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Abstract

Recently, differentiable mask pruning methods optimize the continuous relaxation
architecture (soft network) as the proxy of the pruned discrete network (hard net-
work) for superior sub-architecture search. However, due to the agnostic impact
of the discretization process, the hard network struggles with the equivalent repre-
sentational capacity as the soft network, namely discretization gap, which severely
spoils the pruning performance. In this paper, we first investigate the discretization
gap and propose a novel structural differentiable mask pruning framework named
S2HPruner to bridge the discretization gap in a one-stage manner. In the training
procedure, S2HPruner forwards both the soft network and its corresponding hard
network, then distills the hard network under the supervision of the soft network. To
optimize the mask and prevent performance degradation, we propose a decoupled
bidirectional knowledge distillation. It blocks the weight updating from the hard to
the soft network while maintaining the gradient corresponding to the mask. Com-
pared with existing pruning arts, S2HPruner achieves surpassing pruning perfor-
mance without fine-tuning on comprehensive benchmarks, including CIFAR-100,
Tiny ImageNet, and ImageNet with a variety of network architectures. Besides, in-
vestigation and analysis experiments explain the effectiveness of S2HPruner. Codes
are publicly available on GitHub: https://github.com/opposj/S2HPruner.

1 Introduction

As deep neural networks (DNN) have achieved success in substantial fields [20, 58, 35, 61, 49],
the increasing computation and storage cost of DNN impedes practical implementation. Model
pruning [39, 57, 62], which aims at removing the less informative in a cumbersome network, has
been a widespread technique for model compression. Pioneer pruning methods utilize regularization
terms [63, 43] to sparsify the network or introduce importance metrics [30, 19, 18] to remove
less important weights directly. However, due to the latent correlations between weights, simply
eliminating the weights in an over-parameter model will hinder the integrality of structure, especially
in structural pruning, where grouped filters are removed.

Recently, it has been pointed out that the structure of the pruned network is essential for the final
pruning performance [40]. Inspired by the differentiable architecture search (DARTS) [36, 67,
7], emerging works [15, 17, 16], namely differentiable mask pruning (DMP), introduce learnable
parameters to generate the weight mask and impose the task-aware gradient to guide the structure
search of the pruned network. In the training procedure, DMP introduces the learnable mask into the
gradient graph by coupling the mask with the activation feature or weights, e.g., directly multiplying
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Figure 1: Comparison of different typical pruning methods and illustration of discretization gap. The
darker color represents the higher relative magnitude scale of weights or masks. ⊙ denotes Hadamard
product. For ease of demonstration, we use one layer to represent the entire network.

the mask with the feature or weights. Through gradient descent, DMP can jointly optimize the
weights and mask parameters for a bespoke structure and parameter distribution, thus causing a better
performance. The search procedure essentially regards the mask-coupled network (soft network) as
the performance proxy of the final discretized compact pruned network (hard network). Whereas,
considering the aim of pruning is to obtain a capable hard network, a natural question is whether a
superior soft network implies a corresponding high-performance hard network.

In DARTS, there is a problem known as the discretization gap [66, 60, 7], which refers to the
discrepancy between the continuous relaxation architecture and the discrete architecture due to the
discretization process. Since DMP follows a similar modeling format to DARTS, it also faces a
comparable discretization gap problem† that the hard network struggles from having the semblable
representational capacity as the soft network. A specific manifestation is that the hard network
performs significantly poorer in the evaluation metrics than the soft network. Fig. 1 visually exhibits
the different pruning methods and discretization gap. The discretization gap severely impacts pruning
performance but has been long overlooked in DMP. There are potential techniques that may alleviate
the discretization gap in previous works, e.g., gradually facilitating the steepness of the Sigmoid
function via decaying temperature [26, 27, 44, 50] and optimizing the binary mask via the straight-
through estimator (STE) [65, 15]. However, these methods lead to certain side effects: the decaying
temperature results in difficult mask optimization because of the vanishing gradient, and STE causes
a suboptimal mask due to the coarse gradient.

To alleviate the discretization gap in DMP without influencing mask optimization, we formulate
the mask pruning in a soft-to-hard paradigm and propose a structured differentiable mask pruning
framework named Soft-to-Hard Pruner (S2HPruner). Specifically, in the training procedure, we
not only forward the soft network for the structural search but also forward the corresponding hard
network and distill it under the supervision of the soft network to reduce the discretization gap.
Meanwhile, we discover that even with the same corresponding hard network, the distribution of the
mask parameters influences the discretization gap essentially. However, the common unidirectional
knowledge distillation (KD) cannot optimize mask parameters directly, but bidirectional KD causes
unbearable performance degradation. Therefore, we propose a decoupled bidirectional KD, which
blocks the weight updating from the hard to the soft network while keeping the gradient corresponding
to the mask. Exhaustive experiments on three mainstream classification datasets, including CIFAR-
100, Tiny ImageNet, and ImageNet, demonstrate the effectiveness of S2HPruner.

Our contributions are summarised as follows:

• We first study and reveal the long-standing overlooked discretization gap problem in dif-
ferentiable mask pruning. To alleviate it, we propose a soft-to-hard distillation paradigm,
which distills the hard network under the supervision of the soft network.

• Based on the soft-to-hard knowledge distillation paradigm, we propose a novel differentiable
mask pruning framework named Soft-to-Hard Pruner (S2HPruner). To further reduce the

†To avoid confusion, the discretization gap discussed following is in the context of DMP.
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discretization gap and avoid performance degradation, we propose a decoupled bidirectional
KD which blocks and allows the gradient of model weights and mask parameters selectively.

• Extensive experiments on three mainstream datasets and five architectures verify the supe-
riority of S2HPruner, e.g., maintaining 96.17%(Top-1 accuracy 73.23% in 76.15%) with
around 15% FLOPs. Additional ablation and investigation experiments demonstrate the
underlying mechanism of the effectiveness.

2 Related works

2.1 Differentiable mask pruning

Considering the network structure has a decisive impact on the pruning performance [40], numerous
works [15, 12] train a binary mask for an optimal selection of sub-architecture. However, because
of the non-differentiable property, directly optimizing the binary mask is very challenging and even
impairs the performance [26]. Differently, differentiable mask pruning (DMP) methods [17, 9, 4,
27, 44] adopt differentiable continuous relaxation as a performance proxy of the hard network for
structure search, which can be easily optimized by task-aware loss end-to-end. DMCP [17] regards
the channel pruning as a Markov process and builds a differentiable mask based on the transitions
between states. AutoPruner [44] proposes to construct a meta-network to generate the differentiable
mask according to the activation responses, and a scaled temperature facilitates the sigmoid function
approaching step function to obtain an approximate binary mask. GAL [34] learns a differentiable
mask by optimizing a generative adversarial learning task in a label-free and end-to-end manner.
However, the task-aware loss can ensure the high performance of the soft network but not the final
hard network. There is a discretization gap limiting the target hard network during the discretization
process. Different from previous DMP methods, which only focus on optimizing the soft network,
our approach aims to achieve a high-performance hard network by reducing the discretization gap
through soft-to-hard distillation.

2.2 Pruning with distillation

As a network compression technique orthogonal to pruning, knowledge distillation [22, 28, 52] (KD)
transfers the dark knowledge from a large teacher network to enhance a compact student network.
Recently, there have been substantial works [46, 47, 3, 32, 10] introducing KD into model pruning to
further boost the pruned network. JMC [10] proposes a structured pruning based on the magnitude
of weights and a many-to-one layer mapping strategy to distill the dense model to the pruned one.
KD ticket [46] exploits the dark knowledge in the early stage of iterative magnitude pruning to boost
the lottery tickets in the dense model. DIPNet [72] improves the ability of the pruned model by
the supervision of high-resolution output. The above methods treat KD as an independent plug-in
technique to enhance pruning performance without tight coupling with the selection of weights.
Differently, in the proposed method, KD contributes to mask optimization directly as an integral part
of the core pruning procedure. Moreover, in contrast to the typical unidirectional KD, we propose a
novel decoupled bidirectional KD to alleviate the discretization gap between soft and hard networks,
due to the distinct attributes of mask and weights.

3 Method

3.1 Problem formulation

Given a network with parameters θ, a pruning algorithm generates a binary mask m via solving the
following constraint optimization:

min
θ,m
L (θ ⟨m⟩) s. t. R (m, T ) = 0. (1)

The θ ⟨m⟩ are the remaining parameters after pruning. The L and R are the task-specific perfor-
mance loss and resource regularization, respectively. The T is a manually assigned resource budget.
Intuitively, a pruning algorithm attains a slimmed subnet that optimally balances the performance and
the resource consumption.

3
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Figure 2: The proposed pruner’s forward and backward flows, illustrated via an exemplary linear
layer with parameters θ. The u are the additional learnable parameters normalized by softmax. The
w denotes the relaxed mask. The estimated binary pruning mask is the m̂. The input is denoted by
i. The output of the soft and hard networks are the s and h, respectively. The L, G, and R are the
performance loss, gap measure, and resource regularization, respectively.

3.2 Overview

Directly optimizing the problem 1 is almost intractable due to the discreteness of m. To get around,
we introduce a relaxation of m as w, which is continuous and bounded to [0, 1]. The i-th element
in w represents the probability of the i-th parameter being retained. Consequently, a differentiable
representative for θ ⟨m⟩ can be constructed as θ ⊙w, where the ⊙ denotes the Hadamard product.
Based on this relaxation, the problem 1 can be reformulated as two parts:

Part 1: min
θ,w

(L (θ ⊙w) + αR (w, T )),

Part 2: min
θ,w
G (θ ⟨m̂⟩ ,θ ⊙w) .

(2)

The α is a Lagrangian multiplier, regarded as a hyperparameter. The G is a gap measure, reflecting
the difference between θ ⟨m̂⟩ and θ ⊙w. The m̂ is an estimated pruning mask, derived from w as
I[t,1] (w), where the I is an indicator function, and the t is a threshold. In the problem 2, the first part
searches for a high-performance soft network that satisfies the resource constraint, and the second
part reduces the gap between the hard network and the soft one. Similar to [36, 33], to avoid alternate
optimization, we combine the two parts with two additional hyperparameters β and γ:

min
θ,w

(βL (θ ⊙w) + αβR (w, T ) + γG (θ ⟨m̂⟩ ,θ ⊙w)). (3)

The problem 3 is differentiable w.r.t. both θ and w, thus can be optimized by gradient-based
methods [41, 54]:

∆θ = −λθ

(
βgL→θ⊙w→θ + γgG→θ⟨m̂⟩→θ + γgG→θ⊙w→θ

)
,

∆w = −λw

(
βgL→θ⊙w→w + αβgR→w + γgG→θ⊙w→w

)
.

(4)

The λθ and λw are learning rates for θ and w, respectively. The gX denotes the gradient obtained
via a backward path X . Note that the term gG→θ⊙w→θ implies aligning the soft network towards the
hard one, which would severely deteriorate the performance of the soft network (see Section 4.2 for
details). Consequently, the update of θ is modified to:

∆θ = −λθ

(
βgL→θ⊙w→θ + γgG→θ⟨m̂⟩→θ

)
. (5)

The essence of the above optimization lies in two aspects: 1) the joint optimization of the entire
parameters θ ⊙w and a dynamic subset of parameters θ ⟨m̂⟩ benefits from stimulative training [68],
where the entire parameters transfer knowledge to the partial ones, and the improvement of the partial
parameters can, in turn, enhance the entire ones; 2) the optimization of w involves the soft-to-hard
gap, which provides a new dimension to bridge the gap besides adjusting the parameters. The pseudo-
code describing the whole training process can be referred to in Algorithm 1, and a visualization of
the forward/backward passes is provided in Fig. 2.

4
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Algorithm 1: The training pseudo-code based on Pytorch automatic differentiation

Input: Initialized θ0 and w0, iteration limit imax, dataset D, network forward function N ,
resource budget T , performance metric L, resource regularizationR, gap measure G,
pruning threshold t, gradient-based optimizer O, hyperparameters α, β, and γ

Output: θimax and m̂imax = I[t,1]
(
wimax

)
1 i← 0;
2 while i < imax do
3 Fetch a sample x with its label y from D;
4 ys ← N

(
θi ⊙wi

)
; // The forward pass of the soft network

5 yh ← N
(
θi

〈
I[t,1]

(
wi

)〉)
; // The forward pass of the hard network

6 l← L (ys,y); r ← R
(
wi, T

)
;

7 d1 ← G (yh,ys.detach ()); d2 ← G (yh.detach () ,ys);
8

(
gL→θ⊙w→θ, gL→θ⊙w→w, gR→w

)
← (l + r) .backward ();

9 gG→θ⟨m̂⟩→θ ← d1.backward ();
10 gG→θ⊙w→w ← d2.backward

(
inputs = wi

)
;

11 θi+1 ← O
(
i,θi, βgL→θ⊙w→θ + γgG→θ⟨m̂⟩→θ

)
; // Eq. 5

12 wi+1 ← O
(
i,wi, βgL→θ⊙w→w + αβgR→w + γgG→θ⊙w→w

)
; // Eq. 4

13 i← i+ 1

3.3 Implementation details

We focus on dependency-group-based structural pruning [6, 14], where layers in the same group
share a single mask and are pruned as a whole. Besides, the pruning mask is channel-wise to comply
with the structural pattern. The performance metric L is the cross-entropy for classification. The
Kullback-Leibler divergence is selected as the gap measure G.

Acquisition of w and t Consider a linear layer parameterized by θ ∈ RCout×Cin . The correspond-
ing binary pruning mask is denoted as m ∈ BCout . To generate w, we define learnable parameters
u ∈ RCout , which can be normalized to [0, 1] via a softmax function. After softmax, the i-th element
in u can be interpreted as the probability of retaining the first i channels. Consequently, the probabil-
ity of the i-th channel being retained, i.e., wi, can be calculated as

∑Cout

k=i uk. With the w obtained,
the pruning threshold t is derived as 1

Cout

∑Cout

k=1 wk.

Resource regularization We utilize floating-point operations per second (FLOPs) to evaluate
resource consumption. Given a target T (in percentage), the resource regularizationR is defined as
(FPsoft /FPall−T )2. The FPall is the FLOPs of the entire network. The FPsoft is the summation
of layer-wise differentiable FLOPs. To be differentiable, the output channel number of a layer is
calculated as

∑Cout

k=1 (uk ∗ k). The uk is a softmaxed parameter introduced in the previous section.

4 Experiments

In this section, we begin by validating the effectiveness of the proposed pruner using three bench-
mark datasets: CIFAR-100 [29], Tiny ImageNet [11], and ImageNet [11]. For CIFAR-100 and
Tiny ImageNet, we evaluate three common CNN architectures, i.e., ResNet-50 [20], MobileNetV3
(MBV3) [24], and WRN28-10 [73], and two Transformer architectures, i.e., ViT [61] and Swin Trans-
former [37], across various pruning ratios including 15%, 35%, and 55%. For ImageNet, ResNet-50
serves as the backbone model, and we compare the proposed pruner with several structural pruning
methods in terms of Top-1 accuracy and FLOPs. After the benchmarking, investigative experiments
are performed on CIFAR-100 using ResNet-50 to elucidate the influence of each gradient term in
Algorithm 1 and the gap-narrowing capacity of the proposed pruner. Detailed training configurations
are provided in the Appendix.
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Table 1: The comparison of different pruning methods on CIFAR-100. We report the Top-1 accu-
racy(%) of dense and pruned networks with different remaining FLOPs.

Method ResNet-50 (Acc: 78.14) MBV3 (Acc: 78.09) WRN28-10 (Acc: 82.17)
15% 35% 55% 15% 35% 55% 15% 35% 55%

RST-S [1] 75.02 76.38 76.48 72.90 76.78 77.30 78.56 81.18 82.19
Group-SL [14] 49.04 77.90 78.37 1.43 4.90 26.24 42.41 67.71 79.59
OTOv2 [6] 77.04 77.65 78.35 76.29 77.35 78.39 77.26 80.61 80.84
Refill [5] 75.12 77.43 78.19 69.57 75.91 76.96 75.98 79.25 79.56
Ours 79.77 79.87 80.10 77.28 78.17 78.87 80.88 81.81 82.55

Table 2: The comparison of different pruning methods on Tiny ImageNet. We report the Top-1
accuracy(%) of dense and pruned networks with different remaining FLOPs.

Method ResNet-50 (Acc: 64.28) MBV3 (Acc: 63.91) WRN28-10 (Acc: 61.72)
15% 35% 55% 15% 35% 55% 15% 35% 55%

RST-S [1] 63.03 63.24 64.78 55.13 61.26 62.76 58.03 61.41 62.12
Group-SL [14] 0.95 19.94 55.49 0.56 2.35 53.43 0.85 25.74 57.64
OTOv2 [6] 60.38 63.45 65.16 57.61 59.25 60.16 57.19 61.23 61.70
Refill [5] 61.05 64.14 65.02 53.87 61.84 62.49 56.64 61.83 62.22
Ours 67.02 67.38 67.64 62.49 65.11 65.54 61.83 62.46 63.44

Table 3: Verifications of transformers on CIFAR-100. We report the Top-1 accuracy(%) of dense and
pruned networks with different remaining FLOPs.

Method ViT (Acc: 76.49) Swin (Acc: 77.16)
15% 35% 55% 15% 35% 55%

RST-S [1] 70.74 72.05 74.65 70.53 72.98 75.25
Ours 72.61 75.53 76.49 75.29 75.79 76.69

4.1 Benchmarking

Results on CIFAR-100 and Tiny ImageNet To assess the performance of the proposed pruner and
demonstrate its adaptability to various networks, we conduct experiments using CIFAR-100 and Tiny
ImageNet datasets, with ResNet-50, MBV3, and WRN28-10 serving as the backbone architectures.
For each dataset-network combination, we test three different FLOPs: 15%, 35%, and 55%. We
compare the proposed pruner against structured RST [1] (referred to as RST-S), Group-SL [14],
OTOv2 [6], and Refill [5]. All methods are evaluated under consistent training settings for a fair
comparison. The results, presented in Table 1 and Table 2, reveal that the proposed pruner consistently
outperforms other methods, particularly at low FLOPs. For instance, when constraint with 15%
FLOPs, the proposed pruner maintains high accuracy, with gains of up to 2.73% on CIFAR-100 and
3.99% on Tiny ImageNet over the next best method.

To further validate the generalizability of the proposed pruner, we apply it to two typical Transformer
models, ViT [61] and Swin Transformer [37]. Similar to the CNN experiments, we test these models
on CIFAR-100 with FLOPs targets of 15%, 35%, and 55%. The results, shown in Table 3, indicate
that the proposed pruner outperforms RST-S for both Transformer models across all FLOPs targets.
Notably, at 55% FLOPs, the ViT pruned by the proposed method does not suffer any performance
loss, and the Swin Transformer merely experiences a slight performance drop of 0.47%. The results
demonstrate that while the proposed pruner is not explicitly designed for Transformers, it still achieves
competitive results, highlighting its significant potential for pruning Transformer models.

Results on ImageNet We further assess the performance of the proposed pruner on the prevalent
ImageNet-1K benchmark. The ResNet-50 is chosen as the baseline network. Table 4 shows that, for
similar FLOPs, the proposed pruner consistently suffers the least accuracy drop compared to others,
underscoring the effectiveness of the proposed pruner. In the particularly challenging low FLOPs
range of 10% to 20%, the proposed pruner stands out, achieving a top-1 accuracy of 73.23%, which
is 3.13% higher than OTOv2, while maintaining nearly the same FLOPs (around 15%).

4.2 Gradient analysis

To investigate the influence of each gradient term in Algorithm 1, we conduct experiments with some
of the terms disabled to observe the impact on the final performance. The results are shown in Table 5.
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Table 4: Results of ResNet-50 on Imagenet. We report the Top-1 accuracy(%) of dense and pruned
networks with different remaining FLOPs. The Epr denotes the pruning epochs. The Eex denotes the
epochs for extra stages (such as pretraining and finetuning). The pruning epochs can be undetermined
due to dynamic termination conditions, and corresponding terms are marked as “-".

Method Unpruned top-1 (%) Pruned top-1 (%) Top-1 drop (%) FLOPs (%) Epr Eex

OTOv2 [6] 76.10 70.10 6.00 14.50 120 0
Refill [5] 75.84 66.83 9.01 20.00 95 190
Ours 76.15 73.23 2.92 15.14 200 0
MetaPruning [38] 76.60 73.40 3.20 24.39 32 128
Slimmable [71] 76.10 72.10 4.00 26.63 100 0
GAL [34] 76.15 69.31 6.84 27.14 32 122
DMCP [17] 76.60 74.40 2.20 26.80 40 100
ThiNet [45] 72.88 68.42 4.46 28.50 110 90
OTOv2 [6] 76.10 74.30 1.80 28.70 120 0
GReg-1 [62] 76.13 73.75 2.38 32.68 - 180
GReg-2 [62] 76.13 73.90 2.23 32.68 - 180
CAIE [64] 76.13 72.39 3.74 32.90 - 120
Ours 76.15 74.43 1.72 25.31 200 0
CHIP [53] 76.15 75.26 0.89 37.20 - 270
OTOv2 [6] 76.10 75.20 0.90 37.30 120 0
GReg-1 [62] 76.13 74.85 1.28 39.06 - 180
GReg-2 [62] 76.13 74.93 1.20 39.06 - 180
Refill [5] 75.84 72.25 3.59 40.00 95 190
ThiNet [45] 72.88 71.01 1.87 44.17 110 90
GBN [69] 75.85 75.18 0.67 44.94 10 130
GAL [34] 76.15 71.80 4.35 45.00 32 122
SCOP [59] 76.15 75.26 0.89 45.40 140 90
AutoPrune [65] 74.90 74.50 0.40 45.46 60 90
SCP [27] 75.89 75.27 0.62 45.70 100 100
FPGM [21] 76.15 74.83 1.32 46.50 100 0
LeGR [8] 76.10 75.30 0.80 47.00 - 150
AutoSlim [70] 76.10 75.60 0.50 48.43 50 100
AutoPruner [44] 76.15 74.76 1.39 48.78 32 120
MetaPruning [38] 76.60 75.40 1.20 48.78 32 128
CHEX [23] 77.80 77.40 0.40 50.00 250 0
Ours 76.15 75.81 0.34 34.28 200 0
CAIE [64] 76.13 75.62 0.51 54.77 - 120
CHIP [53] 76.15 76.30 -0.15 55.20 - 270
Slimmable [71] 76.10 74.90 1.20 55.69 100 0
TAS [13] 77.46 76.20 1.26 56.50 120 120
SSS [26] 76.12 71.82 4.30 56.96 100 0
FPGM [21] 76.15 75.59 0.56 57.80 100 0
LeGR [8] 76.10 75.70 0.40 58.00 - 150
GBN [69] 75.88 76.19 -0.31 59.46 10 130
Refill [5] 75.84 74.46 1.38 60.00 95 190
ThiNet [45] 72.88 72.04 0.84 63.21 110 90
GReg-1 [62] 76.13 76.27 -0.14 67.11 - 180
MetaPruning [38] 76.60 76.20 0.40 73.17 32 128
Ours 76.15 77.01 -0.86 54.38 200 0
SSS [26] 76.12 75.44 0.68 84.94 100 0
Ours 76.15 77.53 -1.38 76.19 200 0

Note that the term gR→w is omitted from Table 5 since it is essential to satisfy the resource constraint
and is always enabled.

The addition of the term gG→θ⊙w→θ severely degrades the accuracy by 14.22%, indicating that the
gradient that aligns the soft network towards the hard one is detrimental to the final performance.
Intuitively, from the perspective of parameter capacity, the hard network is practically pruned,
resulting in a lower capacity than the soft network. Enforcing the soft network moving towards a less
capable one is not plausible.

Both of the term gL→θ⊙w→w and gG→θ⊙w→w contribute to improve the accuracy. For the term
gL→θ⊙w→w, it implies searching for a mask that maximizes the performance of the soft network. The
term gG→θ⊙w→w encourages the alignment of the soft and hard networks. Different from the term
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Table 5: The influence of different gradient components in the proposed pruning method. The FLOPs
target is set to 15% for all experiments.
gL→θ⊙w→θ gG→θ⟨m̂⟩→θ gG→θ⊙w→θ gL→θ⊙w→w gG→θ⊙w→w Top-1 Acc (%)

✓ ✓ ✓ ✓ ✓ 65.55
✓ ✓ x ✓ ✓ 79.77
✓ x x ✓ ✓ 3.95
x ✓ x ✓ ✓ 1.73
✓ ✓ x ✓ x 78.30
✓ ✓ x x ✓ 78.77
✓ ✓ x x x 77.69

Table 6: Gap comparison with alternative formulations of the problem 1. The symbols θ, θ ⊙w and
θ ⟨m̂⟩ represent the top-1 accuracy of the original, soft and hard networks, respectively.

Method JS L2
Top-1 Acc (%)

θ θ ⊙w θ ⟨m̂⟩
Alt 1 2.06e-00 2.74e-03 - - 77.13
Alt 2 5.17e-01 8.58e-04 78.35 - 77.78
Ours 1.93e-01 1.60e-04 - 80.14 79.77

gG→θ⊙w→θ, which directly imposes on massive parameters, the term gG→θ⊙w→w merely affects
the learnable masks, and thus would not drastically deteriorate the soft network while improving the
hard one.

The gradient term gG→θ⟨m̂⟩→θ and gL→θ⊙w→θ directly optimize the parameters of the hard and
soft networks, respectively, leading to crucial roles in maintaining the performance. Removing either
of the two terms results in an accuracy plummet of above 75%.

4.3 Investigation into gap

According to Section 3, we formulate the pruning problem into two parts: 1) find a superior soft
network, i.e., the network parameterized by θ ⊙w, that satisfies the resource constraint; 2) reducing
the gap between the soft network and the practically pruned one, which is referred to as a hard network
in this manuscript and parameterized by θ ⟨m̂⟩. In this section, we first provide possible alternatives
to formulate the problem 1 and then compare them with our proposed one on the gap-narrowing
capacity to demonstrate the superiority of our method.

The first alternative attempts to directly optimize the hard network on its performance, i.e., the
straight-through estimators [2]:

Alt 1 : min
w

(L (θ ⊙w) + αR (w, T )),

min
θ
L (θ ⟨m̂⟩) .

(6)

The second alternative substitutes the soft network with the original one while calculating the gap
measure, which conforms to self-distillation-based pruners [70]:

Alt 2 : min
w

(L (θ ⊙w) + αR (w, T )),

min
θ

(L (θ) + G (θ ⟨m̂⟩ ,θ)) .
(7)

Comparative experiments are conducted on CIFAR-100, using ResNet-50 as the baseline. The FLOPs
target is set to 15%. The gap metrics, i.e., the Jensen–Shannon divergence (JS) and L2 distance, are
averaged over the entire validation set. We measure the gap between the hard network and its direct
supervision. For “Alt 1", the gap metrics are calculated between the 0.1 label smoothed [56] ground
truth and the output of the hard network. For “Alt 2", the outputs of the original network and the hard
one are utilized to calculate the gap metrics. For “Ours", the outputs of the soft network and the hard
one are selected to analyze the gap.

Table 6 shows the comparison results. It can be observed that 1) a lower gap between the hard
network and its direct supervision renders the hard network better performance. With the JS reduced
from 2.06 (“Alt 1") to 0.193 (“Ours"), the top-1 accuracy of the hard network increases from 77.13%
to 79.77%; 2) Our proposed soft-to-hard formulation achieves the lowest gap on both JS and L2,
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Table 7: The top-1 accuracy of the hard network at different fine-tuning epochs. The top-1 accuracy
of the solely trained soft network before fine-tuning is 79.41%. The symbols θ ⊙ w and θ ⟨m̂⟩
represent the top-1 accuracy of the soft and hard networks, respectively.

Epoch 10 50 100 250 500

Top-1 Acc (%) θ ⊙w 79.91 80.00 80.14 79.82 79.31
θ ⟨m̂⟩ 76.42 78.89 79.07 79.49 79.46

Table 8: The top-1 accuracy of different networks pruned from ResNet-50 with a 15% FLOPs
constraint and then trained from scratch without bells and whistles.

Network Rand 1 Rand 2 Rand 3 Ours
Top-1 Acc (%) 76.46 76.64 76.96 77.65

obtaining a hard network with the highest performance. The two observations imply that the soft-to-
hard formulation is a relatively better scheme to narrow the gap, and the lower gap between the hard
network and its direct supervision helps improve the hard network’s performance.
Can fine-tuning reduce the gap? It might be questioned whether the coupled training of the soft
and hard networks is necessary. In Section 3, we entangle the two optimizations in the problem 2
to avoid alternate optimization, which turns out to be an efficient yet effective scheme according
to [36, 33]. Without the entanglement, multi-stage optimization is required. A soft network that
satisfies the resource constraint is firstly trained solely, and then a fine-tuning stage attempts to narrow
the gap between the soft network and the hard one. To explore the effect of fine-tuning, we train
a ResNet-50 on CIFAR-100, constraint to 15% FLOPs, and merely optimize the soft network for
500 epochs. With this pretrained soft network, we perform fine-tuning via Algorithm 1 with a 0.1x
learning rate and different epochs. The results can be referred to in Table 7. The fine-tuning does
reduce the gap to some extent, costing 250 epochs to align the soft network and the hard one (accuracy
difference drops from 3.49% to 0.33%). However, compared with our coupled training, the best
accuracy of fine-tuning is still 0.28% lower at the cost of an additional 250 epochs. Consequently, the
adopted coupled training turns out to be a better choice.

4.4 Architectural superiority

To demonstrate the architectural superiority of our pruned network, we conduct experiments on
CIFAR-100, prune a ResNet-50 to 15% FLOPs via our proposed method, and then train it from
scratch without bells and whistles. Three networks that are randomly pruned to 15% FLOPs are
selected for the comparison. The results are shown in Table 8. The network pruned by our method
achieves the highest accuracy, verifying that the pruning mask optimized via Algorithm 1 possesses
architectural superiority.

5 Conclusion and limitations

In this paper, we reveal and study the long-standing omitted discretization gap problem in differen-
tiable mask pruning. To bridge the discretization gap, we propose a structured differentiable mask
pruning framework named Soft-to-Hard Pruner (S2HPruner), using the soft network to distill the hard
network and optimize the mask. To further optimize the mask and avoid performance degradation, a
decoupled bidirectional KD is proposed to alternatively maintain and block the gradient of weights
and the mask. Extensive experiments verify and explain that S2HPruner can obtain high-performance
hard networks with extraordinarily low resource constraints.

It is essential to acknowledge the limitations of our method. Therefore, we identify the following
limitations: 1) The proposed method merely considers a single dimension, pruning feature channels
of a layer. However, a block containing layers might be redundant and could be pruned as a whole,
which is regarded as another pruning dimension that we do not consider in this manuscript; 2) We only
validate our method on the task of image classification. It is left to explore our method’s capability
on other tasks, such as detection, segmentation, or natural language processing; 3) We choose FLOPs
as the resource indicator, which might not ensure a hardware-friendly architecture. It is promising to
consider the inference time on a specific hardware as an indicator. Above all, the identified limitations
present opportunities for future research and development, and we remain committed to further
exploration and refinement to overcome these challenges.
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Appendix A: Details of experiments

In this section, we provide the detailed specific training settings in the main manuscript. All
experiments are conducted under the deep learning framework Pytorch [48], versioned 2.0.1 with
Python versioned 3.10. The CUDA version is 11.8. A cluster equipped with 8 NVIDIA A100 GPUs,
1024 GB memories, and 120 CPUs is used to run experiments. A single GPU is used for experiments
on CIFAR-100 and Tiny ImageNet. For Imagenet, four GPUs are paralleled to run the task.

A1. Implementation details of CIFAR-100

The CIFAR-100 dataset [29] is a classical classification dataset, which consists of 100 categories
with 50,000 training images and 10,000 testing images. For ResNet-50 [20] and MBV3 [24], we
follow the training settings in [68]. In detail, the whole training epoch number is 500, and the input
batch size is 64. We utilize the original SGD as the optimizer with a 0.05 initial learning rate and a
0.0003 weight decay. The cosine decay schedule is utilized to adapt the learning rate throughout the
training process. For WRN28-10 [73], we follow the training settings of [73]. In detail, the epoch
number and batch size are 200 and 128, respectively. The SGD is chosen as the optimizer with a 0.1
initial learning rate and a 0.0005 weight decay. The learning rate scheduler is also the cosine decay
schedule. For ViT [61] and Swin Transformer [37], we use an image size of 32x32 and a patch size
of 4. The epoch number and batch size are 200 and 128, respectively. The optimizer is AdamW [42]
with an initial learning rate of 0.001/0.003 for Swin/ViT and a 0.05 weight decay. The learning rate
is warmed up for 10 epochs. The data augmentations are the same as the ones in [31]. Different
from CNNs, where we regard the channel numbers of convolutional and linear layers as the width
dimension, to prune the width of Transformers, we take the head numbers (ViT) or head feature
dimensions (Swin) of attention layers and the channel numbers of linear layers into account.

A2. Implementation details of Tiny ImageNet

The Tiny ImageNet dataset is derived from the renowned ImageNet dataset [11], comprising 200
categories, 100,000 training images, and 10,000 test images. For the ResNet-50 [20] and MBV3 [24]
models, we employ 500 epochs and a batch size of 64. The optimization is performed using SGD
with an initial learning rate of 0.1 and a weight decay of 0.0003. We utilize a step-wise learning rate
scheduler, reducing the learning rate to 0.1 and 0.01 of the original at the 250th and 375th epochs,
respectively. For the WRN28-10 [73] architecture, we adopt the training settings from [51], with 200
epochs and a batch size of 128. The SGD optimizer is used with an initial learning rate of 0.2 and a
weight decay of 0.0001. The learning rate is decreased in a step-wise manner, dropping to 0.1 and
0.01 of the initial value at the 100th and 150th epochs, respectively.

A3. Implementation details of ImageNet

The ImageNet dataset [11] is a widely used classification benchmark, containing 1,000 categories,
1.2 million training images, and 50,000 testing images. For the evaluated ResNet-50 [20], the epoch
number and batch size are 200 and 512, respectively. We utilize SGD as the optimizer. The learning
rate is initialized as 0.2 and is controlled by a cosine decay schedule. The weight decay is 0.0001.
Besides, we apply the commonly used data augmentations according to [25, 55].

A4. Hyperparameters α, β, and γ

To determine the hyperparameters in Algorithm 1, we utilize a dynamic balancing scheme based on
the L2 norm of gradients. Specifically, the gL→θ⊙w→w and gG→θ⊙w→w are firstly normalized by
their own L2 norms before being added together. The addition result is then aligned with gR→w
via being scaled to the L2 norm of gR→w. For gL→θ⊙w→θ and gG→θ⟨m̂⟩→θ, no balancing is
applied. The two terms are added with fixed coefficients. For CNNs, the coefficients are 0.5 and 5
for gL→θ⊙w→θ and gG→θ⟨m̂⟩→θ, respectively. For Transformers, the coefficients are 1 and 1 for
gL→θ⊙w→θ and gG→θ⟨m̂⟩→θ, respectively. The coefficient for gR→w is set to 5.
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Appendix B: Trajectory of FLOPs and accuracy

In this section, the FLOPs and accuracy trajectory is provided to display the pruning procedure of
S2HPruner visually. We conduct experiments on five different models, including ResNet-50 [20],
MobileNetV3 (MBV3) [24], WideResNet28-10 [73], ViT [61], and Swin Transformer [37] on
CIFAR-100. The results are shown in Fig. 3 and as the training epoch increases, our methods can
fast converge the capacity of the hard network to the target FLOPs. However, it does not mean the
mask optimization is finished. It can be seen that the performance of the robust network is steadily
improving. It suggests that after entering the feasible region, S2HPruner consistently explores
the possible structure and exploits the optimal architecture. Moreover, although applied to five
unique architectures, S2HPruner obtains similar trajectories, which demonstrates the generalization
of S2HPruner.
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Figure 3: The trajectory of FLOPs and accuracy. We report the accuracy and FLOPs of the hard
network during the training of different models, including (a) ResNet-50 (b) MobileNetV3 (c)
WideResNet28-10 (d) ViT (e) Swin Transformer on CIFAR-100.

Appendix C: Visualization of pruning process

We report the detailed output channel variation of different five networks during pruning visually. The
results are shown in Fig 5, 6,7, 8, 9. The target FLOPs is set to 15%. It is worth noting that because
the mask is dependent on the dependencies groups where layers all have the same output channels,
we report the index of dependencies groups as the index of layers, which does not correspond to
the raw definition completely. It can be observed that the channel variation is disparate between
different layers, which implies our method is not restricted to trivial solutions such as uniform channel
distribution. Combined analysis with Fig. 3, we can observe that although the FLOPs satisfies the
constraints, our method is not caught in loafing but can consistently explore the structure space to find
the optimal architecture. A similar phenomenon also exists in all five networks, which demonstrates
the generalization of the proposed method.

Appendix D: The architecture of the pruned network

We provide the architecures of our pruned networks in Fig. 4. The pruned networks are obtained
via using Algorithm 1 on CIFAR-100 with a 15% FLOPs target. It can be observed from Fig. 4 that
different pruned network varies in architecture pattern. For example, convolutional neural networks
(CNNs), i.e., ResNet-50, MBV3, and WRN28-10 may prefer deeper layers. The retained channels are

15

116561 https://doi.org/10.52202/079017-3700



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Layer Index

0

250

500

750

1000

1250

1500

1750

2000

Ou
tp

ut
 C

ha
nn

el
 N

um
be

r

24/64 24/64

32/256

24/64 24/64 24/64 24/64
48/128 56/128

72/512

56/128 56/128 56/128 56/128 56/128 56/128

112/256 120/256

152/1024

120/256 120/256 120/256 120/256 120/256 120/256 120/256 112/256 120/256 112/256

232/512 232/512

576/2048

240/512 240/512 240/512 240/512

Retained
Pruned

(a) ResNet-50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Layer Index

0

200

400

600

800

1000

1200

Ou
tp

ut
 C

ha
nn

el
 N

um
be

r

20/64 4/24
12/72 36/72

10/18 12/40
32/120

10/30
24/120

12/30

30/240

15/80

40/20046/18446/184

150/480

40/12042/112

210/672

60/168

168/672

60/16850/160

180/960

45/240

180/960

45/240

360/960

640/1280
Retained
Pruned

(b) MBV3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layer Index

0

100

200

300

400

500

600

Ou
tp

ut
 C

ha
nn

el
 N

um
be

r

56/160 56/160 56/160 56/160 56/160

136/320 128/320 128/320 128/320 120/320

288/640 272/640 272/640 264/640 272/640
Retained
Pruned

(c) WRN28-10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Layer Index

0

50

100

150

200

250

300

350

400

Ou
tp

ut
 C

ha
nn

el
 N

um
be

r

96/192 48/192

200/384

64/192

96/384

48/192

96/384

48/192

96/384

64/192

96/384

64/192

104/384

48/192

104/384

64/192

104/384

64/192

104/384
Retained
Pruned

(d) ViT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Layer Index

0

100

200

300

400

500

600

700

800

Ou
tp

ut
 C

ha
nn

el
 N

um
be

r

40/96 30/96

64/192

30/96

64/192 104/192 60/192

152/384

60/192

120/384

60/192

112/384

60/192

112/384

60/192

120/384

72/192

152/384 176/384 120/384

272/768

120/384

264/768

120/384

232/768

120/384

224/768
Retained
Pruned

(e) Swin

Figure 4: The architectures of networks, including (a) ResNet-50 (b) MobileNetV3 (c) WideResNet28-
10 (d) ViT (e) Swin Transformer, pruned via our proposed method on CIFAR-100. The target FLOPs
is set to 15%.
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concentratively distributed in the post-half layers. Different from CNNs, Transformers, i.e., ViT, and
Swin seem not to exhibit an obvious preference for layer depth. The pruning pattern of the shallow
layers is almost uniform with that of the deep layers.

Table 9: The pruning results obtained via training a ResNet-50 on CIFAR-100 with different random
seeds using our proposed method. We report the Top-1 accuracy and FLOPs.

Exp #1 #2 #3 #4
Top-1 Acc (%) 79.77 79.68 79.80 79.75
FLOPs (%) 15.36 15.22 15.94 15.21

Table 10: Training efficiency comparison with different methods. For a fair comparison, double-epoch
training results of other methods are included.

RST-S Depgraph OTO v2 IMP-Refill Ours
Top-1 Acc (%) (1x training schedule) 75.02 49.07 77.04 75.12 79.77
Top-1 Acc (%) (2x training schedule) 75.54 50.83 77.21 75.66 -
GPU time per epoch (s) 44.50 70.97 79.36 74.12 50.13
Peak GPU memory (MB) (training) 4329 4319 4221 4261 4710
Peak GPU memory (MB) (inference) 1351 1365 1262 1329 1279

Appendix E: Robustness against randomness

To assess the consistency of our proposed pruning method, we target a 15% reduction in FLOPs using
ResNet-50 as the base model on the CIFAR-100 dataset. Four independent runs with varying random
seeds are conducted, and the results are presented in Table 9. The pruned networks consistently
achieved comparable performance, with negligible variations in Top-1 accuracy (less than 0.1%
deviation) and FLOPs (less than 1% deviation). These findings validate the robustness of our
proposed method, indicating that the resource consumption of the pruned network is expected and its
performance is reliable.

Appendix F: Training efficiency

To investigate the training efficiency of the proposed method, we compare its training time to
other established pruning methods in Table 10. Using ResNet-50 on the CIFAR-100 dataset, our
experiments reveal that the proposed method achieves exceptional performance while maintaining a
competitive training time, ranking second-shortest among the tested methods. This efficiency stems
from the inherent parallelism of the soft and hard networks. The forward and backward passes of the
soft and hard networks can be executed simultaneously, leveraging the power of CUDA streams or
multi-GPU parallelism. Furthermore, our method operates in a single stage, eliminating the need for
sequential fine-tuning or iterative pruning, further contributing to its time efficiency. To isolate the
impact of forward/backward pass counts, we extended the training epochs of other methods two-fold
to match our method’s counts. Despite this, the performance of these methods plateaued, indicating
that simply increasing training time does not guarantee improved pruning results. This underscores
the inherent advantages of our method.

Besides, the GPU memory costs during training and inference are also reported in Table 10. During
training, our method costs bearable (about 10%) more GPU memories than the average of other
methods due to the additional learnable masks and the mask state buffers in the optimizer. During
inference, the GPU memory costs merely depend on the scale of the pruned network. As the FLOPs
target is set to 15% for all the methods, there is no significant difference in GPU memory costs.
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Figure 5: The detailed channel variation of ResNet-50 on CIFAR-100 during training. The target
FLOPs is set to 15%. The horizontal axis represents the training iterations. The vertical axis represents
the output channel number.
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Figure 6: The detailed channel variation of MobileNetV3 on CIFAR-100 during training. The
target FLOPs is set to 15%. The horizontal axis represents the training iterations. The vertical axis
represents the output channel number.
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Figure 7: The detailed channel variation of WideResNet28-10 on CIFAR-100 during training. The
target FLOPs is set to 15%. The horizontal axis represents the training iterations. The vertical axis
represents the output channel number.
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Figure 8: The detailed channel variation of ViT on CIFAR-100 during training. The target FLOPs is
set to 15%. The horizontal axis represents the training iterations. The vertical axis represents the
output channel number.
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Figure 9: The detailed channel variation of Swin Transformer on CIFAR-100 during training. The
target FLOPs is set to 15%. The horizontal axis represents the training iterations. The vertical axis
represents the output channel number.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Check the abstract and Section 1 for details.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Check Section 5 for details.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed methods and configurations can be queried in Section 3 and Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The code will be released soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Check Section 3 and Section 5 for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide results under different random seeds. See Section 5 for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5 and Section 5 for details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully read the code of ethics and ensure that the research conducted
in the paper conforms with it in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No societal impact is involved in this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is not relevant to such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and code frameworks are mentioned and properly respected. See
Section 5 for details.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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