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Abstract

In this study, we aim to reduce generation latency for Named Entity Recognition
(NER) with Large Language Models (LLMs). The main cause of high latency
in LLMs is the sequential decoding process, which autoregressively generates
all labels and mentions for NER, significantly increase the sequence length. To
this end, we introduce Parallel Decoding in LLM for NER (PaDeLLM-NER),
a approach that integrates seamlessly into existing generative model frameworks
without necessitating additional modules or architectural modifications. PaDeLLM-
NER accelerates decoding by simultaneously generating all mentions at once,
i.e., a label-mention pair per sequence. This results in shorter sequences and
faster inference. Experiments reveal that PaDeLLM-NER significantly increases
inference speed that is 1.76 to 10.22 times faster than the autoregressive approach
for both English and Chinese. Concurrently, it maintains the prediction quality as
evidenced by the micro F-score that is on par with the state-of-the-art approaches
under both zero-shot and supervised setting. All resources are available at https:
//github.com/GeorgeLuImmortal/PaDeLLM_NER.

1 Introduction

Named Entity Recognition (NER), a fundamental task in Natural Language Processing (NLP), aims to
extract structured information from unstructured text data. This includes identifying and categorizing
key elements such as Organization, Geopolitical Entity and so on (referred to as “labels”) in inputs,
and pairing them with relevant text spans extracted from the text (termed “mentions”). Conventionally,
NER tasks are carried out through an extractive paradigm that entails token-level classification and
the subsequent extraction of identified tokens [1, 2].

Recent advancements in Large Language Models (LLMs) [8–13] have revolutionized numerous
foundational tasks in NLP, including NER tasks [3–7, 14–17], through the adoption of a generative
paradigm. This paradigm involves instruction-tuning a sequence-to-sequence (seq2seq) model.
The model takes a sequence of unstructured text as input and produces a sequence of structured
label-mention pairs as output. Generally, the output structured string should be formatted to meet
two criteria: (1) it should have a clear and straightforward structure that facilitates post-processing
for label and mention extraction, and (2) it needs to be generated fluidly and efficiently from the
perspective of language models [18].
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Variant Input Unstructured Text Output Structured Label-mention String

Augmented Language [3, 4] Japan, co-hosts of the World Cup in 2002
and ranked 20th in the world by FIFA, are
favourites to regain their title here.

[Japan | LOC], co-hosts of the [World Cup |
MISC] in 2002 and ranked 20th in the world
by [FIFA | ORG], are favourites to regain
their title here.

Structured Annotation [5–7] Cuttitta announced his retirement after the
1995 World Cup , where he took issue with
being dropped from the Italy side that faced
England in the pool stages.

((PER): (Cuttitta), (MISC): (1995 World
Cup), (LOC): (Italy), (LOC): (England),
(ORG): (NULL))

Table 1: Structured output string format used in the literature. The examples come from CoNLL2003
dataset.

In Table 1, we list two typically used autoregressive output formats found in the literature : (1)
accommodate original input text to contain label information, which is referred to as “augmented
language” [3, 4]; (2) directly using a customized, easily-parsed structured format to output all
labels and mentions, which is called “structured annotation” [5–7]. These formats present certain
challenges. For example, augmented language necessitates duplicating all original input text, thereby
increasing output length and resulting in inference inefficiency. While structure annotation avoids
replicating the entire input, it produces all labels and mentions in an autoregressive manner. This
implies that each subsequently generated pair depends on its preceding pairs, and when the number
of label-mention pairs is large, it will lead to longer sequences. As demonstrated in Chen et al.
[19], Ning et al. [20], high latency in LLMs mainly stems from lengthy sequence generation, we
believe that by reducing the length of sequence, a more efficient inference scheme can be provided
for NER tasks.

In light of this, we propose Parallel Decoding in LLM for NER (PaDeLLM-NER), a novel approach
to accelerate the inference of NER tasks for LLMs. PaDeLLM-NER empowers the model with the
capability to predict a single label-mention pair within a single sequence, subsequently aggregating
all sequences to generate the final NER outcome. Specifically, in the training phase, we reconstruct
the instruction tuning tasks, enabling LLMs to predict the count of mentions for a specific label and to
identify the nth mention within the entire input for that label (Figure 1). In the inference phase, LLMs
first predict the number of mentions for all labels, then predict all label-mention pairs in parallel
(Figure 2). Finally, results from all sequences are aggregated and duplicate mentions across labels
are eliminated based on prediction probability. This approach results in a more efficient inference
method, producing shorter sequences and enabling parallel decoding label-mention pairs in batches.

Comprehensive experiments have been conducted, demonstrating that PaDeLLM-NER effectively
reduces the number of tokens produced in each sequence, thereby decreasing inference latency.
Additionally, it maintains or even enhances prediction quality in both flat and nested NER for English
and Chinese languages, compared to existing methods in the literature under both zero-shot and
supervised setting. To conclude, our contributions are as follows:

• We present PaDeLLM-NER, a novel approach tailored for NER using LLMs. This approach
can predict all label-mention pairs in parallel, effectively reducing inference latency.

• Extensive experiments have been conducted, revealing that PaDeLLM-NER significantly
improves inference efficiency. By completely decoupling the generation of label-mention
pairs, the average sequence length is reduced to around 13% of that produced by conventional
autoregressive methods. Correspondingly, the inference speed is 1.76 to 10.22 times faster
than these previous approaches.

• Comprehensive experiments demonstrate that, in addition to its enhanced prediction speed,
PaDeLLM-NER also maintains or surpasses the prediction quality of conventional autore-
gressive methods, on par with state-of-the-art (SOTA) performance on many NER datasets,
including zero-shot as well as the supervised scenarios.

To the best of our knowledge, our technique stands as a pioneering approach in accelerating NER
inference in LLMs by parallel decoding all label-mention pairs. This unique characteristic makes
it complementary to other inference acceleration methods such as LLM.int8() [21] and speculative
sampling [22, 23]. Thus, it can be efficiently integrated with these methods.
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entity type:\nPER\n\n<num> 1\n<mention 1>Cuttitta<eos>

entity type:\nMISC\n\n<num> 1\n<mention 1>1995 World Cup<eos>

entity type:\nLOC\n\n<num> 2\n<mention 1>Italy<eos>

entity type:\nLOC\n\n<num> 2\n<mention 2>England<eos>

entity type:\nORG\n\n<num> 0<eos>

text:\n

Cuttitta 

announced his 

retirement after 

the 1995 World 

Cup , where he 

took issue with 

being dropped 

from the Italy 

side that faced 

England in the 

pool stages.\n

Input: unstructured text and a target label Output: count of mentions and the nth mention

An training example

Figure 1: PaDeLLM-NER training paradigm: texts within frames of the same color represents one
training example, where texts inside the solid-line frame are the input, and those inside the dashed-line
frame are the output. Italic texts are prompt templates. The “entity type” signifies the label being
predicted. The “<num>” indicates count of mentions for that label, and “<mention n>” refers to the
nth mention of a label in the input.

2 Related Work

2.1 Generative Models for NER

Before the era of LLMs, most research approached NER as a sequence labeling task, where each
token is assigned a pre-defined tag (e.g., BIO scheme). In this line of work, usually pre-trained
transformer-based language models [1, 2] is combined with a tailored prediction head to perform a
token-level classification, followed by the extraction of identified tokens.

Encouraged by the success of unifying multiple NLP tasks into a single seq2seq paradigm [24, 25],
especially with the evolution of LLMs [10, 13, 26, 27], the trend of applying seq2seq models to NER
tasks is gaining momentum [28], with both inputs and outputs being represented as sequences of
text [3–7]. Recently, the focus of work on NER using LLMs has shifted towards zero-shot [29, 30] or
few-shot learning [4, 18, 31, 32], utilizing in-context learning [18, 32], self-consistency [29, 33] or
learning programming [30, 34].

Unlike previous studies emphasizing few-shot performance with training-free prompt learning, our
work focus on a fully supervised setting. More importantly, our primary objective is to speed up NER
inference.

2.2 Inference Speedup in LLMs

Modern LLMs employ a sequential decoding strategy for token generation, which poses a significant
challenge in terms of parallelization, especially as model size and sequence length increase [20].
There is plenty of work in the literature to address this challenge [35–38]. One line of work falls into
training-free category such as introducing extra modules for speculative sampling [22, 23]. Another
approaches explore modifying model architecture to accelerate inference, such as exiting at earlier
layer [39, 40], or designing entirely different training and inference mechanisms [41–43]. Different
from previous works, we focus on exploring the inference speedup in LLMs with a focus on the NER
task without the change of model architecture or introducing extra modules.

3 Method

In this section, we delve into the details of PaDeLLM-NER. First, we focus on reframing the
instruction tuning tasks as outlined in Section 3.1. Second, we explore the two-step inference
process, detailed in Section 3.2. Finally, we discuss the aggregation of results and the technique for
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entity type:\nMISC\n\n<num>

entity type:\nLOC\n\n<num>

entity type:\nORG\n\n<num>

text:\n
Cuttitta 
announced his 
retirement after 
the 1995 World 
Cup , where he 
took issue with 
being dropped 
from the Italy 
side that faced 
England in the 
pool stages.\n

PaDeLLM
NER

2\n

2\n

0<eos>

<mention 1>

<mention 2>
PaDeLLM

NER

<mention 1>

<mention 2>

1995 World Cup<eos>

Italy<eos> 

Italy<eos> 

England<eos> 

Prob: 0.99

Prob: 0.98

Prob: 0.61

Prob: 0.99

De-dup

Step 1: predict the count of mentions Step 2: predict the nth mention and deduplicate

entity type:\nPER\n\n<num>

1\n <mention 1> Cuttitta<eos> Prob: 0.90

Figure 2: PaDeLLM-NER inference paradigm: texts enclosed in frames with identical colors indicate
sequences of the same label. Specifically, the texts within solid-lined frames represent the added
templates, while those within dashed-lined frames denote the prediction. In Step 1, the model predicts
the number of mentions for all labels while in Step 2, it predicts the mentions. By aggregating
mentions and labels from all sequences, the final NER results are obtained. Duplicate mentions
appearing in different labels are resolved using prediction probabilities.

eliminating duplicate mentions across labels, which is elaborated in Section 3.3. An illustration of
PaDeLLM-NER is shown in Figure 1 and Figure 2.

3.1 Reframing of Instruction Tuning

Illustration of the reframing is presented in Figure 1. As an example, we use a case from the
CoNLL2003 dataset including four labels: person (PER), miscellaneous (MISC), location (LOC), and
organization (ORG). The specifics of the input text and the corresponding ground truth are provided
in the second row of Table 1.

During reformulation, a single unstructured text containing all label-mention pairs is split into several
sequences. Each new sequence’s output includes the count of mentions for a specified label (denoted
as “entity type”), followed by the nth mention of that label (denoted as “<mention n>”). Note
that the count of mentions and their respective indices are represented using corresponding digit
tokens from the LLM’s vocabulary. Specifically, if there are no mentions, the model is trained to
immediately predict the “<eos>” token, bypassing the need to predict mentions.

Therefore, in this example, one original training data is transformed into five new training data
entries. These include two for predicting “LOC” (with 2 mentions), one for predicting “MISC” (with
1 mention), one for predicting “PER” (with 1 mention), and one for predicting “ORG” (with 0
mentions, directly predicting “<eos>”). Moreover, the number of mentions for each label and the
text corresponding to each mention index can be easily obtained from the original ground truth,
meaning that the number of new examples depends on the ground truth of that particular example.

With the newly reformulated training examples, we then apply the standard instruction tuning
procedure. The model takes a sequence of text t1, t2, . . . , tT consisting of input unstructured text and
output structured label-mention pair. The optimization objective is cross-entropy loss L which can be
defined as follows:

L = − 1

T

T∑
i=1

logP (ti | t1, t2, . . . , ti−1) (1)

where P (ti | t1, t2, . . . , ti−1) represents the probability of ith token ti given the sequence of pre-
ceding tokens t1, t2, . . . , ti−1, as predicted by the model. Note that loss calculation begins from the
number of mention tokens (i.e., texts enclosed by dashed-line frames). Theoretically, loss from text
spans such as “<mention n>” could be ignored during this calculation, since they simply prompt
the mention’s order, which does not necessarily need to be generated by the model. However, our
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ablation studies show that ignoring these texts has negligible impact on model performance, a point
further discussed in Appendix A. Therefore, we adhere to the standard instruction tuning procedure.

This reformulation allows the model to focus one label-mention pair at a time, shortening the
generated length per sequence. More details are shown in Appendix C.

3.2 Inference of Label-Mention Pairs

Given a trained LLM, we propose a two-step inference approach: firstly, to predict the number of
mentions for a specific label based on the prompt; and secondly, given the label and provided index
to precisely identify the corresponding mention.

Figure 2 shows the overview of PaDeLLM-NER inference. In Step 1, the model predicts the total
number of mentions for each label in the input, based on the label prompt. A separate token

“\n” signals the completion of this count prediction. If no mentions of the given label exist, the
model generates an “<eos>” token, skipping Step 2 for that label. In Step 2, following adding the
predicted mention count to the input, mention indexes templates are appended. Formally, if the
predicted number of mention is m, then “<mention n>”, indicating the nth mention of the specified
label, is appended for each n within the set {1, 2, 3, . . . ,m} and n is an integer. Subsequently, the
corresponding mention is generated by the model conditioned on preceding tokens. Note that the
decoding of all label-mention pairs occurs in parallel, allowing for their simultaneous generation.
Additionally, to justify the efficacy of the proposed two-step inference approach, we also implement
a one-step parallel decoding method. In this approach, multiple mentions of the same label are
predicted in a single sequence and compared to the two-step method in a preliminary experiment.
Further details are provided in the Appendix A.

In practice, if there are sufficient GPU resources, the inference for the number of mentions for each
label, as well as the subsequent inference for the mention text spans, can be allocating on separate
GPUs. If GPU resources are limited, the inference can also be deployed on a single GPU using
batch inference, facilitating parallel decoding. Using Figure 2 as an example, in Step 1, the batch
size is four, as there are four labels in the dataset. In Step 2, the batch size is five, reflecting the five
label-mention pairs determined in Step 1 (i.e., 1 in “PER”, 2 in “MISC”, 2 in “LOC”). This parallel
decoding strategy is effective in reducing inference latency, especially in scenarios where inputs are
received in a streaming manner.

3.3 Removal of Duplicate Mentions

Unlike autoregressive decoding, where subsequent label-mention pairs can attend preceding ones,
PaDeLLM-NER generates each label-mention pair independently. This inference strategy means
that the model might generate mentions erroneously repeated in multiple labels. As exemplified in
Figure 2, the model correctly predicts the first mention of “LOC” as “Italy”, but it also incorrectly
predicts the second mention of “MISC” as “Italy”.

To address the issue of duplicate mentions, we suggest employing prediction probability to remove
repeated mentions. Specifically, we calculate the prediction probability for each instance of the
mention. This is done using the formula: P =

∏e
i=b P (ti|t1, t2, . . . , ti−1) where b represents the

starting token index of the mention text, and e denotes the ending token index. Then, for a mention
that appears in multiple labels, the mention instance with the highest probability will be preserved.
As illustrated in Figure2, “Italy” is categorized as “MISC” with only a 0.61 probability, which is
lower than that for “LOC”, resulting in its removal. In practice, the probability of each token can be
calculated concurrently with token generation. Consequently, this method enables an efficient and
accurate identification of duplicate mentions without incurring additional costs. The effectiveness of
this de-duplication approach is further explored in Appendix A.

4 Experiments

In this section, we showcase the effectiveness of PaDeLLM-NER in terms of prediction quality and
inference acceleration through experiments.

5

117857 https://doi.org/10.52202/079017-3743



4.1 Setup

Datasets The datasets used in our experiments include:

• Zero-shot Datasets: To align with the methodology proposed by [44], we train PaDeLLM
using the Pile-NER dataset [45]. This dataset comprises around 240,000 entities categorized
into 13,000 distinct types, derived from the Pile Corpus [46]. The passages in Pile-NER are
enhanced through processing with ChatGPT, which facilitates the transparent generation of
inherent entities. For assessing the model’s zero-shot capabilities on previously unseen entity
categories, following [30, 44, 45] we select two established benchmarks: CrossNER [47]
and MIT [48].

• Supervised Datasets: we evaluate our method on supervised English and Chinese NER
datasets. Following [30, 49, 50], English datasets include the general domain flat NER
CoNLL2003 [51], the nested NER ACE2005 [52], and the biomedical nested NER GE-
NIA [53]. Following [6, 54, 55], Chinese datasets include four commonly used general
domain flat NER benchmarks Resume [56], Weibo [57], MSRA [58] and Ontonotes 4.0 [59]
and two vertical industrial domain flat NER datasets YouKu [60] and Ecommerce [61]. The
statistics of all datasets are shown in Appendix B.

Training setup We employ pre-trained version of Llama2-7b [11] and Baichuan2-7b [13] as
base models for English and Chinese study respectively. Additional implementation details are in
Appendix D.

Inference setup For all generative models, we use greedy search with a beam size of 1, a maximum
of 512 new tokens, and a temperature of 1.0. As described in Section 3.2, for PaDeLLM-NER, we
adopt two inference settings: (1) each example is inferred on multiple GPUs to implement parallel
decoding (i.e., each sequence is assigned on one GPU), termed as PaDeLLMMulti; and (2) each
example is inferred on a single GPU, employing batch decoding for parallel decoding, termed as
PaDeLLMBatch. Note that for PaDeLLMMulti, we sequentially predict each sequence of one example
to simulate parallel decoding on multiple GPUs.

Baselines The baseline used in our experiments include:

• Inference Latency Baselines: As the primary focus of this work is on reducing inference
latency in NER tasks using LLMs, we compare our method, PaDeLLM-NER, with traditional
autoregressive approaches. As mentioned in Section 1, the main points of comparison are
autoregressive structured output formats used in [3, 4] and [5–7], referred to respectively as
AutoRegAug and AutoRegStruct, as these are the approaches very close to our system. We
reimplemented all these methods for both English and Chinese datasets, utilizing the same
pre-trained LLMs as in PaDeLLM-NER.

• Zero-shot Baselines: LLMs are known for their generalizability, therefore, following Ding
et al. [44], we we also evaluate the zero-shot performance of PaDeLLM. Several most recent
SOTA LLM-based approaches are selected as strong baselines as their great generalizability
in zero-shot NER scenarios including GoLLIE-7B [30], UniNER-7B [45], GLiNER-L [62],
GNER-LLaMA-7B [44].

• Supervised Baselines: We compare our approach with other recent SOTA supervised
approaches, including BINDER [50], Gollie [30], and DeepStruct [49] for English bench-
marks, as well as W2NER [63], NEZHA-BC [54], and SSCNN [55] for Chinese bench-
marks, to show PaDeLLM-NER’s efficacy in prediction quality.

More details on the re-implementation and model size of each method are provided in Appendix D.

Evaluation Our evaluation encompasses two dimensions: prediction quality and acceleration of
NER inference. For assessing prediction quality, in line with Lu et al. [5], Wang et al. [7], we employ
the micro F-score.

https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/baichuan-inc/Baichuan2-7B-Base
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English Dataset Chinese Dataset
AutoReg CoNLL03 ACE05 GENIA Weibo MSRA Onto4 Resume Youku Ecom Avg.
AutoRegAug 992.70 944.90 1,515.35 1,276.32 812.78 1,009.68 982.39 579.99 845.42 995.50
AutoRegStruct 753.36 1,293.87 1,266.31 1,630.62 609.34 783.28 1,462.56 598.59 738.20 1,015.12

Ours
PaDeLLMMulti 229.74 255.53 316.90 159.57 143.47 171.67 238.27 203.63 293.40 223.57
PaDeLLMBatch 333.89 498.50 616.01 344.75 204.24 288.43 459.20 241.25 419.40 378.40

Table 2: Comparison of inference latency (in milliseconds) between PaDeLLM-NER and baseline
methods. Underscored font is the second-best method, while a bold font is the best method, also
applied to subsequent tables.

0 5 10
Youku
Ecom

ACE05
Resume

CoNLL03
GENIA
MSRA
Onto4
Weibo

2.85x
2.88x

3.70x
4.12x
4.32x
4.78x

5.67x
5.88x

8.00x

(a) ARAug vs. PDLMMulti

0 5 10
Ecom
Youku

CoNLL03
GENIA
MSRA
Onto4
ACE05

Resume
Weibo

2.52x
2.94x
3.28x
4.00x
4.25x
4.56x
5.06x

6.14x
10.22x

(b) ARStruct vs. PDLMMulti

0 2 4
ACE05
Ecom

Resume
Youku
GENIA

CoNLL03
Onto4
Weibo
MSRA

1.90x
2.02x
2.14x
2.40x
2.46x

2.97x
3.50x
3.70x
3.98x

(c) ARAug vs. PDLMBatch

0.0 2.5 5.0
Ecom

GENIA
CoNLL03

Youku
ACE05
Onto4
MSRA

Resume
Weibo

1.76x
2.06x
2.26x
2.48x
2.60x
2.72x
2.98x
3.19x

4.73x

(d) ARStruct vs. PDLMBatch

Figure 3: Speedup of PaDeLLM-NER compared to Autoregressive methods.

Following Ning et al. [20], we evaluate inference speed using latency (in milliseconds). We record
the latency with the code: start = time.time(); model.generate(); latency = time.time() - start. In
PaDeLLM-NER, we add the latency of mention counting and label-mention pair generation as the
latency of each sequence. The final latency for the example is determined by the highest latency
across sequences, as the user can only obtain the result of an example when the slowest sequence
is generated. We conduct experiments three times and use the average result to alleviate the effect
of randomness. We also report the average sequence length (tokenized) to clearly demonstrate the
extent of sequence length reduction in Appendix E. Evaluations of all models were performed on the
same NVIDIA A100 GPU.

4.2 Main Results

Model AI Literature Music Politics Science Movie Restaurant Avg.
SOTA
GoLLIE-7B 59.1 62.7 67.8 57.2 67.0 63.0 43.4 60.02
UniNER-7B 53.5 59.7 65.0 60.8 61.1 42.4 31.7 53.45
GLiNER-L 57.2 64.4 69.6 72.6 62.6 57.2 42.9 60.92
GNER-LLaMA-7B 63.1 68.2 75.7 69.4 69.9 68.6 47.5 66.05
Ours
PaDeLLM-NER-7B 60.7 66.1 67.6 68.1 64.4 61.3 43.6 61.68

Table 3: Comparison of prediction quality with recent SOTA models in zero-shot setting.

Evaluation on inference latency We investigate how PaDeLLM-NER reduces the end-to-end
latency compared to baseline methods. Table 2 presents the average latency for each method across
all datasets. First, it’s clear that both PaDeLLMMulti and PaDeLLMBatch significantly reduce inference
latency when compared to baseline methods, as highlighted by the substantial reduction in mean
latency. For example, the mean latency reduction achieved between PaDeLLMMulti and AutoRegStruct
stands at an impressive 791.55 ms, underscoring the significant improvement.

To more intuitively quantify the latency reduction of PaDeLLM-NER, we break down its speedup
across different datasets in comparison to baseline methods in Figure 3. The speedup is computed by
dividing the latency of baselines by the latency of PaDeLLM-NER. We can observe that PaDeLLM-
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SOTA CoNLL03 ACE05 GENIA Avg.
BINDER [50] 93.33 89.50 80.50 87.77
Gollie [30] 93.10 89.60 - -
DeepStruct [49] 93.00 86.90 80.80 86.90

AutoReg
AutoRegAug 93.08 83.04 70.16 82.09
AutoRegStruct 91.87 82.99 77.90 84.25

Ours
PaDeLLM-NER 92.52 85.02 77.66 85.07

Table 4: Comparison of prediction quality with recent SOTA methods on English supervised datasets.

NER consistently show a speedup over baseline methods across all datasets. The highest speedup
is observed in the Weibo dataset when comparing AutoRegStruct vs. PaDeLLMMulti, with a speedup
of 10.22x. When we narrow our focus to the comparison between PaDeLLMBatch and the baseline
methods, considering these methods utilize a single GPU for inference, we can still observe substantial
speedup ranging from 1.76x to 4.73x. The speedup factor varies across different datasets, suggesting
that the efficiency gains of PaDeLLM-NER may be influenced by the characteristics of each dataset.
Interestingly, we can observe that the PaDeLLMBatch is slower than PaDeLLMMulti (378.40 ms vs.
223.57 ms), more analysis about this is shown in Section 5.

Overall, the Table 2 and Figure 3 suggest that PaDeLLM-NER significantly reduces latency compared
to autoregressive methods, though the extent of this reduction varies by dataset and the specific
baseline method it’s compared to.

Evaluation on zero-shot prediction quality Table 3 compares the prediction quality of different
models across various domains like AI, Literature, Music, Politics, Science, Movie, and Restaurant in
a zero-shot setting. Among all these methods, GoLLIE-7B scores range from 43.4 in Restaurants to
67.8 in Music, with an average of 60.02. UniNER-7B has lower scores, particularly in Restaurants
(31.7), and averages 53.45. GLiNER-L shows a fairly balanced performance with a high of 72.6
in Politics and an average of 60.92. GNER-LLaMA-7B excels in Music with a 75.7 score and
has the highest average of all at 66.05. Our model, PaDeLLM-NER, which consistently performs
well across all domains. It has the second-best average score of 61.68, following GNER-LLaMA-
7B. This highlights that while it is not the top performer, it offers robust and balanced prediction
capabilities across a diverse set of topics in zero-shot setting. Note that the training of PaDeLLM-NER
does not incorporate the additional task scheme prompt for describing unseen entities as used in
GNER-LLaMA-7B [44], which may account for the observed differences in performance.

Evaluation on supervised prediction quality Table 4 and Table 5 present the micro F-scores of
PaDeLLM-NER in comparison to other SOTA methods on supervised datasets. Notably, the micro
F-scores for both PaDeLLMMulti and PaDeLLMBatch are identical. Initially, it is evident that encoder-
based methods surpass LLM-based approaches, such as AutoReg and PaDeLLM-NER, within the
supervised context. Nonetheless, the strength of LLM-based methods lies not in their performance
under task-specific supervised settings, but rather in their superior zero-shot capabilities, which
compensates for their relative shortcomings in supervised scenarios. Nevertheless, PaDeLLM-NER
demonstrates SOTA performance on certain task-specific datasets, exemplified by its exceptional
results on the Youku dataset.

Upon comparing PaDeLLM-NER with AutoReg, both of which are LLM-based methods, it becomes
evident that PaDeLLM-NER outperforms AutoReg across both English and Chinese supervised
datasets, as evidenced by its superior mean F-score. This outcome indicates that PaDeLLM-NER not
only achieves lower inference latency but also maintains a higher level of prediction quality when
contrasted with baseline methods.

In summary, the results presented in Table 2, 3, 4 and 5, demonstrate that our approach not
only maintains superior prediction quality in both zero-shot and supervised environments but also
significantly reduces inference latency.
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SOTA Weibo MSRA Onto4 Resume Youku Ecom Avg.

NEZHA-BC [54] - - - - - 82.98 -
SSCNN [55] 71.81 - 82.99 96.40 86.10 81.80 -
W2NER [63] 72.32 96.10 83.08 96.65 - - -

AutoReg

AutoRegAug 59.04 95.56* 79.20 95.80 86.07 76.02 81.94
AutoRegStruct 56.07 90.92* 80.97 95.74 86.85 81.57 82.02

Ours

PaDeLLM-NER 67.36 95.03* 80.81 94.98 87.91 81.85 84.66

Table 5: Comparison of prediction quality with recent SOTA methods on English supervised datasets.
“*” indicates that results are not directly comparable.

5 Speedup Analysis

One concern noted is that batch inference does not speed up as much as inference distributed across
multiple GPUs. This observation is consistent with our expectations and supported by Chen et al.
[19] who found that batch inference in LLMs tends to be slower than single sequence inference under
identical conditions, likely due to limitations in GPU memory bandwidth [64].

Transitioning from these performance considerations, it’s noteworthy that PaDeLLM-NER is self-
contained and can be seamlessly integrated with various generative architectures, including well-
established decoder-only models [8–13] and recent innovations like RWKV [65], as well as multi-
modal LLMs [66, 67] for tasks like Key Information Extraction tasks [68], all without needing
architectural changes or additional data/modules. Also, it could be incorporated with off-the-shelf
LLMs such as ChatGPT [27] and Claude-2 through prompt engineering without the need for further
training, an aspect we plan to explore in future research.

6 Data Contamination Concerns

Since we are using LLMs as our foundational models, trained on extensive datasets from various
online sources [11, 13], there is a chance that the models may have encountered parts of our
evaluation sets during their pre-training phase, albeit unintentionally. This could potentially affect
our experimental results. However, the primary focus of our experiments is the comparison of our
proposed method with baseline methods. Given that these methods employ the same LLM as the
base model, data contamination is unlikely to significantly impact the results.

7 Limitations

One clear disadvantage of PaDeLLM-NER is the multiplication of training examples from one to
m ∗ n, where m is the label count and n the mention count. Despite this, given that low latency is a
major bottleneck in LLMs, trading longer training for lower latency is justifiable. Also, given the
impressive generalization ability of LLMs, we believe that this method can be smoothly adapted to
few-shot scenarios requiring less computation resources, which will be explored in future work.

Additionally, accurately counting the number of mentions remains a challenge for LLMs as discussed
in Appendix F. This issue could be alleviated by implementing a specialized counting model dedi-
cated to this task [69]. Another drawback is that reformulating label-mention pairs loses location
information, which hinders tasks like downstream editing. We will address this in future work.
Additionally, the de-duplication mechanism is overly aggressive, potentially removing mentions that
can appear under different labels—a common issue in real-world applications (see Appendix A for
more details).

Finally, there are several instances of re-computation within the pipeline that can be optimized. Specif-
ically, input texts are encoded multiple times throughout the process. During batch decoding, certain

https://www.anthropic.com/news/claude-2
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sequences may encounter the “<eos>” token earlier, but due to the nature of batch inference, these
sequences continue to predict. We plan to improve this in the future by implementing enhancements
like KV cache reuse and batch inference with an early quit mechanism, among other strategies.

8 Conclusion

In this study, we present PaDeLLM-NER, a parallel decoding framework for NER within LLMs.
This approach enables batch parallel decoding of all label-mention pairs, significantly cutting down
inference time by 1.76 to 10.22 times without sacrificing prediction accuracy.
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A Ablation study

Variant CoNLL03 ACE05 GENIA Mean
PaDeLLM-NER 92.52 85.02 77.66 85.06
+ Loss ignoring 92.01 85.18 73.47 83.55
- De-duplication 92.44 84.80 77.54 84.92
+ De-duplicationReverse 92.38 84.44 77.38 84.73

Table 6: Ablations on ignoring loss and de-duplication.

In this section, we set out to investigate the effects of the different aspects of PaDeLLM-NER.

Ignoring text spans in loss As discussed in Section 3.1, during training, it is permissible to
overlook the loss of text span “<mention n>”, as the model does not need to generate this specific
text, which is appended during inference. However, as shown in Table 6 illustrate, omitting these
texts has minimal impact on prediction quality.

One possible explanation is that during training, the more significant challenge for LLMs lies
in predicting the appropriate mention texts, rather than their format. As the model can readily
learns to correctly position the format “<mention n>”, this aspect contributes minimally to the
loss computation in training. In this case, computing the loss for all text is almost equivalent to
“neglecting” the computation of loss for “<mention n>”.

De-duplication To demonstrate the effectiveness of the de-duplication technique, we established
two configurations as detailed in Table 6. The -De-duplication denotes the pipeline operating without
the de-duplication technique; +De-duplicationReverse indicates the pipeline that removes mentions
with the highest probability, opposite to the original de-duplication technique.

Theoretically, PaDeLLM-NER should be the top-performing method, as its de-duplication eliminates
noisy mentions, enhancing precision. Following closely is the -De-duplication, allows duplicate
mentions to persist. +De-duplicationReverse ranks lowest since it removes correct mentions and
retains incorrect ones, lowering recall and precision simultaneously. As shown in Table 6, the results
consistently align with our expectations, thereby verifying the effectiveness of the de-duplication
process. Moreover, the difference among these variants is subtle, which can be attributed to the rare
cases where duplicate mentions exist. This further highlights the robustness of proposed method.

We also report statistics in Table 7 and 8 showing that mentions under multiple labels are rare for both
ground truth and PaDeLLM predictions. However, we recognize that the de-duplication mechanism
can be overly aggressive, potentially removing mentions that appear under multiple labels—a common
scenario in real-world applications. In such cases, opting not to use the de-duplication mechanism
may be preferable.

Dataset Count Ratio
ACE05 1 0.00034
ConLL03 1 0.00017
GENIA 0 0
Ecom 0 0
MSRA 1 0.00013
Weibo 0 0
Youku 2 0.0012
Resume 0 0

Table 7: Mentions appear under multiple labels in ground truth.

Preliminary experiments for justifying the importance of two-step prediction We conducted
preliminary experiment using one-step prediction, where all mentions of the same label are predicted
in a single sequence, which is referred to as OneStep in this paper. An example of OneStep parallel
decoding is shown in Table 9. Note that the order of mentions is preserved as in the ground truth,
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Dataset Count Ratio
ACE05 22 0.0074
ConLL03 10 0.0017
GENIA 18 0.0034
Ecom 2 0.0012
MSRA 5 0.00089
Weibo 0 0
Youku 3 0.0019
Resume 0 0

Table 8: Mentions appear under multiple labels in PaDeLLM prediction.

following the data from the corresponding dataset. The overall latency for each example is determined
by the latency of the slowest sequence. The preliminary experiment is conducted on three English
dataset, i.e., CoNLL03, ACE05 and GENIA.

Entity Text NER Result

ORG
<entity>ORG<text>2004-12-20T15:37:00 Microscopic
microcap Everlast , mainly a maker of boxing equipment ,
has soared over the last several days thanks to a licensing
deal with Jacques Moret allowing Moret to buy out their
women ’s apparel license for $ 30 million , on top of a $
12.5 million payment now .

["Microscopic microcap Everlast", "a maker of
boxing equipment", "their"]

PER <entity>PER<text>2004-12-20T15:37:00 ... million pay-
ment now.

["Jacques Moret", "Moret", "their", "their women"]

GPE <entity>GPE<text>2004-12-20T15:37:00 ... million pay-
ment now.

[]

LOC <entity>LOC<text>2004-12-20T15:37:00 ... million pay-
ment now.

[]

Table 9: Illustration of one-step parallel decoding NER approach.

Method ACE05 CoNLL03 GENIA Mean
PaDeLLMMulti 255.53 229.74 316.90 267.39
OneStepMulti 386.93 272.22 513.63 390.93
AutoRegAug 944.90 992.70 1,515.35 1150.98
AutoRegStruct 1,293.87 753.36 1,266.31 1104.51

Table 10: Comparison of inference latency.

Method ACE05 CoNLL03 GENIA Mean
PaDeLLMMulti 85.02 92.52 77.66 85.06
OneStepMulti 80.98 91.36 76.27 82.87
AutoRegAug 83.04 93.08 70.16 82.09
AutoRegStruct 82.99 91.87 77.90 84.25

Table 11: Comparison of prediction quality.

The results are reported in Table 10 and Table 11. As expected, the inference speed of one-step
approach falls between that of the two-step prediction (i.e., PaDeLLM) and the purely autoregressive
model. However, the prediction quality is lower compared to the two-step prediction. In other words,
PaDeLLM outperforms the one-step approach in both inference speed and prediction quality, which
again verifies the efficacy of PaDeLLM.
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Preliminary experiments for zero-shot autoregressive baseline We did not report zero-shot re-
sults for AutoRegaug and AutoRegstruct as they are unsuitable for this setting. Preliminary experiments
show higher latency and lower F-scores compared to PaDeLLM (see Table 12 for details).

AI Literature Music Politics Science Avg

Latency (ms)
PaDeLLM 398.37 357.45 352.85 366.76 375.02 370.09
Auto_Aug 1529.95 2096.08 2545.20 2364.87 2334.05 2174.03
F-score
PaDeLLM 60.7 66.1 67.6 68.1 64.4 65.38
AutoRegAug 0.19 0.15 0.94 0.13 0.21 0.324

Table 12: Comparison of Latency and F-score between PaDeLLM and AutoRegAug under zero-shot
scenarios.

B Dataset Statistics

Variant CoNLL03 ACE05 GENIA Mean
PaDeLLM-NER 92.52 85.02 77.66 85.06
+ Model scale up to 13B 93.02 84.37 78.84 85.45

Table 13: Ablations on model scaling up.

56.8%

23.9%

19.3%

Count Mismatch
Index Inaccuracy
Ground Truth Error

Figure 4: Percentage of different error types.

We evaluate our framework on 3 English and 6 Chinese flat/nested NER datasets. In Table 15, we
present the detailed statistics. Note that while the statistics of the development set are reported, our
training process does not involve the development set.

For the MSRA dataset, we excluded four outlier instances from the test set due to their excessively
high number of names, significantly deviating from typical examples. These outliers not only posed
challenges for model inference but also risked distorting the evaluation metrics, potentially leading to
an inaccurate assessment of the model’s performance on representative data.
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English Dataset Chinese Dataset
AutoReg CoNLL03 ACE05 GENIA Weibo MSRA Onto4 Resume Youku Ecom Mean
AutoRegAug 33.85 37.10 60.50 45.02 27.42 35.90 30.39 18.21 31.50 35.54
AutoRegStruct 28.36 49.95 49.03 62.45 18.97 25.53 53.02 18.56 22.51 36.48

Ours
PaDeLLM-NER 6.54 8.29 10.05 2.19 2.23 2.68 4.87 3.66 3.27 4.86

Table 14: Comparison of the number of generated tokens per sequence by PaDeLLM-NER with
baseline methods.

Also, we perform label mapping to convert ground truth from special tokens to Chinese words
following [6]. Further details are provided in Table 16.

Dataset Sentence Mention
#All #Train #Dev #Test #All #Train #Dev #Test

CoNLL2003 20,744 14,041 3,250 3,453 35,089 23,499 5,942 5,648
ACE2005 9,210 7,194 969 1,047 30,634 24,441 3,200 2,993
GENIA 18,546 15,023 1,669 1,854 56,015 46,142 4,367 5,506

Weibo 1,890 1,350 270 270 2,701 1,894 389 418
MSRA* 50,725 44,364 - 4,361 80,214 74,703 - 5,511
OntoNotes 4.0 24,371 15,724 4,301 4,346 28,006 13,372 6,950 7,684
Resume 4,759 3,819 463 477 16,565 13,438 1,497 1,630
Youku 10,002 8,001 1,000 1,001 15,905 12,754 1,581 1,570
Ecommerce 4,987 3,989 500 498 15,216 12,109 1,540 1,567

Table 15: Dataset Statistics. “#” denotes the amount. For MSRA, we remove four outlier examples in
test set.

Dataset #Entity Entity

Weibo 8 {“PER.NAM(Specific Name)”:“名称特指”, “PER.NOM(Generic
Name)”:“名 称 代 称”, “GPE.NAM(Specific Geo-Political
Entity)”:“行政区特指”, “GPE.NOM(Generic Geo-Political
Entity)”:“行 政 区 代 称”, “LOC.NAM(Specific Loca-
tion)”:“地点特指”, “LOC.NOM(Generic Location)”:“地点
代 称”, “ORG.NAM(Specific Organization)”:“组 织 特 指”,
“ORG.NOM(Generic Organization)”:“组织代称” }

MSRA 3 {“LOC”:“地点’, “PER”:“名称”, “ORG”:“组织”}

OntoNotes 4.0 4 {“GPE”:“地缘”, “LOC”:“地点”, “PER”:“名称”, “ORG”:“组织”}

Resume 8 {“NAME”:“名称”, “CONT(Nationality)”:“国籍”, “RACE”:“民
族”, “TITLE”:“职 位”, “EDU”:“学 历”, “ORG”:“公 司”,
“PRO(Profession)”:“专业”, “LOC(Place of Birth)”:“籍贯”}

Youku 3 {“TELEVISION”:“电 视 剧”, “PER(Celebrity)”:“明 星”,
“MISC”:“其他”}

Ecommerce 2 {“HP(brand)”:“品牌”, “HC(commodity)”:“商品”}

Table 16: Entity tag of each dataset and the conversion from tag used in dataset to corresponding
Chinese natural language. For some tags that are hard to understand, we provide their meaning in
brackets. “#” denotes the amount of entity types.

C Reformulation Examples

Two compete reformulated examples are presented in Table 17 for English and Chinese, respectively.
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Language Input Output

English text:
But Fischler agreed to review his proposal after the EU ’s standing
veterinary committee , mational animal health officials , questioned
if such action was justified as there was only a slight risk to human
health .
entity type:
PER
<num>

1
<mention 1>Fischler

Chinese 文本(text):
公报最后说，墨西哥政府认为，贩毒以及洗钱等与毒品有
关的活动是威胁到国家主权和安全的一个全球性问题。(The
communique concluded by stating that the Mexican government
considers drug trafficking and related activities such as money
laundering to be a global issue that threatens national sovereignty
and security.)
指定NER标签(entity type):
地点(LOC)
<数量>(<num>)

1
<第1文段>(<mention
1>)墨西哥(Mexican)

Table 17: Reformulated examples for English and Chinese dataset, respectively. We provide transla-
tions to facilitate understanding. The examples come from CoNLL2003 and MSRA dataset.

D Implementation Details

We train our model on all datasets for 4 epochs, using a batch size of 128 and a learning rate of
1e− 5, with the AdamW optimizer [70] and a cosine scheduler [71]. The maximum input and output
sequence lengths are set to 2048 and 512, respectively. Training is conducted on 8 NVIDIA A100
GPUs. This configuration is applied across all PaDeLLM-NER models, as well as three baseline
models: AutoRegAug, AutoRegStruct as well as Onestep baseline reported in preliminary experiment.
We also report the model size of each NER method in Table 18

English Method Base Language Model Chinese Method Base Language Model

BINDER BERT-base 110M NEZHA-BC NEZHA-base 110M
Gollie Code-llama 34B SSCNN not report
DeepStruct GLM10B W2NER Transformer-based 110M
AutoRegAug LLaMA-2-7B AutoRegAug Baichuan2-7B
AutoRegStruct LLaMA-2-7B AutoRegStruct Baichuan2-7B
PaDeLLM-NER LLaMA-2-7B PaDeLLM-NER Baichuan2-7B

Table 18: Model size of each NER method.

E Sequence Length Reduction

Results of average sequence length produced by different approaches are presented in Table 14. Most
notably, PaDeLLM-NER generates much shorter sequences than the other models across all datasets.
The lengths range from 6.54 on CoNLL20023 to 10.05 on GENIA for English datasets, and from
2.19 on Weibo to 4.87 on Resume for Chinese datasets. The mean length for PaDeLLM-NER is 4.86,
which is significantly lower than the means of the other approaches: 35.54 for AutoRegAug and 36.48
for AutoRegStruct.

In summary, the result shows that PaDeLLM-NER produces much shorter generated sequences
compared to the other methods, which is around 13.19% to 13.67% of the original length, respectively,
indicating higher efficiency in its inference.
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F Error analysis

PaDeLLM-NER error analysis For our error analysis, we utilize the ACE2005 dataset. We sample
and manually examine 50 erroneous examples for analysis. We seek to identify the root causes
of errors, which we have categorized into three types: (1) incorrect mention count, referred to as
Count Mismatch; (2) inaccuracies in the mention corresponding to a specific index, termed Index
Inaccuracy; and (3) errors in the ground truth data, known as Ground Truth Errors.

The distribution of each error type is illustrated in Figure 4. It is important to note that a significant
portion of the errors stem from inaccuracies in mention counts (i.e., Count Mismatch, about 56.8%),
underscoring the necessity for enhancements in the model’s counting capabilities. Accurate mention
counts are pivotal for the quality of predictions. Overestimating the mention count often leads the
model to either repeat the last entity or, more problematically, fabricate an entity, thereby escalating
the rate of false positives. Conversely, underestimating the mention count results in the model’s
inability to identify some entities, thus increasing the incidence of false negatives. Following closely
is the Index Inaccuracy error, indicating that the model sometimes struggles to accurately pinpoint
the correct mention for a given index, further emphasizing areas for improvement.

Interestingly, our analysis reveal that a significant portion of the model’s predictions, specifically
19.3%, are actually correct, challenging the accuracy of the ground truth data. This observation
suggests the presence of inaccuracies within the ground truth, contributing to an elevated rate of false
positives. Prior research, as noted in studies by Min et al. [72], Wang et al. [73], Zhou et al. [74], has
demonstrated that LLMs predominantly acquire their knowledge during the pre-training phase. These
models develop certain “core beliefs” that tend to align more closely with human judgment. In this
context, it appears that the models possess an inherent capability to rectify errors in the ground truth
data, demonstrating their potential to improve data accuracy beyond initial human annotation.

G Model Scaling Up

As we increase the model size to 13B, Table 13 presents a mix of results. In datasets like CoNLL2003
and GENIA, the model shows a significant improvement in predictions. In contrast, the results on
ACE2005 are slightly worse. Note that the improvement in GENIA is substantial, at approximately
1.18%. Based on these findings, it seems reasonable to suggest that continuously scaling up the model
size has the potential to maintain the performance that is at least on par, or even superior, especially in
specific industrial domains. However, this hypothesis warrants further investigation, involving more
families of models [8–13] and a broader range of datasets. We leave this exploration for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have detailed the contributions accurately in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As discussed in Section. 7, we have listed some limitations of our work and
shown corresponding failure cases in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4.1 and Appendix D, we have described the details of implementing
and training the proposed model to ensure the reproducibility of our work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have released the model and code, available at URL masked for anonymous
review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have detailed the experimental setting and implementation details in
Appendix B, D and Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our deep learning model is designed for a complex task (requiring huge
computing resources) where traditional error bars are less informative due to the high
variability in model training and initialization. We ensured the robustness of our model
by fix the random seed during inference. In addition, comparative analysis with baseline
models demonstrated improvements in key performance areas, underscoring the practical
effectiveness of our approach. We acknowledge the limitation of not using traditional
statistical tests and suggest that future work could explore statistical significance in more
controlled settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have reported the needed computer resources in Section 4.1 of the supple-
mentary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper conforms with the NeurIPS Code of Ethics in every
respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All the datasets used in this paper are publicly available and they contain no
unsafe images.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For the used datasets and pre-trained models, we have cited their corresponding
works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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