) 89.7(2.8) 94.4(2.1) 81.9(2.0) 72.3(1.0) 65.8(2.3) 83.4
GEM 95.3(0.7) 92.5(1.0) 97.7(1.9) 83.1(2.5) 73.7(1.0) 66.3(1.4) 85.2

GEM + InstructMol 95.8(1.4) 93.2(1.6) 97.8(2.0) 83.7(3.0) 74.2(1.3) 67.0(1.8) 85.3

Table 6: Comparison over different literature under the proxy-labeling framework.
Method Unlabeled Sample Selection Loss Function Reg.

Vanilla PL 1 [ŷ⋆i ≥ γ1] + 1 [ŷ⋆i ≤ γ2] Hf

(
f
(
x⋆
j

)
, ŷ⋆j

)
No

CPL 1 [ŷ⋆i ≥ γ1(e)] + 1 [ŷ⋆i ≤ γ2(e)] Hf

(
f
(
x⋆
j

)
, ŷ⋆j

)
No

UPS 1 [u(ŷ⋆i ) ≤ µ1]1 [ŷ
⋆
i ≥ γ1] + 1 [u(ŷ⋆i ) ≤ µ2]1 [ŷ

⋆
i ≤ γ2] Hf

(
f
(
x⋆
j

)
, ŷ⋆j

)
No

InstructMol All Samples from D⋆ (2pj − 1) · Hf

(
f
(
x⋆
j

)
, ŷ⋆j

)
Yes

C.1 Discovery of Drug-like Molecules

It should be noted that these 9 new small molecules are highly similar in structures, but IntructMol
successfully and confidently differentiates their bioactivity based on their geometries. In addition to
that, most experienced medicinal chemists also believe that the two sets of data within 10 times are
manipulable and can be recognized as accurate prediction results. The error range of InstructMol’s
results for the prediction of small molecule properties of new compounds further proves the potential
of our model in predicting essential properties of activity cliffs molecular and can effectively get
aware of subtle changes in the presence of bioactivity cliffs.
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Figure 7: The Ki value prediction results of the 9 newly discovered small molecules of 5-HT1A
receptor.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have elaborated that our study is located in the
molecular representation learning field. The main contribution of our paper is to propose an
instructive learning technique to leverage the massive unlabeled molecular data, especially
when the labeled points are scarce.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Appendix, we claim the potential limitation of our work.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: At the beginning of the Appendix, we have stated clearly the experimental
setting, including the datasets used in the main text, the split strategy, and the training details.
We also elaborated how we tuned the hyperparameters to achieve the optimal performance.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Notably, all data used in the paper are public datasets, which are easily
accessibly from the Internet. Regarding the code for reproducing the results, we are very
pleased to release it once our paper is accepted by the conference.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: At the beginning of the Appendix, we have stated clearly the experimental
setting, including the datasets used in the main text, the split strategy, and the training
details. We also elaborated on how we tuned the hyperparameters to achieve the optimal
performance.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the experiments, we have repeated the trials multiple times and reported the
mean and standard deviations at all tables and relevant figures.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: As mentioned in the Appendix, all experiments were implemented on 4 A100
GPUs with a memory of 80G. Notably, it took us around one week to complete the training
process.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have strictly adhered to the NeurIPS Code of Ethics. We promise that we
did not reveal any kind of non-anonymous information in the submission.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We have described clearly which version of data that we used for experiments
and cited them correctly.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether IRB approvals (or an equivalent
approval/review based on the requirements of your country or institution) were obtained?
Answer: [NA]
Justification: [NA]
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