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Abstract

We address the problem of performing regression while ensuring demographic
parity, even without access to sensitive attributes during inference. We present a
general-purpose post-processing algorithm that, using accurate estimates of the
regression function and a sensitive attribute predictor, generates predictions that
meet the demographic parity constraint. Our method involves discretization and
stochastic minimization of a smooth convex function. It is suitable for online
post-processing and multi-class classification tasks only involving unlabeled data
for the post-processing. Unlike prior methods, our approach is fully theory-driven.
We require precise control over the gradient norm of the convex function, and thus,
we rely on more advanced techniques than standard stochastic gradient descent.
Our algorithm is backed by finite-sample analysis and post-processing bounds,
with experimental results validating our theoretical findings.

1 Introduction

Algorithmic fairness is an umbrella term for a subset of machine learning research that aims to better
understand, quantify, mitigate, evaluate, and conceptualize negative and/or positive effects of data-
driven algorithms on the society. At least one direction in this field falls within theoretical machine
learning, where a form of fairness constraint, mainly inspired by common sense and formalized
within mathematical framework, is proposed as an arguably reasonable proxy for a definition of
ethical and non-discriminatory prediction. Even more particular sub-field of this research direction is
formalized within a paradigm of group fairness, that aims at mitigating negative impact (or provide
equal treatment to) towards sub-populations that share a common sensitive characteristic. Many
works fall within this category (Barocas et al., 2018, Calders et al., 2009, Chiappa et al., 2020, Dwork
et al., 2011, Feldman et al., 2015, Gordaliza et al., 2019, Hardt et al., 2016, Jiang et al., 2020, Lum
and Johndrow, 2016, Zafar et al., 2017, Zemel et al., 2013, just to name a few).

Even without going into debates on the relevance of a given definition of fairness, many, purely
mathematical and algorithmic questions remain unanswered in this field. The best theoretical
understanding of the problem is available for the demographic parity constraint in case of awareness—
the situation when the sensitive attribute is available at inference time (Agarwal et al., 2019, Chiappa
et al., 2020, Chzhen and Schreuder, 2020b, Chzhen et al., 2019, Denis et al., 2024, Gaucher et al.,
2023, Le Gouic et al., 2020). The latter case is well studies both in classification and regression
setups. This is no longer the case for other fairness constraints or the unawareness setup—the
situation when the sensitive attribute is not available at inference time. In particular, while the case of
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classification has been studied before from algorithmic and mathematical perspectives (Chzhen et al.,
2019, Gaucher et al., 2023, Gordaliza et al., 2019, Hardt et al., 2016), the regression setup remains
largely under explored and many methods lack strong theoretical evidences. In particular, to date,
none of previous works effectively build computationally-efficient, fully theory-driven algorithm for
the problem of regression under the demographic parity constraint in the case of unawareness. The
present work fills this gap. Relying on previous ideas of discretization that goes back to Agarwal
et al. (2019), we design a smooth convex objective function whose exact solution yields a fair and
optimal prediction function. It turns out that this objective admits a first-order stochastic oracle that
can be evaluated using only one independent sample of feature vector, thus allowing for stochastic
optimization approach. Furthermore, despite the convexity, we show that the key quantity to control
is the gradient (or rather a gradient-map) of this objective function, deviating from the more common
setup of controlling the optimization error measured by the objective function. We deploy recent
machinery of Allen-Zhu (2021) and Foster et al. (2019) that allows to achieve this goal, properly
setting all the hyper-parameters and recovering the usual statistical rate 1/

√
T for both fairness and

risk guarantees — T being the number of samples.

Our work falls withing the realm of post-processing methods—another umbrella term that combines
all the methods that perform a refitting of a base estimator to satisfy a certain constraint.

Importantly, due to the careful design of the above mentioned objective function, we can perform
this post-processing in an online manner using a stream of i.i.d. unlabeled data without keeping it
in memory, making it attractive in practice. Our approach is based on a combination of ideas from
previous contributions to fairness from Agarwal et al. (2019) and Chzhen et al. (2020b) and recent
stochastic optimization literature (Allen-Zhu, 2021, Foster et al., 2019) that deals with stationary
point-type guarantees in the case of convex optimization.

Contributions Our contribution is three-fold: i) we significantly enhance the discretization strategy
of Chzhen et al. (2020b) accommodating multiple sensitive features, relaxed fairness constraints, and
unawareness setup; we introduce entropic regularization for this problem and design a dual convex
objective from it; ii) we design a semi-supervised post-processing algorithm and show that it enjoys
strong theoretical guarantees; iii) we perform numerical simulations demonstrating the relevance of
our approach in practice.

Organization. This paper is organized as follows: in Section 2 we present the problem setup and
introduce main problem-related notation; in Section 3 we describe our methodology step-by-step
and highlight main challenges and relations to other results; in Section 4 we gives technical details
of the proposed approach; Section 5 contains main theoretical results of the work; finally, Section 6
contains empirical evaluation of our method. All the proofs are postponed to the appendix.

Notation. Let us present generic notation that is used throughout this work. For a positive integer
K, we write [K] to denote {1, . . . ,K} and [[K]] to denote {−K, . . . , 0, . . . ,K}. For a > 0 denote
by ⌊a⌋ largest non-negative integer that is smaller or equal to a. For a univariate probability measure
µ, we denote by supp(µ) its support. For every β > 0,m ∈ N, and w = (w1, . . . , wm)⊤ ∈ Rm, we
denote by LSEβ : Rm → R the log-sum-exp function, defined as

LSEβ(w) = β−1 log
( m∑
j=1

exp(βwj)
)
.

For every m ∈ N,w = (w1, . . . , wm)⊤ ∈ Rm, we denote by σ = (σ1, . . . , σm) : Rm → Rm the
soft-argmax as σj(w) = exp(wj)/(

∑m
i=1 exp(wi)). For any matrix A, the notation A ⩾ 0 means

that A is positive coordinate-wise. For any a ∈ R and w ∈ Rm we set (a)+ = max{0, a} and
(w)+ = ((w1)+, . . . , (wm)+)

⊤. The notation Õ hides (unimportant) constants and polylogarithmic
factors. For a pair of random elements (A,B), we denote by Law(A), the law of A, by Law(A | B),
the conditional law of A given B, and we write A ⊥⊥ B to denote that variables A and B are
independent. For two vectors w,w′ ∈ Rm, we write w/w′ = (wj/w

′
j)j∈[m] ∈ Rm to denote

element-wise division. The Euclidean norm of a vector and the Frobenius norm of a matrix are
denoted by ∥ · ∥, while the spectral norm of a matrix is denoted by ∥ · ∥op. We denote by B(R),
the Borel sigma-algebra on R, induced by the usual topology. We write log to denote the natural
logarithm and loga, the base a > 0 logarithm.

2
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2 Problem setup

Let (X, S, Y ) be a triplet of nominally non-sensitive, nominally sensitive, and output characteristics,
taking values in Rd × [K] × R for some K ⩾ 2. We assume that (X, S, Y ) ∼ P, for some
unknown distribution P. The main quantities of interest are the following: the regression function
η(x)

def
= E[Y | X = x]; the marginal distribution of sensitive vectors p

def
= (ps)s∈[K] with ps

def
=

P(S = s); the conditional distribution of S given X , defined as τ (x)
def
= (τs(x))s∈[K] with

τs(x)
def
= P(S = s | X = x). A randomized prediction function is a map π : B(R)× Rd → [0, 1]

such that the map B 7→ π(B | x) for B ∈ B(R) is a probability measure on (R,B(R)) for all
x ∈ Rd. For any prediction π we define a random variable Ŷπ as

Law
(
Ŷπ |X = x, S = s

)
= π(· | x) x ∈ Rd, s ∈ [K] .

Remark 2.1. Note that if π(· | x) is a Dirac measure for all x ∈ Rd, the above condition just means
that Ŷπ = g(X) almost surely for some deterministic g : Rd → R. The above condition is not to
be confused with the fairness constraint, which is not formulated point-wise. It is only viewed as an
extension of the unawareness framework to the case of randomized predictions. The above condition
completely specifies the distribution of the triplet (X, S, Ŷπ) but leaves the relation between Ŷπ and
Y ambiguous. To be more formal, one needs to add the condition (Ŷπ ⊥⊥ Y ) | (X, S), that is, the
prediction Ŷπ is independent from the true label Y , conditionally on (X, S). That would define a
complete joint distribution of (X, S, Y, Ŷπ) ∼ Pπ = P(X,S) ⊗ PY |(X,S) ⊗ π(· |X).

We consider the following risk of a prediction function π

R(π) def
= E[(Ŷπ − η(X))2] = E

[∫
R
(ŷ − η(X))2π(d ŷ |X)

]
.

A prediction function π is said to satisfy the demographic parity constraint, if Ŷπ ⊥⊥ S.

That is, Ŷπ is stochastically independent of S viewed from the perspective of the joint distribution of
(X, S, Ŷπ). On the high-level, the goal in this setup is to find a prediction function π, whose risk is
small and whose violation of the demographic parity constraint is controlled as quantified by some
measure of unfairness. The above problem is well understood in the case of awareness—the situation
when π is expressed as π(· | x, s) (Chiappa et al., 2020, Chzhen et al., 2020a, 2021, Jiang et al.,
2020, Le Gouic et al., 2020)—revealing an intimate connection of this problem with Wasserstein
barycenters. Yet, when the sensitive attribute is not an input of the prediction function, the situation
is drastically different. Some attempts have been made to either (so far only partially) characterise
the optimal prediction function (Chzhen and Schreuder, 2020a, Gaucher et al., 2023, Zhao, 2021) or
to design efficient algorithms for this problem (Agarwal et al., 2019, Maheshwari and Perrot, 2022,
Narasimhan et al., 2020) that are only partially supported by a sound theory. One of the principal
goals of this work is to design a computationally efficient algorithm that admits a (near) end-to-end
theoretical guarantees. The main difficulty of the problem lies in very different natures of the risk
and the fairness constraint—the latter involves image measures, while the former is a simple linear
functional of π. In the case of awareness this issue can be bypassed by lifting the problem in the space
of measures, working there directly and, then, returning to the initial space of prediction functions.
Crucially, this is achieved only thanks to the fact that S is known at inference time, which is not the
case for the considered problem.
Remark 2.2. In what follows we will exclusively focus on the squared risk and the regression
setup. However, one can observe that the proposed methodology can be extended or even simplified
forR(π) = E[r(X, Ŷπ)] and multi-class classification respectively under the demographic parity
constraint. Here r(x, ŷ) quantifies fit of ŷ for an individual x and can be either known or unknown.

3 Our methodology

The starting point of our work is similar to the one of Chzhen et al. (2020b) and relies on a simple
observation—if | supp(π(· | x))| < ∞ and stays the same for all x, the independence constraint

3
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is reduced to a finite amount of constraints that only involve the image of π(· | x). In particular,
assuming that supp(π(· | x)) = Ŷ ⊂ R for all x ∈ Rd, Ŷπ is independent from S iff P(Ŷπ = ŷ |
S = s) = P(Ŷπ = ŷ) for all s ∈ [K] and all ŷ ∈ Ŷ . In view of the definition of Ŷπ, the latter is
equivalent to

E[π(ŷ |X) | S] = E[π(ŷ |X)] s ∈ [K], ŷ ∈ Ŷ , (1)

which, assuming that Ŷ is fixed, correspond to linear constraints on π. Combined with the observation
that π 7→ R(π) is also linear, we end up with a problem that is significantly easier to handle.
Furthermore, again assuming that Ŷ is fixed, the sketched direction gives a natural way to introduce
some slack to the independence constraint—simply requiring an approximate equality in (1). Set

Us(π, ŷ)
def
= |E [π(ŷ |X) | S = s]− E [π(ŷ |X)]| , (2)

for all s ∈ [K] and ŷ ∈ Ŷ . Thus, for a fixed support (whose choice will be discussed in the next
paragraph) and a fixed vector ε def

= (ε1, . . . , εK)⊤, our goal is to build an estimator of a solution to

min
π:B(R)×Rd→[0,1]

{
R(π) : supp(π(· | x)) = Ŷ for x ∈ Rd, Us(π, ŷ) ⩽ εs for ŷ ∈ Ŷ, s ∈ [K]

}
. (3)

Let us now describe the methodology for selecting Ŷ and the trade-offs that are introduced.

Introducing discretization. Having in mind the above discussion, for every integer L ⩾ 0 and real
B > 0, we introduce a uniform grid ŶL

def
= B · [[L]]/L on [−B,B], so that |ŶL| = 2L+ 1, which is

viewed as a support of prediction functions π(· | x). For the sake of simplicity, we will assume that
the regression function η(·) is bounded in [−B,B] for some known B > 0.
Assumption 3.1 (Bounded signal). There exists B > 0 such that |η(X)| ⩽ B almost surely.

Thus, for a given B, the main parameter to tune is L ⩾ 1—the higher the L is, the more accurate
prediction functions can be produced, while lower values of L ensure that the demographic parity
requirement reduces to a small number of constraints. Thus, there is a trade-off that is introduced by
L. A natural attempt to tackle the problem of fairness in this context would be to estimate a solution
to (3) with Ŷ = ŶL. Of course, L needs to be chosen so that the aforementioned solution attains
the risk that is close to the risk of some benchmark prediction function that does not involve any
discretization. This will be discussed later in the text. For now, let us address another subtle issue.
Even assuming a complete knowledge of the underlying distribution P, solving (3) requires solving a
linear program in dimension Ω(LK) which can be infeasible in practice for large values of L and K.
Instead of (3), we rather focus on the entropic regularized version of it. For β > 0, we consider

min
π:B(R)×Rd→[0,1]

{
Rβ(π) : supp(π(· | x)) = Ŷ for x ∈ Rd, Us(π, ŷ) ⩽ εs for ŷ ∈ Ŷ, s ∈ [K]

}
, (4)

whereRβ(π) = R(π) + 1
βE[Ψ(π(· |X))] and for any discrete univariate distribution µ, we define

its negative entropy Ψ(µ)
def
=
∑

ŷ∈supp(µ) µ(ŷ) log(µ(ŷ)).

Remark 3.1 (On abuse of notation). Note that for every ŷ ∈ ŶL there is a unique ℓ ∈ [[L]] such that
ŷ = ℓB/L and we will write π(ℓ | x) instead of π(ŷ | x). Similarly, we write Us(π, ℓ) instead of
Us(π, ŷ), defined in (2), when no confusion is possible and the support ŶL is fixed.

An extremely attractive feature of the problem in (4) is the fact that the solution to it can be written
explicitly as a function of optimal dual variables, with the latter being a solution of a stochastic
convex program with Lipschitz gradient—the main observation of our approach, that shares many
similarities with the smoothing technique of Nesterov (2005). This is summarized in the following
lemma.
Lemma 3.1. Let L ∈ N and β > 0. Let Λ⋆ = (λ⋆

ℓs)ℓ∈[[L]],s∈[K] and V⋆ = (ν⋆ℓs)ℓ∈[[L]],s∈[K] be two
matrices that are solutions to

min
Λ,V⩾0

{
F (Λ,V)

def
= E

[
LSEβ

((
⟨λℓ − νℓ, t(X)⟩ − rℓ(X)

)
ℓ∈[[L]]

)]
+
∑
ℓ∈[[L]]

⟨λℓ + νℓ, ε⟩
}
, (5)

where t(x)
def
= 1− τ (x)

p , rℓ(x)
def
=
(
η(x)− ℓB

L

)2
, and λℓ = (λℓs)s∈[K], νℓ = (νℓs)s∈[K]. Then, (4)

admits a solution in the form

πΛ⋆,V⋆(ℓ | x) def
= σℓ

(
β (⟨λ⋆

ℓ′ − ν⋆
ℓ′ , t(x)⟩ − rℓ′(x))ℓ′∈[[L]]

)
for ℓ ∈ [[L]] . (6)

4
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Assuming perfect knowledge of η and τ , the above lemma suggests a natural approach to estimating
the πΛ⋆,V⋆—we can run a (version of) stochastic gradient descent on F (·, ·) and then plug-in the
resulting dual variables in the formula for πΛ⋆,V⋆ . Notably, a stochastic gradient of F (·, ·) can be
obtained by simply sampling one X from PX—it does not require labels for this step. Yet, even
in the above idealized case, it is not clear which optimization criteria would allow us to prove that
the resulting solution would yield good properties in terms of risk and fairness. As we will see,
despite the problem in (5) being convex with Lipschitz gradient, it is crucial to control the norm of
the gradient of F for good statisitcal properties of the algorithm. That goes without saying that this
relaxation has its price—the smaller the regularization parameter β the less accurate the resulting
solution, but the resulting dual optimization problem is easier and vice-versa.

Properties of F and πΛ⋆,V⋆ . Let us summarized key properties of the objects introduced in
Lemma 3.1. The first two results concern the population properties of πΛ⋆,V⋆ :
Lemma 3.2 (Fairness quantification). Let L ∈ N, ε = (εs)s∈[K] ∈ [0, 1]K , β > 0, and πΛ⋆,V⋆ be
defined in Lemma 3.1. Then, Us(πΛ⋆,V⋆ , ℓ) ⩽ εs for all s ∈ [K], ℓ ∈ [[L]].

In words, the optimal entropic-regularized prediction function is feasible for (3), that is, it satisfies
the relaxed fairness constraints as quantified by (2). Furthermore, we can show that its risk is also
controlled by the regularization parameter β > 0.
Lemma 3.3 (Risk gain). Let L ∈ N, β > 0, and πΛ⋆,V⋆ be defined in Lemma 3.1. For any
π : B(R)× Rd → [0, 1] that is feasible for (3), we have

R(πΛ⋆,V⋆) ⩽ R(π) + log |ŶL|
β .

The above result is rather instructive, it quantifies the price of the introduced regularization. Intuitively,
one wants to set β high enough, so that the additive term in the above bound is vanishing. Unfor-
tunately, we cannot set it arbitrarily high, since it will introduce instabilities from the optimization
perspective—the function F becomes less regular as β growth. This is summarized below.

Lemma 3.4 (Regularity of F ). Let σ2 def
= 2

∑
s∈[K]

1−ps

ps
. The objective function in (5) is convex and

its gradient is (βσ2)-Lipschitz.

As mentioned, we see that the larger the β is, the less regular the function F is, making it harder to
minimize. Thus, β ⩾ 0 controls the trade-off between the optimization error and statistical bias.

Gradient of F is crucial. Let us show that the control of the gradient of F is the most important
and non-trivial part that allows to demonstrate strong statistical properties of the plug-in rule derived
from the above strategy.

To this end, let us introduce parametric family of prediction functions, defined for any Λ,V ⩾ 0 as

πΛ,V(ℓ | x) def
= σℓ

(
β (⟨λℓ′ − νℓ′ , t(x)⟩ − rℓ′(x))ℓ′∈[[L]]

)
for ℓ ∈ [[L]] . (7)

We want to show that if Λ,V ⩾ 0 is nearly stationary point of F , then πΛ,V is nearly optimal in terms
of risk and its violation of the demographic parity constraint is controlled. Note that the optimization
problem in (5) is constrained, thus, unless the minimum lies in the interior of the domain, we cannot
hope for the gradient of F to go to zero. Instead, we introduce gradient mapping—a quantity that
shares many properties of the gradient in the case of constraint optimization problem. For α > 0,

Gα (Λ,V)
def
=

(Λ,V)− ((Λ,V)− α∇F (Λ,V))+
α

. (8)

Our main observation is summarized in the next lemma.

Lemma 3.5. Let σ2 def
= 2

∑
s∈[K]

1−ps

ps
, L ∈ N, Λ,V ⩾ 0, then for any α > 0, β > 0, the unfairness

of πΛ,V satisfies ∑
ℓ∈[[L]]s∈[K]

(
Us
(
πΛ,V, ℓ

)
− εs

)2
+
⩽ ∥Gα(Λ,V)∥2 .

Furthermore,

R(πΛ,V) ⩽ R(πΛ⋆,V⋆) +

(
∥(Λ,V)∥+ α

{
σ + ∥ε∥

√
2|ŶL|

})
∥Gα(Λ,V)∥+ log |ŶL|

β
.

5
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Lemma 3.5 is very instructive on its own—we can obtain a good estimator of πΛ⋆,V⋆ in terms of
risk and unfairness by performing stochastic optimization on F and controlling the norm of gradient
mapping for a suitable parameter α > 0. The final choice of the parameter α will depend on the
optimization algorithm used and will be purely theoretical. In particular, for our purposes, it is
sufficient to guarantee an existence of some value of α > 0 that yields desired statistical properties.
A naive approach in doing so relies on a well-known relation between F (Λ,V)− F (Λ⋆,V⋆) and
∥Gα(Λ,V)∥2 using the Lipshitzness of the gradient of F (see e.g., Beck, 2014, Lemma 9.11). More
concretely, forgetting about the constraints1, one has

∥∇F (Λ,V)∥2 ⩽ 2M
(
F (Λ,V)− F (Λ⋆,V⋆)

)
, (9)

where M is the Lipschitz constant of∇F . Thus, the above inequality suggests that it is sufficient to
control the standard optimization error in order to control the norm of the gradient. Unfortunately
this approach is deemed to fail for two reasons: the first being that we control only the squared norm
of the gradient map and not the norm itself, thus loosing in the rate of convergence; the second, and
more subtle reason, is the separation of the purely “statistical” rate that depends only on the variance
of the stochastic gradient and scales as 1/

√
T , with T being the number of future samples from PX ,

and “optimization” rate of convergence that depends on M and the diameter of the problem and
typically scales as 1/T or even 1/T 2 if acceleration is used.

Indeed, in our setup, Lipschitz constant M of ∇F is not a fixed constant, but a parameter to be
set—it relates to β (cf. Lemma 3.4). Ideally, seeing Lemma 3.3, we want to set β = Θ(

√
T ), leading

to M = Ω(
√
T ). Thus, in view of (9), a term of the form M/

√
T appears in the convergence rate,

which destroys consistency of the resulting estimator. Arguably, this is less of an issue in case of
convex optimization with constant Lipschitz constant M , especially if we only want the norm to go
to zero. This discussion highlights that it is crucial to keep the separation between the statistical part
of the rate and the optimization part of the rate, while controlling the norm of the gradient. Lucky for
us, it is known that for convex problems one can indeed control the gradient mapping keeping this
separation of the rate (Allen-Zhu, 2021, Foster et al., 2019). Note that it is not the case for non-convex
problems as demonstrated by Arjevani et al. (2023).

Summary of our approach and why is it different from others. Now, keeping in mind the
above, rather long justification, we are in position to sketch our approach and the formal presentation
is deferred to the next section. For well selected parameters β > 0, L ∈ N, we are going to
perform stochastic optimization of F , relying on the SGD3 algorithm of Allen-Zhu (2021). In order
to compute the stochastic gradient of F , we are simply going to sample one PX and it appears that
this stochastic gradient has a well-behaved variance (see Appendix B-C for details). To make our
approach completely data-driven (or at least to understand the order of magnitude of the parameters),
we will compute or bound all the oracle quantities that appear in the used optimization algorithm
(essentially related to the step-size tuning). We will show that for any sufficiently small α > 0,
the term E∥Gα(Λ̂, V̂)∥2 is controlled and then rely on Lemma 3.5 and some additional results to
demonstrate that the resulting πΛ̂,V̂ possesses good statistical properties.

Remark 3.2 (On the dynamic of algorithm). Note that for Λ = V = 0, the corresponding(
π0,0(ℓ | x)

)
ℓ∈[[L]]

= σ
(
β
(
−(η(x)− ℓ′B/L)2

)
ℓ′∈[[L]]

)
.

That is, the above prediction puts the most amount of mass on the atom ℓ which minimizes (η(x)−
ℓB/L)2—the most accurate, but unfair prediction. Since our algorithm is based on a SGD-type
algorithm, initialized at Λ0 = V0 = 0, then we expect that during the dynamic of the algorithm, the
risk of πΛt,Vt increases, while the unfairness decreases. This phenomena coincides with the intuition
of post-processing—we want to gain in fairness, while sacrificing some accuracy.

As it has been already mentioned, the idea of discretizing the image of (randomized) predictions is
not novel and has been successfully deployed by Agarwal et al. (2019) for an in-processing estimator
and by Chzhen et al. (2020b) for a post-processing estimator. We use this insight as a building block,
but significantly deviate from both algorithms. Compared to Agarwal et al. (2019), our algorithm
is positioned in the realm of post-processing and even online post-processing, where i.i.d. samples

1Constraints introduce additional challenges, but are not relevant for this discussion.

6
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from PX comes in a stream and we do not need to store them in memory. Also, while their algorithm
is partially inspired by theory, the same theory suggests that this algorithm is not computationally
efficient and it relies on some black-box parts that assume perfect solutions to some optimization
problems. That being said, the algorithm of Agarwal et al. (2019) seem to be the gold standard
method for the generic in-processing method in this problem. Compared to Chzhen et al. (2020b), we
have made a sequence of improvements. First, our setup is unawareness, which is not the case in their
paper; second, our algorithm is able to handle multiple protected attributes as well as approximate
fairness constraints; finally, and most importantly, we do not make black-box assumptions about
having access to exact minimizers of convex problems and provide an end-to-end analysis of out
approach. Let us also remark that our method cannot be considered as a simple extension of Chzhen
et al. (2020b) as we rely on different phenomenons and provide a very different algorithm. On a more
subjective note, we believe that our approach is a nice example of a real convex optimization problem,
where the norm of the gradient plays the central role, while the optimization error in term of the
objective function does not matter2. This is precisely the phenomena highlighted by Nesterov (2012).

4 Proposed algorithm

Algorithm 1: DP post-processing(L, T, β,p, B, η, τ )

1: Input: discretization parameter L ⩾ 1; regularization β > 0, number of stochastic gradient
evaluations T ⩾ 1; marginal distribution p of S; regression function η; conditional distribution
τ of S |X; bound B > 0 on η.

2: Build uniform grid ŶL over [−B,B];
3: Set parameters: σ2 = 2

∑
s∈[K]

1−ps

ps
, M = βσ2;

4: Set (Λ,V) 7→ F (Λ,V) as defined in Lemma 3.1
5: Run a black-box optimizer A(F, σ2,M, T ) on function F having access to T stochastic gradient

evaluations (see (11)) with variance σ2 and smoothness parameter M to obtain (Λ̂, V̂);
6: return π(Λ̂,V̂)(· | ·) as defined in (7);

In this section, we provide all the details about the proposed algorithm in case η and τ are known. If
they are unknown, these quantities are replaced by their estimates η̂ and τ̂ that are constructed on a
separate labeled dataset. First, for Λ = (λℓs)ℓ∈[[L]],s∈[K],V = (νℓs)ℓ∈[[L]],s∈[K], let us provide the
expression for the gradient of F :

∇□ℓs
F (Λ,V) = △E

[
σℓ

(
β (⟨λℓ′ − νℓ′ , t(X)⟩ − rℓ′(X))

L
ℓ′=−L

)
ts(X)

]
+ εs , (10)

where □ ∈ {λ, ν} and △ = 1 if □ = λ and △ = −1 otherwise. Thus, a stochastic gradient
g(Λ,V) = (gλℓs

(Λ,V), gνℓs
(Λ,V))ℓ∈[[L]],s∈[K] of F at a point (Λ,V) can be computed by erasing

expectation in (10), i.e., by sampling one X ∼ PX , using the same convention as above about □,△:

g□ℓs
(Λ,V) = △σℓ

(
β (⟨λℓ′ − νℓ′ , t(X)⟩ − rℓ′(X))

L
ℓ′=−L

)
ts(X) + εs . (11)

The next result controls the variance of the above stochastic gradient.

Lemma 4.1. Let σ2 def
= 2

∑
s∈[K]

1−ps

ps
. It holds that E∥g(Λ,V)−∇F (Λ,V)∥2 ⩽ σ2.

The proposed method is summarized in Algorithm 1. It uses a black-box stochastic optimization
algorithm A, that operates on a convex function F and a stochastic first-order oracle. The stochastic-
first order oracle is implemented by (11) and only requires to sample X ∼ P in an i.i.d. manner.
We also pass two additional parameters to this algorithm: namely, we pass the variance σ2 from
Lemma 4.1 and the Lipschitz constant of the gradient of F from Lemma 3.4. Then one can use
any such algorithm. However, as shown in Lemma 3.5, those algorithms that are tailored to control
expected norm of gradient mapping are preferred. For example, one can use SGD3 of Allen-Zhu (2021)
or an improved version of Foster et al. (2019) that relies on restarted accelerated SGD of Ghadimi
and Lan (2012).

2To be more precise, the optimization error is automatically handled by the control of the gradient.
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5 Theoretical guarantees.

Let us first provide main results for Algorithm 1 assuming that η and τ are known. Note that
Algorithm 1 can rely on any optimization algorithm. We provide a complete analysis using a refined
version of SGD3 algorithm of Allen-Zhu (2021) that is due to Foster et al. (2019) with additional
modifications taking into account the specific structure of our problem. We state the main result in
existential form and postpone all the details on the implementation of the algorithm and a primer on
optimization to the supplementary material (Appendix C-D).
Theorem 5.1. Let ε = (εs)s∈[K] ∈ [0, 1]K and σ2 = 2

∑
s∈[K](1− ps)/ps. Setting β = T

8 log2(T )

and L =
√
T , there exists an optimizer A to be used in Algorithm 1 that, for T larger than some

absolute constant, ensures

E
1/2

[ ∑
ℓ∈[[L]]s∈[K]

(
Us
(
πΛ,V, ℓ

)
− εs

)2
+

]
⩽ Õ

(
σ√
T

(
1 +

σ√
T
∥(Λ⋆,V⋆)∥

))
.

Furthermore, if Assumption 3.1 is satisfied and let

R⋆ def
= inf

h:Rd→[−B,B]

{
R(h) : sup

t∈R
|P(h(X) ⩽ t | S = s)− P(h(X) ⩽ t)| ⩽ εs

2
, ∀s ∈ [K]

}
(12)

and E(πΛ̂,V̂)
def
= E

[
R(πΛ̂,V̂)

]
−R⋆, then for the same algorithm

E(πΛ̂,V̂) ⩽ Õ
((

σ√
T
E

1/2
[
∥(Λ̂, V̂)∥2

]
+
∥ε∥
T 5/4

)(
1 +

σ√
T
∥(Λ⋆,V⋆)∥

)
+

B√
T

)
.

Theorem 5.1 gives two results: the first one being on the unfairness of the proposed estimator and
the second one on the risk of thereof compared to a benchmark prediction function in (12). The
benchmark that we pick is rather natural, we compare to the risk of a deterministic prediction that
minimizes the risk and whose unfairness is controlled by a Kolmogorov-Smirnov distance. One
first main observation is that both fairness and risk decrease at the rate 1/

√
T and T is the number

of unlabeled data. From our numerical experiments, we observed that we can keep the number of
unlabeled data unchanged and iterate several times through them. As a result, we increase artificially
T—without generating new data—which gives a significant empirical improvement. We also remark
that σ is the parameter that depends on the number of groups. For example, in the case of uniform
distribution of sensitive groups σ = O(K). We finally remark that both bounds involve a single
unknown quantity—∥(Λ⋆,V⋆)∥, which from standard duality argument can be shown to be bounded
by O(1/mins∈[K]{εs}) (see e.g., Nedić and Ozdaglar, 2009, Lemma 3). Thus, having this norm
multiplied by T−1/2 is a very attractive property of the bound. It allows to set ε ≈ T−1/2 without
damaging the parametric convergence rate.

To derive the above result, we slightly extend the analysis of Foster et al. (2019), who, relying on the
SGD3 algorithm of Allen-Zhu (2021), gave an optimal algorithm that controls the expected norm of
the gradient in the convex case. More concretely, we incorporate a projection step into their analysis
and extend the control to the squared norm of the gradient map. Interestingly, due to our smoothing
step and the choice of the parameter β, we noticed that there is no need to restart the accelerated SGD
as it is done by Foster et al. (2019) because it leads to identical statistical convergence rates. The
interested reader can take a closer look into the Appendix C, where all the optimization results are
either recalled or derived for the sake of completeness. Finally, having a control of the squared norm
of the gradient map, the proof of Theorem 5.1 follows from Lemma 3.5 and a careful and practical
choice of all the parameters of the algorithm.

Extension to unknown η and τ . In this part we show that if we replace η and τ with their estimates
η̂ and τ̂ and run DP post-processing(L, T, β,p, B, η̂, τ̂ ) algorithm with the same choice of
parameters, Theorem 5.1 remains if we pay additional price for the estimation of η and τ . From now
on, we assume that η̂ and τ̂ are provided and are trained on its own labeled data sample, while the
refitting is performed on an independent stream of i.i.d. data from PX . So, we essentially treat η̂ and
τ̂ as deterministic functions. Let us introduce a family of prediction functions

π̂Λ,V(ℓ | x) def
= σℓ

(
β
(〈

λℓ′ − νℓ′ , t̂(x)
〉
− r̂ℓ′(x)

)
ℓ′∈[[L]]

)
for ℓ ∈ [[L]] . (13)

8

117924https://doi.org/10.52202/079017-3745



Note that for fixed matrices Λ,V, the above prediction function is fully data-driven. With this plug-in
strategy, our approach becomes fully data-driven and, in Appendix E, we show that the guarantees
presented in the main body still hold paying additional price for estimation of η and τ . To be more
precise, we consider the plug-in version of (5), defined as

min
Λ,V⩾0

{
EX

[
LSEβ

((〈
λℓ − νℓ, t̂(X)

〉
− r̂ℓ(X)

)L
ℓ=−L

)]
+

L∑
ℓ=−L

⟨λℓ + νℓ, ε⟩

}
. (P̂LSE)

Let us denote by F̂ , the objective function of the above problem. Thus, main interesting part is to
demonstrate that a control of the gradient map of F̂ , denoted by ∥GF̂ ,α(Λ̂, V̂)∥, gives a control of
risk and unfairness of π̂Λ̂,V̂, quantifying the price induced by the plug-in estimation. This is precisely
the purpose of the following two results:
Lemma 5.1. Let L ∈ N, Λ,V ⩾ 0, then for any α > 0, β > 0 it holds that√ ∑

ℓ∈[[L]]s∈[K]

(Us(π̂Λ,V, ℓ)− εs)
2
+ ⩽ ∥GF̂ ,α(Λ,V)∥+ E1/2∥t̂(X)− t(X)∥2 .

Lemma 5.2. Let σ̂2 = 2
∑

s∈[K]
EX(ps−τ̂s(X))2

p2
s

, L ∈ N, Λ,V ⩾ 0, then for any α > 0, β > 0 it
holds that

R(π̂Λ,V) ⩽ R(πΛ⋆,V⋆) +

(
∥(Λ,V)∥+ α

{
σ̂ + ∥ε∥

√
2|ŶL|

})∥∥∥GF̂ ,α(Λ,V)
∥∥∥+ log |ŶL|

β

+ 2EX

[
max
ℓ∈[[L]]

|rℓ(X)− r̂ℓ(X)|
]
+
√
2∥(Λ,V)∥ · E1/2∥t(X)− t̂(X)∥2 .

Note that the two above results are extensions of Lemma 3.5, where both t and η were assumed to
be known. These results are following the spirit of post-processing bounds—the quality of the final
approach depends on the initial estimator and the optimization algorithm used to post-process and
the two errors are clearly separated. Proofs of both results with additional details and discussions is
provided in the supplementary material.

6 Numerical illustration

In this section we conduct empirical study of the proposed algorithm, denoted by DP-postproc,
and demonstrate its relevance in practical problems 3. We have implemented both SGD3 of Allen-
Zhu (2021) and an improved version by Foster et al. (2019), observing that the latter significantly
outperforms the former. We also tested the approach that is suggested by the theory—SGD3 and
accelerated SGD, without restart and it show nearly identical performance as the restarted version
of Foster et al. (2019). Thus, for numerical evaluation, we stick to the latter.
We conduct our study on two datasets: Law School dataset (Wightman (1998)) and Communities and
Crime dataset (Redmond (2009)). In the Law School dataset, the aim is to predict students’ GPA
on a scale of 0 to 4, normalized to [0, 1], while in the Communities and Crime dataset, we focus on
predicting the normalized number of violent crimes per population within the range of [0, 1]. In both
datasets, ethnicity is a sensitive attribute, distinguishing between white and non-white individuals or
communities (majority-wise).
Our pipeline is the following: First, we randomly split the data into training, unlabeled and testing
sets with proportions of 0.4× 0.4× 0.2. We use Dtrain = {(xi, si, yi)

n
i=1} to train a base (unfair)

regressor to estimate η and to train a classifier to estimate τ . We use simple LinearRegression and
LogisticRegression from scikit-learn for training the regressor and the classifier. Finally, we use the
trained regressor and classifier to train the Algorithm 1 with Dunlabeled = (x)n+T

i=n+1 for N (note that
our theory suggests that N = T is enough, but we have noticed that larger N can be more beneficial
in practice) iterations. We use Dtest = {(x′

i, s
′
i, y

′
i)

m
i=1} to collect evaluation statistics.

In Figure 1 we illustrate the post-processing dynamics of our method. We have 2 plots for each test
dataset: the history of risk (R(π̂)) and of the unfairness (U0(π̂) and U1(π̂)) w.r.t. number of iterations.
We illustrate the convergence for ε = (2−8, 2−8) unfairness threshold. The explicit formulas of the
evaluation measures are provided in Appendix G.

3The code is available at https://github.com/taturyan/unaware-fair-reg.
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Figure 1: Risk and unfairness of our estimator on Communities and Crime and Law School datasets.

Comparison with Agarwal et al. (2019). Surprisingly, we were unable to find many open source
competitors that target regression with demographic parity constraint in unaware setting, even the
FairLearn—a popular python package—does not deal with the demographic parity constraint in
regression. The only easily accessible algorithm that deals with our problem was kindly provided
by Agarwal et al. (2019) (from now on referenced as ADW). We train ADW method in two ways: we
use Dtrain and Dunlabeled as training set for ADW-1, whereas for ADW-2 we use only Dtrain. The
second situation is realistic, when unlabeled data is available and unlike ADW, our approach is able
to take advantage of it. We take the set {(2−i, 2−i)i∈I}, where I = {1, 2, 4, 8, 16} as unfairness
thresholds for training both datasets. We train ADW-1 and ADW-2 for each pair of epsilons for 10
times. With our available computing power and the code provided by the authors, the algorithm runs
for 13.5 hours (see Appendix G for additional details).4

On Figure 2 we illustrate the comparison of risk and unfairness between ADW-1, ADW-2, base
(LinearRegression) and our model. We plot the mean and standard deviation of risk and unfairness
for each epsilon threshold on both datasets. We observe that our method is competitive or eventually
outperforms ADW in both training regimes.

Figure 2: Comparison with ADW model on Communitites and Crime and Law School datasets.

7 Conclusion

Deriving a dual convex surrogate, we have provided a generic way to build a post-processing estimator
of any off-the-shelf method that achieves the demographic parity constraint. Our approach is fully
data and theory driven, revealing a key role of stationary point guarantees in stochastic convex
optimization. Following Remark 2.2, we intend to extend our approach, which is general enough, to
other learning problems, beyond algorithmic fairness.

Limitations. From the theoretical perspective, the knowledge of B seems to be the main limitation.
While it is available for many applications, it does not have to be the case all the time. Replacing
this assumption with some tail conditions, could be more realistic. From the applied perspective, it
would be beneficial to further investigate stationary point guarantees for convex optimization to yield
a better practical performance.

Acknowledgements The work of Gayane Taturyan has been supported by the French government
under the "France 2030” program, as part of the SystemX Technological Research Institute within
the Confiance.ai project.

4The experiments are conducted on a Processor 11th Gen Intel(R) Core(TM) i7-1195G7 2.90GHz with 16GB
RAM.
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A Proofs for results in Section 3

First we explicit the first order optimality conditions for the problem in (5).
Lemma A.1. Let (Λ⋆,V⋆) ⩾ 0 be any minimizer of (5) and π⋆ = πΛ⋆,V⋆ be defined in (6). Then,
there exist Γ = (γℓs)ℓ∈[[L]],s∈[K],Γ

′ = (γ′
ℓs)ℓ∈[[L]],s∈[K]—element-wise non-negative matrices such

that 
EX [π⋆(ℓ |X)t(X)] = −ε+ γℓ

EX [π⋆(ℓ |X)t(X)] = ε− γ′
ℓ

γℓsλ
⋆
ℓs = 0

γ′
ℓsν

⋆
ℓs = 0

∀ℓ ∈ [[L]], s ∈ [K] , (14)

where γℓ = (γℓs)s∈[K],γ
′
ℓ = (γ′

ℓs)s∈[K].

Proof. We first observe that the optimization problem in (5) is convex and smooth. Thus,
Karush–Kuhn–Tucker conditions are sufficient for optimally. Furthermore, since Slatter’s con-
dition is satisfied, the latter is also necessary, as the strong duality holds. In particular, there exist
Γ = (γℓs)ℓ∈[[L]],s∈[K],Γ

′ = (γ′
ℓs)ℓ∈[[L]],s∈[K]—element-wise non-negative matrices such that

∇ΛF (Λ⋆,V⋆)− Γ = 0

∇VF (Λ⋆,V⋆)− Γ′ = 0

Λ⋆,V⋆ ⩾ 0

γℓsλ
⋆
ℓs = 0

γ′
ℓsν

⋆
ℓs = 0

∀ℓ ∈ [[L]], s ∈ [L] .

To conclude, it is sufficient to evaluate the gradient on F , whose expression is given in (10) and use
the definition of π⋆. ■

Proof of Lemma 3.1. To prove this result, we introduce the Lagrangian for the problem in (4).

L(π,Λ,V) = Rβ(π) + EX

∑
ℓ∈[[L]]

⟨νℓ − λℓ, t(X)⟩π(ℓ |X)

− ∑
ℓ∈[[L]]

⟨λℓ + νℓ, ε⟩ ,

where we used the fact, that using the definition of Us, for any randomized prediction function π, we
can write

Us(π, ℓ) =
∣∣∣∣EX [π(ℓ |X)I{S = s}]

P(S = s)
− EX [π(ℓ |X)]

∣∣∣∣ = |EX [π(ℓ |X)ts(X)]| . (15)

Thus, denoting by (⋆) the value in (4), we have
(⋆) = min

π
max

Λ,V⩾0
L(π,Λ,V) = max

Λ,V⩾0
min
π
L(π,Λ,V) ,

where the second equality holds thanks to Sion’s minmax theorem. Let us solve the inner minimization
problem on the right-hand-side. We can write

L(π,Λ,V) = EX

∑
ℓ∈[[L]]

(rℓ(X)− ⟨λℓ − νℓ, t(X)⟩)π(ℓ |X) +
1

β
Ψ(π(· |X))


−
∑
ℓ∈[[L]]

⟨λℓ + νℓ, ε⟩ .
(16)

Thus, using the variational representation of LSEβ , recalled in Lemma F.1, we have

min
π

L(π,Λ,V) = −max
π

EX

∑
ℓ∈[[L]]

(⟨λℓ − νℓ, t(X)⟩ − rℓ(X))π(ℓ | X)− 1

β
Ψ(π(· | X))


+
∑
ℓ∈[[L]]

⟨λℓ + νℓ, ε⟩


= −EX

[
LSEβ

(
(⟨λℓ − νℓ, t(X)⟩ − rℓ(X))ℓ∈[[L]]

)]
−
∑
ℓ∈[[L]]

⟨λℓ + νℓ, ε⟩ ,
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and the optimum in the above problem for every Λ,V ⩾ 0 is achieved by πΛ,V, defined in (7).
Thus, we have

(⋆) = max
Λ,V⩾0

{−F (Λ,V)} = Rβ(πΛ⋆,V⋆) . (17)

The proof is concluded. ■

Proof of Lemma 3.2. As shown in (15), for any randomized prediction function π, we can write

Us(π, ℓ) = |EX [π(ℓ |X)ts(X)]| .

Our goal is to show that π⋆ satisfies the required fairness constraints. We are going to rely on
Lemma A.1 Subtracting the first equation in (14) from the second one, we deduce that γℓ + γ′

ℓ = 2ε.
Since γℓ,γ

′
ℓ ⩾ 0, then we conclude that γℓs, γ′

ℓs ∈ [0, 2εs]. The above implies that

−εs ⩽ EX [π⋆(ℓ |X)ts(X)] = Us(π⋆, ℓ) ⩽ εs ,

as claimed. ■

Proof of Lemma 3.3. Fix some randomized prediction function π that is feasible for the problem
in (3). In particular, it must be supported on Ŷ . Then, we can bound its negative risk as follows

−R(π) = −EX

∑
ℓ∈[[L]]

rℓ(X)π(ℓ | X)


(a)

⩽ EX

∑
ℓ∈[[L]]

(⟨λ⋆
ℓ − ν⋆

ℓ , t(X)⟩ − rℓ(X))π(ℓ | X)

+
∑
ℓ∈[[L]]

⟨λ⋆
ℓ + ν⋆

ℓ , ε⟩

(b)

⩽ EX

[
LSEβ

(
(⟨λ⋆

ℓ − ν⋆
ℓ , t(X)⟩ − rℓ(X))

L
ℓ=−L

)]
+
∑
ℓ∈[[L]]

⟨λ⋆
ℓ + ν⋆

ℓ , ε⟩

(c)
= EX

∑
ℓ∈[[L]]

(⟨λ⋆
ℓ − ν⋆

ℓ , t(X)⟩ − rℓ(X))π⋆(ℓ | X)− 1

β
Ψ(π⋆(· | X))

+
∑
ℓ∈[[L]]

⟨λ⋆
ℓ + ν⋆

ℓ , ε⟩

(d)

⩽ EX

∑
ℓ∈[[L]]

(⟨λ⋆
ℓ − ν⋆

ℓ , t(X)⟩ − rℓ(X))π⋆(ℓ | X)

+
∑
ℓ∈[[L]]

⟨λ⋆
ℓ + ν⋆

ℓ , ε⟩+
log(2L+ 1)

β

(e)
= −R(π⋆) +

log(2L+ 1)

β
,

(18)
for (a) we used the assumption that π is fair (i.e., Us(π, ℓ) ⩽ εs), which due to the fact that
Λ⋆,V⋆ ⩾ 0 implies∑

ℓ∈[[L]]

⟨λ⋆
ℓ , EX [t(X)π(ℓ |X)] + ε⟩+

∑
ℓ∈[[L]]

⟨ν⋆
ℓ , −EX [t(X)π(ℓ |X)] + ε⟩ ⩾ 0 ,

since every term in the summation is non-negative; (b) uses the fact that LSEβ(w) ⩾ ⟨w, p⟩ for any
probability vector p (see Lemma F.1 for details); (c) relies on the variational representation of the
LSEβ , recalled in Lemma F.1 and the definition of π⋆(· | X); (d) uses the uniform bound on the
entropy; (e) the last equality relies on the complementary slackness condition (14) of Lemma A.1. It
ensures that {

λ⋆
ℓsEX [π⋆(ℓ |X)ts(X)] = −λ⋆

ℓsεs
ν⋆ℓsEX [π⋆(ℓ |X)ts(X)] = ν⋆ℓsεs

∀ℓ ∈ [[L]], s ∈ [K] ,

implying that

EX

∑
ℓ∈[[L]]

⟨λ⋆
ℓ − ν⋆

ℓ , t(X)⟩π⋆(ℓ |X)

+
∑
ℓ∈[[L]]

⟨λ⋆
ℓ + ν⋆

ℓ , ε⟩ = 0 .

The proof is concluded. ■
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Proof of Lemma 3.5. Fix arbitrary Λ,V ⩾ 0 and consider πΛ,V, defined in (7). To ease the notation,
in this proof, we write π instead of πΛ,V.
Part I. Let us first recall the definition of the gradient map Gα given in (8). We have the following
expression

Gα (Λ,V) =
(Λ,V)− ((Λ,V)− α∇F (Λ,V))+

α
,

where (·)+ is to be understood entry-wise. Observing that for any α, a ⩾ 0 and b ∈ R, we have∣∣∣∣a− (a− αb)+
α

∣∣∣∣ = ∣∣∣∣a−max{0; a− αb}
α

∣∣∣∣ = ∣∣∣min
{ a

α
; b
}∣∣∣ ⩾ |min {0; b}| ⩾ (−b)+ ,

we deduce that ∥∥(−∇F (Λ,V))+
∥∥ ⩽ ∥Gα(Λ,V)∥ ∀Λ,V ⩾ 0 . (19)

Relying on (10) and the expression for π in (7), we observe that

∇λℓs
F (Λ,V) = EX [π(ℓ |X)ts(X)] + εs

∇νℓs
F (Λ,V) = −EX [π(ℓ |X)ts(X)] + εs

(20)

and that Us(π, ℓ) = |E [π(ℓ |X)ts(X)]| as it is shown in (15). Using the fact that (|a| − c)2+ =
(−a− c)2+ + (a− c)2+ for all a ∈ R and c ⩾ 0, we deduce from above

(Us(πΛ,V, ℓ)− εs)
2
+ = (−∇λℓs

F (Λ,V))
2
+ + (−∇νℓs

F (Λ,V))
2
+ ∀ℓ ∈ [[L]], s ∈ [K] . (21)

Thus, we have shown ∑
ℓ∈[[L]]
s∈[K]

(Us(π, ℓ)− εs)
2
+ =

∥∥(−∇F (Λ,V))+
∥∥2 ,

and (19) yields the claim.
Part II. We note that π(Λ,V) is a unique solution to

min
π
L(π,Λ,V) ,

where L is the Lagrangian defined in (16). Furthermore, minπ L(π,Λ,V) = −F (Λ,V) =
L(π(Λ,V),Λ,V). Hence,

Rβ(π(Λ,V)) + F (Λ,V) =
∑

ℓ∈[[L]],s∈[K]

λℓs∇λℓs
F (Λ,V) +

∑
ℓ∈[[L]],s∈[K]

νℓs∇νℓs
F (Λ,V)

= ⟨(Λ,V) , ∇F (Λ,V)⟩ .

For the sake of simplicity let us denote by u
def
= (Λ,V) ∈ R2K(2L+1) and recall the definition of

gradient mapping Gα given in (8). For any j ∈ [2K(2L+ 1)] and α > 0, we have

Gαj(u) =

{
uj/α if α∂jF (u) > uj ,

∂jF (u) if ∂jF (u) ⩽ uj .

To bound ⟨u, ∇F (u)⟩, let us examine each term of the scalar product. Denoting by ũ
def
= u −

α∇F (u) ∈ R2K(2L+1), for any j ∈ [2K(2L+ 1)] and α > 0, we have

uj∂jF (u) = α∂jF (u)Gαj(u)I{ũj < 0}+ ujGαj(u)I{ũj ⩾ 0} .
Thus, it holds that

⟨u, ∇F (u)⟩ ⩽
∑

j∈[2K(2L+1)]

(α|∂jF (u)Gαj(u)|+ |ujGαj(u)|) ⩽ (∥u∥+ α ∥∇F (u)∥) ∥Gα(u)∥

⩽
(
∥u∥+ ασ + α ∥ε∥

√
2(2L+ 1)

)
∥Gα(u)∥ ,

where the last inequality follows from Lemma F.5 that bounds ∥∇F (u)∥.
To conclude the proof, we use the fact that It remains to observe that minΛ,V F (Λ,V) =

−Rβ(π(Λ⋆,V⋆)), the bound (19) on ∥(−∇F (Λ,V))+∥ and the fact thatRβ(π) ⩽ R(π)+ log(2L+1)
β

for all π. ■
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B Bound on the variance of the stochastic gradient and its’ smoothness

Proof of Lemma 4.1. We have

EX ∥gΛ,V(X)−∇Λ,VF (Λ,V)∥2

⩽ 2EX

∥∥∥∥(σℓ

(
β (⟨λℓ′ − νℓ′ , t(X)⟩ − rℓ′(X))

L
ℓ′=−L

)
ts(X)

)
ℓ∈[[L]],s∈[K]

∥∥∥∥2
⩽ 2EX

 ∑
s∈[K]

t2s(X)

 ⩽ 2
∑
s∈[K]

1− ps
ps

def
= σ2 ,

where the first inequality follows from the expressions of gΛ,V and∇Λ,VF (Λ,V), and the fact that
Var(X + a) = Var(X) ⩽ E[X2]; the second inequality follows from the facts that ∥(aibj)i,j∥22 =

∥a∥22 ∥b∥
2
2 ⩽ ∥a∥21 ∥b∥

2
2 and that ∥σ(·)∥1 = 1; and the last inequality follows from Lemma F.4. ■

Proof of Lemma 3.4. The goal of this proof is to show that the gradient of (Λ,V) 7→ F (Λ,V) is
M -Lipschitz. To this end, we first introduce some, rather heavy, but convenient, notation which will
allow us to derive the announced result.

Introducing notation. We first vectorize the variables (Λ,V) and express them as

z
def
= (λ−L1, · · ·λ−LK︸ ︷︷ ︸

=λ−L

, · · · · · · , λL1, · · ·λLK︸ ︷︷ ︸
=λL

, ν−L1, · · · ν−LK︸ ︷︷ ︸
=ν−L

, · · · · · · , νL1, · · · νLK︸ ︷︷ ︸
=νL

) ∈ R2K(2L+1) .

Furthermore, for each x ∈ Rd, we introduce a matrix A(x) ∈ R(2L+1)×2K(2L+1) defined as

A(x)
def
=


t(x)⊤ 0 · · · 0 · · · 0 · · · 0 −t(x)⊤ 0 · · · 0 · · · 0 · · · 0
0 · · · 0 t(x)⊤ · · · 0 · · · 0 0 · · · 0 −t(x)⊤ · · · 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 · · · 0 · · · t(x)⊤ 0 · · · 0 0 · · · 0 · · · −t(x)⊤

 ,

as well as

b(x)
def
= (r−L(X), · · · , rL(X))

⊤ ∈ R2L+1 and

c
def
= (ε1, · · · , εK , ε1, · · · , εK , · · · · · · , ε1, · · · , εK)

⊤ ∈ R2K(2L+1) .

Hessian of F in the introduced notation. With the above introduce notation, we can express the
function F as

F (Λ,V) = F (z) = EX [LSEβ(A(X)z − b(X))] + ⟨c, z⟩ .
That is, F is obtained from the LSEβ by a point-wise affine transformation of the coordinates plus a
linear term. Chain rule yields the following expressions for the Hessian of F :

∇2F (z) = EX

[
A(X)⊤∇2 LSEβ(A(X)z − b(X))A(X)

]
.

Bounding the operator norm of the Hessian of F . To conclude the proof, we provide a uniform
upper bound on the operator (spectral) norm of the Hessian of F . Using the Jensen’s inequality and
the fact that the operator norm is subordinate, we deduce that

∥∇2F (z)∥op = ∥EX

[
A(X)⊤∇2 LSEβ(A(X)z − b(X))A(X)

]
∥op

⩽ EX

[
∥A(X)⊤∇2 LSEβ(A(X)z − b(X))A(X)∥op

]
⩽ EX

[
∥A(X)∥op∥∇2 LSEβ(A(X)z − b(X))∥op∥A(X)∥op

]
.

Lemma F.2, implies that ∥∇2 LSEβ(A(X)z − b(X))∥op ⩽ β almost surely and for all z. Thus, it
remains to bound EX∥A(X)∥2op to conclude the proof. To this end, consider a vector u, expressed
“block-wise” as

u =
(
uλ
−L1, · · ·uλ

−LK︸ ︷︷ ︸
def
=uλ

−L

, · · · · · · , uλ
L1, · · ·uλ

LK︸ ︷︷ ︸
def
=uλ

L

, uν
−L1, · · ·uν

−LK︸ ︷︷ ︸
def
=uν

−L

, · · · · · · , uν
L1, · · ·uν

LK︸ ︷︷ ︸
def
=uν

L

)⊤ ∈ R2K(2L+1) .
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Using the definition of the operator norm and the expression for A(X), we deduce that

EX∥A(X)∥2op = EX sup
∥u∥2

2=1

∥A(X)u∥22

= EX sup
∥u∥2

2=1

L∑
ℓ=−L

(〈
uλ
ℓ − uν

ℓ , t(X)
〉)2

⩽ 2EX

[
∥t(X)∥22

]
sup

∥u∥2
2=1

∑
ℓ∈[[L]]

(∥∥uλ
ℓ

∥∥2
2
+ ∥uν

ℓ ∥
2
2

)
,

where the last inequality combines the Cauchy-Schwartz inequality and the fact that ∥v −w∥22 ⩽
2(∥v∥22+∥w∥22) for all v,w ∈ Rm. The proof is concluded using Lemma F.4 to bound EX ∥t(X)∥22.

■

Lemma B.1 (Price of discretization). Let Assumption 3.1 be satisfied. Let β,B > 0, L ∈ N. Consider

R⋆ def
= inf

h:Rd→R

{
E(h(X)− η(X))2 : sup

t∈R
|P(h(X) ⩽ t | S = s)− P(h(X) ⩽ t)| ⩽ εs/2, ∀s ∈ [K]

}
.

Then, it holds that

R(πΛ⋆,V⋆) ⩽ R⋆ +
4B

L
+

1

L2
+

log(2L+ 1)

β
.

Proof. Let us assume that R⋆ = E(h⋆(X)− η(X)) for some h⋆ : Rd → [−B,B]. If it is not the
case, the standard argument based on the minimizing sequence yields the same result.

Consider an operator TL, which maps a deterministic classifier h : Rd → [−B,B] onto a determinis-
tic classifier TL(h) : Rd → ŶL, which is defined point-wise as follows

(TL(h))(x) = ⌊Lh(x)/B⌋B/L ∀x ∈ Rd ,

where ⌊a⌋ is the closest integer smaller or equal to a ∈ R in absolute value. Notice, that for any
ℓ ∈ {−L, . . . , L− 1} and any x ∈ Rd, we have

(TL(h
⋆))(x) =

ℓB

L
⇐⇒ h⋆(x) ∈

[
ℓB

L
,
(ℓ+ 1)B

L

)
.

Moreover,
(TL(h

⋆))(x) = B ⇐⇒ h⋆(x) = B .

Since h⋆ satisfies (ε/2)-fairness constraints, one checks that for all ℓ ∈ [[L]], s ∈ [K]

Us(TL(h
⋆), ℓ) ⩽ εs .

That is, TL(h
⋆) is feasible for the problem in (4). Therefore, Lemma 3.3 implies that

R(πΛ⋆,V⋆) ⩽ R(TL(h
⋆)) +

log(2L+ 1)

β
.

Furthermore, since |TL(h
⋆)(x)− h⋆(x)| ⩽ 1/L and |η(x)− h⋆(x)| ⩽ 2B, we have

R(TL(h
⋆)) = E (η(X)− TL(h

⋆)(X))
2 ⩽ R(h⋆) +

4B

L
+

1

L2
.

The proof is concluded. ■
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Algorithm 2: AC-SA(F,w0, µ,M, T )

1: Input: function F ; initial vector w0; parameters µ,M ⩾ 0; number of iterations T ⩾ 1
2: wag

0 = w0

3: for t = 1 to T do
4: sample new z ∼ P , independently from the past
5: αt ← 2

t+1

6: γt ← 4M
t(t+1)

7: wmd
t ← (1−αt)(µ+γt)

γt+(1−α2
t )µ

wag
t−1 +

αt((1−αt)µ+γt)
γt+(1−α2

t )µ
wt−1

8: wt ← ProjW
{

(1−αt)µ+γt

µ+γt
wt−1 +

αtµ
µ+γt

wmd
t − αt

µ+γt
∇fw(wmd

t , z)
}

9: wag
t ← αtwt + (1− αt)w

ag
t−1

10: end for
11: return wag

t

C Additional details on the algorithm

In this part of the appendix, we provide the analysis for the proposed algorithm. First, we introduce
required notation and recall a result of Foster et al. (2019), who provided an algorithm for convex
stochastic optimization. The provided algorithm is a refined version of the SDG3 algorithm of
Allen-Zhu (2021). We note that Foster et al. (2019) give a control of the expected norm of a gradient,
while we require a control of the expected squared norm of the gradient mapping. We introduce
projection to the algorithm of Foster et al. (2019) based on the original algorithm of Ghadimi and
Lan (2012) and provide a control of the expected squared norm of the gradient mapping of the final
estimated solution.

The setup and notation.

Consider f : Rd × Z → R, such that w 7→ f(w, z) is convex for each z ∈ Z . Let W ⊂ Rd be a
closed convex set. Let

F (w)
def
=

∫
f(w, z)dP (z)

for some probability distribution P on Z . In what follows, we assume that

w⋆ ∈ argmin
w∈W

F (w)

always exists.

Assumption C.1. We assume that F is M -smooth and the variance of ∇wf(w, z) is bounded. That
is, for some M > 0 and σ > 0

∀w,w′ ∈W ∥∇F (w)−∇F (w′)∥ ⩽ M ∥w −w′∥ and

∀w ∈W

∫ [
∥∇wf(w, z)−∇F (w)∥2

]
dP (z) ⩽ σ2 .

Let us also define gradient mapping as

GF,α(w)
def
=

w −w+

α
with w+ ∈ argmin

w′∈W

{
⟨∇F (w), w′⟩+ 1

2α
∥w′ −w∥2

}
.

Let ProjW (·) be the Euclidean projection onto closed convex W .

C.1 Some known results.

We start by introducing the original AC-SA algorithm of Ghadimi and Lan (2012) and recall some of
their results for the sake of completeness.
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Algorithm 3: AC-SA2(F,w0, µ,M, T )

1: Input: function F ; initial vector w0; parameters µ,M ⩾ 0; number of iterations T ⩾ 1
2: w1 ← AC-SA(F,w0, µ,M, T

2 )

3: w2 ← AC-SA(F,w1, µ,M, T
2 )

4: return w2

Algorithm 4: SGD3-refined(F,w0, µ,M, T )

1: Input: function F ; initial vector w0; parameters 0 < µ ⩽ M ; number of iterations
T ⩾ Ω

(
M
µ log2

M
µ

)
2: F (0)(w)← F (w) + µ

2 ∥w −w0∥2 ; ŵ0 ← w0;µ0 ← µ

3: for j = 1 to J =
⌊
log M

µ

⌋
do

4: ŵj ← AC-SA2(F (j−1), ŵj−1, µj−1, 2(M + µ), T
J )

5: µj ← 2µj−1

6: F (j)(w)
def
= F (j−1)(w) +

µj

2 ∥w − ŵj∥2
7: end for
8: return ŵJ

Theorem C.1. (Ghadimi and Lan, 2012, Proposition 9) Let w⋆ ∈ argminw∈W F (w), w0 ∈W a
starting vector. If F is µ−strongly convex and T ⩾ 1 then with

αt =
2

t+ 1
and γt =

4M

t(t+ 1)
, ∀t > 1

AC-SA(F,w0, µ,M, T ), defined in Algorithm 2, outputs ŵT satisfying

E[F (ŵT )]− F (w∗) ⩽
2M ∥w0 −w⋆∥2

T 2
+

8σ2

µT
.

Foster et al. (2019) propose another version of AC-SA, called AC-SA2, which resets the stepsize
halfway through the process.
Lemma C.1. (Foster et al., 2019, Lemma 1) Let W = Rd, w⋆ ∈ argminw∈W F (w), w0 ∈ Rd a
starting vector. If µ > 0, M ⩾ 0 and T ⩾ 1 then AC-SA2(F,w0, µ,M, T ), defined in Algorithm 3,
outputs ŵ satisfying

E[F (ŵ)]− F (w∗) ⩽
128M2 ∥w0 −w⋆∥2

µT 4
+

256Mσ2

µ2T 3
+

16σ2

µT
.

Remark C.1. Foster et al. (2019) do not consider constrained optimization throughout their work.
However, the proof of Lemma C.1 follows analogous arguments.

Foster et al. (2019) also introduce a refined version of algorithm SGD3 of Allen-Zhu (2021).

In what follows, we will show that Algorithm 4, after T evaluations of the stochastic gradient,
produces a point ŵ such that E∥GF,α(ŵ)∥2 is controlled. This is a, rather mild, extension of Foster
et al. (2019) and Allen-Zhu (2021).

C.2 Control of the expected squared norm

Most of the proof techniques are already present in the original contribution of Allen-Zhu (2021)
and Foster et al. (2019), we slightly extend their proof, introducing modifications related to the control
of the squared norm and the projection step. For some J ⩾ 1, to be fixed later on, introduce

Fµ̃(w)
def
= F (w) +

J∑
j=1

µj

2
∥w − ŵj∥2 and w⋆

µ̃ ∈ argmin
w∈W

Fµ̃(w) . (22)
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By construction, Fµ̃ is µ̃
def
=
∑J

j=1 µj-strongly convex and (M + µ̃)-smooth. Let us also define

F (0) def
= F (w) and F (j)(w)

def
= F (j−1)(w) +

µj

2 ∥w − ŵj∥2, for j = 1, 2, . . . , J . We will use the
following results of Allen-Zhu (2021).

Lemma C.2. (Allen-Zhu, 2021, Lemma 2.3) Let F̃ be an M̃ -smooth and µ̃-strongly convex function.
Let w,w′ ∈W and w+ = w − α ·GF̃ ,α(w). For any α ∈

(
0, 1

M̃

]
, we have

F̃ (w′) ⩾ F̃ (w+) +
〈
GF̃ ,α(w), w′ −w

〉
+

α

2

∥∥∥GF̃ ,α(w)
∥∥∥2 + µ̃

2
∥w′ −w∥2 .

Lemma C.3. (Allen-Zhu, 2021, Lemma 5.1) Consider Fµ̃ and w⋆
µ̃ as defined in (22) and w ∈ W .

For any α ∈
(
0, 1

M+µ̃

]
, we have

∥GF,α(w)∥ ⩽
J∑

j=1

µj

∥∥w⋆
µ̃ − ŵj

∥∥+ 3
∥∥GFµ̃,α(w)

∥∥ .

Claim C.1. (Allen-Zhu, 2021, Claim 6.2) Suppose for every j = 1, . . . , J the iterates ŵj of
Algorithm 4 satisfy

E
[
F (j−1) (ŵj)− F (j−1)

(
w⋆

j−1

)]
⩽ δj where w⋆

j−1 ∈ argmin
w

{
F (j−1)(w)

}
,

then,

(a) for every j ⩾ 1 we have E
[∥∥ŵj −w⋆

j−1

∥∥]2 ⩽ E
[∥∥ŵj −w⋆

j−1

∥∥2] ⩽ 2δj
µj−1

;

(b) for every j ⩾ 1 we have E
[∥∥ŵj −w⋆

j

∥∥]2 ⩽ E
[∥∥ŵj −w⋆

j

∥∥2] ⩽ δj
µj

;

(c) if µj = 2µj−1, then for all j ⩾ 1 we have E
[∑J

j=1 µj ∥ŵj −w⋆
J∥
]
⩽ 4

∑J
j=1

√
δjµj .

In addition to Claim C.1, we prove the following lemma.
Lemma C.4. Suppose for every j = 1, . . . , J , µj = 2µj−1 and the iterates ŵj of Algorithm 4 satisfy

E
[
F (j−1) (ŵj)− F (j−1)

(
w⋆

j−1

)]
⩽ δj where w⋆

j−1 ∈ argmin
w

{
F (j−1)(w)

}
,

then,

E


 J∑

j=1

µj ∥w⋆
J − ŵj∥

2
 ⩽ 16J

J∑
j=1

µjδj .

Proof. Let Pj
def
=
∑j

t=1 µt

∥∥w⋆
j − ŵt

∥∥, yielding that PJ =
∑J

j=1(Pj − Pj−1), with the agreement
that P0 = 0. Cauchy-Schwartz inequality gives

P 2
J =

 J∑
j=1

(Pj − Pj−1)

2

⩽ J

J∑
j=1

(Pj − Pj−1)
2 . (23)

Since Pj is non-decreasing, to bound the above quantity, it suffices to bound each increment of the
form Pj − Pj−1. One can write

Pj − Pj−1

(a)

⩽ µj

∥∥w⋆
j − ŵj

∥∥+ j−1∑
t=1

µt(
∥∥w⋆

j − ŵt

∥∥− ∥∥w⋆
j−1 − ŵt

∥∥)
(b)

⩽ µj

∥∥w⋆
j − ŵj

∥∥+(j−1∑
t=1

µt

)∥∥w⋆
j −w⋆

j−1

∥∥
(c)

⩽ µj(2
∥∥w⋆

j − ŵj

∥∥+ ∥∥w⋆
j−1 − ŵj

∥∥) ,
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where (a) follows from the definition of Pj , (b) from reverse triangle inequality and (c) uses triangle
inequality and the fact that

∑j−1
t=1 µt ⩽ µj as µj = 2µj−1. Therefore, using the fact that (a+ b)2 ⩽

2a2 + 2b2, we deduce from the above that

(Pj − Pj−1)
2 ⩽ 2µ2

j (4
∥∥w⋆

j − ŵj

∥∥2 + ∥∥w⋆
j−1 − ŵj

∥∥2) .
Taking the expectation and applying Claim C.1(a) and Claim C.1(b), the latter is bounded as

E
[
(Pj − Pj−1)

2
]
⩽ 8µ2

jE[
∥∥w⋆

j − ŵj

∥∥2] + 2µ2
jE[
∥∥w⋆

j−1 − ŵj

∥∥2] ⩽ 8µ2
j

δj
µj

+ 2µ2
j

2δj
µj−1

= 16µjδj .

(24)

Plugging (24) into (23) yields the claimed bound. ■

Remark C.2. Notice, that in Algorithm 4 we apply AC-SA2 to F (j−1) with starting point ŵj−1 and
T/J iterations. Since F (j−1) is M +

∑j−1
t=1 µt ⩽ 2M−smooth and µj−1−strongly convex, applying

Lemma C.1 and Claim C.1(b), we get E
[
F (j−1) (ŵj)− F (j−1)

(
w⋆

j−1

)]
⩽ δj and

δj ⩽
128(2M)2E

∥∥ŵj−1 −w∗
j−1

∥∥2
µj−1(T/J)4

+
256(2M)σ2

µ2
j−1(T/J)

3
+

16σ2

µj−1(T/J)

⩽
29M2δj−1

µ2
j−1(T/J)

4
+

29Mσ2

µ2
j−1(T/J)

3
+

24σ2

µj−1(T/J)
.

We are in position to prove the main ingredient of this section.
Theorem C.2 (Control of the expected squared norm). Let w⋆ ∈ argminw∈W F (w), w0 ∈ Rd

a starting vector. When µ ∈ (0,M ] and T > 211/4
√

M
µ

⌊
log2

M
µ

⌋
, then for α = 1

2J+2µ
, with

J =
⌊
log2

M
µ

⌋
, SGD3-refined(F,w0, µ,M, T ) outputs ŵ satisfying

E
[
∥GF,α(ŵ)∥2

]
⩽

(
34 · 216M2

T 4
log52

M

µ
+ 2µ2

)∥∥w0 −w∗
µ

∥∥2
+

34 · 217Mσ2

µT 3
log42

M

µ
+

34 · 211σ2

T
log32

M

µ
.

Proof. Part I. At first, let us assume that F is µ0-strongly convex. Since the definition of F
satisfies the definition given in (22) with J − 1, applying Lemma C.3 and using the fact that
(a+ b)2 ⩽ 2a2 + 2b2, we get that for any α ∈

(
0, (M +

∑J−1
j=1 µj)

−1
]
, it holds that

E
[
∥GF,α(ŵJ)∥2

]
⩽ E

(3 ∥∥GF (J−1),α(ŵJ)
∥∥+ J−1∑

j=1

µj ∥w⋆
J−1 − ŵj∥

)2


⩽ 2E

9 ∥∥GF (J−1),α(ŵJ)
∥∥2 +(J−1∑

j=1

µj ∥w⋆
J−1 − ŵj∥

)2
 . (25)

Note, that due to definition of µj , we have
∑J−1

j=1 µj ⩽ M , thus, the derived inequality holds for any

α ∈
(
0, (2M)−1

]
⊂
(
0, (M +

∑J−1
j=1 µj)

−1
]
. Lemma C.4 provides a control of the second term of

(25). To control the first term, let us apply Lemma C.2 with F (J−1) and w = w′ = ŵJ , getting
α
2

∥∥GF (J−1),α(ŵJ)
∥∥2 ⩽ F (J−1)(ŵJ) − F (J−1)(ŵ+

J ) ⩽ F (J−1)(ŵJ) − F (J−1)(w∗
J−1),∀α ∈

(0, 1
2M ]. Meaning, that

∥∥GF (J−1),α(ŵJ)
∥∥2 ⩽ 2δJ

α . Let us recall, that J =
⌊
log2

M
µ0

⌋
and µJ =

2Jµ0 ⩽ M ⩽ 2µJ . Hence, choosing α = 1
4µJ

and substituting the derived bound into (25), we
deduce that

E
[
∥GF,α(ŵJ)∥2

]
⩽

36δJ
α

+ 32(J − 1)

J−1∑
j=1

µjδj ⩽ 144J

J∑
j=1

µjδj .
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Now, let us substitute the bound on δj from Remark C.2 and replicate the steps of Foster et al. (2019)
to control the above. We get

J∑
j=1

µjδj ⩽
210M2 ∥w0 −w∗∥2

(T/J)4
+

210Mσ2

µ0(T/J)3
+

25σ2

(T/J)
+

J∑
j=2

(
210M2δj−1

µj−1(T/J)4
+

210Mσ2

µj−1(T/J)3
+

25σ2

(T/J)

)

⩽
210M2 ∥w0 −w∗∥2 J4

T 4
+

210Mσ2J3

µ0T 3

J∑
j=1

1

2j−1
+

25σ2J2

T
+

210M2J4

T 4

J∑
j=2

δj−1

µj−1

⩽
210M2 ∥w0 −w∗∥2 J4

T 4
+

211Mσ2J3

µ0T 3
+

25σ2J2

T
+

210M2J4

µ2
0T

4

J∑
j=1

µjδj ,

where the last inequality comes from the facts that
∑J

j=1
1

2j−1 ⩽ 2 and
∑J

j=2
δj−1

µj−1
⩽
∑J

j=1
δj
µj

⩽
1
µ2
0

∑J
j=1 µjδj . Rearranging the terms and multiplying both sides by 144J , we get

144J

J∑
j=1

µjδj ⩽
9

1− 210M2J4

µ2
0T

4

(
214M2 ∥w0 −w∗∥2 J5

T 4
+

215Mσ2J4

µ0T 3
+

29σ2J3

T

)
.

Choosing T > 211/4J
√

M
µ0

ensures that 1

1− 210M2J4

µ2
0T4

⩽ 2. Finally, substituting the derived bounds and

the value of J =
⌊
log2

M
µ0

⌋
, we conclude that

E
[
∥GF,α(ŵJ)∥2

]
⩽

9 · 215M2 ∥w0 −w∗∥2

T 4
log52

M

µ0
+

9 · 216Mσ2

µ0T 3
log42

M

µ0
+

9 · 210σ2

T
log32

M

µ0
.

(26)

Part II. When F is not strongly convex, let Fµ(w)
def
= F (w) + µ

2 ∥w −w0∥2 and w⋆
µ ∈

argminw {Fµ(w)}. Applying (26) and Lemma C.3 with J = 1 and ŵ1 = w0, we get

E
[
∥GF,α(ŵ)∥2

]
⩽

(
34 · 216M2

T 4
log52

M

µ
+ 2µ2

)∥∥w0 −w∗
µ

∥∥2
+

34 · 217Mσ2

µT 3
log42

M

µ
+

34 · 211σ2

T
log32

M

µ
.

Since µ
2 ∥w

⋆ −w0∥2 − µ
2

∥∥w⋆
µ −w0

∥∥2 = (Fµ(w
⋆) − F (w⋆)) + (F (w⋆

µ) − Fµ(w
⋆
µ)) ⩾ 0, then∥∥w⋆

µ −w0

∥∥2 ⩽ ∥w⋆ −w0∥2. The proof is concluded. ■

Remark C.3. Notice, that in Algorithm 4 we apply AC-SA to F (j−1) with starting point ŵj−1 and
T/J iterations. Since F (j−1) is M +

∑j−1
t=1 µt ⩽ 2M−smooth and µj−1−strongly convex, applying

Lemma C.1 and Claim C.1(b), we get E
[
F (j−1) (ŵj)− F (j−1)

(
w⋆

j−1

)]
⩽ δj and

δj ⩽
2(2M)E

∥∥ŵj−1 −w∗
j−1

∥∥2
(T/J)2

+
8σ2

µj−1(T/J)
⩽

4Mδj−1

µj−1(T/J)2
+

8σ2

µj−1(T/J)
.

Theorem C.3 (Control of the expected squared norm). Let w⋆ ∈ argminw∈W F (w), w0 ∈ Rd

a starting vector. When µ ∈ (0,M ] and T > 4
√

M
µ

⌊
log2

M
µ

⌋
, then for α = 1

2J+2µ
, with J =⌊

log2
M
µ

⌋
, SGD3-refined(F,w0, µ,M, T ) with AC-SA outputs ŵ satisfying

E
[
∥GF,α(ŵ)∥2

]
⩽

(
3429Mµ

T 2
log32

M

µ
+ 2µ2

)
∥w0 −w∗∥2 + 34211σ2

T
log32

M

µ
.
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Proof. Part I. At first, let us assume that F is µ0-strongly convex. Applying Lemma C.3 and using
the fact that (a+ b)2 ⩽ 2a2 + 2b2, we get

E
[
∥GF,α(ŵJ)∥2

]
⩽ E

(3∥∥GF (J−1),α(ŵJ)
∥∥+ J−1∑

j=1

µj ∥w⋆
J−1 − ŵj∥

)2


⩽ 2E

9 ∥∥GF (J−1),α(ŵJ)
∥∥2 +(J−1∑

j=1

µj ∥w⋆
J−1 − ŵj∥

)2
 . (27)

Lemma C.4 provides a control of the second term of the above inequality. To control the first
term, let us apply Lemma C.2 with F (J−1) and w = w′ = ŵJ , getting α

2

∥∥GF (J−1),α(ŵJ)
∥∥2 ⩽

F (J−1)(ŵJ) − F (J−1)(ŵ+
J ) ⩽ F (J−1)(ŵJ) − F (J−1)(w∗

J−1),∀α ∈ (0, 1
2M ]. Meaning, that∥∥GF (J−1),α(ŵJ)

∥∥2 ⩽ 2δJ
α . Let us recall, that J =

⌊
log2

M
µ0

⌋
and µJ = 2Jµ0 ⩽ M ⩽ 2µJ . Hence,

choosing α = 1
4µJ

and substituting the derived bound into (27), we deduce that

E
[
∥GF,α(ŵJ)∥2

]
⩽

36δJ
α

+ 32(J − 1)

J−1∑
j=1

µjδj ⩽ 144J

J∑
j=1

µjδj .

Let us substitute the bound on δj from Remark C.2 to control the above. We get
J∑

j=1

µjδj ⩽
4M ∥w0 −w∗∥2 µ1

(T/J)2
+

8σ2µ1

(T/J)µ0
+

J∑
j=2

(
8Mδj−1

(T/J)2
+

16σ2

(T/J)

)

⩽
8Mµ0 ∥w0 −w∗∥2 J2

T 2
+

32σ2J2

T
+

8MJ2

T 2

J∑
j=2

δj−1

⩽
8Mµ0 ∥w0 −w∗∥2 J2

T 2
+

32σ2J2

T
+

8MJ2

µ0T 2

J∑
j=2

µj−1δj−1

⩽
8Mµ0 ∥w0 −w∗∥2 J2

T 2
+

32σ2J2

T
+

8MJ2

µ0T 2

J∑
j=1

µjδj .

Rearranging the terms and multiplying both sides by 144J , we get

144J

J∑
j=1

µjδj ⩽
1152

1− 8MJ2

µ0T 2

(
Mµ0 ∥w0 −w∗∥2 J3

T 2
+

4σ2J3

T

)
.

Choosing T > 4J
√

M
µ0

ensures that 1

1− 8MJ2

µ0T2

⩽ 2. Finally, substituting the derived bounds and the

value of J =
⌊
log2

M
µ0

⌋
, we conclude that

E
[
∥GF,α(ŵJ)∥2

]
⩽ 2304 log32

M

µ0

(
Mµ0 ∥w0 −w∗∥2

T 2
+

4σ2

T

)
. (28)

Part II. When F is not strongly convex, let Fµ(w)
def
= F (w) + µ

2 ∥w −w0∥2 and w⋆
µ ∈

argminw {Fµ(w)}. Applying (26) and Lemma C.3 with J = 1 and ŵ1 = w0, we get

E
[
∥GF,α(ŵ)∥2

]
⩽

(
3429Mµ

T 2
log32

M

µ
+ 2µ2

)∥∥w0 −w∗
µ

∥∥2 + 34211σ2

T
log32

M

µ
.

Since µ
2 ∥w

⋆ −w0∥2 − µ
2

∥∥w⋆
µ −w0

∥∥2 = (Fµ(w
⋆) − F (w⋆)) + (F (w⋆

µ) − Fµ(w
⋆
µ)) ⩾ 0, then∥∥w⋆

µ −w0

∥∥2 ⩽ ∥w⋆ −w0∥2. The proof is concluded. ■
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D Proofs of statistical guarantees

In order to derive statistical guarantees for the proposed method, we are going to instantiate the
extension provided in the previous appendix.

Proof of Theorem 5.1. Let us instantiate Theorem C.2. According to Lemma 4.1 and Lemma 3.4
we have that σ2 = 2

∑
s∈[S]

1−ps

ps
and M = βσ2. Setting β = T

8 log2 T and µ = σ2/β, ensures that

µ ⩽ M and that T > 4
√

M
µ

⌊
log2

M
µ

⌋
= T

log2 T

⌊
log2

T
8 log2 T

⌋
,∀T ⩾ 2. For T larger than some

large enough absolute constant, the conditions of Theorem C.2 are satisfied for the function F .

Fairness guarantee. Theorem C.2 yields

E
[
∥GF,α(ŵ)∥2

]
⩽

3426σ4

T 2

log52
T 2

64 log2
2 T

log22 T
+

27σ4

T 2
log22 T

 ∥(Λ⋆,V⋆)∥2

+
34211σ2

T log22 T
log42

T 2

64 log22 T
+

34211σ2

T
log32

T 2

64 log22 T
.

Therefore, we have shown that

E

[∥∥∥Gα(Λ̂, V̂)
∥∥∥2] ⩽ Õ(σ2

T

(
1 +

σ2

T
∥(Λ⋆,V⋆)∥2

))
(29)

Hence, the first part of Lemma 3.5 implies the fairness guarantee.

Fairness guarantee with AC-SA. Theorem C.3 yields

E
[
∥GF,α(ŵ)∥2

]
⩽

(
3429σ4

T 2
log32

T 2

64 log22 T
+

27σ4

T 2
log22 T

)
∥(Λ⋆,V⋆)∥2

+
34211σ2

T
log32

T 2

64 log22 T
.

Therefore, we have shown that

E

[∥∥∥Gα(Λ̂, V̂)
∥∥∥2] ⩽ Õ(σ2

T

(
1 +

σ2

T
∥(Λ⋆,V⋆)∥2

))
. (30)

Hence, the first part of Lemma 3.5 implies the fairness guarantee.

Risk guarantee. The second part of Lemma 3.5 states that

R(πΛ̂,V̂)−R(πΛ⋆,V⋆) ⩽
(∥∥∥(Λ̂, V̂)

∥∥∥+ ασ + α ∥ε∥
√

2(2L+ 1)
)
·
∥∥∥Gα(Λ̂, V̂)

∥∥∥+ log(2L+ 1)

β
.

Taking the expectation and applying the Cauchy-Schwartz inequality, we obtain

E
[
R(πΛ̂,V̂)

]
−R(πΛ⋆,V⋆) ⩽

(√
E

[∥∥∥(Λ̂, V̂)
∥∥∥2]+ ασ + α ∥ε∥

√
2(2L+ 1)

)

·

√
E

[∥∥∥Gα(Λ̂, V̂)
∥∥∥2]+ log(2L+ 1)√

T
.

Recalling the value of α = 1
2J+2µJ

⩽ 1
2M from Theorems C.2 and C.3 and the fact that M = βσ2,

we get ασ ⩽ 1
2βσ . Finally, applying (29)-(30) and setting L =

√
T , we obtain

E
[
R(πΛ̂,V̂)

]
−R(πΛ⋆,V⋆)

⩽ Õ

(
σ√
T

(
1 +

σ√
T
∥(Λ⋆,V⋆)∥

)(
E

1/2
[
∥(Λ̂, V̂)∥2

]
+

1

Tσ
+
∥ε∥
T 3/4σ

)
+

log(
√
T )√

T

)
.

Above combined with Lemma B.1 yields the claimed bound. ■
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E Unknown η and τ

In this section we consider the case, when η and τ are unknown and estimated by η̂ and τ̂ . We denote
by t̂(x)

def
= 1− τ̂ (x)

p and r̂ℓ(x)
def
=
(
η̂(x)− ℓB

L

)2
. We consider the plug-in version of (5), defined as

min
Λ,V⩾0

{
EX

[
LSEβ

((〈
λℓ − νℓ, t̂(X)

〉
− r̂ℓ(X)

)L
ℓ=−L

)]
+

L∑
ℓ=−L

⟨λℓ + νℓ, ε⟩

}
. (P̂LSE)

Let us denote by F̂ , the objective function of the above problem and introduce

R̂β(π)
def
= EX

∑
ℓ∈[[L]]

r̂ℓ(X)π(ℓ |X) +
1

β
Ψ(π(· |X))

 .

The gradient of F̂ is given for any Λ,V ⩾ 0 by

∇λℓs
F̂ (Λ,V) = EX

[
σℓ

(
β
(〈

λℓ′ − νℓ′ , t̂(X)
〉
− r̂ℓ′(X)

)L
ℓ′=−L

)
t̂s(X)

]
+ εs ,

∇νℓs
F̂ (Λ,V) = −EX

[
σℓ

(
β
(〈
λℓ′ − νℓ′ , t̂(X)

〉
− r̂ℓ′(X)

)L
ℓ′=−L

)
t̂s(X)

]
+ εs ,

(31)

for ℓ ∈ [[L]], s ∈ [K]. Let us denote by ĝ(Λ,V) the stochastic gradient of F̂ , defined as

ĝλℓs
(Λ,V) = σℓ

(
β
(〈

λℓ′ − νℓ′ , t̂(X)
〉
− r̂ℓ′(X)

)L
ℓ′=−L

)
t̂s(X) + εs ,

ĝνℓs
(Λ,V) = −σℓ

(
β
(〈

λℓ′ − νℓ′ , t̂(X)
〉
− r̂ℓ′(X)

)L
ℓ′=−L

)
t̂s(X) + εs ,

(32)

for X ∼ PX and ℓ ∈ [[L]], s ∈ [K]. We also define, by the analogy with the main body, a family of
plug-in estimators

π̂Λ,V(ℓ | x) def
= σℓ

(
β
(〈

λℓ − νℓ, t̂(x)
〉
− r̂ℓ(x)

)L
ℓ=−L

)
Λ,V ⩾ 0 . (33)

Our goal is to derive analogous optimization results for the new plug-in objective. Inspecting the
proofs of Lemma 4.1 and Lemma 3.4, which bound variance of and the Lipschitz constant of the
gradient respectively, we observe that those proofs only depend on the nature of t̂ via Lemma F.4. In
particular, the key quantity to control is

σ̂2 = 2
∑
s∈[K]

EX(ps − τ̂s(X))2

p2s
.

Before, when we assumed the perfect knowledge of τ , the above was controlled by the Bhatia-Davis
inequality, leveraging the fact that variance of τs(X) appears in the numerator. It is no longer the case
here. However, if one can build calibrated estimators, that is, estimators for which EX [τ̂s(X)] = ps,
the same machinery is applicable. In any case, even without requiring calibrated predictions, one can
have a reasonable control of σ̂2 building sufficiently accurate estimator τ̂s.

That being said, results of Lemma 4.1 and Lemma 3.4 generalize line-by-line, replacing σ2 by σ̂2

and give

sup
Λ,V⩾0

EX

∥∥∥ĝΛ,V(X)−∇Λ,VF̂ (Λ,V)
∥∥∥2 ⩽ σ̂2 and sup

Λ,V
∥∇2F̂ (Λ,V)∥op ⩽ βσ̂2 .

Moreover, the result of Lemma F.5 generalizes as well and gives supΛ,V⩾0

∥∥∥∇Λ,VF̂ (Λ,V)
∥∥∥ ⩽ σ̂.

As in (19), we can show that∥∥∥∥(−∇F̂ (Λ,V)
)
+

∥∥∥∥ ⩽
∥∥∥GF̂ ,α(Λ,V)

∥∥∥ ∀Λ,V ⩾ 0 , (34)

where the gradient mapping GF̂ ,α is defined by analogy with Gα = GF,α, discussed in the main
body.

Considering the SGD3 algorithm with the same choice of parameters, but replacing σ2 by σ̂2, results
in a control of

∥∥∥GF̂ ,α(Λ̂, V̂)
∥∥∥.
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Proof of Lemma 5.1. Fix Λ,V ⩾ 0. To ease the notation, we write π̂ to denote π̂Λ,V within this
proof. Similarly to the proof of (21) from Lemma 3.5, one shows that for all Λ,V ⩾ 0√ ∑

ℓ∈[[L]]s∈[K]

(∣∣E [π̂(ℓ |X)t̂s(X)
]∣∣− εs

)2
+
= ∥(−∇F̂ (Λ,V))+∥ ∀ℓ ∈ [[L]], s ∈ [K] .

Recalling that Us(π̂, ℓ) = |E [π̂(ℓ |X)ts(X)] |, triangle’s inequality combined with the above yields√ ∑
ℓ∈[[L]]s∈[K]

(Us(π̂, ℓ)− εs)
2
+ ⩽ ∥(−∇F̂ (Λ,V))+∥+

√ ∑
ℓ∈[[L]]s∈[K]

{
E[π̂(ℓ |X)|t̂s(X)− ts(X)|]

}2
.

Cauchy-Schwartz inequality gives

∑
ℓ∈[[L]]s∈[K]

{
E[π̂(ℓ |X)|t̂s(X)− ts(X)|]

}2
⩽
∑
s∈[K]

E

∑
ℓ∈[[L]]

π̂(ℓ |X)2

 |t̂s(X)− ts(X)|2
 .

Since
∑

ℓ∈[[L]] π̂(ℓ |X) = 1, then
∑

ℓ∈[[L]] π̂(ℓ |X)2 ⩽ 1. Thus, we have shown that√ ∑
ℓ∈[[L]]s∈[K]

(Us(π̂Λ,V, ℓ)− εs)
2
+ ⩽

∥∥∥(−∇F̂ (Λ,V)
)
+

∥∥∥+ E1/2∥t̂(X)− t(X)∥2 .

We conclude using (34). ■

Proof of Lemma 5.2. Fix Λ,V ⩾ 0. To ease the notation, we write π̂
def
= π̂Λ,V and π⋆ def

= πΛ⋆,V⋆ ,
within this proof.

As in the second part of the proof of Lemma 3.5, we have

R̂β(π̂) + F̂ (Λ,V) ⩽
(
∥(Λ,V)∥+ ασ̂ + α ∥ε∥

√
2(2L+ 1)

)∥∥∥GF̂ ,α(Λ,V)
∥∥∥ . (35)

Furthermore, since ∥∇LSEβ(·)∥1 ≡ 1, we have

|F̂ (Λ,V)− F (Λ,V)| ⩽ E
[
max
ℓ∈[[L]]

{
|rℓ(X)− r̂ℓ(X)|+ ∥λℓ − νℓ∥∥t(X)− t̂(X)∥

}]
,

and |R̂β(π̂) − Rβ(π̂)| ⩽ E[maxℓ∈[[L]] {|rℓ(X)− r̂ℓ(X)|}]. The last two displays combined
with (35), gives

Rβ(π̂) + F (Λ,V) ⩽ E
[
2 max
ℓ∈[[L]]

{
|rℓ(X)− r̂ℓ(X)|+ ∥λℓ − νℓ∥∥t(X)− t̂(X)∥

}]
+
(
∥(Λ,V)∥+ ασ̂ + α ∥ε∥

√
2(2L+ 1)

)∥∥∥GF̂ ,α(Λ,V)
∥∥∥ .

Observe that minΛ,V⩾0 F (Λ,V) = −Rβ(π
⋆). Using triangle’s inequality and the fact that

maxℓ∈[[L]] ∥λℓ−νℓ∥ ⩽
√
2∥(Λ,V)∥, we conclude recalling thatR(π)+ log(2L+1)

β ⩾ Rβ(π) ⩾ R(π)
for any randomized prediction function. ■
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F Auxilliary results

In this appendix, we collect some standard auxiliary results, that are used to derive main claims of
the paper.
Lemma F.1 (Boyd and Vandenberghe (2004)). It holds that

LSEβ(w) = max
p∈∆

{
⟨w, p⟩ − 1

β
Ψ(p)

}
,

where ∆ is the probability simplex in Rm and Ψ(p) =
∑m

i=1 pi log(pi). Furthermore, −Ψ(p) ∈
[0, log(m)] and the optimum in the above optimization problem is achieved at p⋆ = σ(βw).
Lemma F.2 (Gao and Pavel (2017)). Let a = (a1, · · · , am) and β > 0. Define log-sum-exp and
softmax functions respectively as

LSEβ(a)
def
=

1

β
log

(
m∑
i=1

exp(βai)

)
and σj(βa)

def
=

exp(βaj)∑m
i=1 exp(βai)

j ∈ [m] .

The LSE property is as follows

max{a1, · · · , am} ⩽ LSEβ(a) ⩽ max{a1, · · · , am}+
log(m)

β
.

Moreover, σ(βa) = ∇LSEβ(a), and σ(βa) is β-Lipschitz.
Lemma F.3 (Bhatia and Davis (2000)). Let m and M be the lower and upper bounds, respectively,
for a set of real numbers a1, · · · , an, with a particular probability distribution. Let µ and σ2 be
respectively the expected value and the variance of this distribution. Then the Bhatia–Davis inequality
states:

σ2 ⩽ (M − µ)(µ−m) .

Lemma F.4. It holds that

EX

 ∑
s∈[K]

t2s(X)

 ⩽
∑
s∈[K]

1− ps
ps

,

where ts(x) = 1− τs(x)
ps

.

Proof. We have EX [τs(X)] = ps and 0 ⩽ τs(X) ⩽ 1 almost surely. Using Bhatia-Davis inequality
written in Lemma F.3, we deduce that

EX

 ∑
s∈[K]

t2s(X)

 =
∑
s∈[K]

Var

(
τs(X)

ps

)
=
∑
s∈[K]

1

p2s
Var (τs(X)) ⩽

∑
s∈[K]

1− ps
ps

.

The proof is concluded. ■

Lemma F.5. Let σ2 def
= 2

∑
s∈[K]

1−ps

ps
. It holds that ∥∇Λ,VF (Λ,V)∥ ⩽ σ +

√
2(2L+ 1) ∥ε∥.

Proof. By Jensen’s inequality

∥∇Λ,VF (Λ,V)∥2 = ∥EX [gΛ,V(X)]∥2 ⩽ EX [∥gΛ,V(X)∥2] .

Recalling the definition of gΛ,V, given in (11), we have

EX [∥gΛ,V(X)∥2] = EX

∑
ℓ∈[[L]]s∈[K]

(
(σℓ(·)ts(X) + εs)

2 + (−σℓ(·)ts(X) + εs)
2
)

= 2EX

∑
ℓ∈[[L]]s∈[K]

(
σ2
ℓ (·)t2s(X) + ε2s

)
⩽ σ2 + 2(2L+ 1) ∥ε∥2 ,

where the last inequality comes from the proof of Lemma 4.1.

The proof is concluded. ■

27

117943 https://doi.org/10.52202/079017-3745



G Additional details on experiments

Evaluation measures. We use Dtest = {(x′
i, s

′
i, y

′
i)}mi=1 to collect the following statistics of any

(randomized) prediction π

R̂(π) def
=

1

m

m∑
i=1

∫ +∞

−∞
(ŷ − y′i)

2
π(d ŷ | x′

i) ,

Ûs(π)
def
= sup

t∈R

∣∣∣∣∣ 1

ms

m∑
i=1

∫ t

−∞
π(d ŷ | x′

i)I{s′i = s} − 1

m

m∑
i=1

∫ t

−∞
π(d ŷ | x′

i)

∣∣∣∣∣ ,
which correspond to the empirical risk and the empirical group-wise unfairness quantified by the
Kolmogorov-Smirnov distance of a randomized. We note that our classifier is supported on a finite
grid, thus all the integrals involved transform into weighted sums.

Agarwal et al. (2019) build multi-class classifiers hk : Rd 7→ Θ, where Θ is some finite grid over
R and k = 1, . . . ,K, that come with weights (w1, . . . , wK)⊤ such that wk ⩾ 0 and

∑K
k=1 wk = 1.

Then, they build a randomized classifier π(· | ·) such that supp(π(· | x)) = Θ and for each θ ∈ Θ

P(Ŷπ = θ |X = x) =

K∑
k=1

wkI{hk(x) = θ} .

Thus, integrals appearing in R̂ and Ûs reduced to finite sums for both methods.

Additional details on the experiments on Communities and Crime and Law School datasets.
Communities and Crime dataset has 1994 instances, however we use 1984 examples with 120 features
after preprocessing. Law School dataset has 20649 instances, thus we use a smaller sub-sample of
2000 points with 11 features after preprocessing.

We take the sets of unfairness thresholds {(2−i, 2−i)i∈I}, where I =
{1, 2, 4, 5, 6, 8, 16, 32, 128, 512} for Communities and Crime dataset, and I =
{0, 1, 2, 4, 5, 6, 8, 16, 32, 64, 128} for Law School dataset. We train Communities and Crime
dataset for N=15000 iterations and Law School dataset for N=5000 iterations for each pair of
epsilons. We use parameters L =

√
T , β =

√
T log

√
T and B = 1 for both datasets. We repeat the

aforementioned pipeline 10 times to ensure more reliable statistical summary.

Discussion on other algorithms. We conduct additional experiments to observe the behaviors
of the more straightforward algorithms discussed in Appendix C. We illustrate the comparison in
Figure 3. In conclusion, all of the algorithms perform similarly in the middle to high unfairness
regime, while those based on SGD3 are more stable in the low unfairness (high fairness) regime.

Figure 3: Comparison of SDG, ACSA, ACSA2, SDG3+ACSA and SDG3+ACSA2 algorithms on Communi-
tites and Crime and Law School datasets.

Additional experiments on Adult dataset. We conduct further experiments on Adult dataset
(Lichman (2013)). Classically, Adult is used for classification, however we use it to predict individual’s
age on a scale of 0 to 100, normalized to [0, 1]. We factor in sex as a sensitive attribute, distinguishing
between male and female individuals. Adult dataset has 48842 instances, however we clean and
preprocess it, and use a smaller sub-sample of 2000 points with 8 features throughout our experiments.

The pipleline of the experiments is the same as the one for Law School and Communities and Crime
datasets in the main body. We randomly split the data into training, unlabeled and testing sets
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DP-postproc ADW-1 ADW-2

communities 5.89± 0.47 378.39± 263.77 199.05± 161.18
law school 0.78± 0.08 240.53± 178.68 136.3± 96.73
adult 3.7± 0.34 174.57± 91.7 96.78± 61.35

Table 1: The average training time (in seconds) for one ε threshold.

with proportions of 0.4 × 0.4 × 0.2. We use Dtrain = {(xi, si, yi)
n
i=1} to train a base (unfair)

regressor to estimate η and to train a classifier to estimate τ . We use simple LinearRegression
and LogisticRegression from scikit-learn for training the regressor and the classifier, and give
them to Algorithm 1 with Dunlabeled = (x)n+T

i=n+1 for N = 10000 iterations. We use Dtest =

{(x′
i, s

′
i, y

′
i)}mi=1 to collect statistics. We take the sets of unfairness thresholds {(2−i, 2−i)i∈I},

where I = {0, 1, 2, 4, 5, 6, 8, 16, 32, 64, 128} for. As in the experiments in the main body, we set
L =

√
T , β =

√
T/ log

√
T and B = 1. We repeat the pipeline 10 times.

We compare our method with the ADW method. We train ADW 2 times: we useDtrain andDunlabeled

as training set for ADW-1, whereas for ADW-2 we use only Dtrain. We take the set {(2−i, 2−i)i∈I},
where I = {1, 2, 4, 8, 16} as unfairness thresholds for training both datasets. We train ADW-1 and
ADW-2 for each pair of epsilons for 10 times.

In Figure 4 we illustrate the convergence of the risk and the unfairness for convergence for ε =
(2−8, 2−8) unfairness threshold. We also illustrate the comparison of our model with ADW-1, ADW-2
and base models.

Figure 4: Experiment on Adult dataset: risk convergence, unfairness convergence and comparison
with ADW.

Running time. Additional details about training time for Communities and Crime, Law School and
Adult datasets are presented in Table 1.

Additional experiments on a synthetic dataset. We conduct an additional experiment to demon-
strate the results of Algorithm 1 in the case of multiple sensitive attributes. We generate a synthetic
datasetDn = (Xi, Si, yi)

n
i=1 of n = 2000 points, where (Xi)

n
i = (Xi1, Xi2, Xi2)

n
i ∼ N (0, 1). We

choose Si = 0 if Xi1 ⩽ −0.7, Si = 1 if Xi1 < 0, Si = 2 if Xi1 < 0.7 and Si = 4 if Xi1 ⩾ −0.7.
For i ∈ [n], we generate yi = 4

∑3
j=1 Xij +Xi1+ ξi, where ξ = (ξi)

n
i ∼ N (0, 1). We splitDn into

train, unlabeled and test datasets with proportions of 0.4× 0.4× 0.2. We use (Xtrain,ytrain) to
train the base estimator, (Xtrain,Strain) to train the classifier and Xunlab to train the fair regression
model. We evaluate our model on test dataset. In Figure 5 we illustrate the distributions of the
predictions (scaled to [−1, 1]) of the fair and base models.

This experiment is for visual representation of the Algorithm 1 in the case of multiple sensitive
attributes, thus we do not collect further statistics.
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Figure 5: The distributions of the (scaled) predictions of the fair and base models.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We translate the fairness problem to a smooth and convex problem as stated
in Lemma 3.1. Theorem 5.1 gives the main theoretical control on fairness and risk and
Section 6 illustrates the performance of the method and a comparison to a state-of-the-art
method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitation section is included in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We extensively developed our methodology in the main body and decided to
postpone all the proofs to the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experiments are reproducible. We provide the link to the source code
in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets that are used are benchmark datasets. Moreover, as previously
mentioned, we point to a GitHub link in Section 6 to make our experiments reproducible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 6 gives all necessary information on the datasets splits and on the
tuning parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments include and illustrate the standard deviations reported
over 10 repetitions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We reported all this information in a footnote in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We only used open source data and codes. Therefore, we believe that there are
no issues form the ethical point of view.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The contribution falls within the scope of fairness and the goal is to mitigate
bias in decision making. The paper focus on the general notion of approximate fairness —
ε-fairness. While approximate fairness is desired in general, this setting allows for a control
of the amount of unfairness that we allow or accept. From this point of view, providing the
control on the fairness to some user may generate ethical issues.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: All the datasets are open source and widely used by the fairness community.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provided references for the two datasets we are using. In addition, we also
referred the papers that we considered for a numerical comparison.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The main contribution is a novel approach for imposing demographic parity
fairness in the unawareness case. This is challenging problem for which we spend the whole
core of the paper to explain the method and its new considerations.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper considered public data that does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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