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Abstract

We consider stochastic optimization problems where the objective depends on
some parameter, as commonly found in hyperparameter optimization for instance.
We investigate the behavior of the derivatives of the iterates of Stochastic Gradient
Descent (SGD) with respect to that parameter and show that they are driven by an
inexact SGD recursion on a different objective function, perturbed by the conver-
gence of the original SGD. This enables us to establish that the derivatives of SGD
converge to the derivative of the solution mapping in terms of mean squared error
whenever the objective is strongly convex. Specifically, we demonstrate that with
constant step-sizes, these derivatives stabilize within a noise ball centered at the
solution derivative, and that with vanishing step-sizes they exhibit O(log(k)2/k)
convergence rates. Additionally, we prove exponential convergence in the inter-
polation regime. Our theoretical findings are illustrated by numerical experiments
on synthetic tasks.

1 Introduction

The differentiation of iterative algorithms has been a subject of research since the 1990s (Gilbert,
1992; Christianson, 1994; Beck, 1994), and was succinctly described as “piggyback differentia-
tion” by Griewank and Faure (2003). This idea has gained renewed interest within the machine
learning community, particularly for applications such as hyperparameter optimization (Maclaurin
et al., 2015; Franceschi et al., 2017), meta-learning (Finn et al., 2017; Rajeswaran et al., 2019), and
learning discretization of total variation (Chambolle and Pock, 2021; Bogensperger et al., 2022).
When applied to an optimization problem, an important theoretical concern is the convergence of
the derivatives of iterates to the derivatives of the solution. Traditional guarantees focus on asymp-
totic convergence to the solution derivative, as described by the implicit function theorem (Gilbert,
1992; Christianson, 1994; Beck, 1994). This issue has inspired recent works for smooth optimiza-
tion algorithms (Mehmood and Ochs, 2020, 2022), generic nonsmooth iterations (Bolte et al., 2022),
and second-order methods (Bolte et al., 2023).

Convergence analysis of iterative processes have predominantly focused on deterministic algorithms
such as the gradient descent. In this work, we extend these results in the context of strongly convex
parametric optimization by studying the iterative differentiation of the Stochastic Gradient Descent
(SGD) algorithm. Since the seminal work of Robbins and Monro (1951), SGD has been a workhorse
of stochastic optimization and is extensively employed in training various machine learning mod-
els (Bottou et al., 2018; Gower et al., 2019). A critical aspect of our work is based on the fact that
the sequence of iterative derivatives in this stochastic setting is itself a stochastic gradient sequence.

The goal of this work is to answer the following question:
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What is the dynamics of the derivatives of the iterates of stochastic gradient de-
scent in the context of minimization of parametric strongly convex functions?

Our motivation for studying this question is twofold. First, while iterative differentiation through
SGD sequences is possibly not the most efficient way to differentiate solutions of convex programs,
it is very natural in the context of differentiable programming and has already been motivated and
explored in the machine learning literature (Maclaurin et al., 2015; Pedregosa, 2016; Finn et al.,
2017; Ji et al., 2022). Second, existing attempts to provide stochastic oracle based methods to dif-
ferentiate through convex programming solutions require more intricate algorithmic schemes than
the conceptually simple iterative differentiation of SGD. Despite its conceptual simplicity, the an-
swer to this question is not direct in the first place due to the joint effect of noise on the iterate
sequence and its derivatives.

Contributions. The strongly convex setting ensures that the solution mapping is single valued and
differentiable under appropriate smoothness assumptions. In this setting, we prove in Theorem 2.2
the convergence of the derivatives of the SGD recursion toward the derivative of the solution
mapping, in the sense of mean squared errors:
• We first provide a general result for non-increasing step-sizes converging to some η ≥ 0 (covering
constant step-sizes schedules), for which we prove that the derivatives of SGD eventually fluctuate
in a ball centered at the solution derivative, of size proportional to

√
η.

• With vanishing steps, this result implies that the derivatives of SGD converge toward the solution
derivatives, and we obtain O(log(k)2/k) convergence rates for O(1/k) step-size decay schedules.
• We also study the interpolation regime, for which we show that the derivatives converge exponen-
tially fast toward the derivative of the solution mapping.
All these results suggest that derivatives of SGD sequences behave qualitatively similarly as the
original SGD sequence under typical step size regimes.

The key insight in proving these results is to interpret the recursion describing the derivatives of
SGD as a perturbed SGD sequence, or SGD with errors, related to a quadratic parametric op-
timization problem involving the second order derivatives at the solution of the original problem.
We perform a general abstract analysis of inexact SGD recursions, that is, SGD with an additional
error term which is not required to have zero mean. This constitutes a result of independent inter-
est, which we apply to the sequence of SGD derivatives in order to prove their convergence toward
the derivative of the solution mapping. The developed theory is illustrated with numerical experi-
ments on synthetic tasks. We believe our work paves the way to a better understanding of stochastic
hyperparameter optimization, and more generally stochastic meta-learning strategies.

Related works. Differentiating through algorithms is closely associated with the broader concept
of automatic differentiation (Griewank, 1989). In practice, it is implemented using either the for-
ward mode (Wengert, 1964), or the more common reverse mode (Rumelhart et al., 1986) known
as backpropagation. For detailed surveys, see (Griewank et al., 1993) or (Griewank and Walther,
2008; Baydin et al., 2018). Modern machine learning is intrinsically linked to this idea through
the use of Python frameworks like Tensorflow (Abadi et al., 2015), PyTorch (Paszke et al., 2019),
and JAX (Bradbury et al., 2018; Blondel et al., 2022). When using the reverse mode, a limitation
of this method is the need to retain every iteration of the inner optimization process in memory,
although this challenge can be mitigated by employing checkpointing, invertible optimization al-
gorithms (Maclaurin et al., 2015), by utilizing truncated backpropagation (Shaban et al., 2019),
Jacobian-free backpropagation (Fung et al., 2022) or one-step differentiation (Bolte et al., 2023).

Along with iterative differentiation (ITD), (approximate) implicit differentiation (AID) plays an in-
creasing important role, sometimes under the name implicit deep learning. El Ghaoui et al. (2021)
highlights the utility of fixed-point equations in defining hidden features, and (Bai et al., 2019) pro-
poses equilibrium points for sequence models, reducing memory consumption significantly. Fur-
ther, (Bertrand et al., 2020; Agrawal et al., 2019) expands implicit differentiation’s applications to
high-dimensional, non-smooth problems and convex programs. Ablin et al. (2020) emphasizes the
computational benefits of automatic differentiation, particularly in min-min optimization. In partic-
ular, OptNet (Amos and Kolter, 2017) and Deep Equilibrium Models (DEQ) (Bai et al., 2019) are
examples of relevant applications.

Hypergradient estimation through iterative differentiation or implicit differentiation has a long story
in machine learning (Pedregosa, 2016; Lorraine et al., 2020). In the context of imaging, itera-
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tive differentiation was used to perform hyperparameter selection through the Stein’s unbiased risk
estimator (Deledalle et al., 2014), and also for refitting procedure (Deledalle et al., 2017). Model-
agnostic Meta-learning (MAML) was introduced by Finn et al. (2017) as a methodology to train
neural architectures that adapt to new tasks through iterative differentiation (meta-learning). It was
later adapted to implicit differentiation (Rajeswaran et al., 2019). These developments motivated
further studies of the bilevel programming problem in a machine learning context (Franceschi et al.,
2018; Grazzi et al., 2020).

The literature on the stochastic iterative and implicit differentiation is more limited. In the stochastic
setting, Grazzi et al. (2021, 2023, 2024) considered implicit differentiation, mostly as a stochastic
approximation to solve the implicit differentiation linear equation or use independent copies for the
derivative part. In general stochastic approaches for bilevel optimization sample different batches for
the iterate and derivative recursions. Here we jointly analyze both recursion with the same samples.
Despite this lack of systemic theoretical analysis of convergence, differentiating through the SGD
iterates is mentioned in Maclaurin et al. (2015) which is focused on an efficient implementation
of backpropagation through SGD, Pedregosa (2016) which explicitly calls for the development of
differentiation techniques for stochastic optimization algorithms. Furhtermore Finn et al. (2017); Ji
et al. (2021) suggests explicitely to use differentiation through stochastic first order solvers and this
was further explicitely considered by Ji et al. (2022) in a meta-learning context.

Closely related to the general issue of differentiating parametric optimization problems is solving
bilevel optimization, where the Jacobian of the inner problem is crucial to analyze. Chen et al.
(2021) introduces a method, demonstrating improved convergence rates for stochastic nested prob-
lems through a unified SGD approach. In the same vein, Arbel and Mairal (2021) leverages inexact
implicit differentiation and warm-start strategies to match the computational efficiency of oracle
methods, proving effective in hyperparameter optimization. Additionally, the work (Ji et al., 2021)
provides a thorough convergence analysis for AID and ITD-based methods, proposing the novel
stocBiO algorithm for enhanced sample complexity. Furthermore, (Dagréou et al., 2022; Dagréou
et al., 2024) introduce a novel framework allowing unbiased gradient estimates and variance reduc-
tion methods for stochastic bilevel optimization.

Although this is not the initial focus of this work, the technical bulk of our arguments requires an
analysis of perturbed, or inexact, SGD sequences. This amounts to study the robustness of the
stochastic gradient algorithm with non-centered noise, or equivalently non-vanishing deterministic
errors. Such questioning around robustness to errors have existed for decades in the stochastic
approximation literature, see for example (Ermoliev, 1983; Chen et al., 1987) and references therein.
Many existing results presented in the literature are qualitative and relate to nonconvex optimization
(Solodov and Zavriev, 1998; Borkar, 2009; Doucet and Tadic, 2017; Ramaswamy and Bhatnagar,
2017; Dieuleveut et al., 2023). Let us also mention the smooth convex setting for which inexact
oracles have been studied by (Nedić and Bertsekas, 2010; Devolder et al., 2014). A recent account
of existing convergence results for biased SGD is given by Demidovich et al. (2023). As a by-
product of our arguments, we provide a general mean squared error convergence analysis of inexact
SGD for a diversity of step size regimes, in the smooth, strongly convex setting. Our analysis allows
to handle random non stationary bias terms, whose magnitude depend on the iteration counter k.
This is customary as the errors in the sequence of derivatives are due to the suboptimality of the
sequence of iterates. These errors thus depend on the realization of the iterate sequence, requiring a
dedicated analysis not covered by existing art Demidovich et al. (2023).

2 The derivative of SGD is inexact SGD

2.1 Intuitive overview

We consider a parametric stochastic optimization problem of the form

x⋆(θ) = argminx∈Rd F (x, θ) := Eξ∼P[f(x, θ; ξ)] (Opt)

where F : Rd × Θ → R is smooth and strongly convex in x for a fixed θ. The stochastic gradient
descent algorithm, stochastic gradient descent (SGD), is defined by an initialization x0(θ), and for
k ∈ N

xk+1(θ) = xk(θ)− ηk∇xf(xk(θ), θ; ξk+1) (SGD)
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where (ηk)k∈N is a sequence of positive step-sizes and (ξk)k∈N is a sequence of independent random
variables with common distribution P. Precise assumptions on the problem and the algorithm will
be given in Section 2.2 to ensure convergence. We highlight here that both the objective f(x, θ, ξ)
and the initialization of the algorithm x0(θ) depend on some parameter θ ∈ Θ ⊂ Rm, and so do the
iterates and optimal solution.

For any θ ∈ Θ and any k ≥ 0, under appropriate assumptions, the Jacobian of xk(θ) w.r.t. θ,
denoted by ∂θxk(θ) ∈ Rd×m, is well defined and obeys the following recursion from the chain rule
of differentiation:

∂θxk+1(θ) = ∂θxk(θ)− ηk∇2
xxf(xk(θ), θ; ξk+1)∂θxk(θ)− ηk∇2

xθf(xk(θ), θ; ξk+1). (SGD’)

The natural limit candidate for this recursion is the Jacobian of the solution, ∂θx⋆(θ), which, from
the implicit function theorem, is the unique solution to the following linear system

∇2
xxF (x⋆(θ), θ)D +∇2

xθF (x⋆(θ), θ) = Eξ∼P

[
∇2

xxf(x
⋆(θ), θ; ξ)D +∇2

xθf(x
⋆(θ), θ; ξ)

]
= 0.

As noted in (Arbel and Mairal, 2021, Proposition 1), this is equivalently characterized as a solution
to the following stochastic minimization problem

∂θx
⋆(θ) = argminD∈Rd×m Eξ∼P

[〈
1

2
∇2

xxf(x
⋆(θ), θ; ξ)D +∇2

xθf(x
⋆(θ), θ; ξ), D

〉]
(Opt’)

where we use the standard Frobenius inner product over matrices. Our key insight is to formally
understand the recursion in (SGD’) as an inexact SGD sequence applied to problem (Opt’).

Intuition from the quadratic case. Consider two maps ξ 7→ Q(ξ) ∈ Rd×d and ξ 7→ B(ξ) ∈
Rd×m. Let f(x, θ; ξ) = 1

2x
⊤Q(ξ)x+ x⊤B(ξ)θ, then the recursion in (SGD’) becomes

∂θxk+1(θ) = ∂θxk(θ)− ηk(Q(ξk+1)∂θxk(θ) +B(ξk+1)).

which is exactly a stochastic gradient descent sequence for problem (Opt’). Hence, choosing appro-
priate step sizes ensures convergence. Beyond the quadratic setting, one needs to take into consid-
eration the fact that the second order derivatives of f are not constant, leading to our interpretation
as perturbed stochastic gradient iterates for the derivatives, as detailed below.

The general case. We rewrite the recursion (SGD’) as follows

∂θxk+1(θ)=∂θxk(θ)− ηk∇2
xxf(x

⋆(θ), θ; ξk+1)∂θxk(θ)− ηk∇2
xθf(x

⋆(θ), θ; ξk+1) + ek+1, (1)

where the error term ek+1 is defined as

ek+1 = ηk
(
∇2

xxf(x
⋆(θ), θ; ξk+1)−∇2

xxf(xk(θ), θ; ξk+1)
)
∂θxk(θ)

+ ηk
(
∇2

xθf(x
⋆(θ), θ; ξk+1)−∇2

xθf(xk(θ), θ; ξk+1)
)
.

Assuming that the second derivative of f is Lipschitz-continuous, the error term ek+1 is of the same
order as ηk∥xk(θ)−x⋆(θ)∥(1+∥∂θxk(θ)∥). Our main contribution is a careful analysis of a specific
version of inexact SGD which covers the above recursion. Under typical stochastic approximation
assumptions, the convergence of xk(θ) toward x⋆(θ) essentially entails the convergence of ∂θxk(θ)
toward ∂θx

⋆(θ). This allows us to carry out a joint convergence analysis of both sequences in (SGD)
and (SGD’). We now describe the assumptions required to make this intuition rigorous.

2.2 Main assumptions

We start with the stochastic objective, f in (Opt) and then specify assumptions on the underlying
random variable ξ. The crucial assumption for our results is strong convexity. The rest of the
assumptions are typically satisfied in applications such as hyper parameter tuning. We point out that
both examples in the numerical section satisfy our assumptions and are implemented in the regime
described by our main theorem.
Assumption 1. Let Θ be an open Euclidean subset of Rm and Ξ be a measure space. The function
f : Rd ×Θ× Ξ → R satisfies the following conditions:

(a) Differentiability: f(·, ·; ξ) is C2, with M -Lipschitz Hessian (in Frobenius norm), for all ξ ∈ Ξ.
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(b) Smoothness: ∇xf(·, θ; ξ) is L-Lipschitz and ∇xf(x, ·; ξ) is L′-Lipschitz for all x, θ and ξ ∈ Ξ.

(c) Strong convexity: f(·, θ; ξ) is µ-strongly convex for all θ ∈ Θ and ξ ∈ Ξ.

Assumption 1(b) entails that ∇2
xxf and ∇2

xθf are uniformly bounded in operator norm by L and
L′ respectively. We remark that our smoothness assumption is global in x, but possibly only local
in θ since Θ is an arbitrary open neighborhood, so that Assumption 1(b) does not require global
Lipschicity with respect to the variable θ. Assumption 1(c) implies that F (·, θ) has a unique mini-
mizer that we will denote by x⋆(θ); it also implies that ∇2

xxf is positive definite. This is actually the
strongest part of Assumption 1, it is somewhat a requirement since the problem of differentiating the
solution to an optimization problem, not necessarily strongly convex, is not settled for the moment.

As a consequence of Assumption 1, the derivative sequence in (SGD’) is almost surely bounded1.
This is proved in Appendix B.
Lemma 2.1. Under Assumption 1, assuming that ηk ≤ 1

L for all k, we have almost surely
∥∂θxk(θ)∥ ≤ max{∥∂θx0(θ)∥,

√
mL′/µ}.

We now specify the structure of the random variables (ξk)k∈N appearing in the recursions (SGD)
and (SGD’). In particular, we follow the classical approach of (Bottou et al., 2018; Gower et al.,
2019) among a rich literature for our variance condition.
Assumption 2. The observed noise sequence (ξk)k∈N is independent identically distributed with
common distribution P on Ξ. Furthermore,

(a) Variance control: there is σ ≥ 0 such that for all θ ∈ Θ,
E
[
∥∇xf(x

⋆(θ), θ; ξ)∥2
]
≤ σ2, E

[
∥∇2

xxf(x
⋆(θ), θ; ξ)∂θx

⋆(θ) +∇2
xθf(x

⋆(θ), θ; ξ)∥2
]
≤ σ2.

(b) Integrability: f(x, θ; ·) and ∇f(x, θ; ·) are integrable w.r.t. P for a certain fixed pair x ∈ Rd,
θ ∈ Θ.

Note that we control the second moment only at the solution, which means that the case σ2 = 0
corresponds to the interpolation scenario but does not mean that the algorithm is noiseless. Fur-
thermore, we also control the second moment of the second derivative (in Frobenius norm). This
is not typical in the SGD literature but is required here to analyze the sequence of derivatives (this
is illustrated in the simple interpolation case of Fig. 1). Assumption 1(a) and (b) together with
Assumption 2 imply that one can permute expectation and derivative up to order 2, as detailed in
Appendix A.

In this setting, we use the natural filtration (Fk)k∈N where for all k, Fk is defined as the σ-algebra
generated by ξ0, . . . , ξk. Note that ξk+1 and thus ∇xf(xk(θ), θ; ξk+1) is not Fk-measurable but
Fk+1-measurable.

2.3 Main result on the convergence of the derivatives of SGD

The following is the main result of this paper. Its proof is postponed to Section 3.2.
Theorem 2.2 (Convergence of the derivatives of SGD). Let Θ ⊂ Rm be open, Ξ be a measure
space and f : Rd × Θ × Ξ → R be as in Assumption 1. Set κ = L/µ, the condition number. Let
(ξk)k∈N be a sequence of independent variables on Ξ, as in Assumption 2. Let (ηk)k∈N be a positive,
non-increasing, non-summable sequence with η0 ≤ µ

4L2 = 1
µ

1
4κ2 and (xk(θ))k∈N be defined as in

(SGD). Then:

• General estimates: setting η = limk→∞ ηk, we have

lim supk→∞ E
[
∥∂θxk(θ)− ∂θx

⋆(θ)∥2
]
≤ 4σ2η

µ

(
1 +

3M(1 + max{∥∂θx0(θ)∥,
√
mL′/µ})

µ

)2

.

• Sublinear rate: if for all k, ηk = 1
µ

2
k+8κ2 , then

E
[
∥∂θxk(θ)− ∂θx

⋆(θ)∥2
]
= O

(
log(k + 8κ2)2

k + 8κ2

)
.

1This does not depend on the randomness structure detailed in Assumption 2.
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where the constants in the big O are polynomials in κ, ∥x0(θ) − x⋆(θ)∥2, ∥∂θx0(θ) − ∂θx
⋆(θ)∥2,

σ2, 1
µ , M and

√
m.

• Interpolation regime: if σ = 0 and ηk = µ
4L2 for all k ∈ N, then

E
[
∥∂θxk(θ)− ∂θx

⋆(θ)∥2
]
= O

(
k

(
1− 1

8κ2

)k
)
.

The first part of the result provides a general estimate which allows covering virtually all small
step-size cases. This includes: i) vanishing step-sizes, for which our result implies convergence of
derivatives; and ii) constant step-sizes η, for which we provide a bound on the distance to the true
derivative that is proportional to η. For the second part, using step-sizes decreasing as 1/k, which is
a typical setup for the convergence of SGD on strongly convex objectives, our result shows that the
derivatives converge as well, with a rate that is asymptotically of the same order, up to log factors.
Finally, the last part of the result relates to the interpolation regime which has drawn a lot of attention
in recent years because it captures some of the features of overparameterized deep neural network
training Ma et al. (2018); Varre et al. (2021); Garrigos and Gower (2023). Note that the condition
σ = 0 in Assumption 2 entails that interpolation occurs for both problems (Opt) and (Opt’), and in
this case we obtain exponential convergence of both the iterates and their derivatives, with a constant
stepsize, as in the deterministic setting (Mehmood and Ochs, 2020).
Remark 2.3. The specific stepsize used to obtain the sublinear rate actually applies to any stepsize
of the form ηk = 2/(ck + 8u) for given c, u > 0 such that 0 < c ≤ µ and u ≥ L2/c. One
obtains the same result with µ,L respectively replaced in the expressions by µ̃ := c ≤ µ and
L̃ :=

√
uc ≥ L. This corresponds to using a lower estimate for the strong convexity constant and

a higher estimate for the smoothness constant, which remain valid. A similar remark holds for the
interpolation regime where any stepsize η smaller than µ/(4L2) will bring the same result with κ
replaced by κ̃ := 1/(4Lη) in the statement.
Remark 2.4. We consider step sizes at most µ

4L2 which is smaller than 1
L , typically used in optimiza-

tion. Asside from the 1
4 factor, which could possibly be improved, it is important to relate it to the the

fact that we have obtain O(1/k) rates which represent fast rates for SGD for convex optimization,
limited to strongly convex objectives. Second, we do not have any Lipschicity assumption on the
objective function itself. This, and the use of small steps to obtain fast rate is in line with related
literature such as (Bottou et al., 2018, Theorem 4.6), the discussion following (Moulines and Bach,
2011, Theorem 1) or (Garrigos and Gower, 2023, Corollary 5.8 and Theorem 5.9). The possibility
to obtain convergence of derivatives of SGD for larger step sizes will be a topic of future research.

3 Proof of the main result

Our result relies on the interpretation of the recursion (SGD’) as an inexact SGD sequence for the
problem (Opt’). We start with a detailed analysis of inexact SGD under appropriate assumptions.
This is an abstract result which we formulate using an abstract function g different from the objective
in problems (Opt) and (Opt’) in order to avoid any possible confusion. In particular g is static (does
not depend on external parameters) and the obtained convergence result will be then applied to both
sequences (SGD) and (SGD’).

3.1 Detour through an auxiliary result: convergence of inexact SGD

We provide here our template results for the convergence of inexact SGD. As template, we consider
a function G : Rq → R defined as

G(x) := Eξ∼P[g(x; ξ)] .

Our generic assumptions stand as follows.
Assumption 3. P is a probability distribution on the measure space Ξ, and the function g : Rd×Ξ →
R satisfies the following conditions:

(a) Smoothness: g(·; ξ) is C1 with L-Lipschitz gradient, i.e., there is L ≥ 0 such that
∥∇xg(x; ξ)−∇xg(x

′; ξ)∥ ≤ L∥x− x′∥
for all x, x′ ∈ Rq , and all ξ ∈ Ξ.
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(b) Strong convexity: there is x⋆ ∈ Rq and µ > 0 such that ⟨x− x⋆,E[∇xg(x; ξ)]⟩ ≥ µ∥x− x⋆∥2
for all x ∈ Rq .

(c) Variance control: there is 0 ≤ σ < +∞ such that E
[
∥∇xg(x

⋆; ξ)∥2
]
≤ σ2.

We remark that under Assumptions 1 and 2, Assumption 3 is satisfied for both problems (Opt) and
(Opt’). We will consider an inexact SGD recursion of the form

xk+1 = xk − ηk (∇xg(xk; ξk+1) + ek+1) (2)

where we will need the following assumption on noise and errors.
Assumption 4. The observed noise sequence (ξk)k∈N is independent and identically distributed
with common distribution P on Ξ. Denote by (Fk)k∈N the natural filtration (i.e., for all k, Fk is the
σ-algebra generated by ξ0, . . . , ξk), the errors (ek)k∈N form a sequence of (Fk)k∈N-adapted random
variables such that E[∥ek+1∥2] ≤ B2

k where (Bk)k∈N is a deterministic non-increasing sequence.

The following reduces the analysis of inexact SGD sequences to the study of a deterministic recur-
sion, its proof is given in Appendix B.
Proposition 3.1 (Convergence of inexact SGD). Let Assumption 3 and Assumption 4 hold. Consider
the iterates in (2) where (ηk)k∈N is a positive, non-increasing, non-summable sequence with η0 ≤
µ

4L2 . Setting Dk =
√
E[∥xk − x⋆∥2], we have for all k ∈ N:

D2
k+1 ≤ (1− µηk)D

2
k + 2η2k(B

2
k + 2σ2) + 2ηkBkDk. (3)

Studying the deterministic recursion (3) leads to the following results by relying on different helper
lemmas laid out in Appendix C:

Lemma Stepsizes Errors Noise Result

Lemma C.1 ηk → η ≥ 0 Bk → B ∝ √
η σ2 ≥ 0 lim supk→∞ Dk ∝ √

η

Lemma C.2 ηk = 2µ
µ2k+8L2 Bk = 0 σ2 ≥ 0 D2

k = O
(

log(k+8κ2)
k+8κ2

)
Lemma C.3 ηk = 2µ

µ2k+8L2 B2
k = O

(
log(k+8κ2)

k+8κ2

)
σ2 ≥ 0 D2

k = O
(

log(k+8κ2)2

k+8κ2

)
Lemma C.4 ηk = η < 1

2µ B2
k = O

(
(1− µη

2 )k
)

σ2 = 0 D2
k = O

(
k(1− µη

2 )k
)

These results will be used to prove Theorem 2.2 in the coming section. They are of independent
interest regarding the convergence analysis of inexact SGD sequences. The first lemma allows to
prove the first point in Theorem 2.2, the second and third lemmas allow to treat the second point,
and the last lemma allows to treat the interpolation regime in the third point. See Appendix C for
detailed statements.

3.2 Proof of the main result

We first show that Proposition 3.1 can be applied to the recursion (SGD’) in relation to (Opt’) and
then explicit its consequences using the lemmas of Appendix C.

Proof of Theorem 2.2. Following (1), we have that (∂θxk(θ))k∈N is an inexact SGD sequence for
problem (Opt’) as in (2), with an error term of the form

ek+1 =
(
∇2

xxf(x
⋆(θ), θ; ξk+1)−∇2

xxf(xk(θ), θ; ξk+1)
)
∂θxk(θ)

+
(
∇2

xθf(x
⋆(θ), θ; ξk+1)−∇2

xθf(xk(θ), θ; ξk+1)
)
.

Under Assumption 1 and Assumption 2, Problem (Opt’) satisfies Assumption 3, and we have the
same values for L, µ and σ for both problems (Opt) and (Opt’). Furthermore, the error term ek+1

satisfies Assumption 4, and, thanks to Lemma 2.1 and Assumption 1 on Lipschitz continuity of the
Hessian of f , we have almost surely

∥ek+1∥ ≤ M∥xk(θ)− x⋆(θ)∥(1 + max{∥∂θx0(θ)∥,
√
mL′/µ}). (4)

The various bounds are obtained by considering different regimes. We first estimate a bound on
E
[
∥xk(θ)− x⋆(θ)∥2

]
using Proposition 3.1 with Bk = 0 for all k. This allows to obtain an estimate

7

118865 https://doi.org/10.52202/079017-3775



on E
[
∥ek+1∥2

]
using (4). We conclude for the derivative sequence by applying Proposition 3.1 with

its different corollaries. We treat all these results separately.

General estimate. From Proposition 3.1 with Bk = 0, we obtain, by considering g(x, ξ) =

f(x, θ; ξ) and Lemma C.1 that lim supk→∞ E
[
∥xk(θ)− x⋆(θ)∥2

]
≤ 4σ2η

µ . For the derivative se-
quence, combining this first estimate with (4), we can consider a decreasing sequence of mean
squared upper bounds (Bk)k∈N, such that

lim
k→∞

Bk = B := 2σ

√
η

µ
M(1 + max{∥∂θx0(θ)∥,

√
mL′/µ}).

The upper bound given by Proposition 3.1 and Lemma C.1 is of the form√
B2 + 2µη(B2 + 2σ2) +B

µ
≤

√
3
2B

2 + 4µησ2 +B

µ
≤ 2σ

√
η

µ
+

3B

µ
,

which corresponds to the claimed bound.

Convergence rate. From Proposition 3.1 with Bk = 0, we obtain, by considering g(x, ξ) =

f(x, θ; ξ) and Lemma C.2 that E
[
∥xk(θ)− x⋆(θ)∥2

]
= O

(
log(k+8κ2)

k+8κ2

)
as given in Lemma C.2.

As a consequence, combining this first estimate with (4), we may set Bk = O
(

log(k+8κ2)
k+8κ2

)
and the

result follows from Lemma C.3.

Interpolation regime. Setting ρ = 1 − µη
2 = 1 − 1

8κ2 , for σ2 = 0 and Bk = 0 for all k ∈ N, it is
clear from (3) that E

[
∥xk(θ)− x⋆(θ)∥2

]
≤ ∥x0(θ) − x⋆(θ)∥2ρk for all k ∈ N. Using (4), we may

choose Bk = O(ρk). Plugging this estimate in (3), the result is then given by Lemma C.4.

4 Numerical illustration

In this section, we illustrate the results of Theorem 2.2 by examining the numerical behavior of
the iterates and their derivatives under various settings. Specifically, we provide insights into the
behavior of classical regularized methods, such as Ridge regression, logistic regression, Huber re-
gression. Furthermore, we explore potential extensions to the nonsmooth case by also considering
the Hinge loss. All the experiments are performed for the empirical risk minimization structure, i.e.,
the randomness ξ is drawn from the uniform distribution over {1, . . . ,m}. All the experiments were
performed in jax (Bradbury et al., 2018) on a MacBook Pro M3 Max.

Ordinary least squares. We consider a simple linear regression problem solved by ordinary least-
squares as:

x⋆(θ) = argminx∈Rd F (x, θ) :=
1

2m

m∑
ξ=1

(a⊤ξ x− b(θ)ξ)
2,

The data A = (aξ) ∈ Rm×d here is a random matrix with d < m. The finite sum structure naturally
suggests a stochastic gradient decomposition as in (SGD), by choosing ξ uniformly in {1, . . . ,m}
with replacement. We consider three generative models for the function b:

1. Standard setting: θ ∈ Rm, and we have b is the identity on Rm. In this case, our theory
corresponds to the differentiation of the least squares solution seen as a function of the
output observations.

2. Simple interpolation setting: The setting is the same as the standard one, except that we
consider a specific value of θ = Aζ for some ζ ∈ Rd. In this case, we do not differen-
tiate through the linear relation θ = Aζ, the function b remains the identity, we simply
evaluate at a specific point which corresponds to data interpolation. We call this simple
interpolation, because it corresponds to σ = 0 for the sequence (SGD), but not for (SGD’).

3. Double interpolation setting: The parameter variable θ is in Rd and we set b : θ → Aθ.
Here this corresponds to an interpolation regime which is uniform in θ. We call this double
interpolation because it corresponds to σ = 0 for both sequences (SGD) and (SGD’).
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Figure 1: Numerical behavior of SGD iterates and their derivatives (Jacobians) in a linear regression problem
solved by ordinary least squares. The plots depict the convergence of the suboptimality f(xk(θ))− f(x⋆(θ))
and the Frobenius norm of the derivative error ∥∂θxk(θ) − ∂θx

⋆(θ)∥F across different experimental settings:
constant step-size (first column), decreasing step-size (second column), double interpolation (third column),
and simple interpolation (fourth column). The experiments utilize varying step-size strategies to illustrate
general estimates, sublinear rates, and the impacts of interpolation regimes, validating theoretical predictions
of Theorem 2.2.

Note the the difference between setting 2. and 3. are that we are not differentiating through the
linear map A in setting 2. Furthermore Assumption 1 and Assumption 2 are satisfied for these three
settings. Figure 1 illustrates the behavior of (SGD) and (SGD’). More precisely, we monitor the
convergence of the suboptimality f(xk(θ)) − f(x⋆(θ)) and of the derivatives error measured in
Frobenius norm ∥∂θxk(θ) − ∂θx

⋆(θ)∥F . We consider various step size regimes and set η0 = µ
4L2

for all experiments. This allow us to clearly identify the three regimes of Theorem 2.2:

• Constant stepsize: in setting 1., employing a constant step-size, we observe convergence of
both the iterates (consistent with classical SGD theory) and their derivatives to a neighbor-
hood of the solution whose diameter decreases with the step size.

• Decreasing stepsize: in setting 1., employing a step-size proportional to 1/k, we observe
a sublinear decay of both the iterates and their derivatives. The convergence is difficult to
observe since the decay leads to very small updates.

• Double Interpolation regime: in setting 3., employing a constant step-size, we observe both
iterates and derivatives linear decays.

• Simple Interpolation regime: in setting 2., Assumption 2(a) is satisfied with σ = 0 only for
the iterates, but not for the derivatives, we observe linear convergence of the iterates, but
the derivatives converge to a neighborhood of the solution as in the setting 1.

Ridge, Logistic, Huber and SVM regression. In addition to the previous illustration of Theo-
rem 2.2, we provide numerical experiments for constant learning rate for four different models:
ridge regression, logistic regression, Huber regression and Support Vector Machines (SVM) regres-
sion. All of them are written as

x⋆(θ) = argminx∈Rd F (x, θ) :=
1

m

m∑
ξ=1

f(x, θ; ξ) + µ∥x∥22,

where f(x, θ; ξ) = 1
2 (a

⊤
ξ w − θξ)

2 for ridge regression, f(x, θ; ξ) = log(1 + exp(−θξa
⊤
ξ x)) for

logistic regression,

f(x, θ; ξ) =

{
1
2 (θξ − a⊤ξ x)

2 if |θξ − a⊤ξ x| ≤ δ

δ
(
|θξ − a⊤ξ x| − 1

2δ
)

otherwise,

for Huber regression for some δ > 0 (here δ = 0.1), and f(x, θ; ξ) = max(0, 1 − θξa
⊤
ξ x) for

SVM regression (hinge loss). In all cases, the finite sum structure naturally suggests a stochastic
gradient decomposition as in (SGD), by choosing ξ uniformly in {1, . . . ,m} with replacement All
experiences are performed with m, d = 100, 10 and µ = 0.05. In Figure 2, we show the convergence
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Figure 2: Numerical behavior of the objective function and its derivatives with respect to θ for ridge regression,
logistic regression, Huber regression, and Support Vector Machines (SVM) regression using a constant learning
rate. We report the suboptimality f(xk(θ))− f(x⋆(θ)) for the SGD iterates, along (bottom) with the norm of
derivatives errors ∥∂θxk(θ)− ∂θx

⋆(θ)∥F for different constant step-size. Each line corresponds to a different
step-size.

of the objective function and the derivatives with respect to θ for the four models with a constant
learning rate. Note that the SVM loss is not differentiable. We refer to (Bolte et al., 2022) for
a formal treatment of nonsmooth iterative differentiation, but one could expect similar results for
conservative Jacobians.

Experiments on real data. We display in Figure 3 the behaviour of SGD iterates and their deriva-
tives for regularized logistic regression problem on ijcnn1.
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Figure 3: Numerical behavior of SGD iterates and their derivatives (Jacobians) for regularized logistic re-
gression problem. The plots depict the convergence of the suboptimality f(xk(θ)) − f(x⋆(θ)) (left) and the
derivative error ∥∂θxk(θ)− ∂θx

⋆(θ)∥ (right) for different constant step size. The dataset used is ijcnn1 from
libsvm with 49,990 observations and 22 features. The observations are qualitatively identical to our synthetic
experiments.

5 Conclusion

In conclusion, our study of stochastic optimization problems where the objective depends on a
parameter reveals insights into the behavior of SGD derivatives. We demonstrated that these
derivatives follow an inexact SGD recursion, converging to the solution mapping’s derivative under
strong convexity, with constant step-sizes leading to stabilization and vanishing step-sizes achieving
O(log(k)2/k) rates. Future research could refine the analysis by comparing stochastic implicit and
iterative differentiation, develop a minibatch version, and explore outcomes in non-strongly convex
or nonsmooth settings. Additionally, the feasibility of stochastic iterative differentiation warrants
further investigation, given its potential benefits and challenges in such scenarios.
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A Justification of the permutation of integrals and derivatives

We may assume without loss of generality that both f(0, 0; ξ) and ∇(x,θ)f(0, 0; ξ) are integrable
thanks to Assumption 2(b). Concatenate the variables x and θ, such that z = (x, θ) and consider the
function

g : (z; ξ) 7→ f(z; ξ)

∥z∥2 + 1
.

Since the gradient of f is L-Lipschitz in z by Assumption 1(b), we have using the descent lemma
(Nesterov, 2013, Lemma 1.2.3)

|f(z; ξ)− f(0; ξ)| ≤ ∥∇zf(0; ξ)∥∥z∥+
L

2
∥z∥2

so that g is upper bounded by an integrable function uniformly in z as

|g(z; ξ)| ≤ |f(0; ξ)|+ ∥∇zf(0; ξ)∥+
L

2
. (5)

We also have

∇zg(z; ξ) = ∇zf(z; ξ)
1

∥z∥2 + 1
− z

2f(z; ξ)

(∥z∥2 + 1)2
= ∇zf(z; ξ)

1

∥z∥2 + 1
− z

2g(z; ξ)

∥z∥2 + 1

= ∇zf(0; ξ)
1

∥z∥2 + 1
+ (∇zf(z; ξ)−∇zf(0; ξ))

1

∥z∥2 + 1
− z

2g(z; ξ)

∥z∥2 + 1

Using again Lipschitz continuity of the gradient of f , ∇zg(z; ξ) is upper bounded by an integrable
function, uniformly in z, as

∥∇zg(z; ξ)∥ ≤ ∥∇zf(0; ξ)∥+ L+ 2g(z; ξ) (6)
≤ 3∥∇zf(0; ξ)∥+ 2L+ 2|f(0; ξ)|.

Hence, we have that i) ∇zg(z; ξ) exists for all z (as f is C1) and ii) both ξ 7→ g(z; ξ) and ξ 7→
∇zg(z; ξ) are bounded by functions in L1(P) uniformly in z thanks to (5) and (6) since |f(0; ξ)|
and ∥∇zf(0; ξ)∥ belong to L1(P). Hence, we have the appropriate domination assumptions to
differentiate under the integral for the function g so that for all z, the function G : z 7→ E[g(z; ξ)] is
differentiable and ∇zG(z) = E[∇zg(z; ξ)] (see e.g., (Folland, 1999, Th. 2.27)).

Now, turning back to f , since for all z, f(z; ξ) = g(z; ξ)(∥z∥2 + 1), F (z) = G(z)(∥z∥2 + 1) and
thus ∇zF (z) = ∇zG(z)(∥z∥2 + 1) + 2zG(z). Also, for all z

∇zf(z; ξ) = ∇zg(z; ξ)(∥z∥2 + 1) + 2zg(z; ξ)

whose right hand side is integrable as shown above. This enables us to conclude that for all z,

E[∇zf(z; ξ)] = E[∇zg(z; ξ)](∥z∥2 + 1) + 2zE[g(z; ξ)]
= ∇zG(z)(∥z∥2 + 1) + 2zG(z) = ∇zF (z) .

As for the second derivative, ∇zf(z; ξ) is C1 with uniformly bounded derivatives so that we may
apply differentiation under the integral once again to obtain that the Hessian of the expectation is
the expectation of the Hessian.

B Proofs from the main text

B.1 Proof of Lemma 2.1

Lemma B.1. Let µ > 0 and (ηk)k∈N be a sequence of positive numbers. Assume that (Dk)k∈N
is a sequence of matrices of fixed size, such that Dk+1 = AkDk + Bk, for matrices (Ak)k∈N and
(Bk)k∈N of appropriate size where ∥Ak∥op ≤ 1 − µηk and ∥Bk∥ ≤ Bηk for all k. Then for all k,
∥Dk∥ ≤ max{∥D0∥, B/µ}.
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Proof. We have, using the fact that ∥AkDk∥ ≤ ∥Ak∥op∥Dk∥,

∥Dk+1∥ = ∥AkDk +B∥ ≤ ∥AkDk∥+ ∥Bk∥ ≤ ∥Ak∥op · ∥Dk∥+ ∥Bk∥ ≤ (1− µηk)∥Dk∥+Bηk.

There are two cases.

• If ∥Dk∥ ≥ B/µ, then ∥Dk+1∥ ≤ (1− µηk)∥Dk∥+ ηkB ≤ ∥Dk∥.

• If ∥Dk∥ ≤ B/µ, then ∥Dk+1∥ ≤ (1− µηk)B/µ+ ηkB = B/µ.

The proof is then by induction: if ∥Dk∥ ≤ max{∥D0∥, B/µ}, the property extends to Dk+1 by
using one of the two cases.

Proof of Lemma 2.1. The recursion (SGD’) can be written

Dk+1 = AkDk +Bk

where for all k, Dk = ∂θxk(θ), Ak = I − ηk∇2
xxf(xk(θ), θ; ξk+1) and Bk =

−ηk∇2
xθf(xk(θ), θ; ξk+1). Using Assumption 1, we have that ∥Ak∥op ≤ 1 − ηkµ and ∥Bk∥ ≤√

m∥Bk∥op ≤ √
mL′ηk. The result follows from Lemma B.1.

B.2 Proof of Proposition 3.1

Proof of Proposition 3.1. First, we recall that the expected norm of a stochastic gradient can be
controlled for any k ∈ N as

E
[
∥∇xg(xk; ξk+1)∥2|Fk

]
≤ 2E

[
∥∇xg(x

⋆; ξk+1)∥2|Fk

]
+ 2E

[
∥∇xg(xk; ξk+1)−∇xg(x

⋆; ξk+1)∥2|Fk

]
≤ 2σ2 + 2L2∥xk − x⋆∥2 (7)

where we used Assumption 3(a) and (c) in the second inequality.

By definition of (2), we have for all k ∈ N
∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 + η2k∥∇xg(xk; ξk+1) + ek+1∥2 − 2ηk⟨xk − x⋆,∇xg(xk; ξk+1) + ek+1⟩

≤ ∥xk − x⋆∥2 + 2η2k
(
∥∇xg(xk; ξk+1)∥2 + ∥ek+1∥2

)
− 2ηk⟨xk − x⋆,∇xg(xk; ξk+1)⟩

+ 2ηk∥xk − x⋆∥∥ek+1∥.
Taking the expectation conditioned on Fk, we get with our assumption on the errors that

E
[
∥xk+1 − x⋆∥2|Fk

]
≤ ∥xk − x⋆∥2 + η2k

(
4L2∥xk − x⋆∥2 + 4σ2 + 2E

[
∥ek+1∥2|Fk

])
− 2ηk⟨xk − x⋆,E[∇xg(xk; ξk+1)|Fk]⟩
+ 2ηk∥xk − x⋆∥E[∥ek+1∥|Fk]

≤
(
1− 2ηkµ+ 4η2kL

2
)
∥xk − x⋆∥2 + η2k

(
4σ2 + 2E

[
∥ek+1∥2|Fk

])
+ 2ηk∥xk − x⋆∥E[∥ek+1∥|Fk] (8)

where we used successively Eq. (7) and Assumption 3(b). Now using Jensen’s inequality and the
Cauchy-Schwartz inequality: E[XY ] ≤

√
E[X2]E[Y 2] for square integrable random variables, we

have the following bound on the full expectation of the last product,

E[∥xk − x⋆∥E[∥ek+1∥|Fk]] ≤
√
E[∥xk − x⋆∥2]E

[
E[∥ek+1∥|Fk]

2
]

≤
√

E[∥xk − x⋆∥2]
√
E[E[∥ek+1∥2|Fk]]

=
√

E[∥xk − x⋆∥2]
√
E[∥ek+1∥2]

Now, our condition on the stepsize parameters implies that −2ηkµ+4η2kL
2 ≤ −ηkµ. By taking full

expectation on both sides of (8), we obtain that

E
[
∥xk+1 − x⋆∥2

]
≤ (1− ηkµ)E

[
∥xk − x⋆∥2

]
+ η2k

(
4σ2 + 2B2

k

)
+ 2ηk

√
E[∥xk − x⋆∥2]Bk

We set Dk =
√

E[∥xk − x⋆∥2] so that we have the following deterministic recursion:

D2
k+1 ≤ (1− µηk)D

2
k + 2η2k(B

2
k + 2σ2) + 2ηkBkDk.
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C Technical Lemmas

Lemma C.1. Let (ηk)k∈N and (Bk)k∈N be non-negative and non-increasing. Assume that (ηk)k∈N
is non-summable and that 0 < ηk ≤ 1

µ for all k. Let (Dk)k∈N be a non-negative sequence satisfying
for all k

D2
k+1 ≤ (1− µηk)D

2
k + 2η2k(B

2
k + 2σ2) + 2ηkBkDk . (9)

Consider the quantity

δk =

√
4η2kB

2
k + 8µη3k(B

2
k + 2σ2) + 2Bkηk

2µηk
=

√
B2

k + 2µηk(B2
k + 2σ2) +Bk

µ
.

Then, (δk)k∈N is positive, non-increasing, and for any δ > limk→∞ δk

lim supk→∞ Dk ≤ δ.

Proof. Set for each k ∈ N, Fk : R+ → R+, with Fk(t) = (1− µηk) t+2ηkBk

√
t+2η2k(B

2
k+2σ2).

We have that Fk is increasing, concave, and Fk(δ
2
k) = δ2k. By assumption, for all k sufficiently large,

we have δk < δ so that Fk(δ
2) ≤ δ2 as t 7→ Fk(t

2)− t2 is negative for t ≥ δk.

Plugging this into (9), we obtain

D2
k+1 − δ2 ≤ (1− µηk)D

2
k + 2ηkBkDk + 2η2k(B

2
k + 2σ2)− Fk(δ

2)

= (1− µηk) (D
2
k − δ2) + 2ηkBk(Dk − δ) .

Using the fact that µηk ≤ 1, we deduce that if Dk ≤ δ, then Dk+i ≤ δ for all i ∈ N and the result
follows. We continue assuming that Dk > δ for all k ∈ N.

Using the concavity of the square root, we have Dk − δ =
√
D2

k −
√
δ2 ≤ 1

2
√
δ2
(D2

k − δ2). We
deduce that

D2
k+1 − δ2 ≤

(
1− µηk +

ηkBk

δ

)
(D2

k − δ2).

We notice that for all k, 2Bk

µ ≤ δk so that for k large enough, 2Bk

µ ≤ δ, and ηkBk

δ ≤ µηk

2 , and we
obtain

D2
k+1 − δ2 ≤

(
1− µηk

2

)
(D2

k − δ2).

So there is an index k0 such that for all k ≥ k0, we have D2
k − δ2 ≤ ∏k

i=k0

(
1− µηi

2

)
(D2

k0
− δ2)

and the right hand side decreases to 0 as k → ∞ because ηk is non-summable. This concludes the
proof.

Lemma C.2. Let ηk = 2µ
µ2k+8L2 for all k ∈ N and (Dk)k∈N be a non-negative sequence satisfying,

for all k,

D2
k+1 ≤ (1− µηk)D

2
k + 4η2kσ

2.

Then we have, for all k ∈ N,

D2
k+1 ≤ 1

k + 8κ2

(
8κ2D2

0 +
2σ2

L2
+

16σ2

µ2
log

(
1 +

k

8κ2

))
.

Proof. From the recursion, we obtain

D2
k+1 ≤

(
1− 2µ2

µ2k + 8L2

)
D2

k +
16µ2σ2

(µ2k + 8L2)2

(µ2k + 8L2)D2
k+1 ≤

(
µ2k + 8L2 − 2µ2

)
D2

k +
16µ2σ2

(µ2k + 8L2)

≤
(
µ2(k − 1) + 8L2

)
D2

k +
16µ2σ2

(µ2k + 8L2)
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from which we deduce that

(µ2k + 8L2)D2
k+1 ≤

(
8L2 − µ2

)
D2

0 +

k∑
i=0

16µ2σ2

(µ2i+ 8L2)

≤ 8L2D2
0 + 16σ2

k∑
i=0

1

(i+ 8L2

µ2 )

≤ 8L2D2
0 + 16σ2

(
µ2

8L2
+ log

(
1 +

kµ2

8L2

))
where the last inequality is by integral series comparison. All in all, we obtain

D2
k+1 ≤ 8L2D2

0

µ2k + 8L2
+

16σ2

µ2k + 8L2

(
µ2

8L2
+ log

(
1 +

kµ2

8L2

))

=
8κ2D2

0

8κ2 + k
+

2σ2

L2(k + 8κ2)
+

16σ2 log
(
1 + kµ2

8L2

)
µ2(k + 8κ2)

=
1

k + 8κ2

(
8κ2D2

0 +
2σ2

L2
+

16σ2

µ2
log

(
1 +

k

8κ2

))
.

Lemma C.3. Let ηk = 2µ
µ2k+8L2 , for all k ∈ N, κ = L

µ , and (Dk)k∈N be a non-negative sequence
satisfying, for all k,

D2
k+1 ≤ (1− µηk)D

2
k + 2η2k(B

2
k + 2σ2) + 2ηkBkDk .

where there are constants A,B > 0 such that, for all k ∈ N,

B2
k ≤ A+B log

(
k + 8κ2

)
k + 8κ2

.

Then, we have

D2
k+1 ≤ 8κ2D2

0

k + 8κ2
+

1

µ2

(
5(B +A) + 8σ2

)
log(k + 8κ2)2

k + 8κ2

Proof. We first rework the recursion, we use the fact that

2ηkBkDk = 2ηk

(√
2Bk√
µ

)(√
µ√
2
Dk

)
≤ ηk

(
2B2

k

µ
+

µ

2
D2

k

)
=

2ηkB
2
k

µ
+ ηk

µ

2
D2

k .

The new recursion becomes

D2
k+1 ≤

(
1− µηk

2

)
D2

k + 2η2k(B
2
k + 2σ2) +

2ηkB
2
k

µ
. (10)

From this recursion, we obtain by expanding all terms

D2
k+1 ≤

(
1− µ2

µ2k + 8L2

)
D2

k +
8µ2

(µ2k + 8L2)2

(
2σ2 +

A+B log
(
k + 4κ2

)
k + 4κ2

)

+
2µ

(µ2k + 8L2)

2(A+B log
(
k + 8κ2

)
)

µ(k + 8κ2)

(µ2k + 8L2)D2
k+1 ≤

(
µ2k + 8L2 − µ2

)
D2

k +
8

(k + 8κ2)

(
2σ2 +

(A+B log
(
k + 8κ2

)
)

(k + 8κ2)

)

+
4(A+B log

(
k + 8κ2

)
)

(k + 8κ2)

≤
(
µ2(k − 1) + 8L2

)
D2

k +
log
(
k + 8κ2

)
k + 8κ2

(
5(B +A) + 16σ2

)
17

118875 https://doi.org/10.52202/079017-3775



where we use the fact that k ≥ 0 and κ ≥ 1 so that log
(
k + 8κ2

)
≥ log (8) > 1. We deduce that

(µ2k + 8L2)D2
k+1 ≤

(
8L2 − µ2

)
D2

0 +
(
5(B +A) + 16σ2

) k∑
i=0

log(i+ 8κ2)

(i+ 8κ2)

≤ 8L2D2
0 +

(
5(B +A) + 16σ2

)
log(k + 8κ2)2

where the last inequality is by integral series comparison, using the fact that t 7→ log(t)/t is de-
creasing for t ≥ exp(1), we have

k∑
i=0

log(i+ 8κ2)

(i+ 8κ2)
≤ log(8κ2)

8κ2
+ log(k + 8κ2)2 − log(8κ2)2 ≤ log(k + 8κ2)2.

Lemma C.4. Let ηk = η < 1
2µ for all k ∈ N, κ = L

µ , and (Dk)k∈N be a non-negative sequence
satisfying for all k

D2
k+1 ≤ (1− µηk)D

2
k + 2η2kB

2
k + 2ηkBkDk .

where, there is a constant A > 0, with ρ = 1− µη
2 such that, for all k ∈ N,

B2
k ≤ Aρk .

Then, we have

D2
k ≤ ρk

(
D2

0 +
kA

ρ

(
2η2 + 2

η

µ

))
.

Proof. We proceed similarly as in (10) and obtain

D2
k+1 ≤

(
1− µηk

2

)
D2

k + 2η2kB
2
k +

2ηkB
2
k

µ
≤ ρD2

k +Aρk
(
2η2 + 2

η

µ

)
.

We rewrite and use an induction to obtain

D2
k+1

ρk+1
≤ D2

k

ρk
+

A

ρ

(
2η2 + 2

η

µ

)
≤ D2

0 +
kA

ρ

(
2η2 + 2

η

µ

)
which is the desired result.
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ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is simple low-dimensional regression problems that can be run on a
standard laptop (Apple Macbook M3).

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no ethical concern in the paper.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: There is no societal impact of the work performed due to its very theoretical
nature.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No model or data is released in the paper.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite accordingly the original papers that produced the code package used
in our experiments.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets.

Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Depending on the country in which research is conducted, IRB approval (or equiva-

lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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